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Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed

second-harmonic peaks

Binbin Zhou, Hairun Guo, and Morten Bache”
DTU Fotonik, Technical University of Denmark, Building 343, DK-2800 Kongens Lyngby, Denmark
(Received 30 September 2013; published 18 July 2014)

Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away
from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned
over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory explains this as
phase matching between a sideband in the broadband pump to its second harmonic. However, our experiment is
conducted under high input intensities and instead shows excellent quantitative agreement with a nonlocal theory
describing cascaded quadratic nonlinearities. This theory explains the detuned peak as a nonlocal resonance
that arises due to phase matching between the pump and a detuned second-harmonic frequency, but where in
contrast to the traditional theory the pump is assumed dispersion free. As a soliton is inherently dispersion
free, the agreement between our experiment and the nonlocal theory indirectly proves that we have observed a
soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear
interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited.

DOI: 10.1103/PhysRevA.90.013823

A common observation in second-harmonic generation
(SHG) of broadband laser pulses in thick crystals is that
when a phase mismatch Ak is imposed, the second harmonic
(SH) spectrum is dominated by a spectrally compressed peak
that is wavelength tunable through Ak [1-8]. Figure 1(a)
shows data from an experiment we performed using a thick
B-barium borate (BBO) crystal. The input fundamental wave
(FW, center frequency w;) was an intense femtosecond pulse
loosely focused and collimated at the crystal entrance to
avoid diffraction. The tuning around Ak = 0 was achieved
by rotating the external angle of the crystal. A striking
wavelength tunability over hundreds of nanometers is possible,
and the peak is also strongly compressed compared to the
ideal thin-crystal bandwidth [in this case about 40 nm full
width at half maximum (FWHM)]. The compressed SH peak
pertains for large negative tuning angles, whereas it disappears
for large positive tuning angles (here +5°). The spectral
compression is traditionally explained by a phase-matched
sidebands theory, which uses the classical result that the
SH efficiency o sinc>[AkL/2]: this explains the decreasing
bandwidth in a thick crystal, and the frequency dependence
of Ak(w) = ky(w) — 2k;(w/2) explains how a SH sideband
frequency strongly detuned from the degenerate SH frequency
w; = 2w; can become phase matched when Ak(w;) # 0.
Figure 1(c) shows the predicted phase-matching wavelengths
by the phase-matched sidebands theory, and remarkably it
cannot explain the experimental data for large positive tuning
angles.

Instead an alternative nonlocal theory, shown in Fig. 1(b),
predicts “resonance” wavelengths in the nonlocal response
function that up to +4° are in excellent agreement with
the experimental peak positions. At 4+5° the phase-matching
condition behind this resonance is no longer fulfilled, yielding
a broadband, nonresonant nonlocal response that does not
favor the formation of a detuned SH peak (see also the
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numerical results presented below). This agrees with the
experimental data that show no detuned SH peak there, and
instead the radiation at zero detuning (around A;) dominates.
The nonlocal theory predicts that under strongly phase-
mismatched (cascaded) SHG, the well-known x® : x @ Kerr-
like nonlinearity acts like a temporally “nonlocal” nonlinearity
[9]. In previous work, this nonlocal theory could predict the
detuned SH peak observed under similar conditions as Fig. 1(a)
[10-12].

The purpose of this paper is to understand why our experi-
ment follows the nonlocal theory and to investigate the physics
behind the two models to elucidate their applicabilities. In
brief, the phase-matched sidebands theory takes into account
the FW dispersion, whereas the nonlocal theory assumes a
dispersion-free FW. The experimental conditions are carefully
chosen so the two cases can be distinguished, and Figs. 1(b) and
1(c) show that for tuning angles of 4+-3° and beyond they start
to differ. Such strongly detuned SH peaks are only observable
with high input intensities, which may excite self-defocusing
temporal solitons at the FW wavelength: The cascaded SHG
leads to a Kerr-like nonlinearity n} .. o —dZ%/Ak [13,14],
which is self-defocusing for positive phase mismatch Ak =
ky — 2k, (positive tuning angles). Since the FW has normal
group-velocity dispersion (GVD) in BBO at 1.03 um, a
FW self-defocusing soliton can be excited [15-21] when the
self-focusing material Kerr nonlinearity is outbalanced (so
nh e né,Kerr < 0). The phase-matching condition between
such a soliton and the detuned SH peaks is accurately described
by the nonlocal theory as the soliton is inherently dispersion
free. Thus, the excellent agreement between the nonlocal
resonance wavelengths and the experimental data indirectly
proves that this is a soliton-induced nonlocal resonance.
Conversely, the historical measurements [1-8] used too-low
intensities for soliton formation: In this case the FW is
dispersive and the phase-matched sideband theory prevails.

Cascaded quadratic nonlinearities have been extensively
investigated experimentally recently for ultrafast pulse com-
pression and soliton formation [2,15-25], supercontinuum

©2014 American Physical Society
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FIG. 1. (Color online) (a) Experimental SH normalized spectra
sweeping the phase-mismatch parameter from negative to positive
values (external angle tuned from —3° to +5° around Ak = 0).
An L = 25 mm BBO crystal was used pumped with A; = 1.03 um
58-fs FWHM 80 GW /cm? pulses. (b) The nonlocal theory, predicting
I, oc |[R(R)|%. (c) Phase-matched sidebands theory, predicting I, o
sinc?[Ak(L)L/2].

generation [21,26-28], white light continuum from fila-
ments [29-31], frequency comb generation [32], femtosecond
mode locking [33-39], compensation of self-focusing effects
[40,41], material properties [42—45], and ultrafast pulse control
[6-8,45-58]. One particular feature of cascaded quadratic
nonlinearities is that they induce a nonlocal nonlinearity, either
spatially [59] or temporally [9]. In the spatial nonlocal case,
the nonlinearity depends not only on the local intensity but
also on its neighboring points [60] (see [61] for a review);
spatial nonlocal nonlinearities have been observed in various
physical environments such as heat conduction [62], ballistic
atomic transport [63], diffusion [64], charge separation [65],
or long-range particle interaction as in, e.g., dipolar Bose-
Einstein condensates [66], and nematic liquid crystals [67].
We here consider a temporal nonlocal nonlinearity, where
the nonlinear cascading response at time t (in the moving
reference frame) relies not just on the instantaneous (local)
field values but also at times before and after that. In the time
domain a first-order expansion of the nonlocal response [12]
reveals the analogy to the cascading-induced controllable pulse
self-steepening [45,52], while a frequency-domain description
reveals that the nonlocal response can be either nonresonant
(i.e., ultrabroadband, which is the optimal situation for few-
cycle pulse compression [9,10,21]) or resonant as in the case
investigated here. The first observation of a temporal cascaded
self-defocusing soliton [16] was actually carried out in the
resonant regime (see [9]), but this was prior to the discovery
of a nonlocal resonance regime for such an interaction [9] and
the SH spectrum was not recorded to document the connection
between soliton formation and the SH spectral resonance. The
spatial equivalent of a resonant nonlocal nonlinearity occurs
when the SH experiences negative diffraction or when the
phase mismatch is negative [59], but the analytical soliton
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solutions are very elusive [68,69] due to an oscillatory nature
of the nonlocal response in the time or space domain that comes
as a consequence of the spectral resonance. To our knowledge,
a soliton-induced nonlocal resonance, spatial or temporal, has
yet to be experimentally observed.

The theory starts with the plane-wave SHG equations
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where k;j(w) = nj(w)w/c are the wave numbers, n;(w) the
frequency-dependent refractive indices of the FW (j = 1)
and SH (j =2), n; =n,(w;), Ak =k —2k\” the phase
mismatch parameter, dj, = kgl) - k;l) the group-velocity mis-
match (GVM) parameter, and k;z) the GVD coefficients.
Higher-order dispersion k;m) =d"kj/dw"|y=0,; is neglected
as to allow for analytical solutions, but all the plots use exact
(material) dispersion from the Sellmeier equations (taken from
[70]). Finally, d.f is the effective x® nonlinearity. Following
[57], we take E»(z,7) = Ba(z,7)e™'#¥, and Eq. (2) in the
Fourier domain is

0 w1 deft
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dispersion operator. To solve this,
the homogeneous equation as Béh) x e

solution Bép ) that is constant in z can be found by requiring
that F[E7] does not depend on z. This yields

__orderr F[EY. (4)

B([’) Q —
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As the total solution is a linear combination Bm B(h) +

B;” ), appropriate boundary conditions give the homogeneous
solution
@1 deft

BY (2.9 = — — —F[E}

iDQ):z
R ®)

The total solution then becomes

de .
B(l)(z Q) = lD?(Q)Z/2w1 ffo[E%]SlHC[Dz(Q)Z/Z]. (6)

cny

If we now consider a transform-limited FW, |F [E12]| =
]-"[|E1| ], then the SH intensity is I»(z,Q) =

2odyy z smc2[D2(Q)2/2]I (2). The result

nin3 mn2cie,
I, x s1n02(Akz /2) is found by neglecting SH dispersion.
The “nonlocal” result from [9,10] that we used in Fig. 1 can
be recovered from B, as the nonlocal solution is precisely
identical to the particular (or “driven-wave” [57]) solution
found above. This is because the nonlocal approach neglects
the homogeneous solution (“free wave” [57]) but otherwise
applies the same assumptions. In [9] a so-called nonlocal
response function R was introduced, and this approach

classical
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corresponds to writing the particular solution (4) as

, V2rwde
BP(Q) = ——C,’Z‘Zk T RQ)F[EY], )
Ak
_ —1/2
R(Q2) = (2m) DZ(Q)- ®)

The constants in the nonlocal response function R are suitably
chosen to normalize it properly. By analyzing R, it was shown
[9,10] that when d122 — Zkf)Ak > 0 the response becomes
resonant because the denominator has two real roots. For
positive SH GVD (normal dispersion) this inequality is ex-
pressed as Ak < AkM, where the threshold Ak™ = d7,/ 2k§2)
depends critically on GVM. It marks the transition between the
nonresonant (Ak > Ak™) and resonant regimes (Ak < Ak™).
In the latter the resonance frequencies are

QU = (dp % [d} — 28kkP] ) /K2, ©)

accurate to second order. Instead when Ak > Ak™ the non-
local response is nonresonant and ultrabroadband; when in-
cluding up to second-order dispersion it assumes a Lorentzian
shape with peak position at Q™ = d,/ kéz) .

The traditional “phase-matched sidebands” theory uses the
classical result I, o sinc?(Akz/2) and phenomenologically
generalizes to full chromatic dispersion Ak(w) = ky(w) —
2ki(w/2). In the absence of phase matching, phase matching
can occur between a sideband frequency in the FW spectrum
w} and its corresponding SH sideband frequency ), = 2w|. By
expanding Ak(w) around w,, we see that when Ak < Ak® =
dlz2 [2k;2) — k?)], phase matching occurs at the SH frequency
offsets:

o [, — k(A — k2]

st —
PR

(10)

Equations (9) and (10) seem quite similar but the latter
includes dispersion of the FW (here up to second order through
the FW GVD). In the nonlocal case the FW is assumed
dispersion free; it is a consequence of requiring F' [Ef] to be
independent in z. Figure 2(a) shows a graphical representation
of the two cases in a classical w-k dispersion diagram
representing the 4+4° case of Fig. 1: For the nonlocal theory
the FW dispersion curve is obviously flat as it is dispersion free
(red curve), while the SH follows the material dispersion curve
(black). Their intersection points give the nonlocal resonance
(phase-matching) frequencies. The phase-matched sidebands
theory assumes that the FW is dispersive (i.e., follows the
material dispersion, shown with a blue dotted curve), evidently
giving different resonance frequencies when intersecting with
the SH curve. The figure also shows graphically how the
phase mismatch is found as the distance between the FW and
SH curves at w;, as well as how angle tuning shifts the SH
curve up or down while leaving the FW curves unchanged.
The +5° curve also shows the example where the angle is
tuned to a point where the nonlocal theory predicts no phase
matching (the SH and FW curves do not touch), and instead
of a resonant nonlocal response one has here a nonresonant
ultrabroadband response. Figures 2(b) and 2(c) show the
predicted SH phase-matching wavelengths vs Ak for A = 0.8

PHYSICAL REVIEW A 90, 013823 (2014)
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FIG. 2. (Color online) The SH resonance wavelengths calculated
for type I birefringent (oo — ¢) SHG in BBO. (a) Illustration of the
phase-matching condition k,(w) — 2k (w/2) at +4° of Fig. 1, reported
in the FW reference frame 7 = ¢ — zk!". The SH curve (thin black
line) is tunable through 6; this is indicated with thin gray curves for
0 taken 1° larger and smaller. (b, ¢) Calculated SH peak wavelengths
vs phase mismatch Ak for A; = 0.8 and 1.03 pm, respectively. Solid
lines are resonant wavelengths, while dashed lines are the peak
values of the Lorentzian shape of the nonresonant response. The
self-defocusing regime is indicated where n} ... + n4 co, < 0.

and 1.03 pm. The two theories agree around Ak = 0 but start
to differ when Ak > 0. For A; = 0.8 um, Fig. 2(b) shows
very strong separation of the two cases, but it only occurs in
the self-focusing regime [i.e., where the total nonlinear index
change An = (n} . + 1} x.)I1 > 0]. As BBO has normal
GVD below A = 1.4 um, solitons require a self-defocusing
nonlinearity to exist. Instead for A; = 1.03 um, the case in
Fig. 2(c), the deviation between the curves occurs well in
the self-defocusing regime that supports soliton formation.
For higher XA, the two theories become more and more
indistinguishable as the FW dispersion is reduced.

The experiment therefore used a commercial optical para-
metric amplifier to generate an o-polarized pump at 1.03 um
with 40 uJ pulse energy, with near-transform limited pulses
(58-fs FWHM duration, inferred from an intensity autocorre-
lator, and a Gaussian-shaped 28.4-nm FWHM spectrum). The
pump beam was collimated with an all-reflective telescope
setup (beam spot size 0.5 mm FWHM). The input beam
intensity was controlled by a neutral density filter. We used
a 25-mm-long BBO crystal with a 10 x 7 mm? aperture (cut
with 0 = 21°, ¢ = —90°). The phase mismatch was tuned by
rotating the external crystal angle with 1/6° precision, and
the total operational range of the external angle was kept low
enough to avoid geometrical effects due to nonperpendicular
incidence of the pump. We kept the input intensity fixed
for all tuning angles; it must be intense enough to achieve
a good signal of the detuned peak in the entire Ak range.
The cascading strength is nj ., & —dZ;/Ak, and while deg
does not change much in the applied tuning range, the 1/Ak
scaling gives severe changes in the cascading nonlinearity.
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FIG. 3. (Color online) (a) Experimental evolution of the SH
spectrum vs Ak; the results in Fig. 1(a) are selected from these data.
All spectra are normalized to the same peak value. The baseline of
each spectrum indicates the invoked phase mismatch. (b) Quantitative
comparison between the theories and the experimentally measured
SH peak wavelengths.

We tried two different levels, 80 and 160 GW/cmz, both
with similar results. As peak splitting occasionally occurred
with 160 GW/cm?, in what follows we therefore present
the 80 GW/cm? results. The SH spectrum was recorded by
impinging the SH beam center on the spectrometer input
fiber connector. We also used an integrating sphere, which
gives a spatially averaged signal; this gave more blurred peaks
indicating some spatial variation of the spectral contents, but
the overall analysis and results presented in what follows
are representative of both cases. Figure 2(c) in [44] shows
representative FW spectra recorded under similar conditions.

Figure 3(a) shows the results of Fig. 1(a) in more detail.
Around Ak =0 the SH detuned peak is dominating the
spectrum but the two theories are almost identical there. At
higher Ak > 30 mm™! it becomes clear that the dominating
SH peak is best explained by the nonlocal theory (solid
red curve). In this range some minor blueshifted peaks are
present, which seem to obey the phase-matched sidebands
theory (dotted blue curve). As the transition to the nonresonant
regime is approached (AK™ ~ 52 mm~!), the peak becomes
very broad and is now no longer dominating; around zero
detuning (A;) some modulated peaks are instead dominating.
We have extracted the wavelengths of the observed peaks and
show in Fig. 3(b) a quantitative comparison between the two
models. Clearly the nonlocal theory accurately predicts the
major peaks observed in the SH spectrum, which indirectly
proves that we have excited a FW self-defocusing soliton for
Ak > 0. Further evidence for this is that we in this regime
observed moderate self-compression effects in autocorrelation
traces of the FW, which is a typical feature of solitons. The
quantitative comparison also reveals that the minor blueshifted
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FIG. 4. (Color online) Numerical slowly evolving wave approx-
imation [18,71] simulations using experimental parameters. (a, b)
Normalized spectra; in (a) |F [Elz(r)]| is also shown (thin lines).
(c, d) Normalized temporal intensities (notice the different time
axis scalings). An offset is imposed between each curve for clarity
of presentation. (e) Propagation dynamics of the +3° case. Kerr
nonlinearities are from [44].

peaks indeed follow the phase-matched sidebands curve;
evidently part of the FW is dispersive and excites these
minor peaks. Finally, beyond the transition Ak™ ~ 52 mm™!
the detuned peak disappears because the nonlocal response
becomes nonresonant.

We could not observe the upper branch of the resonant
response. It is quite elusive here as its intensity is o<
|R(Q)|?|FLEF]|?, so a significant amount of spectral broad-
ening of the FW is needed to see a signal far away from
zero detuning A, = 0.515 pum. This also explains why the SH
nonlocal peak quickly decreases close to the transition Ak, =~
52 mm~!. On the other hand, for zero GVM the transition
AKk™ =0, and both branches will develop symmetrically
around )\, for Ak < 0 [4].

In Fig. 4 we show the results of plane-wave numerical
simulations with phase-mismatch values identical to Fig. 1.
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The FW spectra (thick lines) in Fig. 4(a) show significant
spectral broadening. The SH spectral trend in Fig. 4(b) is very
similar to the experiment [Fig. 1(a)]; in particular we verify that
at +5° we see the same type of spectrum as in the experiment,
namely that the radiation around A, dominates due to the
broadband nonlocal response. Since the theory predicts that
L(R) o [R(Q)I| FIEF(D]I?, and not 1,(2) o< |R(Q)PIF(S),
we also show |}'[E,2(r)]| in Fig. 4(a) with thin lines: Due
to a significant FW phase it becomes much broader than
1,(£2), and thus I;(£2) is not a good measure to predict >(£2).
Figures 4(c) and 4(d) show the time traces: For negative Ak
the total nonlinearity is self-focusing, and since the GVD is
positive the FW broadens temporally (wave breaking [72]).
At positive Ak the total nonlinearity is self-defocusing and
Fig. 4(c) shows that the intensity is large enough to excite a
FW soliton, leading to a moderate compression (just like what
we observed in the experiment). To quantify this the effective
soliton order [71] is shown in each case, calculated from the
effective nonlinear Kerr index nj ¢ =nj ... +nj ... and
the sign of the soliton order is intended to distinguish the
self-focusing case (n] . > 0) from the self-defocusing case

(né.eff < 0). As the self-defocusing soliton orders employed
are all larger than unity, soliton self-compression is observed
for all Ak > 0 cases. A strong pulse shock front is seen
for low positive Ak that gradually degrades along with the
pulse compression factor for higher Ak. This is because the
cascading self-steepening term is o djp/Ak [9,50,52] and
because the effective soliton order decreases, respectively. In
Fig. 4(d) the SH temporal intensities are shown. The dashed
line indicates the calculated walk-off delay due to GVM; this
is the “free” wave. The “driven” wave appears in the vicinity
of the T = O regime; it is essentially a temporal copy of the FW
(particularly evident for large Ak). The strong SH components
observed in between the driven and free waves for positive Ak
are caused by the nonlocal resonance effect. To appreciate
this, Fig. 4(e) shows the propagation dynamics of the +3°
case as a descriptive example: The nonlocal radiation, observ-
able both in the SH time trace in Fig. 4(e3) and spectral trace
in Fig. 4(e4), only emerges after the soliton self-compression
point, i.e., only after the FW soliton is actually formed, which
occurs at z = 10 mm; see Fig. 4(el). This is another evidence
that it is truly a soliton-induced nonlocal resonance. Before
the soliton forms, the FW is dispersive and thus follows the
phase-matched sideband phase-matching condition; however,
no significant radiation is observable as the FW spectral
broadening is too weak in this regime to excite the SH
resonance with a detuning this large.

Instead of angle tuning the crystal, a quasi-phase-matching
(QPM) geometry could be used in ferroelectric crystals like
lithium niobate, and the tunability of the SH peak is ensured
with continuously variable grating period A (fan-out) (as done
in, e.g., [6]). Our results remain unchanged: One can still find
a resonant regime close to phase matching, and essentially in
the nonlocal response function Ak must be replaced by the
effective QPM phase mismatch Akgpm = Ak — 2 /A; see
[73]. However, when using QPM to reduce the effective phase
mismatch to a nonzero level (to achieve cascading) there are
usually some higher-order QPM processes that become very
nearly phase matched. Therefore, it is typical to observe
numerous resonant peaks in the SH spectrum; see, e.g., [12].
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In summary, phase-mismatched SHG of femtosecond
pulses in a thick crystal leads to the formation of a dominating
compressed peak in the SH spectrum. While this is well
known, in contrast to earlier experiments we used a large input
intensity. The peak was tunable over hundreds of nanometers
until it abruptly disappeared for large positive tuning angles
(positive Ak). The traditional theory of phase matching
between a sideband in the broadband FW and a sideband of the
SH fell short in explaining the results. Instead we considered
a “nonlocal” theory, where the narrow wavelength-tunable SH
peak is explained by a resonance in the nonlocal response
in the cascading limit of strongly phase-mismatched SHG.
In the nonlocal approach a key assumption is that the FW
is dispersion free, in contrast to the traditional explanation
that phenomenologically considers a dispersive FW. The
experimental conditions were carefully selected to discern
the two theories: For positive tuning angles (Ak > 0) they
started to deviate, and we found that the nonlocal theory gave
an excellent agreement with the observed peaks. This result
provided significant evidence that we had excited a FW self-
defocusing soliton: For Ak > 0 a dominating self-defocusing
nonlinearity is induced by the cascaded SHG, and since the
pump wavelength was in the normal dispersion regime and
a high intensity was used we could excite a self-defocusing
soliton. A soliton is precisely characterized by being dispersion
free and thus accurately described by the nonlocal theory. The
tunable and compressed SH peaks observed for positive tuning
angles are therefore the soliton-induced nonlocal resonances
that were predicted theoretically [9]. This is a completely
new way of confirming the presence of a soliton in this
elusive resonant nonlocal regime. The historical experiments
[1-8] instead employed low intensities so solitons could not
be excited. Thus, the FW remained dispersive and therefore
the traditional theory of phase-matched sidebands could
accurately explain the peaks.

M.B. and B.Z. acknowledge support from the Danish
Council for Independent Research, Projects No. 274-08-0479
and No. 11-106702. Ole Bang and Xianglong Zeng are
acknowledged for fruitful discussions.

APPENDIX: THE NONLOCAL THEORY AND
PHASE-MATCHED SIDEBANDS THEORY

Here we for completeness discuss separately the two
theories as they traditionally have been presented, before we
show a framework that combines the two approaches. The final
comparison and discussion lay the grounds for the theoretical
section in the main parts of the paper.

We consider SHG w; + w1 — w, between the FW (fre-
quency ) and the SH (frequency w, = 2w ). The plane-wave
coupled SHG equations under the slowly varying envelope
approximation of the electric field envelopes E; are (in mks
units)

9 1 o) 9 1 deft ;
— — —kY’— |E E¥Eye'®% =0,
|:l az 2! ar? L cny ! 2

(AL)

ad ad 1 92 d :
|:i— —idp— — —k(z)—]Ez 4 DA Ele i =,
z T T

cny

(A2)
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where k;(w) =n;(w)w/c are the wave numbers, n;(w) the
frequency-dependent refractive indices of the FW (j = 1)
and SH (j =2), n; =n;(w;), Ak =k —2k” the phase
mismatch parameter, dj, = k(ll) — k;l) the GVM parameter,
and k;z) the GVD coefficients. Generally kﬁm) = 4k lo=w, are

do™

the dispersion coefficients at the reference frequencies w;; we
here only include up to second-order dispersion for simplicity
but later generalize to higher-order dispersion. We could
also include self-steepening effects, but the analytical results
we now present are unaffected by this. Kerr nonlinearities
are also neglected for simplicity; the results presented are
intended to investigate the SH dispersion and nonlinear
properties when thick-crystal femtosecond SHG is operated
under phase-mismatched interaction. This implies that the
crystal length L is on the order of 10 mm or more, so the
strongly phase-mismatched (cascading) limit AkL > 2w is
always fulfilled. This means that the SH conversion is weak,
even for high FW intensities, and thus that Kerr self-phase and
cross-phase modulation of the SH is insignificant. They are
instead both very relevant for the FW, but this is not what we
investigate here. Finally, d. is the effective x® nonlinearity.

1. Nonlocal theory

The nonlocal theory builds on the approach used in [9].
We first assume a heavily phase-mismatched SHG process
(|Ak|L > 2m), allowing for the ansatz

E3'(z.7) = A(m)e ™85
that separates the z and t dependence. Inserting the ansatz in
Eq. (A2) gives the ordinary differential equation AkA(t) —
idpA(t) — lk(z)A”(t) + @der E2 = 0, where primes denote

time der1vat1ves Introducing t2he Fourler transform E»(z,Q2) =
Q2m)~1/? fioo dQet ¥ Ey(z,7), in the Fourier domain we

get A(Q[Ak — dipQ + 3k57Q%] + 2t FIE?] = 0, imply-
ing the solution

(A3)

EYC.) = VI 2 R@)F[E. (ad)

where F[-] denotes the forward Fourier transform, and we
used Eq. (A3). A normalized (how it is normalized is discussed
later) nonlocal response function is here introduced as

Ak

R(Q) = ,
—dpQ+ Ak

1
NGV (A9
which turns out to be inherently dimensionless. We see from
this result that the SH becomes “slaved” or “locked” to the
FW: The SH spectral density for a transform-limited FW
is therefore () o |R(Q)[*I3(S2). For a chirped FW the
relation becomes more complicated (|F[E;]%| # |E1()]?),
and one can no longer simply consider the SH spectrum as a
product of the FW spectral intensity and the nonlocal response
function.

The ansatz Eq. (A3) reflects the strong cascading limit
(|JAk|L > 2m), where it is assumed that the phase mismatch is
so large that the coherence length 77 /| Ak| is much smaller than
any other characteristic length scales (see also discussion in
[9]). However, it turns out to work quite well even when one of
the other length scales becomes similar in size. An important
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length scale in this comparison is the quadratic nonlinear
length scale defined through the traditional I" parameter
I' = widewE1in/(c/n1n2), where E|;, is the peak electric
input field. The ansatz holds when AkI" > 1 [44]. The ansatz
looks for solutions that are stationary in z, and this only
happens when the FW can be assumed undepleted, but also
when the FW phase does not change with z; remember from
Eq. (A2), where the “source term” F| [E,z] could induce SH
variations in z either through its amplitude or phase.

The denominator of the nonlocal response can become reso-
nant when Ak < Ak,, where Ak, = d3,/ Zkf) is an important
phase-mismatch value that depends critically on the GVM
parameter d|;. It marks the threshold between the nonresonant
(Ak > Ak;) and resonant regimes Ak < Ak;. In the latter the
resonant nonlocal behavior occurs because the denominator
will have two real roots, leading to resonant peaks in R. These
resonance frequencies are to second order

Q@ = (dip £ Jdy — 22Kk ) /K.

This result was also found in [57] using a different approach,
but essentially taking the same key assumptions; this is dis-
cussed later. Instead when Ak > Ak; the nonlocal response is
nonresonant: The resonance peaks disappear and the nonlocal
response is ultrabroadband. This is the optimal situation for
few-cycle pulse compression [9,10] (see also recent discussion
in [21]).

Let us now show how the cascading leads to a non-
local Kerr-like nonlinearity, using the convolution theo-

(A6)

rf;m E>(z,Tt) = _efiAkz:‘"n'z% ffooo dSR(S)Elz(Z,‘L' —s), where
R(t) = F7'[R] is the inverse Fourier transform of the

response function. Note that Eq. (AS) is defined so
[, dtR(tr) =1; this is the basis of the normalization
discussed above. Inserting E»(z,7) into Eq. (A1), we get that
the FW obeys the following equation:

I SSE 30,
—— L~ — | E\+ —xO) E}
|:l 9z 2 a2 | ! + 81116)(°asc !

oo
x/ dsR(s)E(z,t —s) =0 (A7)
—00
The leading nonlinearity is now cubic, with x{). =

Swldff/(3cn2Ak) being the Kerr-like nonlinear coeffi-
cient induced by cascading; equivalently this can be ex-

pressed as a Kerr-like nonlinear refractive index né case =

—2wd? e/ (c? gony 21, Ak). This nonlocal Kerr-like nonlinearity
is nonresonant in the frequency domain when Ak > Ak, and
resonant in the frequency domain when Ak < Ak;. In the latter
case the temporal nonlocal response function is oscillatory in
the time domain R(t) o sin(|t|/¢;) with some characteristic
oscillation time 1; = 2|Q" — Q|~!. Finally, in the local limit
where the FW spectrum is very narrow we can make the ap-
proximation that R(£2) is constant inside the spectrum, and thus
Ef(z,7) [ dsR(s)E}(z,T — 5) = E(z,7)|E1(z, 7). This is
the instantaneous Kerr-like nonlinearity induced by cascad-
ing. It will be competing with the intrinsic material cubic
nonlinearity det, and effectively the FW will experience a
total nonlinear refractive index change An = (n! . + nk..)11,
where [; is the FW intensity and the material Kerr nonlinear
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refractive index is ng,, =3 xS /4gon3c. When including the

next order in the local-limit expansion an additional cascading-
induced self-steepening term results [9,10], equivalent to the
term found in [45,50,52] using a perturbative approach.

2. Phase-matched sidebands theory

Let us now discuss the traditional approach based on phase-
matched sidebands: In the absence of phase matching between
the center frequency w; and w,, phase-matched SHG of a
pulsed beam can occur using a sideband frequency in the FW
spectrum )}, which then generates a SH at w}, = 2w that is
detuned from w,. This explains the detuned SH peak observed.
Obviously changing the amount of phase mismatch of the
center frequencies changes the SH detuned frequency that can
be phase matched, which explains the tunability.

In order to quantify this, it is well known that under the
undepleted FW approximation (/; is constant in z) the SH
intensity obeys the equation

2 72
h) = 2 2602 Ak /)12, (A8)
ninac-ey

which can be derived directly from Eq. (A2) by integrating
over z and neglecting SH dispersion; the “undepleted FW”
assumption also implies that the FW does not depend on
z and, therefore, can be taken constant in this integration.
We now study the chromatic variation of the phase-matching
condition Ak = k3" — 2k, ie., Ak(w) = ka(Qw) — 2k (w):
When Ak(w;) # 0 we may look for a phase-matching point
detuned away from the FW frequency w/, but where frequency
conservation is obeyed, ) = 2w]. Graphically, the sinc
function at phase matching is centered at w,, but in the absence
of phase matching it is shifted to a new frequency wj. Focusing
on a sideband Q* to the SH frequency this can be written as
AK(Q®) = ky(wy + Q%) — 2k (w) + SZSb/Z), and expanding
it we get AKQ®) = Ak — dpQ® + 1@ (P — k2 2) +

0(2%°). Whend2, — 2Ak(k? — k' /2) > 0, phase matching
occurs at the frequency offsets

o dn £ Jdh 28k~ kP)2)
Q= D _ @ ’ (A9)
2 —ki/2

accurate up to second order. We see that the condition for
having phase-matched sidebands, d?, — 2Ak(k£2) — kﬁz) /2) >
0, is reminiscent of the resonance condition we employed
for the nonlocal theory. If we express it through the phase-
mismatch parameter it becomes Ak < Ak = d2,/(2k —
kﬁz)) when k;2> — kﬁz) /2 > 0. Note that an analytical result for
the detuned SH frequency was calculated previously [1,2],
taking into account only GVM (i.e., accurate to first order
only).

This approach is quite phenomenological, because the un-
depleted FW result in Eq. (A8) is based on the monochromatic
phase mismatch Ak = k;o) - 2k§0) . Any direct influence of the
FW dispersion is absent from this equation and can, therefore,
not play a role in the analysis. However, it intuitively makes
sense that we may “track” the phase-mismatch variation vs
frequency and therefore make the generalization to Ak(w) =
ko(2w) — 2k (w). The nonlocal approach also highlights how
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easily the SH higher-order dispersion is taken into account
to describe dispersion beyond the monochromatic phase-
mismatch parameter, and in fact a sinc-like result can be
derived in the case where SH dispersion is present (see
[57D).

3. The approach of Valiulis et al.

To see this, we follow the approach in [57]. The first step is
standard and introduces an auxiliary SH amplitude E»(z,7) =
By (z,7)e 2 50 the SH equation becomes

9 d 1 5 32 1 deft
i — + Ak —idj,— — k¥ — |B T E2=0.
[’az+ Mg T3 g |P Tt g,
(A10)
In the Fourier domain this can be written as
0 d
= Bo(2,Q) — i DA Ba(z,Q) = i N F[EZ], (Al
0z cnay

where Dy () = 1k7Q% — di»Q + Ak is the effective SH
dispersion operator in the frequency domain. To solve this
we first look for solutions to the homogeneous equation
L B)(2.Q) — i D2(Q2)B,(z.2) =0, which are of the form
B = ae'P®=, Under the assumption that F[E?] does not
depend on z a particular solution B;p ) can be found that is
constant in z. This makes the E)Bé"7 ) /9z = 0, and therefore we
directly get from Eq. (A11)

a)ldeff
k2]
cny D (R2)
Inserting the total solution as a linear combination B, =
B;h) + Bép ) into Eq. (A11) and using the boundary condition
By(z = 0,RQ) = 0 we get a = —BY” (), and thus

B (Q) = — (A12)

w1 deff

BP(z.Q) = — " r[E2]ei P2, Al3
2 @)= @) [Ei]e (A13)
The total solution then becomes
W1 defr 2 iDx(Q)z
By (z,Q) = ———F|E 2842 _ 1 Al4
2 = @ [Ei][e ] (Al4)

; d. .
= i/ D@22 2 Gine[Dy(R)2/2]. (A1)
cny
If we now consider a transform-limited FW, |F [E,2]| =
FI|E |?], then we get

2 72

h(z,Q) = 221%E 262D, (@)2/2112Q), (Al6)

nin3c3eg

where the usual sinc-like behavior is recovered, only here the
full SH dispersion is present in the argument.

We also mention that the nonlocal result is recovered in
this process: The particular solution (A12) is namely exactly
equivalent to the nonlocal result derived in Eq. (A4). This is
also what is denoted as the “driven” wave in [57], and it should
not be surprising that the particular solution found by assuming
a z-independent behavior is identical to the nonlocal result.
Instead the homogeneous part, denoted as the “free” wave in
[57], is neglected in the nonlocal approach, but it describes the
well-known temporal walk-off wave that travels away from
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the FW after one GVM length Ty /|d;,| and moves with the SH
group velocity (and evidently also becomes affected by the SH
higher-order dispersion; cf. the e/ ?2()% phase term).

Still the FW dispersion is elusive in these approaches.
We here note that the FW dispersion can indirectly affect
the SH through the FW “source term”, F [E12]. Even when
the undepleted FW assumption holds, a phase can namely
be accumulated due to dispersion. This does make the source
term z-dependent, and in order to show the consequence a more
rigorous analysis is required. An example is found in Ref. [53],
where they for simplicity keep the SH dispersion absent (thus
no GVM or SH GVD). In the weak FW GVD regime (they
use this approximation because they need to keep the FW
amplitude constant in z allowing only the phase to change in
order to solve it analytically; in this approximation they are
therefore neglecting that the GVD induces a decreasing peak
FW intensity as the FW is spread out temporally) they derive
a result similar to Eq. (A8) where in the sinc term the Ak
term has a contribution from the FW GVD in exactly the
same way as by expanding the phase mismatch to include
higher-order dispersion terms. This indicates that the phe-
nomenological expansion of the phase-mismatch parameter is
correct.

We can be a bit more specific. Consider the case where
the FW pulse, initially Gaussian E{(z = 0,7) = Ej e~ /2T0,
becomes affected by GVD. In the Fourier domain the initial
pulse is E1(z = 0,Q) = El,mToe”zTOZ/z. The GVD manifests
itself through the buildup of a quadratic phase, so the pulse
becomes

Ei(z2,Q) = EinToexp [-QTE/2 +izk’Q%/2].  (A17)

Inverse Fourier transforming we get

E\(z,t) = &exp [ - ]
J1—iz®yr2 LT (1= iak?/ T3)
(A18)
and evaluating the intensity we get [i(z,7)=

ﬁe—mﬂz/%h where Lp=TZ/k®P| is the
FW dispersion length; this is the classic result that as the
pulse propagates along z it spreads out in time and its peak
intensity drops correspondingly. The peculiar feature is that
in the Fourier domain the amplitude is not affected by z, only
the phase is, but this property is unfortunately not conserved
once we square the field and Fourier transform it. Instead we
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get
E?.
]:[E%] — 1,in
21— ick?/17)

To

x exp [~ QT3 /4 +izk{P'Q% /4], (A19)

1
It is exactly the amplitude prefactor [2(1 — izk?) / TOZ)]’E that
violates the assumption about a stationary (z-independent)
source term. However, for a small FW GVD, i.e., when
7 < Lp, we can neglect the variation of the amplitude. Then

we readily see that an additional phase et /4 g added
to the source term. We therefore introduce a new auxiliary
function By = Cet'? /4 and the analysis from Eq. (A11)
remains the same; i.e., we solve for C, and replace D,(€2) —
Dy() — k9% /4 = (kP — kP /2)Q2 — din 2 + Ak.

This shows that expansion of the Ak part in the sinc term
of the classical SH conversion result corresponds to allowing
the FW dispersion to change the phase of the FW field but not
the amplitude, which must remain unchanged. We also note
that the slaved or driven solution, i.e., what the nonlocal theory
actually derives, is also affected by such a FW GVD phase.

It seems clear from these considerations that the only
difference between the two cases is the assumption posed
on the FW. The phase-matched sidebands theory assumes
that the FW follows the material dispersion. The nonlocal
theory as a starting point assumes that the FW is not affected
by higher-order dispersion and only carries a phase and a
group velocity. However, in both cases any effect of the FW
dispersion on the theoretical result must come from releasing
this assumption. In both cases this is handled by the same
approximation, so at the end it is just a matter of choice
whether the FW GVD will play a factor or not, and not a
restriction. A well-known example of a FW that does not
disperse or change its amplitude in z is the temporal soliton; it is
merely described by a phase and a group velocity, and no other
higher-order dispersion terms. The nonlocal theory is therefore
a soliton-based approach while the traditional phase-matched
sidebands theory is a dispersive (nonsolitonic) approach.

We finally note that one can obviously generalize the
frequency resonance derivations as well as the discussions
above to include higher-order dispersion, but this will even-
tually require semianalytical or numerical solutions. In the
theoretical curves presented in the paper we use “exact”
dispersion, where no polynomial expansion is used and
the refractive indices used are from the material Sellmeier
equations. The solutions are therefore found numerically.

[1] H. J. Bakker, W. Joosen, and L. D. Noordam, Phys. Rev. A 45,
5126 (1992).

[2] R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse, and
F. Hache, Opt. Lett. 22, 268 (1997).

[3] P. Pioger, V. Couderc, L. Lefort, A. Barthelemy, F. Baronio,
C. D. Angelis, Y. Min, V. Quiring, and W. Sohler, Opt. Lett. 27,
2182 (2002).

[4] H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, Opt.
Express 12, 2150 (2004).

[5] F. Baronio, A. Barthelemy, S. Carrasco, V. Couderc, C. D.
Angelis, L. Lefort, Y. Min, P. H. Pioger, V. Quiring, L. Torner,
and W. Sohler, J. Opt. B: Quantum Semiclassical Opt. 6, S182
(2004).

[6] K. Moutzouris, F. Adler, F. Sotier, D. Trautlein, and
A. Leitenstorfer, Opt. Lett. 31, 1148 (2006).

[71 M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M.
Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and
G. Cerullo, Opt. Express 15, 8884 (2007).

013823-8


http://dx.doi.org/10.1103/PhysRevA.45.5126
http://dx.doi.org/10.1103/PhysRevA.45.5126
http://dx.doi.org/10.1103/PhysRevA.45.5126
http://dx.doi.org/10.1103/PhysRevA.45.5126
http://dx.doi.org/10.1364/OL.22.000268
http://dx.doi.org/10.1364/OL.22.000268
http://dx.doi.org/10.1364/OL.22.000268
http://dx.doi.org/10.1364/OL.22.000268
http://dx.doi.org/10.1364/OL.27.002182
http://dx.doi.org/10.1364/OL.27.002182
http://dx.doi.org/10.1364/OL.27.002182
http://dx.doi.org/10.1364/OL.27.002182
http://dx.doi.org/10.1364/OPEX.12.002150
http://dx.doi.org/10.1364/OPEX.12.002150
http://dx.doi.org/10.1364/OPEX.12.002150
http://dx.doi.org/10.1364/OPEX.12.002150
http://dx.doi.org/10.1088/1464-4266/6/5/004
http://dx.doi.org/10.1088/1464-4266/6/5/004
http://dx.doi.org/10.1088/1464-4266/6/5/004
http://dx.doi.org/10.1088/1464-4266/6/5/004
http://dx.doi.org/10.1364/OL.31.001148
http://dx.doi.org/10.1364/OL.31.001148
http://dx.doi.org/10.1364/OL.31.001148
http://dx.doi.org/10.1364/OL.31.001148
http://dx.doi.org/10.1364/OE.15.008884
http://dx.doi.org/10.1364/OE.15.008884
http://dx.doi.org/10.1364/OE.15.008884
http://dx.doi.org/10.1364/OE.15.008884

SOLITON-INDUCED NONLOCAL RESONANCES OBSERVED ...

[8] E. Pontecorvo, S. Kapetanaki, M. Badioli, D. Brida,
M. Marangoni, G. Cerullo, and T. Scopigno, Opt. Express 19,
1107 (2011).

[9] M. Bache, O. Bang, J. Moses, and F. W. Wise, Opt. Lett. 32,
2490 (2007).

[10] M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise,
Opt. Express 16, 3273 (2008).

[11] M. Bache and F. W. Wise, Phys. Rev. A 81, 053815 (2010).

[12] H. Guo, X. Zeng, B. Zhou, and M. Bache, J. Opt. Soc. Am. B
30, 494 (2013).

[13] L. A. Ostrovskii, Pisma Zh. Eksp. Teor. Fiz. 5,331 (1967) [JETP
Lett. 5, 272 (1967)].

[14] R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W.
Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).

[15] X. Liu, K. Beckwitt, and F. Wise, Phys. Rev. E 62, 1328
(2000).

[16] S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, J. Opt. Soc.
Am. B 19, 2505 (2002).

[17] S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura,
K. Kitamura, M. Cha, and T. Taira, Appl. Phys. Lett. 84, 1055
(2004).

[18] J. Moses and F. W. Wise, Opt. Lett. 31, 1881 (2006).

[19] X.Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, Opt.
Commun. 281, 4499 (2008).

[20] J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, Opt.
Lett. 32, 2469 (2007).

[21] B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, Phys. Rev.
Lett. 109, 043902 (2012).

[22] X. Liu, L.-J. Qian, and F. W. Wise, Opt. Lett. 24, 1777 (1999).

[23] P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti,
S. Trillo, J. Kilius, and G. Valiulis, Phys. Rev. Lett. 87, 183902
(2001).

[24] P.Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull,
C. Conti, and S. Trillo, Phys. Rev. Lett. 91, 093904 (2003).

[25] O. Jedrkiewicz, J. Trull, G. Valiulis, A. Piskarskas, C. Conti,
S. Trillo, and P. Di Trapani, Phys. Rev. E 68, 026610 (2003).

[26] T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev,
G. Tempea, T. Udem, C. Gohle, T. W. Hansch, W. Lehnert,
M. Scherer, and F. Krausz, Opt. Lett. 30, 332 (2005).

[27] C. Langrock, M. M. Fejer, 1. Hartl, and M. E. Fermann, Opt.
Lett. 32, 2478 (2007).

[28] C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang,
M. E. Fermann, and I. Hartl, Opt. Lett. 36, 3912 (2011).

[29] N. M. N. Srinivas, S. S. Harsha, and D. N. Rao, Opt. Express
13, 3224 (2005).

[30] R. Sai Santosh Kumar, S. Sree Harsha, and D. Narayana Rao,
Appl. Phys. B 86, 615 (2007).

[31] R. S. S. Kumar, K. L. N. Deepak, and D. N. Rao, Phys. Rev. A
78, 043818 (2008).

[32] V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, Opt. Lett.
38, 4281 (2013).

[33] M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum
Electron. 34, 61 (1998).

[34] L. Qian, X. Liu, and F. Wise, Opt. Lett. 24, 166 (1999).

[35] A. Agnesi, A. Guandalini, and G. Reali, Appl. Phys. Lett. 86,
171105 (2005).

[36] A. Agnesi, L. Carra, F. Pirzio, and G. Reali, Opt. Express 16,
9549 (2008).

[37] J.-J. Zondy, F. A. Camargo, T. Zanon, V. Petrov, and N. U.
Wetter, Opt. Express 18, 4796 (2010).

PHYSICAL REVIEW A 90, 013823 (2014)

[38] N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas,
C. Canalias, and F. Laurell, Appl. Phys. B, 1 (2013), doi:
10.1007/s00340-013-5725-6.

[39] C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, Opt.
Express 22, 6060 (2014).

[40] K. Beckwitt, F. W. Wise, L. Qian, L. A. Walker II, and
E. Canto-Said, Opt. Lett. 26, 1696 (2001).

[41] C. Conti, S. Trillo, P. D. Trapani, J. Kilius, A. Bramati,
S. Minardi, W. Chinaglia, and G. Valiulis, J. Opt. Soc. Am.
B 19, 852 (2002).

[42] S. Cussat-Blanc, R. Maleck Rassoul, A. Ivanov, E. Freysz, and
A. Ducasse, Opt. Lett. 23, 1585 (1998).

[43] S. Ashihara, J. Nishina, T. Shimura, K. Kuroda, T. Sugita, K.
Mizuuchi, and K. Yamamoto, Opt. Commun. 222, 421 (2003).

[44] M. Bache, H. Guo, B. Zhou, and X. Zeng, Opt. Mater. Express
3,357 (2013).

[45] J. Moses, B. A. Malomed, and F. W. Wise, Phys. Rev. A 76,
021802(R) (2007).

[46] L. D. Noordam, H. J. Bakker, M. P. de Boer, and H. B. van
Linden van den Heuvell, Opt. Lett. 15, 1464 (1990).

[47] X. Liu, E. O. Ilday, K. Beckwitt, and F. W. Wise, Opt. Lett. 25,
1394 (2000).

[48] S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura,
K. Kitamura, J. H. Ro, M. Cha, and T. Taira, Opt. Lett. 28, 1442
(2003).

[49] G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, IEEE J.
Select. Top. Quantum Electron. 10, 174 (2004).

[50] F. o. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, J.
Opt. Soc. Am. B 21, 376 (2004).

[51] F. Baronio, C. D. Angelis, M. Marangoni, C. Manzoni,
R. Ramponi, and G. Cerullo, Opt. Express 14, 4774 (2006).

[52] J. Moses and F. W. Wise, Phys. Rev. Lett. 97, 073903 (2006).

[53] W. Su, L. Qian, H. Luo, X. Fu, H. Zhu, T. Wang, K. Beckwitt,
Y. Chen, and F. Wise, J. Opt. Soc. Am. B 23, 51 (2006).

[54] M. Marangoni, C. Manzoni, R. Ramponi, G. Cerullo, F. Baronio,
C. D. Angelis, and K. Kitamura, Opt. Lett. 31, 534 (2006).

[55] M. Centini, V. Roppo, E. Fazio, F. Pettazzi, C. Sibilia, J. W. Haus,
J. V. Foreman, N. Akozbek, M. J. Bloemer, and M. Scalora, Phys.
Reyv. Lett. 101, 113905 (2008).

[56] E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini,
M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, Opt.
Express 17, 3141 (2009).

[57] G. Valiulis, V. Jukna, O. Jedrkiewicz, M. Clerici, E. Rubino, and
P. DiTrapani, Phys. Rev. A 83, 043834 (2011).

[58] F. Baronio, M. Conforti, C. D. Angelis, D. Modotto, S. Wabnitz,
M. Andreana, A. Tonello, P. Leproux, and V. Couderc, Opt.
Fiber Technol. 18, 283 (2012).

[59] N. L. Nikolov, D. Neshev, O. Bang, and W. Z. Krolikowski,
Phys. Rev. E 68, 036614 (2003).

[60] A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).

[61] W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller,
J. Rasmussen, and D. Edmundson, J. Opt. B: Quantum Semi-
classical Opt. 6, s288 (2004).

[62] F. W. Dabby and J. R. Whinnery, Appl. Phys. Lett. 13, 284
(1968).

[63] S. Skupin, M. Saffman, and W. Krélikowski, Phys. Rev. Lett.
98, 263902 (2007).

[64] D. Suter and T. Blasberg, Phys. Rev. A 48, 4583 (1993).

[65] E. A. Ultanir, D. Michaelis, F. Lederer, and G. I. Stegeman, Opt.
Lett. 28, 251 (2003).

013823-9


http://dx.doi.org/10.1364/OE.19.001107
http://dx.doi.org/10.1364/OE.19.001107
http://dx.doi.org/10.1364/OE.19.001107
http://dx.doi.org/10.1364/OE.19.001107
http://dx.doi.org/10.1364/OL.32.002490
http://dx.doi.org/10.1364/OL.32.002490
http://dx.doi.org/10.1364/OL.32.002490
http://dx.doi.org/10.1364/OL.32.002490
http://dx.doi.org/10.1364/OE.16.003273
http://dx.doi.org/10.1364/OE.16.003273
http://dx.doi.org/10.1364/OE.16.003273
http://dx.doi.org/10.1364/OE.16.003273
http://dx.doi.org/10.1103/PhysRevA.81.053815
http://dx.doi.org/10.1103/PhysRevA.81.053815
http://dx.doi.org/10.1103/PhysRevA.81.053815
http://dx.doi.org/10.1103/PhysRevA.81.053815
http://dx.doi.org/10.1364/JOSAB.30.000494
http://dx.doi.org/10.1364/JOSAB.30.000494
http://dx.doi.org/10.1364/JOSAB.30.000494
http://dx.doi.org/10.1364/JOSAB.30.000494
http://dx.doi.org/10.1364/OL.17.000028
http://dx.doi.org/10.1364/OL.17.000028
http://dx.doi.org/10.1364/OL.17.000028
http://dx.doi.org/10.1364/OL.17.000028
http://dx.doi.org/10.1103/PhysRevE.62.1328
http://dx.doi.org/10.1103/PhysRevE.62.1328
http://dx.doi.org/10.1103/PhysRevE.62.1328
http://dx.doi.org/10.1103/PhysRevE.62.1328
http://dx.doi.org/10.1364/JOSAB.19.002505
http://dx.doi.org/10.1364/JOSAB.19.002505
http://dx.doi.org/10.1364/JOSAB.19.002505
http://dx.doi.org/10.1364/JOSAB.19.002505
http://dx.doi.org/10.1063/1.1647279
http://dx.doi.org/10.1063/1.1647279
http://dx.doi.org/10.1063/1.1647279
http://dx.doi.org/10.1063/1.1647279
http://dx.doi.org/10.1364/OL.31.001881
http://dx.doi.org/10.1364/OL.31.001881
http://dx.doi.org/10.1364/OL.31.001881
http://dx.doi.org/10.1364/OL.31.001881
http://dx.doi.org/10.1016/j.optcom.2008.04.080
http://dx.doi.org/10.1016/j.optcom.2008.04.080
http://dx.doi.org/10.1016/j.optcom.2008.04.080
http://dx.doi.org/10.1016/j.optcom.2008.04.080
http://dx.doi.org/10.1364/OL.32.002469
http://dx.doi.org/10.1364/OL.32.002469
http://dx.doi.org/10.1364/OL.32.002469
http://dx.doi.org/10.1364/OL.32.002469
http://dx.doi.org/10.1103/PhysRevLett.109.043902
http://dx.doi.org/10.1103/PhysRevLett.109.043902
http://dx.doi.org/10.1103/PhysRevLett.109.043902
http://dx.doi.org/10.1103/PhysRevLett.109.043902
http://dx.doi.org/10.1364/OL.24.001777
http://dx.doi.org/10.1364/OL.24.001777
http://dx.doi.org/10.1364/OL.24.001777
http://dx.doi.org/10.1364/OL.24.001777
http://dx.doi.org/10.1103/PhysRevLett.87.183902
http://dx.doi.org/10.1103/PhysRevLett.87.183902
http://dx.doi.org/10.1103/PhysRevLett.87.183902
http://dx.doi.org/10.1103/PhysRevLett.87.183902
http://dx.doi.org/10.1103/PhysRevLett.91.093904
http://dx.doi.org/10.1103/PhysRevLett.91.093904
http://dx.doi.org/10.1103/PhysRevLett.91.093904
http://dx.doi.org/10.1103/PhysRevLett.91.093904
http://dx.doi.org/10.1103/PhysRevE.68.026610
http://dx.doi.org/10.1103/PhysRevE.68.026610
http://dx.doi.org/10.1103/PhysRevE.68.026610
http://dx.doi.org/10.1103/PhysRevE.68.026610
http://dx.doi.org/10.1364/OL.30.000332
http://dx.doi.org/10.1364/OL.30.000332
http://dx.doi.org/10.1364/OL.30.000332
http://dx.doi.org/10.1364/OL.30.000332
http://dx.doi.org/10.1364/OL.32.002478
http://dx.doi.org/10.1364/OL.32.002478
http://dx.doi.org/10.1364/OL.32.002478
http://dx.doi.org/10.1364/OL.32.002478
http://dx.doi.org/10.1364/OL.36.003912
http://dx.doi.org/10.1364/OL.36.003912
http://dx.doi.org/10.1364/OL.36.003912
http://dx.doi.org/10.1364/OL.36.003912
http://dx.doi.org/10.1364/OPEX.13.003224
http://dx.doi.org/10.1364/OPEX.13.003224
http://dx.doi.org/10.1364/OPEX.13.003224
http://dx.doi.org/10.1364/OPEX.13.003224
http://dx.doi.org/10.1007/s00340-006-2519-0
http://dx.doi.org/10.1007/s00340-006-2519-0
http://dx.doi.org/10.1007/s00340-006-2519-0
http://dx.doi.org/10.1007/s00340-006-2519-0
http://dx.doi.org/10.1103/PhysRevA.78.043818
http://dx.doi.org/10.1103/PhysRevA.78.043818
http://dx.doi.org/10.1103/PhysRevA.78.043818
http://dx.doi.org/10.1103/PhysRevA.78.043818
http://dx.doi.org/10.1364/OL.38.004281
http://dx.doi.org/10.1364/OL.38.004281
http://dx.doi.org/10.1364/OL.38.004281
http://dx.doi.org/10.1364/OL.38.004281
http://dx.doi.org/10.1109/3.655008
http://dx.doi.org/10.1109/3.655008
http://dx.doi.org/10.1109/3.655008
http://dx.doi.org/10.1109/3.655008
http://dx.doi.org/10.1364/OL.24.000166
http://dx.doi.org/10.1364/OL.24.000166
http://dx.doi.org/10.1364/OL.24.000166
http://dx.doi.org/10.1364/OL.24.000166
http://dx.doi.org/10.1063/1.1914965
http://dx.doi.org/10.1063/1.1914965
http://dx.doi.org/10.1063/1.1914965
http://dx.doi.org/10.1063/1.1914965
http://dx.doi.org/10.1364/OE.16.009549
http://dx.doi.org/10.1364/OE.16.009549
http://dx.doi.org/10.1364/OE.16.009549
http://dx.doi.org/10.1364/OE.16.009549
http://dx.doi.org/10.1364/OE.18.004796
http://dx.doi.org/10.1364/OE.18.004796
http://dx.doi.org/10.1364/OE.18.004796
http://dx.doi.org/10.1364/OE.18.004796
http://dx.doi.org/10.1007/s00340-013-5725-6
http://dx.doi.org/10.1007/s00340-013-5725-6
http://dx.doi.org/10.1007/s00340-013-5725-6
http://dx.doi.org/10.1007/s00340-013-5725-6
http://dx.doi.org/10.1364/OE.22.006060
http://dx.doi.org/10.1364/OE.22.006060
http://dx.doi.org/10.1364/OE.22.006060
http://dx.doi.org/10.1364/OE.22.006060
http://dx.doi.org/10.1364/OL.26.001696
http://dx.doi.org/10.1364/OL.26.001696
http://dx.doi.org/10.1364/OL.26.001696
http://dx.doi.org/10.1364/OL.26.001696
http://dx.doi.org/10.1364/JOSAB.19.000852
http://dx.doi.org/10.1364/JOSAB.19.000852
http://dx.doi.org/10.1364/JOSAB.19.000852
http://dx.doi.org/10.1364/JOSAB.19.000852
http://dx.doi.org/10.1364/OL.23.001585
http://dx.doi.org/10.1364/OL.23.001585
http://dx.doi.org/10.1364/OL.23.001585
http://dx.doi.org/10.1364/OL.23.001585
http://dx.doi.org/10.1016/S0030-4018(03)01568-2
http://dx.doi.org/10.1016/S0030-4018(03)01568-2
http://dx.doi.org/10.1016/S0030-4018(03)01568-2
http://dx.doi.org/10.1016/S0030-4018(03)01568-2
http://dx.doi.org/10.1364/OME.3.000357
http://dx.doi.org/10.1364/OME.3.000357
http://dx.doi.org/10.1364/OME.3.000357
http://dx.doi.org/10.1364/OME.3.000357
http://dx.doi.org/10.1103/PhysRevA.76.021802
http://dx.doi.org/10.1103/PhysRevA.76.021802
http://dx.doi.org/10.1103/PhysRevA.76.021802
http://dx.doi.org/10.1103/PhysRevA.76.021802
http://dx.doi.org/10.1364/OL.15.001464
http://dx.doi.org/10.1364/OL.15.001464
http://dx.doi.org/10.1364/OL.15.001464
http://dx.doi.org/10.1364/OL.15.001464
http://dx.doi.org/10.1364/OL.25.001394
http://dx.doi.org/10.1364/OL.25.001394
http://dx.doi.org/10.1364/OL.25.001394
http://dx.doi.org/10.1364/OL.25.001394
http://dx.doi.org/10.1364/OL.28.001442
http://dx.doi.org/10.1364/OL.28.001442
http://dx.doi.org/10.1364/OL.28.001442
http://dx.doi.org/10.1364/OL.28.001442
http://dx.doi.org/10.1109/JSTQE.2003.822946
http://dx.doi.org/10.1109/JSTQE.2003.822946
http://dx.doi.org/10.1109/JSTQE.2003.822946
http://dx.doi.org/10.1109/JSTQE.2003.822946
http://dx.doi.org/10.1364/JOSAB.21.000376
http://dx.doi.org/10.1364/JOSAB.21.000376
http://dx.doi.org/10.1364/JOSAB.21.000376
http://dx.doi.org/10.1364/JOSAB.21.000376
http://dx.doi.org/10.1364/OE.14.004774
http://dx.doi.org/10.1364/OE.14.004774
http://dx.doi.org/10.1364/OE.14.004774
http://dx.doi.org/10.1364/OE.14.004774
http://dx.doi.org/10.1103/PhysRevLett.97.073903
http://dx.doi.org/10.1103/PhysRevLett.97.073903
http://dx.doi.org/10.1103/PhysRevLett.97.073903
http://dx.doi.org/10.1103/PhysRevLett.97.073903
http://dx.doi.org/10.1364/JOSAB.23.000051
http://dx.doi.org/10.1364/JOSAB.23.000051
http://dx.doi.org/10.1364/JOSAB.23.000051
http://dx.doi.org/10.1364/JOSAB.23.000051
http://dx.doi.org/10.1364/OL.31.000534
http://dx.doi.org/10.1364/OL.31.000534
http://dx.doi.org/10.1364/OL.31.000534
http://dx.doi.org/10.1364/OL.31.000534
http://dx.doi.org/10.1103/PhysRevLett.101.113905
http://dx.doi.org/10.1103/PhysRevLett.101.113905
http://dx.doi.org/10.1103/PhysRevLett.101.113905
http://dx.doi.org/10.1103/PhysRevLett.101.113905
http://dx.doi.org/10.1364/OE.17.003141
http://dx.doi.org/10.1364/OE.17.003141
http://dx.doi.org/10.1364/OE.17.003141
http://dx.doi.org/10.1364/OE.17.003141
http://dx.doi.org/10.1103/PhysRevA.83.043834
http://dx.doi.org/10.1103/PhysRevA.83.043834
http://dx.doi.org/10.1103/PhysRevA.83.043834
http://dx.doi.org/10.1103/PhysRevA.83.043834
http://dx.doi.org/10.1016/j.yofte.2012.07.001
http://dx.doi.org/10.1016/j.yofte.2012.07.001
http://dx.doi.org/10.1016/j.yofte.2012.07.001
http://dx.doi.org/10.1016/j.yofte.2012.07.001
http://dx.doi.org/10.1103/PhysRevE.68.036614
http://dx.doi.org/10.1103/PhysRevE.68.036614
http://dx.doi.org/10.1103/PhysRevE.68.036614
http://dx.doi.org/10.1103/PhysRevE.68.036614
http://dx.doi.org/10.1126/science.276.5318.1538
http://dx.doi.org/10.1126/science.276.5318.1538
http://dx.doi.org/10.1126/science.276.5318.1538
http://dx.doi.org/10.1126/science.276.5318.1538
http://dx.doi.org/10.1088/1464-4266/6/5/017
http://dx.doi.org/10.1088/1464-4266/6/5/017
http://dx.doi.org/10.1088/1464-4266/6/5/017
http://dx.doi.org/10.1088/1464-4266/6/5/017
http://dx.doi.org/10.1063/1.1652612
http://dx.doi.org/10.1063/1.1652612
http://dx.doi.org/10.1063/1.1652612
http://dx.doi.org/10.1063/1.1652612
http://dx.doi.org/10.1103/PhysRevLett.98.263902
http://dx.doi.org/10.1103/PhysRevLett.98.263902
http://dx.doi.org/10.1103/PhysRevLett.98.263902
http://dx.doi.org/10.1103/PhysRevLett.98.263902
http://dx.doi.org/10.1103/PhysRevA.48.4583
http://dx.doi.org/10.1103/PhysRevA.48.4583
http://dx.doi.org/10.1103/PhysRevA.48.4583
http://dx.doi.org/10.1103/PhysRevA.48.4583
http://dx.doi.org/10.1364/OL.28.000251
http://dx.doi.org/10.1364/OL.28.000251
http://dx.doi.org/10.1364/OL.28.000251
http://dx.doi.org/10.1364/OL.28.000251

BINBIN ZHOU, HAIRUN GUO, AND MORTEN BACHE

[66] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock,
A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 83, 5198 (1999); F. Dalfovo, S. Giorgini, L. P. Pitaevskii,
and S. Stringari, Rev. Mod. Phys. 71, 463 (1999); T. Lahaye,
C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Rep. Prog.
Phys. 72, 126401 (2009).

[67] E. Braun, L. P. Faucheux, and A. Libchaber, Phys. Rev. A 48,
611 (1993); G. Assanto and M. Peccianti, IEEE J. Quantum
Electron. 39, 13 (2003).

[68] A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys.
Rep. 370, 63 (2002).

PHYSICAL REVIEW A 90, 013823 (2014)

[69] B. K. Esbensen, M. Bache, W. Krolikowski, and O. Bang, Phys.
Rev. A 86, 023849 (2012).

[70] D. Zhang, Y. Kong, and J. Zhang, Opt. Commun. 184, 485
(2000).

[71] M. Bache, J. Moses, and E W. Wise, J. Opt.
Soc. Am. B 24, 2752 (2007); 27, 2505(E)
(2010).

[72] W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett.
10, 457 (1985).

[73] X. Zeng, H. Guo, B. Zhou, and M. Bache, Opt. Express 20,
27071 (2012).

013823-10


http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1103/PhysRevA.48.611
http://dx.doi.org/10.1103/PhysRevA.48.611
http://dx.doi.org/10.1103/PhysRevA.48.611
http://dx.doi.org/10.1103/PhysRevA.48.611
http://dx.doi.org/10.1109/JQE.2002.806185
http://dx.doi.org/10.1109/JQE.2002.806185
http://dx.doi.org/10.1109/JQE.2002.806185
http://dx.doi.org/10.1109/JQE.2002.806185
http://dx.doi.org/10.1016/S0370-1573(02)00196-5
http://dx.doi.org/10.1016/S0370-1573(02)00196-5
http://dx.doi.org/10.1016/S0370-1573(02)00196-5
http://dx.doi.org/10.1016/S0370-1573(02)00196-5
http://dx.doi.org/10.1103/PhysRevA.86.023849
http://dx.doi.org/10.1103/PhysRevA.86.023849
http://dx.doi.org/10.1103/PhysRevA.86.023849
http://dx.doi.org/10.1103/PhysRevA.86.023849
http://dx.doi.org/10.1016/S0030-4018(00)00968-8
http://dx.doi.org/10.1016/S0030-4018(00)00968-8
http://dx.doi.org/10.1016/S0030-4018(00)00968-8
http://dx.doi.org/10.1016/S0030-4018(00)00968-8
http://dx.doi.org/10.1364/JOSAB.24.002752
http://dx.doi.org/10.1364/JOSAB.24.002752
http://dx.doi.org/10.1364/JOSAB.24.002752
http://dx.doi.org/10.1364/JOSAB.24.002752
http://dx.doi.org/10.1364/JOSAB.27.002505
http://dx.doi.org/10.1364/JOSAB.27.002505
http://dx.doi.org/10.1364/JOSAB.27.002505
http://dx.doi.org/10.1364/OL.10.000457
http://dx.doi.org/10.1364/OL.10.000457
http://dx.doi.org/10.1364/OL.10.000457
http://dx.doi.org/10.1364/OL.10.000457
http://dx.doi.org/10.1364/OE.20.027071
http://dx.doi.org/10.1364/OE.20.027071
http://dx.doi.org/10.1364/OE.20.027071
http://dx.doi.org/10.1364/OE.20.027071

