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ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS 

Karsten Lindegård Jensen1, B. Mutlu Sumer1, Giovanna Vittori2 and Paolo Blondeaux2 

By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure 
field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion 
involving the vertical pressure gradient. The vertical pressure gradient is also treated as any other turbulence quantity 
like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. 
The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport. 

Keywords: wave boundary layers, turbulence, vertical pressure gradient, DNS, transition to turbulence 

INTRODUCTION 

Wave boundary layers have been studied extensively over the past three decades or so. These studies 
cover the entire range of flow regimes, laminar, transitional and turbulent. Observations show that, in 
the transitional regime, turbulence first emerges in isolated areas where the flow “bursts” with violent 
oscillations (Carstensen, Sumer and Fredsøe 2010). These areas are called turbulent spots and they 
grow in time, and once they merge, the flow becomes fully turbulent. 

Carstensen et al’s. (2010) work was later extended to the case of solitary wave boundary layers (Sumer 
et al, 2010) and wave boundary layers over a rough bed (Carstensen, Sumer and Fredsøe, 2012) 

Mazzuoli, Vittori and Blondeaux (2011) have recently simulated turbulent spots in wave boundary 
layers by means of Direct Numerical Simulation (DNS) to reproduce the experimental results by 
Carstensen et al. (2010), and their results have complemented those of Carstensen et al. (2010). 

In the present study the same DNS data as in Test 1 of Mazzuoli et al. (2011) are examined in terms of 
vertical pressure gradient, presumably a new quantity in the analysis of turbulent wave boundary 
layers. 

It turns out that this new approach and the interpretation of the DNS results shed light onto the 
understanding of laminar-to-turbulent transition in wave boundary layers.  

NUMERICAL MODEL 

Applying Stokes linear wave theory in shallow waters the orbital motion of the water particles near the 
seabed becomes parallel to it. In a Cartesian coordinate system, where ݔଵ∗ is in the direction of the wave 
propagation, ݔଶ

∗ is the vertical and ݔଷ
∗ points in the spanwise direction (see Fig. 1), the flow in the 

boundary layer can be studied as an oscillatory flow driven by a pressure gradient determined by 

 ߲ܲ∗

ଵݔ߲
∗ ൌ െߩ∗ ଴ܷ௠

∗ ߱∗ ሻ∗ݐ∗ሺ߱݊݅ݏ ;
߲ܲ∗

ଶݔ߲
∗ ൌ 0;

߲ܲ∗

ଷݔ߲
∗ ൌ 0 (1) 

As in Blondeaux and Vittori (1994), Costamagna et al. (2003) and Mazzuoli et al. (2011), the bottom 
wall has a small waviness in the ݔଵ∗- and ݔଷ

∗-directions, and the vertical coordinate ݔଶ
∗ is measured from 
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the mean wall (or bed) level. The waviness of the bottom surface profile ߟ∗ is generated by a 
superimposition of sinusoidal components and is described by   

 
ଶݔ
∗ ൌ ,∗ଵݔሺߟ∗߳ ଷݔ

∗ሻ ൌ ߳∗෍ܽ௡ ∗ଵݔ∗௡ߙሺݏ݋ܿ ൅ ଷݔ∗௡ߛ
∗ ൅ ߶௡ሻ

ே

௡ୀଵ

(2) 

where ߳∗ܽ௡ is the amplitude of the nth-harmonic component, ߳∗ in the present simulation is taken as 

߳∗ ൌ being the Stokes length ൌ ∗ߜ ,∗ߜ0.005 ඥ2ߥ∗/߱∗	 and ߱∗ the angular frequency ൌ  the ∗ܶ ,∗ܶ/ߨ2

period and ߥ∗ the kinematic viscosity. The waviness is characterized by wave numbers ߙ௡∗  and ߛ௡∗ in the 
ଷݔ ଵ∗ andݔ

∗ directions, respectively, ߶௡ is a phase shift and ܰ is the number of terms in the summation. 
Vittori and Verzicco (1998) investigated the effect of the wall waviness and found that it is necessary to 
trigger transition to the intermittently turbulent regime, even if the amplitude of the wall waviness is so 
small that it has no significant influence on turbulence characteristics and the wall can be considered 
smooth from a macroscopic point of view (Vittori and Verzicco, 1998). 

 

Figure 1. Definition. The outer flow is driven by a pressure gradient in the streamwise direction.  

The non-dimensional form of the Navier-Stokes equation reads 

௜ݑ߲ 
ݐ߲

൅
ܴఋ
2
௝ݑ
௜ݑ߲
௝ݔ߲

ൌ െ
ܴఋ
2
݌߲
௜ݔ߲

െ ௜ଵߜ ሻݐሺ݊݅ݏ ൅
1
2

߲ଶݑ௜
௞ݔ௞߲ݔ߲

ݎ݋݂ ݅ ൌ 1, 2, 3		 (3) 

and continuity equation becomes 

௜ݑ߲ 
௜ݔ݀

ൌ 0 ݎ݋݂ ݅ ൌ 1, 2, 3 (4) 

where the following non-dimensional variables are used  
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ݐ  ൌ ;∗߱∗ݐ ሺݔଵ, ,ଶݔ ଷሻݔ ൌ
ሺݔଵ∗, ଶݔ

∗, ଷݔ
∗ሻ

∗ߜ

∗݌ ൌ
∗݌

଴௠ܷ∗ߩ
∗ଶ ; ሺݑଵ, ,ଶݑ ଷሻݑ ൌ

ሺݑଵ
∗, ଶݑ

∗, ଷݑ
∗ሻ

ܷ଴௠
∗

(5) 

where ݐ∗ is the time, ݌∗ the pressure, ݑ௜
∗ the velocity in the ݔ௜

∗ direction, ܴఋ ൌ ܷ଴௠
∗  the Reynolds ,∗ߥ/∗ߜ

number, based on the Stokes length ߜ∗.   

Eqs. 4 and 5 are solved numerically in a computational domain the size of which is ܮ௫ଵ,  ௫ଷ inܮ	௫ଶ andܮ
the streamwise, the vertical and the spanwise directions, respectively (see Table 1). At the bottom wall 
the no-slip condition is enforced. Since the wall waviness is assumed to be much smaller than the 
thickness of the laminar boundary layer (߳ ൌ ∗ߜ/∗߳ ≪ 1), the no-slip boundary condition is expanded 
up to second order in the variable ߳ and is forced at ݔଶ ൌ 0 (Mazzuoli et al., 2011). Since the accuracy 
of the numerical method employed to solve the Navier Stokes equation is of second order and ߳ is 
smaller than the size of the first computational grid in the vertical direction, there is consistency 
between the numerical scheme and boundary condition (Vittori and Verzicco,1998).  

At the upper boundary (ݔଶ 	ൌ  ௫ଶ), far from the bed, a symmetrical condition is applied. This is theܮ
same as requiring the vanishing of the tangential stresses far from the bed. The remaining boundary 
conditions (ݔଵݔଶ and ݔଷݔଶ planes) are periodic because the turbulent flow is assumed to be 
homogeneous in the ݔଷ and ݔଵ directions. 

The mesh is uniform in the ݔଵ and ݔଷ directions and non-uniform in the ݔଶ direction so that the grid 
points are clustered near the bed (minimum grid size is 0.16ߜ∗ and maximum grid size is 0.59ߜ∗). The 
method uses second order finite difference approximations for the spatial derivatives and the fraction-
step method for the time step in the Navier-Stoke equation. For a more detailed description of the 
numerical procedure, see Kim and Moin (1985), Orlandi (1989), Vittori and Verzicco (1998) and 
Costamagna et al. (2003).    

 

Table 1. Numerical parameters for the test. Here ࢔ࢻ ൌ ∗࢔ࢻ ࢔ࢽ and ∗ࢾ ൌ ∗࢔ࢽ  .∗ࢾ

test Rஔ Re ܮ୶ଵ ܮ୶ଶ ܮ୶ଷ ݊ଵ ݊ଶ ݊ଷ N 

1 948 4.5 ⋅ 10ହ 213.6 25.13 75.40 541 65 385 2 

test ܽଶ ܽଶ ߙଵ ߙଶ ߛଵ ߛଶ ߶ଵ ߶ଶ - 

1 1 0.1 0.5 0 0 1 0 0 - 

 

Test conditions and the properties of the numerical mesh are given in Table 1. In Table 1 Re	ൌ
ܷ଴௠
∗ ∗ܽ where , ∗ߥ/∗ܽ ൌ ܷ଴௠

∗ ܶ∗/ሺ2ߨሻ, ݊ଵ, ݊ଶ and ݊ଷ are the number of grid points in streamwise, 
vertical and spanwise direction, respectively. The computational domain should be large enough to 
contain the largest coherent vortex structure that occurs in the boundary layer simultaneously, the grid 
size should be small enough to describe the smallest turbulent eddies. To secure this, a fast Fourier 
transform of the velocity field has been performed and it has been verified that the amplitude of the 
spectral components with the largest and smallest wave numbers are smaller than a few percent of the 
maximum amplitude.  
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Turbulent spots. Laminar-to-turbulent transition  

Turbulent spots are isolated areas in an otherwise laminar flow where the flow “bursts” into violent 
random oscillations, first observed by Carstensen et al. (2010) for wave boundary. These observations 
were complemented by the DNS simulations of turbulent spots in oscillatory boundary layers by 
Mazzuoli et al. (2011) and Mazzuoli (2013). 

Turbulent spots can be visualized in CFD experiments by various criteria involving “traditional” 
turbulence quantities such as turbulent kinetic energy production (TKEP (െݑపᇱݑఫᇱതതതതതത߲ݑூഥ  ௝)), turbulentݔ߲/

kinetic energy (TKE (1/2ݑపᇱݑపᇱതതതതതത)), wall-shear-stress fluctuations, or velocity fluctuations. Fig. 2a 
displays the contour plot of the TKEP at a distance ݔଶ ൌ 0.24 from the wall at ߱ݐ ൌ 45	° (the flow 
being from left to right) and shows that, turbulent spots can be visualized by the larger values of TKEP. 
Fig. 2a is accompanied by another contour plot (Fig. 2b), namely the counter plot of the quantity 
െ߲ݔ߲/݌ଶ, i.e. the pressure gradient in the direction perpendicular to the wall at the same ݔଶ location 
and phase as in Fig. 2a: 

 

െ
݌߲
ଶݔ݀

ൌ െ
߲ ൬

∗݌

଴௠ܷ∗ߩ
∗ଶ ൰

߲ ൬
ଶݔ
∗

൰∗ߜ
(6) 

Note that the vertical distance ݔଶ ൌ 0.24 (at which these contour plots are given) is the level closest to 
the wall where the vertical pressure gradient can be resolved in the present DNS simulation. We also 
note that, for convenience, the minus sign is added to ߲ݔ߲/݌ଶ so that a positive value of (െ߲ݔ߲/݌ଶ 
indicates an upward-directed force on fluid particles. As shown by Fig. 2, the turbulent spots, 
visualized by the vertical pressure gradient (Fig. 2b), are strikingly similar to those visualized by the 
TKEP (Fig. 2a).  

The DNS simulation indicates that turbulent fluctuations appear at multiple locations in the ݔଵݔଷ plane 
simultaneously. When they first occur they are rapidly damped. Later, however, around	߱ݐ ൌ 20°, they 
begin to remain sustained, and turbulent spots emerge. Then the spots grow in size until they merge 
whereby the entire near bed region becomes turbulent at ߱ݐ ൌ 65°. These DNS simulations are in 
qualitative and to some degree quantitative agreement with the works of Jensen et al. (1989) and 
Carstensen et al. (2010) although the DNS results imply an early transition by O(30 െ 40°). This might 
be related to (a) the difficult and possible subjective judgments in defining the transition limit 
experimentally, (b) the higher level of the perturbations in the experimental apparatus.   
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the flow is constantly fed into the main body of the flow, revealed by the spreading of the turbulence 
across the boundary layer up to heights as far as ݔଶ ൌ Oሺ15ሻ. This “diffusion” of turbulence across the 
boundary layer depth is rather clear even at the phase ߱ݐ ൌ 0° where it is seen that there is a substantial 
amount of turbulence left from the previous half cycle (Fig. 4, Panel a), as was also revealed by 
Jensen’s work (1989). Now, this feature does not exist in the time evolution of the pressure-gradient 
process (Fig. 6). This is because the pressure gradient process is not a diffusive process. 

The present results reveal that the chain of events occurs in the following manner. First the vertical 
pressure gradient is generated (practically momentarily) near the bed, and this causes fluid motion in 
the vertical direction (upwards or downwards depending on the direction of the pressure gradient). This 
is essentialy the turbulence, and it is known that the turbulent kinetic energy generated this way 
(represented by ݇ ൌ  .పതതതതത), a scalar quantity, is governed by a diffusion process, revealed by Figݑపݑߩ1/2
4. 

The standard deviation ߪ for the conditional averaged pressure gradients are seen in Fig. 7 in which 	ߪ 
is defined by  

 

ߪ
൬ି

డ௣
డ௫మ

൰
ൌ ቈ൬െ

݌߲
ଶݔ߲

൰ െ ቆെ
݌߲
ଶݔ߲

തതതതതതതത
ቇ቉

ଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
ଵ
ଶ

(9) 

Averaging (overbar) is, again, over the entire space ݔଵݔଷ plane. In Fig. 7, the solid line represents the 
condition െ߲ݔ߲/݌ଶ ൐ 0 and the dashed line െ߲ݔ߲/݌ଶ ൏ 0. Two things are observed. First the 
magnitude for the upward directed gradient (െ߲ݔ߲/݌ଶ> 0) has a larger magnitude than the downward 
directed pressure gradient (െ߲ݔ߲/݌ଶ< 0). Secondly the same pattern regarding the development over 
the phase is repeated for the conditional averaged gradients in Fig. 6. It may also be noted that the 
standard deviation values can be as much as the mean values (of Figs. 6 and 7).   
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∗ܨ ൌ െ
߲ ቀ
∗݌
ቁ∗ߛ

ଶݔ߲
∗  (12) 

where	ߛ∗ ൌ  being the density of water and ݃∗ the acceleration due to gravity. If the ∗ߩ ,∗݃∗ߩ
submerged weight is larger than the agitating forces, ܹ∗ ൐  the sediment will not move in the ,∗ܨ
vertical direction. If it is smaller the sediment will move. Considering that other forces like drag and 
hydrodynamic mass forces will affect the sediment-water-mixture motion we can only look at the 
contribution from the vertical pressure gradient to the total force needed to move the sediment water 
mixture and not the total force acting on the sediment-water mixture. Table 2 lists the values for 
selected typical wave periods and the associated pressure gradient based on the mean values at 
ݐ߱ ൌ 90° nearest the bed from Fig. 6c and for Eq. 11, ݏ∗ ൌ 2.65 and ݊∗ ൌ 0.4 which are typical values 
for sediment. The grain sizes in table 2 are selected such that it satisfies Eq. 10.  

Table 2. Typical values of wave periods and the magnitude of the vertical pressure gradient at ࣓࢚ ൌ ૢ૙°. 
Shields parameter, ࣂ ൌ ࢓ࢌࢁ

∗૛ /ሺࢍ∗ሺ࢙∗ െ ૚ሻࢊ∗ሻ. Grain Reynolds number is 10 for all cases (See Eq. 10). 

ܶ∗ [s] ݀∗ [mm] 
݀∗ ௙ܷ௠

∗

∗ߥ
ሾെሿ ߠ ሾെሿ F∗ ሾെሿ 

	∗ܨ
ܹ∗ 	ሾെሿ 

5 0.22 10 0.60 0.48 0.48 

7.5 0.22 8 0.40 0.26 0.26 

10 0.22 7 0.30 0.17 0.17 

12.5 0.22 6 0.24 0.12 0.12 

 

As listed in Table 2 the sediment size of 0.22 mm (corresponding to medium sand) fulfils the 
requirement for the smooth bed. Further Shield’s parameter is calculated in order to ensure that the 
sediment will actually move. As seen all the sediment will move although the largest period is close to 
incipient motion. The vertical pressure gradient is approximated as an average value over the height of 

the sediment with the assumption that ݔଶ ൏ Oሺ10ሻ or in terms of ݔଶ ൌ ଶݔ
ା/ሺ߬଴ഥ Rఋሻଵ/ଶ ൏ Oሺ0.25ሻ. The 

agitation-force-to-weight ratio ܨ∗/ܹ∗ is based on the mean value of (െ߲ݔ߲/݌ଶ) picked up from Fig. 6. 
However the instantaneous value of the latter can be as much as two times the mean value, or even 
larger. Therefore, the ܨ∗/ܹ∗ ratio in such cases may even exceed unity, implying that even the 
pressure gradient alone can suspend the sediment grains from the bed.  

CONCLUSIONS 

1. Turbulent spots can be detected by a criterion involving the vertical pressure gradient near the bed.  
2. The vertical pressure gradient is treated as a turbulence quantity, and classic statistical properties, 

the mean and the standard deviation, are calculated with conditional averages (depending on 
whether the gradient is upward or downward directed). 

3. Results show that the magnitude of the upward directed conditional averaged pressure gradient is 
larger than twice the magnitude of the downward directed one.  
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4.  The “life span” of the pressure gradient is seen to be much shorter than that of the velocity 
fluctuations. This is attributed to the fact that the vertical pressure gradient forces are instantaneous 
in contrast to the induced velocity fluctuations.   
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