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ABSTRACT

Motivation: Antibodies are able to recognize a wide range of antigens

through their complementary determining regions formed by six

hypervariable loops. Predicting the 3D structure of these loops is es-

sential for the analysis and reengineering of novel antibodies with

enhanced affinity and specificity. The canonical structure model

allows high accuracy prediction for five of the loops. The third loop

of the heavy chain, H3, is the hardest to predict because of its diversity

in structure, length and sequence composition.

Results: We describe a method, based on the Random Forest auto-

matic learning technique, to select structural templates for H3 loops

among a dataset of candidates. These can be used to predict the

structure of the loop with a higher accuracy than that achieved by

any of the presently available methods. The method also has the

advantage of being extremely fast and returning a reliable estimate

of the model quality.

Availability and implementation: The source code is freely available

at http://www.biocomputing.it/H3Loopred/

Contact: anna.tramontano@uniroma1.it

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Antibodies are a class of Y-shaped proteins produced by B-cells

that the immune system uses to identify and neutralize foreign

pathogens such as bacteria and viruses. They have the remark-

able ability to recognize virtually any foreign targets (the anti-

gens) and bind to these with extraordinary affinity and specificity

(Mian et al., 1991; Sliwkowski and Mellman, 2013). These char-

acteristics make antibodies an ideal tool for the prevention and

treatment of diseases such as cancer, infectious and cardiovascu-

lar diseases, arthritis, inflammation, immune disorders as well as

for biotechnological applications (Mian et al., 1991; Sliwkowski

and Mellman, 2013). Knowing the structure of antibodies is

clearly instrumental for gaining insights into the biological

phenomena of the antibody–antigen recognition as well as to

interpret clinical data and rationally redesign the molecule for

medical and biotechnological purposes (Ghiotto et al., 2011;

Zibellini et al., 2010).

Antibodies are composed of two identical heavy and light

chain pairs. The antigen binding site, present on the upper tips

of the Y shape, is formed by six hypervariable (HV) loops also

referred to as the complementary determining regions (CDRs).

Three of the loops belong to the variable domain of the light

chain, (L1, L2 and L3) and three to the variable domain of the

heavy chain (H1, H2 and H3). The variability in these CDR

loops in terms of loop length and amino acid compositions is

the main reason of the antibody capability to bind many differ-

ent antigens. The framework regions of antibodies are fairly well

conserved, while the structural variations occur mostly in the

CDR loops.
We and others have developed effective methods to predict the

structure of antibodies (Choi and Deane, 2010, 2011; Sircar

et al., 2009; Sivasubramanian et al., 2009). The strategy consists

of modeling the framework by homology while the prediction of

five of the six loops is based on the canonical structure (CS)

model that states that these loops (the light chains loops and

the H1 and H2 loops of the heavy chain) can only assume a

limited number of conformations and that these are determined

by the presence of key residues in specific positions in the se-

quence of the antibody (Chothia and Lesk, 1987; Tramontano

et al., 1990). According to a recent blind assessment of the pre-

diction accuracy of antibody modeling (Almagro et al., 2011), a

good prediction can be obtained for non-H3 loops with an aver-

age root-mean square deviation (RMSD) of their C� atoms close

to 1 Å.
Only a partial CS model exists for the H3 loop, which allows

the prediction of the structure of its four N-terminal and six

C-terminal residues closer to the framework (Kuroda et al.,

2008; Morea et al., 1998; Shirai et al., 1996). Accordingly, the

prediction accuracy for H3 loops is not equally satisfactory as for

the other loops, an important drawback because the H3 loop is

central in the binding site and therefore often essential in deter-

mining the antibody–antigen interactions. In the above men-

tioned assessment (Almagro et al., 2011), none of the tested

methods was able to provide sufficiently good predictions for

H3; the average RMSD for the best methods was �3 Å. The

high variability in length, structure and sequence of this loop is

usually invoked as the main reason behind the difficulty of pre-

dicting its structure.
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There have been several attempts to develop methods for pre-
dicting the structure of H3 loops, both template-based (Choi and
Deane, 2011; Mandal et al., 1996; Marcatili et al., 2008) and

template-free methods that try to predict the structure using ab
initio conformation searches followed by ranking based on
energy estimates and clash avoidance (Bruccoleri and Karplus,

1987; Sivasubramanian et al., 2009).
One of the most used approaches for antibody structure pre-

diction is Rosetta Antibody (RA; Sircar et al., 2009;

Sivasubramanian et al., 2009), which combines template selec-
tions with ab initio CDR H3 loop modeling (using loop frag-
ments) and simultaneous optimization of the CDR loop

conformations and Variable Light (VL)-Variable Heavy (VH)
orientations. Another interesting approach is FREAD (Choi
and Deane, 2010, 2011), which attempts to predict antibody

loops using local similarities (local sequence and geometric
matches). FREAD uses environment-specific substitution scores
(Choi and Deane, 2010; Kelm et al., 2010; Lee and Blundell,

2009) to identify the best fragments for building the structure
of the loops.
Each of the previous approaches has its own disadvantages

and limitations, and this prompted us to develop the method
described here. One of the main limitations of ab initio
approaches (e.g. RA) is due to our incomplete understanding

of the physicochemical principles governing protein structures,
which leads to the employment of pseudo-energy approximate
functions that are not always accurate in distinguishing correct

predictions. In addition ab initio approaches tend to have high
computational cost. On the other hand, the available homology-
based methods such as FREAD-S (Choi and Deane, 2011) suffer

from being essentially dependent on the H3 sequence alone that
has proven to be insufficient to provide accurate models, espe-
cially for longer loops. The ConFREAD method (Choi and

Deane, 2011) tried to overcome this limitation by including con-
tact profile information; however, this only led to minor im-
provements obtained at the expense of a much lower coverage.

Given the central position of the H3 region in the antigen-
binding site, there are several interactions with the other CDR
loops, as well as with the framework, that could affect the con-

formation of H3 (Morea et al., 1998). In line with this hypoth-
esis, we developed a method that takes advantage of sequence
similarity and structural related features [e.g. CS (Chothia and

Lesk, 1987; Tramontano et al., 1990) as well as a score reflecting
the likelihood of the presence/absence of specific interactions
between the H3 residues and the rest of the modeled antibody

structure (Tung et al., 2007)].
We used a set of selected features to train a Random Forest

(RF) machine learning algorithm to select the closest loop among

a dataset of H3 loops present in immunoglobulins of known
structure. The best predicted template(s) are used to build the
structure of H3 that are subsequently ranked according to their

intramolecular interactions. We tested our model on the RA
benchmark (Sivasubramanian et al., 2009) (we used 53 of the
54 structures in the benchmark excluding the PDB: 2AI0 case

because in RA benchmark the H3 loop was uncorrectly reported
as a six-residue loop) and our results are more accurate than
those provided by RA, considered the best method available at

present, on the same benchmark. We also tested our method on
recently deposited structures of antibodies with equally

satisfactory results. Last but not least the described method re-

quires substantially less computing time with respect to the RA

(on average 5min).

2 METHODS

2.1 Datasets

We scanned the sequences of all proteins in the PDB database (October

15, 2012) using isotype-specific Hidden Markov Model (HMM) profiles

(Chailyan et al., 2012; Lefranc et al., 2009) to retrieve the structures of

1294 antibodies. We removed antibody molecules with resolution worse

than 3 Å using the PISCES web server (Wang and Dunbrack, 2003). The

resulting 1161 antibodies were clustered based on the sequence of H3

loops using the cd-hit package (Li and Godzik, 2006) with a sequence

identity threshold of 90%. One representative antibody from each cluster

was selected (priority was given to antibodies that were found to be in

complex with their antigen in the crystal structure, using a procedure

previously developed by us (Olimpieri et al., 2013). When this was not

possible we selected the antibody with the longest H3 loop). As a result,

we were left with 401 representative non-redundant antibodies.

The alignment of H3 loops was done according to (Chailyan et al.,

2012; Lefranc et al., 2003; Morea et al., 1998) where insertions were

introduced in the middle of the region comprised between the conserved

residues Cys92 and Gly104. Throughout the article we use the Kabat–

Chothia numbering scheme (Morea et al., 1998).

2.2 RF model

We used the R (v.4.6) implementation of the RF (randomForest package)

and the RF regression tool to predict the 3D distance between pairs of

H3-loop. For this specific purpose, the input features of the RFmodel are

the sequences of the antibody pairs along with other sequence-derived

features described below. The task of the RF model is to use these fea-

tures to infer the 3D distance between each pair of H3 loops. In other

words, for each loop in the testing set, we use our trained RF model to

predict the distances between the target loop and all other loops in the

training dataset. The loop predicted as the most similar to the target is

used as template to build the model of the target H3.

2.3 TM-score as a similarity measurement

For calculating the 3D distances between H3 loops, we used the

‘TM-score’ algorithm implemented by Zhang and coworkers (Zhang

and Skolnick, 2004). The main advantage of the TM-score over the per-

haps most commonly used RMSD is that the TM-score weights more

shorter distances between pairs of superimposed atoms than longer ones

and does not require the definition of any cutoff distance. Moreover, the

TM-score takes into considerations the difference in length between

loops; hence, it is more appropriate for comparing loops of different

lengths. The TM-score between two H3 loops was calculated using the

Biopython Bio.PDB module (Hamelryck andManderick, 2003) by super-

posing the stems of the two loops (residue H90–H92 and residue H104–

H106 of the heavy chain) and calculating the pairwise distance between

aligned residues; such distances were then converted to a TM-score

(Zhang and Skolnick, 2004).

To compare our results with data available in the literature for other

methods, we also computed the backbone RMSD between the selected

templates and the target loops. Throughout the article we used ‘TM-

distance’ (1 –TM-score) to represent the 3D distances between pairs of

H3 loops.
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2.4 Canonical structure

According to Chothia and Lesk (Chothia and Lesk, 1987; Tramontano

et al., 1990), five among the six HV loops (L1, L2, L3, H1 and H2) are

shown to adopt only a limited set of backbone conformations (named

CS) that can be predicted on the basis of the position and nature of

specific amino acids in given positions of the antibody sequence. As men-

tioned above, only a partial CS model could be derived for the H3 loop

(Al-Lazikani et al., 1997; Morea et al., 1998). We used the CS of the six

HV loops as variables for the RF model. The CS information was ob-

tained using the tool provided by the DIGIT database (Chailyan et al.,

2012).

2.5 Germline families

It has been advocated that the specific selected VH and VL Germline

genes are essential for the understanding of the biophysical properties of

antibodies (Ewert et al., 2003). In addition, a recent paper by Chailyan

and coworkers (Chailyan et al., 2011) showed that Germline families are

important for the overall structure of the antibody binding sites.

Therefore, we also included the source organism and the Germline

families as variables in our RF model.

2.6 BLOcks substitution matrix

The BLOcks substitution matrix (BLOSUM) matrix (Henikoff and

Henikoff, 1992) is a substitution matrix commonly used to score align-

ments between evolutionary divergent protein sequences based on the

local alignments of protein sequences. We used the BLOSUM40 scores

between each aligned amino acids in pairs of the H3 loops as well as the

score over the whole loop as variables for the RF model.

2.7 Structure alphabet substitution matrix

Structure alphabet substitution matrix (SASM; Tung et al., 2007) is a

BLOSUM-like matrix, built taking into account substitution preferences

for 3D segments between homologous structures with low sequence

identity.

We included the score of the SASMmatrix over the whole H3 loops as

variable for the RF model.

2.8 RF variables

In summary we initially considered all the variables listed above to train

our RF model, namely the full sequence of the antibody, the CSs,

the Germline Families, BLOSUM40-based similarity and SASM-based

similarity. We also included as variables the length differences of the

six CDR loops (L1, L2, L3, H1, H2 and H3) between each pair of

antibodies (target and template) and the length of the matching and

non-matching gaps.

2.9 Redundancy reduction

There are two main sources of redundancy in our initial training dataset:

The first source is the likely redundancy in the several RF variables (932)

because they could be correlated and not all of equal relevance for the

prediction task. The second source of redundancy is due to the fact that

our training data includes all possible pairs of antibodies from our dataset

of antibodies of known structure. This is bound to include a substantial

amount of redundant information. This redundancy might introduce

biases in our training model and consequently affect its prediction

accuracy.

To address the problem of redundancy in the variables of RF model,

we used the Mean Decrease Gini values (MDG), to rank each variable

according to its importance. Following (Olimpieri et al., 2013) we also

computed the average MDG (avMDG) and removed all variables with

MDG lower than avMDG.

The following example illustrates the redundancy connected to the

use of all possible pairs of antibodies: If we know the TM-distance be-

tween antibodies BF and FC, adding the TM-distance between BC can be

redundant because the latter is correlated to the TM-distance between BF

and FC. Consequently, we first used the whole TM-distance matrix be-

tween all possible pairs of H3 loops to build an undirected graph and next

removed edges until no triangle is present in the graph.

To do so, we first find a suboptimal min-cut in the graph (weighted so

that the two graph partitions that generate the min-cut have almost simi-

lar size) by means of a simulated tempering algorithm. We then remove

all edges that start and end with nodes on the same side of the cut and

retain only edges involved in the cut. Such reduced graph is, by definition,

bipartite and therefore, according to the Tur�an’s theorem (Turan, 1941),

is triangle-free. Our final training set contains 401 nodes and 45 582 edges.

2.10 Model building and measurement of accuracy

First, we aligned the H3 loop of the 401 antibodies according to

(Chailyan et al., 2012; Lefranc et al., 2003; Morea et al., 1998), removed

from our dataset any antibody that shares495% H3 sequence identity to

the RA 53 testing cases (Sivasubramanian et al., 2009) obtaining a final

dataset including 356 antibodies.

We next computed the TM-distances between each antibody pair in

the training dataset and removed the redundancy as described in the

previous section. Finally, we assigned the features described above to

each pair of antibodies in the dataset.

The aim of the training phase is for the RF model to learn the TM-

distance between the H3 of each pair of antibodies. In the first phase we

used the RF to perform feature selection by retaining only the features

the MDG of which is greater than the avMDG. Finally, we trained our

model only using the selected features. We used a 5-fold cross validation

to evaluate the performance, hence we trained the method on 4/5 of the

data and tested it on the remaining 1/5. This step was repeated five times

by randomly splitting the data into training and testing sets.

The final model is trained using the set of selected features, and its

performance is assessed based on its accuracy in predicting the 53 testing

cases of RA as well as the structure of 50 H3 loops from antibodies the

structure of which has been deposited in the PDB database (www.rcsb.

org) (Rose et al., 2013) after October 15, 2012.

In summary, given a target loop, we align it with all the loops in the

training set and compute the selected features. The RF then pro-

vides the predicted TM-distance between the target loop and each loop

in the training data.

2.11 Antibody modeling

Framework regions and non-H3 CDR loops were modeled using

Prediction of Immunoglobulin structure (PIGS) (Marcatili et al., 2008)

with default parameters. The predicted structure of the loop is then ob-

tained via MODELLER (Sali and Blundell, 1993) using the loop(s) pre-

dicted to have the closer TM-distance to the input loop as template(s).

The measure of model accuracy is the local backbone RMSD, calculated

by superimposing the stems of the loops (as described before) and then

calculating the RMSD of the H3 loop main chain atoms between the

model loop and the native conformation.

2.12 H3 contact profile

To assess whether the structural environment information can be used to

further refine the prediction of H3, we analyzed the interactions of H3

with residues belonging to the VH and VL domains and used them to

build an interaction profile.

The 3D interaction information extracted from the training dataset is

converted into a 2D table (reference contact matrix, CM) having H3

residues in the columns and environment residues in the rows. Each
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cell is assigned a value of 1 or 0 according to whether the H3 residue in

the column makes or does not make a contact with a residue in the row in

any immunoglobulin in the training dataset. Contacts were

identified using the Dimplot program (Wallace et al., 1995) with de-

fault parameters. We built two matrices considering (i) the interactions

occurring between H3 and residues belonging to the VH, VL and frame-

work domains (external contacts), and (ii) the interactions occurring

within H3 residues (internal contacts). Given a predicted H3 loop, its

contact profile is computed as the sum of the contribution of both in-

ternal and external contacts, and a score [contact matrix similarity score

(CM score), Equation 1] is assigned according to the Sokal–Michener

distance (Seung-Seok Choi, 2010) between the observed (pCM) and ref-

erence contact matrices (rCM):

CM score=
a+d

a+b+c+d
ð1Þ

Where CM[i,j] is the value of the i-th row and j-th column of a CM, a

is the number of ‘positive matches’ (pCM[i, j]= rCM[i, j]=1, indicating

the presence of contact in both reference and predicted matrix cells), d the

number of ‘negative matches’ (pCM[i,j]= rCM[i,j]=0, indicating

the absence of contact in both cells) and b and c are the number of

mismatches (pCM[i,j] 6¼ rCM[i,j], meaning the presence of contacts in

the reference matrix that are absent in the predicted matrix cell, and

vice versa). The higher the similarity between pCM and rCM matrices

the higher the CM score. The modeled loops are ranked accordingly.

3 RESULTS

Figure 1 illustrates the workflow of the template-based modeling

that we developed for the structure prediction of H3. A detailed

description of each step is provided in the Methods section.
Given an input antibody sequence, the RF model provides a

predicted TM-distance (Zhang and Skolnick, 2004) between the

target H3 loop and each of the loops present in our dataset of H3

loops of known structure. The loop with the lowest predicted

TM-distance to the target is used as template to build the

model of the target H3. When the value of the predicted TM-

distance is40.5, a reranking of the top-scoring RF templates is

performed based on an environment CM score described below.

The other CDR loops and the framework are modeled using the

CS model as implemented in PIGS (Marcatili et al., 2008) for the

framework, heavy and light chain packing, while the full anti-

body model is then assembled by grafting the selected H3 model.

3.1 Model validation

Table 1 summarizes the results obtained in a 5-fold cross valid-

ation experiment. The values represent the mean, standard devi-

ation and median of the backbone RMSD between the target

and the selected best template loop, respectively.
The results show that the RF model achieved better results

than a naive BLOSUM40 approach (that selects the H3 loop

with the highest sum of the BLOSUM40 score computed be-

tween the sequence of the target and template loops) in 64%

of the cases. These enhancements are even more obvious for

loops of short and medium length (defined as 7–9 and 10–11

residues, respectively). This is expected because most of the train-

ing cases fall in these length ranges.

These results suggest that RF model features are suitable to

efficiently find reliable structural templates better than what can

be done by just sequence similarity.
One of the advantages of RF model is that it provides the

possibility of analyzing the features and ranking them according

to their contributions to the final prediction by using MDG. The

20 most relevant features in the case at hand are reported in

Supplementary Table S1. These include BLOSUM, SASM,

Germline families and CSs of specific CDR loops, H3 length,

count of matching gaps, non-matching gaps in the H3 alignment

and some specific residues. Figure 2 shows the residues that are

Table 1. Five-fold cross validation results and comparison with

BLOSUM40

Loop length Number of

structures

BLOSUM40 RF

Very short (4–6 residues) 40 1.6 1.3

Short (7–9 residues) 117 3.0 1.7

Medium (10–11 residues) 114 3.2 2.0

Long (12–14 residues) 94 3.6 3.5

Very long (417 residues) 24 5.8 4.3

Mean RMSD 3.3 2.7

Median RMSD 2.4 1.8

The values in columns 3 and 4 are the average backbone RMSD (in Å) between the

target and the selected best template loop.

Fig. 1. Workflow of the H3 modeling procedure

Fig. 2. Residues that contribute most to the selection of the H3 template.

The structure shown is PDB ID: 2B4C. The H3 loop is shown in gold, the

residues with MDG values above the average are indicated by spheres
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predicted to have the greatest influence on the H3 structure.
Interestingly, all these residues are close in structure to the
H3 loop. This suggests that the surrounding environment of

H3 loop might actually have an effect on the final structure of
the loop.
Prompted by this observation, we also derived a knowledge-

based approach to use this information for a better ranking of
the potential predicted structures of the loop.

3.2 Model performance

To test the performance of our method and to compare it with
the best available one, we tested the model on a widely used

benchmark (Sivasubramanian et al., 2009) (RA dataset), consist-
ing of 53 antibodies. Table 2 shows the average accuracy ob-

tained on this dataset for the different loop length ranges. It
can be noticed that the accuracy, in terms of backbone RMSD
between model and native H3 loop conformations, varies with

the difficulty of the target loops. Expectedly, the method per-
formance reflects the availability of training structures over the
different loop length ranges (Detailed results are provided in

Supplementary Table S2). In other words, the method is depend-
ent on the size of the training datasets; hence, we should expect

that the performance will improve as the number of available
immunoglobulin structures increases.
In 53% of the RA testing cases, the RF model was able to

select a good H3 template (backbone RMSD between modeled
and native H3 loop lower than 2 Å). Looking at specific cases, we
can notice that the RF model significantly outperforms RA

("RMSD 41 Å) in 16 cases, whereas the opposite is true in
only four cases. In summary, the RF model achieved better re-

sults than Rosetta in 57% of the cases generally in all the loop
length ranges.
Notably, the correlation between the observed TM-distance

and that predicted by the RF model is high, reaching a coeffi-
cient of 0.92 (Figure 3). This high correlation motivated us to use
the predicted score as an approximate estimate for the accuracy

of the results. A statistical analysis performed by Zhang and
coworkers (Xu and Zhang, 2010) demonstrated that similar
structures often have a TM-distance50.5. Testing this hypoth-

esis on the RA benchmark, we found that the selected template
according to the RF model is reliable enough (RMSD:

1.5� 0.7 Å) when the predicted TM-distance is 50.5 (65% of

the RA testing benchmarks), while the performance degrades

substantially (RMSD: 3.8� 1.7 Å) when the predicted TM-

distance is40.5.
On the other hand, we found that even when the predicted

TM-distance is40.5, a better template is usually present among

the top 10–50 RF-ranked templates.
Consequently, we decided to implement a CM score to rank

the predictions in cases when the predicted TM-distance for the

template is40.5 threshold. The CM score, described in detail

below, is based on a statistical analysis of the contacts between

specific residues of H3 loops and other antibody residues. A high

CM score indicates a good match between the interactions

observed in the model and those present in antibodies of

known structure. The overall performance of the CM score in

ranking the models regardless of their predicted TM-distance is

reported in Table 2 (details on the full RA dataset are reported in

Supplementary Table S2). Notably, the performance is independ-

ent from the number of top-scoring templates used. In particular,

despite the overall RMSD distribution is on average shifted to-

ward higher RMSD values when considering 50 versus 10 RF

templates (3.2� 2.0 and 2.6� 1.6 Å, respectively; details in

Supplementary Table S2), the CM-based model ranking is essen-

tially the same in the two cases (RMSD 2.5� 1.9 Å and

2.3� 1.5 Å). This indicates that the CM score is sufficiently

Table 2. Performance of the different methods on the RA benchmark

Loop length Number of

Structures

RF CM10 CM50 RF-CM10 RF-CM50 RA

Very short 3 1.3 1.3 1.3 1.3 1.3 1.4

Short 22 1.8 1.6 1.6 1.6 1.6 2.2

Medium 14 2.0 2.2 2.2 1.9 1.8 2.9

Long 10 3.6 2.8 3.7 2.9 3.3 3.5

Very long 4 4.9 6.0 7.2 6.0 7.1 7.6

Mean RMSD 2.4 2.3 2.5 2.2 2.4 3.0

Median RMSD 1.9 1.8 2.0 1.9 1.9 2.7

SD RMSD 1.5 1.5 1.9 1.6 1.9 2.1

The values in the last six columns are the average backbone RMSD (in A) between modeled and native H3 loops.

Fig. 3. Correlation between the predicted and observed TM-distance on

RA Benchmark
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robust and also indicates that the H3 environment information

can be effectively used to reliably rank large sets of conform-

ations of the same loop. When the CM-based ranking is used to

rank the RF templates in cases where the highest predicted TM-

distance is40.5 (19 cases in the RA benchmark) the model ac-

curacy improves in 10 cases (Figure 4), leading to the selection of

a significantly better model in 5 cases (PDB ID: 1BQL, 1IQD,

1FBI and 1HZH, 4.3, 3.8, 7.7, 5.0 and 3.7 Å RMSD to 2.1, 2.1,

3.7 and 2.4 Å RMSD, respectively). Remarkably, combining the

RF method with the ranking obtained with the CM score out-

performs RA for all the loop length ranges, on average (Table 2),

producing models with improved accuracy in 62% of cases and

significantly improved ("RMSD41 Å) in 33%. What is more

relevant in our view is that, although on average the improve-

ment brought about by using the combined method over the CM

score strategy alone is not particularly high, combining the two

methods provides a significant advantage in some of the difficult

cases of long H3 loops (for example in the cases of antibodies

2ADG, 1IGM and 1BJ1, see Supplementary Table S2). The final

results are summarized in Figure 5 and 6 where we show the

results of the combined RF-CM model in comparison with the

RA results and the actual best model in the dataset. In this case

we used the top-scoring template proposed by RF when the

predicted TM-distance is 50.5, while in the other cases we
select the template using the CM score to resort the first 50

models. As it can be appreciated, this leads to a rather satisfac-
tory level of accuracy. Interestingly, the actual closest template is

correctly identified in one-fourth of the cases, and in 13% of
cases the combined RF-CM method was able to produce

model in the sub-angstrom accuracy range (RMSD51 Å).
Comparatively, RA achieved the same accuracy range in one

case only.
In a blind antibody modeling assessment experiment, Almagro

et al. (2011) showed that, on average, all the tested methods

preformed similarly, but also that in some CDR-H3 predictions

Fig. 4. Improvement obtained by applying the CM score to cases where the predicted TM-distance is40.5. The values of the RMSD of the best template

present in the dataset are also shown. The loop length is indicated in parentheses below the corresponding PDB code

Fig. 5. Overall performance of the combined RF-CM50 model with respect to RA. The values of the RMSD of the best template present in the dataset

are also shown

Fig. 6. Overall performance of the combined RF-CM50 model with

respect to RA
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the RA method was outperformed by other methods. We tested

our approach on the same dataset used in the assessment and

compared the results. In 75% of cases we were able to achieve

similar or better accuracy compared with the best-performing

method (Supplementary Table S3).
To assess the performance of the method in a more realistic

setting, we downloaded the antibody structures that were added

to PDB after October 15, 2012 (the date when we downloaded

our training dataset). We selected those with resolution better

than 3 Å and sharing590% sequence identity among themselves

and with H3 loops in the range of 3–20 residues. As a result, we

obtained 50 target antibodies. Among these, we found a newly

solved structure of the 4E10 antibody (PDB ID: 4LLV) that was

already present in the training set (PDB ID: 2FX7) that we

excluded from our analysis. Table 3 summarizes the results of

this test (detailed results are in Supplementary Table S4). The
combined RF-CM50 model was able to predict the loops with a

mean RMSD 2.5� 1.5 Å. These results are rather satisfactory

considering that the latter dataset is enriched of antibodies

with long H3 loops. Moreover, in 14% of cases the selected

model was in the sub-angstrom accuracy range.
An in-depth analysis of the single cases revealed a substantial

boosting of the combined RF-CMmethod with respect to each of

them used separately (in 25% of the cases, the combined model

improved the prediction accuracy of41 Å with respect to each
individual method). This indicates that the cutoff used is effect-

ively able to discriminate good predictions from those that can be

improved, sometimes drastically, by the CM score. In Figure 7 we

illustrate three different cases that are paradigmatic of this behav-

ior. Figure 7a shows an example (PDB ID: 4MSW) where the

predicted low TM-distance (0.4) identifies a template close to the

native conformation of the target loop, leading to a high-quality
H3 model (RMSD=0.3 Å). Another example is given by an 11-

residue target loop, whose best RF template (PDB ID: 1TZI) has

a higher predicted TM-distance (0.5). In this case our algorithm

reranked the top 50 templates based on the CM-score and identi-

fied as top scored template the actual best one (PDB ID: 1YY9).

This led to a significant improvement on the final model (from 3.1
to 0.4 Å, Figure 7b). In the last example, Figure 7c (PDB ID:

4LKC) the CM-based reranking allowed the selection of the

best template available (PDB ID: 3GHE) for a 20 residues H3

loop with a final model RMSD of 2.7 Å.

4 CONCLUSIONS

In this study, we developed a new method for predicting the

structure of H3 loops of immunoglobulins, a rather elusive and
complex problem that is however essential for obtaining an ac-

curate view of the antigen binding sites of this important class of

molecules.
The method compares favorably with the most accurate avail-

able tool, i.e. RA with an average improvement of almost 1 Å in

terms of average backbone RMSD. One important aspect of the

method is that the average CPU time of our model is signifi-

cantly shorter than Rosetta with an average CPU time (CPU

speed: 2.5GHz and RAM: 8GB) of 5min per antibody to be

compared with hours and sometimes days for RA.
The prediction pipeline is currently being implemented in the

context of PIGS (Marcatili et al., 2008), our widely used in house

tool for immunoglobulin structure prediction.
We are currently investigating whether the ability of the RF

method to select the meaningful variables and to properly learn

from an extremely heterogeneous training environment, together
with the redundancy reduction procedure we applied, can pro-

vide similarly satisfactory results in selecting the appropriate

template for loops of proteins other than immunoglobulins.
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Fig. 7. Examples of accurate models obtained using the combined RF-

CM50 method. a) Low TM-distance identifies a near native conforma-

tion; b) and c) CM-score reranking enhanced RF predictions for a

medium and a long loop, respectively

Table 3. Performance of the combined RF-CM model on 50 recently

solved antibodies structures

Loop length Number of

structures

RF-CM10 RF-CM50

Very short 3 0.9 0.8

Short 11 1.3 1.7

Medium 18 2.4 2.1

Long 7 3.8 3.8

Very long 11 4.0 3.1

Mean RMSD 2.9 2.5

Median RMSD 2.6 2.2

SD RMSD 1.8 1.5

The values in columns 3 and 4 are the average backbone RMSD (in Å) between

modeled and native H3 loops.
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