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Basic Techniques and Approaches

 Signal peptides and p rotein
localization prediction

Henrik Nielsen
Center for Biological Sequence Analysis, The Technical University of Denmark,
Lyngby, Denmark

1. Introduction

In 1999, the Nobel prize in Physiology or Medicine was awarded to Günther Blobel
“for the discovery that proteins have intrinsic signals that govern their transport
and localization in the cell”. Since the subcellular localization of a protein is an
important clue to its function, the characterization and prediction of these intrinsic
signals – the “zip codes” of proteins – has become a major task in bioinformatics.

Here, I will review the most important methods for the prediction of subcellular
localization, also known as protein sorting. Owing to the limited space, this review
is far from complete; especially, applications that are not publicly available on-line
are ignored. Generally, there are two approaches to protein localization prediction:
signal detection, that is, prediction of the sorting signals themselves, and prediction
based on global properties (amino acid composition and/or physicochemical
variables) that are characteristic of different subcellular compartments.

2. Secretory signal peptides

The best known “zip code” is the secretory signal peptide, which targets a
protein for translocation across the plasma membrane in prokaryotes and across
the endoplasmic reticulum (ER) membrane in eukaryotes (von Heijne, 1990). It
is an N-terminal peptide, typically 15–30 amino acids long, which is cleaved
off during translocation of the protein across the membrane. There is no simple
consensus sequence for signal peptides, but they typically show three distinct
compositional zones: an N-terminal region that often contains positively charged
residues, a hydrophobic region of at least six residues, and a C-terminal region
of polar uncharged residues with some conservation at the −3 and −1 positions
relative to the cleavage site.

In a very early bioinformatics application, von Heijne (1986) developed a weight
matrix for recognition of the signal peptide cleavage site. This weight matrix has
found an extremely wide usage. It does not exist as a WWW-server, but it is
included in PSORT (see below).
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A newer method is SignalP (http://www.cbs.dtu.dk/services/SignalP), which is
based on neural networks (NNs) and hidden Markov models (HMMs) (Bendtsen
et al ., 2004). See Article 98, Hidden Markov models and neural networks,
Volume 8 for an introduction to these machine-learning methods. A comparison of
signal peptide prediction methods showed that both NNs and HMMs outperform the
weight matrix (Menne et al ., 2000). This still seems to be the case, even though a
newer application using weight matrices has become available (Hiller et al ., 2004)
(http://www.predisi.de/).

The HMM included in SignalP is a complex architecture that does not adhere
to the well-known profile HMMs. However, Zhang and Wood (2003) showed that
the task can be done with an only slightly lower performance using a profile HMM
implemented in the standard HMMER package (the model can be downloaded from
http://share.gene.com/).

It should be noted that far from all proteins with secretory signal peptides are
actually secreted to the outside of the cell. In gram-negative bacteria, they by default
end up in the periplasmic compartment, and a separate mechanism is needed to
secrete them to the growth medium (Pugsley et al ., 1997). In eukaryotes, proteins
translocated across the ER membrane are by default transported through the golgi
apparatus and exported by secretory vesicles, but some proteins have specific
retention signals that hold them back in the ER, the golgi or the lysosomes. In
general, these retention signals are poorly characterized, one exception being the
ER retention signal that has the consensus sequence KDEL or HDEL (van Vliet
et al ., 2003).

Some transmembrane proteins also have a cleavable secretory signal peptide that
initiates translocation, whereafter the translocation is halted by a transmembrane
α-helix that acts as a stop-transfer signal, leaving the protein integrated in the
membrane. For a comparison of various publicly available methods for predicting
transmembrane helices, see Chen et al . (2002) (see Article 38, Transmembrane
topology prediction, Volume 7 and Article 65, Analysis and prediction of
membrane protein structure, Volume 7).

Transmembrane helices often lead to false-positives in signal peptide prediction
and vice versa. Recently, a combined HMM that deals with this problem by
modeling both these signals, Phobius, (http://phobius.cgb.ki.se) has become
available (Käll et al ., 2004).

Other membrane proteins do not have transmembrane domains, but are linked
to the membrane by a covalently attached lipid group. Prokaryotic lipopro-
teins have signal peptides that are cleaved by a special signal peptidase, and
their cleavage site has a characteristic consensus signal with a 100% con-
served cysteine in position +1. Two publicly available signal peptide prediction
methods are designed to recognize prokaryotic lipoprotein signal peptides: LipoP,
(http://www.cbs.dtu.dk/services/LipoP/), which is based on a combination of NNs
and HMMs (Juncker et al ., 2003); and SPEPlip, (http://gpcr.biocomp.unibo.it/
predictors/), which is based on NNs combined with a simple pattern matching
(Fariselli et al ., 2003). In eukaryotes, some proteins are linked to the membrane
by a glycosylphosphatidylinositol (GPI) anchor at the C-terminus or a myris-
toyl anchor at the N-terminus. These can be predicted with the big-� and NMT
tools (http://mendel.imp.univie.ac.at/mendeljsp/sat/index.jsp) (Eisenhaber et al .,
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2003), and the myristoylation also with Myristoylator (http://www.expasy.org/
tools/myristoylator/) (Bologna et al ., 2004).

3. Other localization signals

The target peptides of chloroplasts and mitochondria are also N-terminal cleavable
peptides (Schatz and Dobberstein, 1996). They are less well characterized than the
secretory signal peptide, but they are both rare in negatively charged residues and
able to form amphiphilic α-helices (Bannai et al ., 2002; Bruce, 2000).

A widely used method to predict mitochondrial transit peptides (mTPs) is
Mitoprot (http://websvr.mips.biochem.mpg.de/cgi-bin/proj/medgen/mitofilter)
(Claros and Vincens, 1996). It is a feature-based method, using a linear combination
of a number of sequence characteristics such as amino acid abundance, maximum
hydrophobicity, and maximum hydrophobic moment (α-helix amphiphilicity) that
are combined into an overall score.

A newer method, MITOPRED (http://mitopred.sdsc.edu), does not rely on
mitochondrial targeting signals, but is based on Pfam domain occurrence patterns
and the amino acid compositional differences between mitochondrial and non-
mitochondrial proteins (Guda et al ., 2004).

For chloroplast transit peptides, there is a NN-based method available,
ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) (Emanuelsson et al ., 1999).
A successor of ChloroP is TargetP (http://www.cbs.dtu.dk/services/TargetP/),
which provides prediction of both chloroplast transit peptides, mitochondrial transit
peptides, and secretory signal peptides (Emanuelsson et al ., 2000). Both ChloroP
and TargetP use a combination of NNs to calculate a transit or signal peptide score,
and a weight matrix to locate the transit peptide cleavage sites.

Another NN-based method is Predotar (http://genoplante-info.infobiogen.fr/
predotar/) (Small et al ., 2004). In contrast to TargetP that uses moving windows to
calculate the transit peptide score, Predotar uses a fixed window comprising the first
40–60 amino acids of the sorting signal. Like TargetP, it predicts mitochondrial,
chloroplast, and secretory signals.

Bannai et al . (2002) tested a large number of physicochemical features of N-
terminal parts of proteins with signal or transit peptides and obtained a combination
of simple rules that yielded a discriminative performance fairly close to that of
TargetP. Interestingly, a simple hydrophobicity scale even outperformed the NN-
based TargetP on plant signal peptides. The resulting method is called iPSORT
(http://hypothesiscreator.net/iPSORT/).

Not all localization signals are N-terminal and cleavable. Nuclear localization
signals can occur internally in the sequence and are not cleaved. The method
PredictNLS (http://cubic.bioc.columbia.edu/predictNLS/) (Cokol et al ., 2000)
predicts nuclear localization by comparing the query sequence to a database of
experimentally verified NLS sequences and derived signals.

Peroxisomes also have their own protein import machinery. Two uncleaved
signals are known: the C-terminal PTS1 and the N-terminal PTS2. PTS1 with
the consensus sequence -SKL is best known, and a predictor is available
(http://mendel.imp.univie.ac.at/PTS1/) (Neuberger et al ., 2003).
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4. Global property methods

In addition to the recognition of the sorting signals, prediction of protein sorting can
exploit the fact that proteins of different subcellular compartments differ in global
properties, reflected in the amino acid composition. Andrade et al . (1998) found that
the signal in the total amino acid composition, which makes it possible to identify
the subcellular location, is due almost entirely to surface residues. While the signal-
prediction methods are probably closer to mimicking the information processing
in the cell, methods based on global properties can work also for genomic or EST
sequences where the N-terminus of the protein has not been correctly predicted. One
drawback is that such methods will not be able to distinguish between very closely
related proteins or isoforms that differ in the presence or absence of a sorting signal.

The NNPSL method (http://predict.sanger.ac.uk/nnpsl/) (Reinhardt and Hub-
bard, 1998) uses NNs trained on overall amino acid composition to predict localiza-
tion. The method distinguishes between three bacterial compartments (cytoplasmic,
periplasmic, and extracellular) and four eukaryotic compartments (cytoplasmic,
extracellular, mitochondrial, and nuclear). Interestingly, plant proteins were found
to be very poorly predicted, and are not included in the present method.

Nair and Rost (2003), also working with NNs, found that prediction could be
improved by using information from protein structure. Specifically, they calculated
amino acid composition separately for three categories of secondary structure (helix,
sheet, and coil) and for surface-accessible residues. Naturally, the improvement
was most pronounced when applied to proteins of known structure, but even a
predicted secondary structure (according to an NN) was able to enhance prediction.
The resulting method is implemented in a database, LOC3D (http://cubic.bioc.
columbia.edu/db/LOC3d/), and a web server, LOCtarget (http://cubic.bioc.
columbia.edu/services/LOCtarget/) (Nair and Rost, 2004).

There is a rapidly growing number of subcellular localization prediction
methods based on amino acid composition and related features. The SubLoc
method (http://www.bioinfo.tsinghua.edu.cn/SubLoc/) (Hua and Sun, 2001) is
based on support vector machines (SVMs, see Article 110, Support vector
machine software, Volume 8). The data set used to train SubLoc is that of
Reinhardt and Hubbard (1998), but the predictive performance is significantly better
than the NN. Three newer SVM applications are Esub8, PLOC, and ESLpred. Esub8
(http://bioinfo.tsinghua.edu.cn/CoupleLoc/eu8.html) (Cui et al ., 2004) uses the
amino acid composition of the first and last half of each sequence and distinguishes
between eight subcellular locations. PLOC (http://www.genome.ad.jp/SIT/ploc.
html) (Park and Kanehisa, 2003) uses, in addition to amino acid composition, amino
acid pairs (adjacent or separated by one to three positions) to enhance prediction.
It distinguishes between as many as twelve subcellular locations. ESLpred
(http://www.imtech.res.in/raghava/eslpred/) (Bhasin and Raghava, 2004) is a
four-location predictor based on the NNPSL data, which uses both amino acid
composition, adjacent amino acid pairs, PSI-BLAST output, and physicochemical
properties.

It should be stressed that no prediction method is better than the data set
used to train it. One problem that is rarely properly addressed in global property
methods is homology in the data. If the data used to test a method has sequences



Basic Techniques and Approaches 5

that are significantly homologous to sequences in the training data, the apparent
performance of the method is an overestimate. To compute a true generalizable
performance, the data set should be reduced so that no homologous pairs remain
(Hobohm et al ., 1992). Reinhardt and Hubbard (1998) reduced their data set, but
only removed sequences with more than 90% identity, which is clearly much higher
than the homology threshold. Newer methods, with the exception of PLOC, are
trained with the Reinhardt and Hubbard (1998) data or without homology reduction
at all. Therefore, care should be taken when comparing performance measures.

5. Integrated methods

PSORT (http://psort.nibb.ac.jp or http://www.psort.org/) (Nakai and Kanehisa,
1991, 1992; Nakai and Horton, 1999) is an integrated system of several prediction
methods, using both sorting signals and global properties. Some of the components
are developed within the PSORT group, others are implementations of methods
published elsewhere, including selected PROSITE patterns. PSORT is the only
publicly available system that shows this degree of integration. In addition to
localization (up to 16 different possible locations in plant cells), it also predicts
motifs for posttranslational modifications such as lipid attachment.

All the constituent predictors provide feature values, which are then integrated
to produce a final prediction. In the original version, PSORT I, the integration
was done in the style of a conventional knowledge base using a collection of “if-
then” rules, while the newer PSORT II version uses quantitative machine-learning
techniques, such as probabilistic decision trees and the k nearest neighbors classifier
to integrate scores from all the features. PSORT II is available for animal and yeast
proteins (11 locations), while plant proteins still have to rely on PSORT I.

For gram-negative bacteria, there is a recently improved version named PSORT-
B (http://www.psort.org/psortb/index.html) (Gardy et al ., 2003) discriminating
between five possible locations (cytoplasm, inner membrane, periplasm, outer mem-
brane, and extracellular). It uses a combination of homology searches to proteins of
known localization, PROSITE motifs, signal peptide, and transmembrane helix pre-
dictors based on HMMs, and a SVM-based predictor using amino acid composition.

Drawid and Gerstein (2000) developed a different integrated system for localizing
all the proteins in the yeast genome to one of the five possible compartments
(cytoplasm, nucleus, mitochondria, membrane, or secretory pathway). It is a
Bayesian system integrating 30 features comprising both specific motifs (e.g., signal
sequences or the HDEL motif), overall properties of a sequence (e.g., surface
composition or isoelectric point), and whole-genome data (e.g., absolute mRNA
expression levels or their fluctuations). The method is not available for submission
of new sequences, but predictions for all known yeast genes can be retrieved
(http://bioinfo.mbb.yale.edu/genome/localize/).
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