

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

The MODUS approach to formal verification

Brewka, Lukasz Jerzy; Soler, José; Berger, Michael Stübert

Published in:
Business Systems Research

Link to article, DOI:
10.2478/bsrj-2014-0002

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Brewka, L. J., Soler, J., & Berger, M. S. (2014). The MODUS approach to formal verification. Business Systems
Research, 5(1), 21-33. DOI: 10.2478/bsrj-2014-0002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/20608895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.2478/bsrj-2014-0002
http://orbit.dtu.dk/en/publications/the-modus-approach-to-formal-verification(1bd34e41-5bf1-4559-a40e-81f89a5f379a).html

21

Business Systems Research Vol. 5 No. 1 / March 2014

The MODUS Approach to Formal Verification

Lukasz Brewka, José Soler, Michael Berger
DTU Fotonik, Denmark

Abstract

Background: Software reliability is of great importance for the development of

embedded systems that are often used in applications that have requirements for

safety. Since the life cycle of embedded products is becoming shorter, productivity

and quality simultaneously required and closely in the process of providing

competitive products Objectives: In relation to this, MODUS (Method and supporting

toolset advancing embedded systems quality) project aims to provide small and

medium-sized businesses ways to improve their position in the embedded market

through a pragmatic and viable solution Methods/Approach: This paper will describe

the MODUS project with focus on the technical methodologies that can assist formal

verification and formal model checking. Results: Based on automated analysis of the

characteristics of the system and by controlling the choice of the existing open-

source model verification engines, model verification producing inputs to be fed into

these engines. Conclusions: The MODUS approach is aligned with present market

needs; the familiarity with tools, the ease of use and compatibility/interoperability

remain among the most important criteria when selecting the development

environment for a project.

Keywords: software quality, formal verification, embedded systems, translation tool

selection

JEL main category: Economic Development, Technological Change, and Growth

JEL classification: O31

Paper type: Research article

Received: 15, July, 2013

Accepted: 12, January, 2014

Citation: Brewka, L., Soler, J., Berger, M. (2014), “The MODUS Approach to Formal

Verification”, Business Systems Research, Vol. 5, No. 1, pp.21-33.

DOI: 10.2478/bsrj-2014-0002

Acknowledgments: This research activity is funded under the EU Research for SME

associations FP7 project, MODUS-Methodology and supporting toolset advancing

embedded systems quality (Project No.286583).

Introduction
The MODUS project was initiated to provide a sustainable and pragmatic tool set

that will allow small and medium-sized businesses to improve their ranking in

embedded systems engeneering.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

22

Business Systems Research Vol. 5 No. 1 / March 2014

 By the use of formal description Techniques, MODUS will develop and validate a

set of technical methods, as well as an open and customizable toolsets enhancing

embedded systems by providing (MODUS (2013a)) :

o Model verification by performing the selection of the available open-source

model verification engines can be supplied, based on the automated

analysis of system characteristics and the production inputs in these engines.

o Connection to standard simulation platform for HW / SW co-simulation.

o Software to optimize performance through automated design

transformations.

o Customizable source-code generation in line with coding standards and

conventions.

 The project will also provide features and open interfaces to customize and

extend MODUS toolkit for use with various formal specification techniques, modeling

techniques, programming languages, platforms, etc. MODUS is not intended to be

low competition with CASE tools used in embedded software engineering at the

moment. On the other hand, you want the project to allow the adoption of quality

strategies by supplementing these tools and allow existing investments in technical-

know with continued use. In the next section, the tools for formal verification is

described, followed by methods to control the selection of techniques and

strategies for the selection tool.

Supported verification tools/languages and their

properties
The selected model verification tools to be supported by the MODUS toolset are SPIN

and RAISE. Both of the tools are LTL (Linear Temporal Logic) model checkers. The

sections below present more details about the properties of these tools and the

languages they use for model description.

SPIN
SPIN and PROMELA are focusing on the process interaction, i.e., describing how

system components communicate with each other (Holzmann, 2003). As already,

mentioned not much attention is given to internal computation processes. The

process interaction can be modelled in a number of ways:

o rendezvous primitives (synchronous)

o asynchronous message passing through buffered channels

o access to shared variables

o any combination of the above

 SPIN itself provides a methodology for matching the system design expressed in

PROMELA language and the LTL formula describing desired/correct behaviour of the

system.

 PROMELA is a language crafted for describing models of distributed systems. It

expresses the model description using a language similar to C with some notation

from the guarded command language by Dijkstra and the CSP language from

Hoare (particularly to describe interaction between processes). A PROMELA model

consists of (Holzmann, 2003):

o variable declarations with their types

o channel declarations

o type declarations

o process declarations

o init process (optional)

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

23

Business Systems Research Vol. 5 No. 1 / March 2014

 In PROMELA a process is a basic building unit of the system It is defined by a so

called “proctype” definition that contains the process’ name, the process’ list of

parameters, its declaration of local variables, and the sequence of local

statements. Meenakshi (2004) provides a following example of process definition:

proctype Sender(chan in; chan out)

{

bit sndB, rcvB;

do

:: out ! MSG, sndB ->

in ? ACK, rcvB;

if

:: sndB == rcvB -> sndB = 1-sndB

:: else -> skip

fi

od

}

 Models written in PROMELA can (and usually will) contain more than one process.

Multiple processes will run in parallel, communicating with each other using the

interaction methods described at the beginning of this section. The state of the

process is defined by its local variables and the process counter. Processes are

invoked by using a run statement inside the init process or by adding to active

keyword. The process creation can be placed in arbitrary places within the model.

The variables in PROMELA require declaration defining the type and name of the

variable, prior to its use. There are these five different types of variables available in

PROMELA:

o bit

o bool

o byte

o short

o int

 It is also possible to declare arrays and records. All variables (local and global)

have the initial value of 0. Conflicts in type during value assignment are resolved at

run-time.

Communication. As indicated earlier channels are used to enable communication

between processes. There can be the following two types of communications:

o Message-passing or asynchronous

o Rendezvous or synchronous

 Channels are of a FIFO (First-In First-Out) type and is defined using array type

defining the number of messages that can be occupied by the channel. The

declaration also specifies the type of elements that can be passed using this

channel.

 Rendezvous communication is established using channels with dimension zero. If

you send through a channel is enabled, and if there is a corresponding receiver that

can be performed simultaneously, so both statements are enabled. Both statements

will be able to perform a single transition.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

24

Business Systems Research Vol. 5 No. 1 / March 2014

Statements.

Promela statements are separated by a semicolon. One of the basic statements

Promela projections (do something) to distinguish , printf , assert (expression) (Check

whether the expressions property is valid in a state) if statements (executable if at

least one of the options is non-blocking) and submit observations .

 The feasibility of Promela statement depends on its type and value - expression is

evaluated . Assignment statements , skip, pause, printf are statements that are

always executable . Expressions are executable if it does not evaluate to zero. This

means that if or executable statement is , if at least one guard evaluates to true. The

communication settings are executable statements , depending on the status of the

channel , a transmit executable for non- channels and a receiver statement

executable for non-empty channels.

To the statements of the group for a specific process in a sequence in a single step ,

which does not include statements of other processes performed nested , one can

use an atomic statement. The feasibility of the atomic statement depends

executablility to the first survey. If one of the following statements is not executable ,

the indivisibility of atomic propositions are broken and other processes can be

nested .

 Another example of a one-step embodiment, a d- point . In contrast to the

statement if the atomic d- step involves blocking mode , it causes a runtime error.

Finally timeout statement is a statement that is executed if no other statements

contained in any of the other processes are executable (this function can not be

used to be modeled timeouts that are involved in the system design.)

RAISE
RAISE (Rigorous Approach to Industrial Software Engineering) is a tool-set that consists

of: a method for software development, RSL (RAISE Specification Language)

specification language, and a computer tools for automated model checking,

analysis, and translation (George, 2008).

 The key for system verification using the RAISE tool-set is to obtain a specification in

RSL. RSL, as a specification language, provides a wide range of opportunities for

expressing the modelled system: it allows property and model-oriented styles,

applicative and imperative styles, as well as sequentiality and concurrency.

Modules. A RSL specification is divided into modules. A module should capture the

types, values and axioms that characterize the system or its parts. A generic module

definition in RSL has the following form:

id =

 class

 declaration-1

 …

 declaration-n

 End

 A declaration will start with a keyword identifying the kind of declaration (e.g.

type, value, axiom). The following RSL specification of a database illustrates RSL type

declaration. This is further clarified in the following subsections (George, 2008):

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

25

Business Systems Research Vol. 5 No. 1 / March 2014

DATABASE =

 class

 type

 Person

 Database = Person-set

 value

 empty: Database

 register: Person Database Database

 check: Person Database Bool

 axiom

 empty {}

 p : Person, db : Database • register(p,db)

 p : Person, db : Database • check(p,db)p db,
End

Type declaration. A type is a collection of logically related values. There exists a

number of build in types that are predefined in RSL. Beside those, a RAISE user can

also define his/her own types. One can create an abstract type like Person in the

example above. Abstract types do not have any predefined operators for

manipulating their value (beside the “=” operator, used for comparison of two

values).

 Another kind of type declaration is using the “=” operator. Using “=” expresses that

the new type is representing the expression on the right side of the operator. Back to

the previous example, using “=” declares the Database as a set of people i.e., the

type containing all finite subsets of the set of values in Person. RSL Atomic types with

their values and operators are listed below (Haxthausen, 2010):

o Bool values: true, false operators: =, ≠, ∧, ∨, ⇒, ∼, ∀, ∃

o Int values: ..., -2, -1, 0, 1, 2, ... operators: =, ≠, +, −, *, /, ↑, \, <, ≤, >, ≥, abs, real

o Nat values: 0, 1, 2, ... operators: =, ≠, +, −, *, /, ↑, \, <, ≤, >, ≥, abs, real

o Real values: .., -4.3, ..., 0.0, ..., 1.0, … operators: =, =, +, −, *, /, ↑, <, ≤, >, ≥, abs,

int

o Char values: ‘a’, . . . operators: =, ≠

o Text values: "Alice", . . . operators: =, ≠

For declaration of composite types it is possible to choose amongst:

o A product - an ordered collection of values, not necessarily distinct, of some

given types (possibly different).

o A list (sequence) - an ordered collection of values, not necessarily distinct,

of the same type.

o A set - an unordered collection of distinct values of the same type.

o A map (or table) - an unordered collection of pairs of values.

Value declaration. Values can be named in the value declaration. The simplest

example of value declaration is in the form “id : value” and can be seen in the

provided example of the RSL declaration of a database (see empty). The actual

value that is identified by empty is described in one of the axioms (described later).

The next value example (register) represented in that example, declares a function

that adds a person to the database, it represents a database after performing the

registration i.e., when the person was added.

 Finally, the third type of value definition in that example, defines a function check.

When check is applied to database and a person, depending on whether particular

person is part of Person-set defined by Database, a Boolean true of false is returned.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

26

Business Systems Research Vol. 5 No. 1 / March 2014

Similarly like for previous value expression the axiom contains a detailed

characterisation of this value.

One can distinguish 3 three forms of value definition in RSL (Haxthausen, 2010):

o explicit function definition:

value

is_in : Person × Database → Bool

 is_in(p,db) ≡ p ∈ db

o implicit function definition:

value

 square_root : Real → Real

 square_root(r) as s

 post s ∗ s = r ∧ s ≥ 0.0

 pre r ≥ 0.0

o axiomatic definition:

value

 is_in : Person × Database → Bool

axiom

 ∀ p : Person • is_in(p, empty) ≡ false,

 ∀ p : Person, db : Database • is_in(p, register(p, db)) ≡ true

Axiom declarations. Axioms are used to bring the property value names for

expression. Let's go back to the database, for example, the first axiom is an

expression of type bool and declares that the value expression is empty, and {} are

the same. All axioms are Boolean expressions evaluate to true. The second axiom is

presented in our example suppresses the register function. It uses level expressions

show that for all people and all databases, the data for a couple of person p and

database db is used, is equivalent to a union

subsets). Axiom defines Check the function that will be registered if it belongs to the

group hosting the database.

Module extension. RAISE also allows for module extension where one can declare a

new module that adds type, values, and axioms to existing module. For that purpose

one should use extend <module_name> with expression.

Mechanisms for guiding the verification tool selection
Relevant model properties
The most important feature that should be considered when deciding on the formal

methodology tools is the possibility of representing the properties of the system in the

formal language selected for performing the verification and validation. Different

formal description languages have different set of features that they can express.

During validation it is important to identify the crucial system properties and ensure

that these properties can be expressed using a particular formal description.

Otherwise the verification makes no sense since, when important parts of

specification are lost; essentially it is a different system that is validated.

 UML and SysML diagrams are the sources of the model descriptions, as far as

MODUS tool-set is considered, as presented in previous deliverables (MODUS 2013a,

2013b, 2013c, 2013d). As such, the set of the features contained in these diagrams

will depend on the types of the diagrams that are integrated in the model.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

27

Business Systems Research Vol. 5 No. 1 / March 2014

Definitely system is described in different degree of details depending if it contains

structural or behavioural modelling data. This is clarified in the following:

 The most commonly used diagram during the software development is a class

diagram. These types of diagrams present the system structure by showing classes

with their properties and relations between them.

 On the other hand, behavioural diagrams can express a dynamic nature of the

system. They describe states of an object during its lifetime

Two translation tools selected for the integration with the MODUS tool-set, i.e.

UML2RSL and Hugo/RT have different capabilities when it comes to translation

model. The following sections present the capabilities of the tools and describe

certain translation possibilities and examples.

UML2RSL
UML2RSL used class diagram, to formulate RSL specification. As a result of the

translation, in order to obtain a specification of a plurality of modular RSL files.

A top-level module is stored in the file S.rsl. It contains a specification of the model

with the whole class diagram. S.rsl uses one set of modules containing a specification

of one of the classes from the diagram. The name of these modules is given to

match the class name in capital letters, followed by "S_". Each RSL module for a class

is created with a lower level module corresponds to an object of the given class,

named after the class in capital letters, followed by "_". Each of these lower level

modules used TYPES.rsl module where all the abstract types defined in the illustration

(George,2008).

 Considering a simple example of a class diagram presented below six files will be

created (Figure 1):

o CLASSOUTOFPACKAGE_.rsl

o CLASSOUTOFPACKAGES_.rsl

o MYCLASS_.rsl

o MYCLASSS_.rsl

o S.rsl

o TYPES.rsl

 They can form the following dependency diagram presented in Figure 2.

Figure 1

Simple class diagram for UML2RSL translation

Source: Authors

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

28

Business Systems Research Vol. 5 No. 1 / March 2014

Figure 2

RSL output dependency diagram

CLASSOUTOFPACKAGES_ MYCLASSS_

S

CLASSOUTOFPACKAGE_ MYCLASS_

TYPES

Source: Authors

As a result of the translation the MYCLASS_.rsl will take a form:

TYPES (George, 2008)

object MYCLASS_ :

 with TYPES in

 class

 type

 MyClass

 value

 MyAttribute: MyClass -> MyAttribute,

 update_MyAttribute: MyAttribute >< MyClass -~-> MyClass

 update_MyAttribute(at, o) as o' post MyAttribute(o') = at

 pre preupdate_MyAttribute(at, o),

 preupdate_MyAttribute: MyAttribute >< MyClass -> Bool,

 Association: MyClass -> ClassOutOfPackage_Id,

 update_Association:

 ClassOutOfPackage_Id >< MyClass -~-> MyClass

 update_Association(a, o) as o' post Association(o') = a

 pre preupdate_Association(a, o),

 preupdate_Association:

 ClassOutOfPackage_Id >< MyClass -> Bool,

 consistent: MyClass -> Bool

 end

end

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

29

Business Systems Research Vol. 5 No. 1 / March 2014

 The remaining files that are output from the UML -to- RSL transition, listed in

Appendix A: Translation results UML2RSL. A class, in addition to the normal function of

returning the value of an attribute, very often contains operations change the

attributes. It could be an event that occurs, this attribute modification in a particular

state. This is handled by the compiler to generate the RSL functions for this purpose.

Their claim is to be completed by the user (see e.g. preupdate_Association).

 According to this example of the type described MyClasss is the set of all possible

states of the class MyClasss, representing a number of groups of articles or MyClass

all possible sets of objects that can be observed at a given time. It can be described

as the class of container.

 For each class in the class can create new objects and damaged or altered

existing objects. This is the existence of some typical features (empty, add part is_in,

sheep, and update) that can be on the set of instances of each class and the work

of a translator resist. Seen an example of these features in CLASSOUTOFPACKAGES_

and MYCLASSS_ files (see Appendix A: Translation results UML2RSL).

 To check the consistency of the whole system in order to verify that keep all

constraints are a number of axioms defined top-level. This makes it possible to check

whether the system is done in a consistent state before and after each change in

status. For this reason, a number is generated by similar functions. They are included

in the top level module S, but also a set of Boolean functions is formed in the lower

level modules the. Lower level texture features, the user to check the consistency of

objects and classes. The top feature using features lower level checks the

consistency of the whole system.

 This simple example also shows the association, which is translated as two RSL

functions between the classes involved (or, if the association is navigable in only one

direction).

 The UML2RSL translation tool also accepts and executes test: Composition,

aggregation, generalization (but only translates single inheritance) abstract, root,

leaf and template classes. Dependencies ignored (details can be found in (George

2008).

HUGO/RT
A translation performed by Hugo/RT goes beyond the basic class diagram

translation (Knapp, 2008). Hugo/RT can translate the UML models that contain

classes with state machines, collaborations, interactions, and OCL (Object Constraint

Language) constraints.

 The state machines describing the state the objects can be in, can be

complemented by another dynamic view of the system, namely, the sequence and

collaboration diagrams, describing the interactions between different objects in the

system. Hugo/RT can be used to verify whether these complementary views of

dynamic properties of the system are coherent. In other words it allows verifying

whether the system described by the state machines can fulfil the interaction

described in the collaboration.

 The UML state machines should be described in the context of a UML class. The

classes need to declare all events that its state machine can handle (Knapp, 2008).

Hugo/RT translation for every state machine creates a separate PROMELA process.

Considering an example borrowed from (Schäfer, Knapp, Merz, 2001). It is possible to

define a system that is composed of an ATM and a Bank, presented by a simple

class diagram in Figure 3.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

30

Business Systems Research Vol. 5 No. 1 / March 2014

Figure 3

ATM - Bank class diagram

Source: Schäfer, Knapp, Merz, 2001

 Each of the classes contains a state machine. For instance let’s consider a state

machine of the ATM module (see Figure 4). This state diagram contains simple and

composite states together with guarded and unguarded transitions.

Figure 4

ATM state machine

Source: Schäfer, 2001

Strategies for selection of the formal description tools
This section covers the possible strategies for selecting a proper formal verification/

validation path. This includes a selection of the UML to formal language translator

and as such also the model checker. The strategy included in this deliverable is

taking into account only the tools considered for the first stage of the MODUS tool-

set development.

 As described earlier, the two model checkers that are identified as first priority

tools to be integrated within MODUS tool-set are SPIN and RAISE (SAL). This means

that Hugo/RT and UML2RSL will be the tools that perform the translation between a

UML model and a formal description. Considering different properties of the

aforementioned translators, the strategy for the selection of the tools for the formal

verification and validation is rather simple (at least at this stage of the development).

Since UML2RSL handles only UML diagrams containing class diagrams it can only be

considered for this basic types of models.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

31

Business Systems Research Vol. 5 No. 1 / March 2014

 UML diagrams containing state machines, within their classes, cannot be

translated into RSL, because the translator is not processing behavioural diagram

types. As such, large part of the system description would be lost.

For diagrams that contain state machines describing the behaviour of the objects of

a certain class type, Hugo/RT should be used in the currently planned MODUS tool-

set formal verification block. The resulting PROMELA model produced by the

Hugo/RT translation can later be fed to SPIN for formal verification according to

collaboration diagrams and OCL constraints.

 If class diagrams that do not contain any state diagrams are translated using

Hugo/RT, the tool will prompt a warning indicating that no behaviour description was

detected and almost empty file (containing only idle process) will be generated.

This strategy for selection of the formal verification tool to be used in each case can

be implemented as a simple algorithm as depicted in Figure 5.

Figure 5

Formal methods selection

Export UML to XMI

using Eclipse

Modeling Plug-in

Does the model

contain state

diagrams?

Translate the model

using UML2RSL

NO

YES

Translate the model

using Hugo/RT

Process the model

using SPIN

Process the model

using RSL tools e.g.

SAL

Return the results of the

formal methods

UML Model

Source: Authors

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

32

Business Systems Research Vol. 5 No. 1 / March 2014

Conclusions
MODUS is targeting the market of tools for embedded software engineering. The

project will develop a toolset advancing embedded systems quality that will target

the growing group of SMEs (and bigger companies as well) specialising in the

development of embedded systems in different industrial sectors (e.g. avionics,

automotive systems, consumer electronics, telecommunications systems, etc).

 It should be emphasized that MODE does not aim to compete with the major

suppliers of CASE tools currently used in embedded software engineering to

become. On the contrary, the project aims to facilitate the implementation of

quality strategies by preserving existing investments in technical know-how and tools.

The MODUS approach is aligned with present market needs; the familiarity with tools,

ease of use and compatibility/interoperability remain among the most important

criteria when selecting the development environment for a project. Specifically, this

paper has focused on the formal verification part of the MODUS toolsets, but the

uniqueness of the MODUS toolsets lies in the combination of formal verification,

HW/SW co-simulation, SW performance tuning and customizable source code

generation.

References
1. George, C. (2008), “RAISE Tool User Guide”, available at:

http://www.iist.unu.edu/newrh/III/3/1/docs/rsltc/user_guide/html/ug.html (12

September 2012).

2. Haxthausen, A. (2010), Lecture notes, 02263 Formal Aspects of Software

Engineering, available at http://www2.imm.dtu.dk/courses/02263/F14/index/ /

(10 September 2012)

3. Holzmann, G. J. (2003), The Spin Model Checker: Primer and Reference Manual,

Boston: Addison-Wesley.

4. Knapp, A. (2008), ”Hugo/RT”, available at:

http://www.pst.ifi.lmu.de/projekte/hugo / (12 September 2012).

5. Meenakshi, B. (2004), A tutorial on SPIN, Bangalore: Honeywell Technology

Solutions Lab.

6. MODUS (2013a), Deliverable D2.1 “State-of-the-art review and identification of

technological requirements”, Internal documentation.

7. MODUS (2013b), Deliverable D2.2 “MODUS functional and technical

specifications”, Internal documentation.

8. MODUS (2013c), Deliverable D3.1 “Methodological framework for LNR-based

model transformation and code generation”, Internal documentation.

9. MODUS (2013d), Deliverable D3.2 “LNR-based model transformation and code

generation modules”, Internal documentation.

10. Schäfer, T., Knapp, A., Merz, S. (2001), “Model Checking UML State Machines

and Collaborations”, Electronic Notes in Theoretical Computer Science, Vol. 55,

No. 3, pp. 357-369.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

http://www2.imm.dtu.dk/courses/02263/F14/index/
http://www.pst.ifi.lmu.de/projekte/hugo%20/

33

Business Systems Research Vol. 5 No. 1 / March 2014

About the authors

Lukasz Brewka received his M.Sc. degree in 2008 and his Ph.D. degree in 2012 both

from Technical University of Denmark, Department of Photonics Engineering. He was

involved in European projects ICT-ALPHA and MODUS. His research interest includes

quality assurance in telecommunications and software systems - from network QoS

to software QA. Author can be contacted at brewka111@gmail.com

José Soler earned his PhD in Electrical Engineering (2006) by DTU (Denmark), and his

MSc in Telecommunication Engineering (1999) by Zaragoza University (Spain).

Currently he is Associate Professor on Telecommunication Networks at DTU Fotonik.

His research interest include heterogeneous networks integration,

telecommunication related software and services. Author can be contacted at

joss@fotonik.dtu.dk

Michael S. Berger was born in 1972 and received the M.Sc. EE and Ph.D. from the

Technical University of Denmark in 1998 and 2004. He is currently Associate Professor

at the Technical University of Denmark within the area of switching and network

node design. Currently, he is leading a project on next generation IP and Carrier

Ethernet networks partly funded by the Danish National Advanced Technology

Foundation. Author can be contacted at msbe@fotonik.dtu.dk

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated | 192.38.67.112

Download Date | 7/7/14 1:12 PM

