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de Catalunya

Barcelona, Spain

Neil D. Lawrence∗
Dept. of Computer Science

The University
of Sheffield

Sheffield, UK

Abstract

We investigate the geometrical structure of
probabilistic generative dimensionality reduction
models using the tools of Riemannian geometry.
We explicitly define a distribution over the natu-
ral metric given by the models. We provide the
necessary algorithms to compute expected metric
tensors where the distribution over mappings is
given by a Gaussian process. We treat the corre-
sponding latent variable model as a Riemannian
manifold and we use the expectation of the met-
ric under the Gaussian process prior to define in-
terpolating paths and measure distance between
latent points. We show how distances that respect
the expected metric lead to more appropriate gen-
eration of new data.

1 MOTIVATION

One way of representing a high dimensional data set is
to relate it to a lower dimensional set of latent variables
through a set of (potentially nonlinear) functions. If the ith
data point and the jth feature is represented by yi,j , it might
be related to a q dimensional vector of latent variables xi,:
as

yi,j = fj(xi,:) + εi,

where fj(·) is a nonlinear function mapping to the jth fea-
ture of the data set and εi is a noise corruption of the un-
derlying function. A manifold derived from a finite data
set can never be precisely determined across the entire in-
put range of x. We consider posterior distributions defined
over fj(·) and we focus on the uncertainty defined over the
local metric of the manifold itself. This allows us to de-
fine distances that are based on metrics that take account
of the uncertainty with which the manifold is defined. We
use these metrics to define distances between points in the
latent space that respect these metrics.

∗Also at Sheffield Institute for Translational Neuroscience,
SITraN. Sheffield, UK

 

 

Straight line interpolant

Expected Riemannian geodesic

Figure 1: The latent space from a GP-LVM that was trained
over a dataset of artificially rotated digits. Black dots repre-
sent the latent points. The dashed brown line show the com-
monly used straight-line interpolant, and the green curve is
the suggested expected Riemannian geodesic. This figure
is best viewed in colour.

When the mappings fj(·) are nonlinear, the latent variable
model (LVM) can potentially capture non-linearities on the
data and thereby provide an even lower dimensional repre-
sentation as well as a more useful view of the data. While
this line of thinking is popular, it is not without its prac-
tical issues. As an illustrative example, Fig. 1 shows the
latent representation of a set of artificially rotated images
obtained through a Gaussian process latent variable model
(GP-LVM). It is clear from the display that the latent repre-
sentation captures the underlying periodic structure of the
process which generated the data (a rotation). If we want
to analyse the data in the latent space, e.g. by interpolat-
ing latent points, our current tools are insufficient. As can
be seen, fitting a straight line in the latent space between
the two-points leads to a solution that does not interpolate
well in the data space: the interpolant goes through regions
where the data does not reside, regions where the actual
functions, fj(·), cannot be well determined.

This observation raises several related questions about the
choice of interpolant: 1) what is the natural choice of inter-
polant in the latent space? And, 2) if the natural interpolant
is not a straight line, are Euclidean distances still meaning-
ful? We answer these questions for the GP-LVM, though
our approach is applicable to other generative models as
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well. We consider here a metric which reflects the intrinsic
properties of the original data and recovers some informa-
tion loss due to the nonlinear mapping performed by the
model. We find that for smooth LVMs the metric from the
observation space can be brought back to the latent space
in the form of a random Riemannian metric. We then pro-
vide algorithms for computing distances and shortest paths
(geodesics) under the expected Riemannian metric. With
this the natural interpolant becomes a curve, which follows
the trend of the data.

Overview In Section 2 we introduce the concepts of Rie-
mannian geometry, the tool on which we rely on later on
in the paper. Section 3 provides an overview of the state of
the art in probabilistic dimensionality reduction, introduc-
ing the class of models to which the proposed methodol-
ogy can be extended. In Section 4 we use the probabilistic
nature of the generative LVMs to explicitly provide distri-
butions over the metric tensor; first, we provide the general
expressions, then we specialise these to the GP-LVM as an
example. Finally, we show how to compute shortest paths
(geodesics) over the latent space. Experimental results are
provided in Section 5, and the paper is concluded with a
discussion in Section 6.

2 CONCEPTS OF RIEMANNIAN
GEOMETRY

We study latent variable models (LVMs) as embeddings
of uncertain surfaces (or manifolds) into the observation
space. From a machine learning point of view, we can inter-
pret this embedded manifold as the underlying support of
the data distribution. To this end, we review the basic ideas
of differential geometry, which study surfaces through lo-
cal linear models.

Gauss’ study [1827] of curved surfaces are among the
first examples of (deterministic) LVMs. He noted that a
q-dimensional surface embedded in a p-dimensional Eu-
clidean space1 is well-described through a mapping f :
Rq → Rp. The q-dimensional representation of the surface
is known as the chart (in machine learning terminology,
this corresponds to the latent space). In general, the map-
ping f between the chart and the embedding space is not
isometric, e.g. the Euclidean length of a straight line l in
the chart does not match the length of the embedded curve
f(l) as measured in the embedding space. Intuitively, the
chart provides a distorted view of the surface (see Fig. 2 for
an illustration). To rectify this view, Gauss noted that the

1Historically, Gauss considered the case of two-dimensional
surfaces embedded in R3, while the extension to higher dimen-
sional manifolds is due to Bernhard Riemann.

Figure 2: An illustration of the standard surface model; f
maps the chart into the embedding space.

length of a curve is

Length (f(l)) =

∫ 1

0

∥∥∥∥
∂f(l(t))

∂t

∥∥∥∥ dt =

∫ 1

0

∥∥∥∥J
∂l(t)

∂t

∥∥∥∥ dt,
(1)

where J denotes the Jacobian of f , i.e.

[J]i,j =
∂fi
∂lj

. (2)

Measurements on the surface can, thus, be computed in the
chart locally, and integrated to provide global measures.
This gives rise to the definition of a local inner product,
known as a Riemannian metric.

Definition (Riemannian Metric). A Riemannian metric G
on a manifoldM is symmetric and positive definite matrix
which defines a smoothly varying inner product

〈a,b〉x = a>J>Jb = a>G(x)b (3)

in the tangent space TxM, for each point x ∈ M and
a,b ∈ TxM. The matrix G is called the metric tensor.

Remark The Riemannian metric need not be restricted
to G = J>J and can be any smoothly changing sym-
metric positive definite matrix [do Carmo, 1992]. We re-
strict ourselves to the more simple definition as it suffices
for our purposes, but note that the more general approach
has been used in machine learning, e.g. in metric learning
[Hauberg et al., 2012] and information geometry [Amari
and Nagaoka, 2000].

From this definition, Eq. 1 reduces to

Length (γ) =

∫ 1

0

√
〈γ′(t), γ′(t)〉γ(t)dt (4)

for a general curve γ : [0, 1]→ Rp.

Definition (Geodesic curve). Given two points x1,x2 ∈
M, a geodesic is a length-minimising curve connecting the
points

γg = argmin
γ

Length(γ), γ(0) = x1, γ(1) = x2. (5)
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It can be shown [do Carmo, 1992] that geodesics satisfy the
following second order ordinary differential equation

γ′′ = −1

2
G−1

[
∂ vecG

∂γ

]>
(γ′ ⊗ γ′), (6)

where vecG stacks the columns of G and ⊗ denotes the
Kronecker product. The Picard-Lindelöf theorem [Tenen-
baum and Pollard, 1963] then implies that geodesics exist
and are locally unique given a starting point and an initial
velocity.

3 PROBABILISTIC DIMENSIONALITY
REDUCTION

Nonlinear dimensionality reduction methods [Lee and Ver-
leysen, 2007] provide a flexible data representation which
can provide a more faithful model of the observed mul-
tivariate datasets than the linear ones. One approach is
to perform probabilistic nonlinear dimensionality reduction
defining a model that introduces a set of unobserved (or la-
tent) variables X that can be related to the observed ones Y
in order to define a joint distribution over both. These mod-
els are known as latent variable models (LVMs). The latent
space is dominated by a prior distribution p(X) which in-
duces a distribution over Y under the assumption of a prob-
abilistic mapping

yi,j = fj(xi) + εi, (7)

where xi is the latent point associated with the ith obser-
vation yi, j is the index of the features of Y, and εi is a
noise term, accounts for both noise in the data as well as
for inaccuracies in the model. The noise is typically cho-
sen as Gaussian distributed ε ∼ N (0, β−1), where β is the
precision.

One of the advantages of this approach is that it accommo-
dates dimensionality reduction in an intuitive manner, if we
assume that the dimensionality of the latent space is signifi-
cantly lower than that of the observation space. In this case,
the reduced dimensionality provides us with both implicit
regularisation and a low-dimensional representation of the
data, which can be used for visualisation (and, therefore,
for data exploration [Vellido et al., 2011]) if the dimension
is low enough.

If the mapping f =W is taken to be linear:

yi,j = w>j xi + εi, (8)

and the prior p(X) to be Gaussian, this model is known
as probabilistic principal component analysis [Tipping and
Bishop, 1999]. The conditional probability of the data
given the latent space can be written as

p(yi | xi,W, β) = N (yi |Wxi, β
−1I). (9)

With a further assumption of independence across data
points, the marginal likelihood of the data is

p(Y) =

∫ N∏

i=1

p(yi | xi,W, β)p(xi)dX. (10)

In general, this approach can be applied to both lin-
ear and nonlinear dimensionality reduction models, lead-
ing to the definition of, for instance, Factor Analysis
[Bartholomew, 1987], Generative Topographic Mapping
(GTM) [Bishop et al., 1998], or Gaussian Process-LVM
(GP-LVM) [Lawrence, 2005] to name a few.

One example that generalises from the linear case to the
nonlinear one is the GTM, in which the noise model is
taken to be a linear combinations of a set of M basis func-
tions

yi,j =
M∑

m=i

w>j φm(xi) + εi. (11)

This model can be seen as a mixture of distributions
(usually Gaussian radial basis distributions) whose centres
are constrained to lay on an intrinsically low-dimensional
space. These centres can be interpreted as data prototypes
or cluster centroids that can be further agglomerated in
a full blown clustering procedure. In this manner, GTM
mixes the functionalities of Self-Organising Maps and mix-
ture models by providing both data visualisation over the
latent space and data clustering [Olier and Vellido, 2008].
If the prior over the latent space is chosen to be Gaussian,
this model leads, in a similar way of probabilistic PCA, to
a Gaussian conditional distribution of the data

p(yi | xi,W, β) = N
(

yi

∣∣∣∣∣
M∑

m=i

w>j φm(xi), β
−1I

)
.

(12)

In the classic approach the latent variables are marginalised
and the parameters are optimised by maximising the model
likelihood. An alternative (and equivalent) approach pro-
poses to marginalise the parameters and optimise the la-
tent variables, leading to Gaussian Process Latent Variables
Model (GP-LVM).

In terms of applications, Grochow et al. [2004] animate hu-
man poses using style-based inverse kinematics based on a
GP-LVM model. The animation is performed under a prior
towards small Euclidean motions in the latent space, i.e.
under the same assumptions as those leading to a straight-
line interpolant. As the Euclidean metric does not match
that of the observation space, this prior is difficult to inter-
pret. In a related application, Urtasun et al. [2005] track
the pose of a person in a video sequence with a similar
prior and, hence, similar considerations hold. Recently,
Gonczarek and Tomczak [2014] track human poses in im-
ages under a Brownian motion prior in the latent space.
Again, this relies on a meaningful metric in the latent space.
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In all of the above application, it is beneficial if the metric
in the latent space is related to that of the observation met-
ric.

4 METRICS FOR PROBABILISTIC LVMs

The common approach to estimate local metrics rely on as-
sumptions over the neighbourhoods defined in the observed
space (see e.g. [Hastie and Tibshirani, 1996, Ramanan and
Baker, 2011]). This might be less efficient in presence of
high dimensional noise, because the induced distances may
not be reliable. One way to deal with this problem is to de-
fine a noise model (7) and to assume a global belief over the
geometry of the data. This way, the resulting models have
the advantage of providing an intrinsic local metric which
is able to deal with noise.

In this paper we only consider smooth generative models
for manifold learning. This contrasts with prior approaches
such as [Bregler and Omohundro, 1994, Tenenbaum, 1997,
Tenenbaum et al., 2000] that use metrics which vary dis-
cretely across the space (see also [Lawrence, 2012] for re-
lations to Gaussian models).

We define here the local metric tensor for generative LVMs.
We then illustrate the specific case of GP-LVM, providing
an algorithm to compute shortest path.

4.1 THE DISTRIBUTION OF THE NATURAL
METRIC

When the mapping f in Eq. 7 is differentiable, it can be
interpreted as the mapping between the chart (or latent
space) and the embedding space (c.f. Section 2). Then it
is possible to explicitly compute the natural Riemannian
metric of the given model.

Let J be the Jacobian (as in Eq. 2), then the tensor

G = J>J

defines a local inner product structure over the latent space
according to Eq. 3.

In the case of LVMs where the conditional probability over
the Jacobian follow a Gaussian distribution, this naturally
induces a distribution over the local metric tensor G. As-
suming independent rows of J

p(J | X, f , β) =
p∏

j=1

N (µJ(j,:),ΣJ), (13)

the resulting random variable follow a non-central Wishart
distribution [Anderson, 1946]:

G =Wq(p,ΣJ ,E[J>]E [J]), (14)

where p represents the number of degrees of freedom; the
quantity Σ−1J E[J>]E [J] is know as the non-centrality ma-

trix and it is equal to zero in the central Wishart distribu-
tion. The Wishart distribution is a multivariate generalisa-
tion of the Gamma distribution.

4.2 GP-LVM LOCAL METRIC

A Gaussian Process (GP) is used to describe distributions
over functions and it is defined as a collection of ran-
dom variables, any finite number of which have a joint
Gaussian distribution [Rasmussen and Williams, 2006].
Given a vector x ∈ Rq , a GP determined by its mean
function and its covariance function is denoted f(x) ∼
GP(m(x), k(x,x′)). From this, it is possible to generate
a random vector f which is Gaussian distributed with co-
variance matrix given by (K)i,j = k(xi,xj).

Gaussian Processes have been used in probabilistic nonlin-
ear dimensionality reduction to define a prior distribution
over the mapping f (in Eq. 7), leading to the formulation
of GP-LVM. This way, the likelihood of the data Y given
X is computed by marginalising the mapping and optimis-
ing the latent variables:

p(Y | X, f , β) =
p∏

j=1

N (y:,j ,K+β−1I) =
p∏

j=1

N (y:,j , K̃).

(15)

To follow the notation introduced in Section 3, the noise
model is defined by

yi,j = K(xi,X)KY:,j + εi, (16)

Due to the linear nature of the differential operator, the
derivative of a Gaussian process is again a Gaussian pro-
cess ([Rasmussen and Williams, 2006] §9.4), as long as the
covariance function is differentiable. This property allows
inference and predictions about derivatives of a Gaussian
Process, therefore the Jacobian J of the GP-LVM mapping
can be computed over continuum for every latent point x∗
and we denote with ∂y∗

∂x(i) the partial derivative of y(x∗)
with respect to the ith component in the latent space. We
call J> = ∂y∗

∂x =
[
∂y∗
∂x(1) ; · · · ; ∂y∗

∂x(q)

]
, where ∂y∗

∂x is a
q × p matrix whose columns are multivariate normal dis-
tributions. We now consider the jointly Gaussian random
variables

[
Y
∂y∗
∂x

]
∼ N

(
0,

[
K̃x,x ∂K̃x,∗
∂K̃>x,∗ ∂2K̃∗,∗

])
, (17)

where ∂K∗,x, ∂2K∗,∗ are a matrices given by

(∂Kx,∗)n,l =
∂k(xn,x∗)

∂x(l)
,

n = 1, · · · , N
l = 1, · · · , q (18)

(∂2K∗,∗)i,l =
∂2k(x∗,x∗)

∂x(i)∂x(l)
.

i = 1, · · · , q
l = 1, · · · , q (19)

The GP-LVM model provides an explicit mapping from the
latent space to the observed space. This mapping defines
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the support of the observed data Y as a q dimensional man-
ifold embedded into Rp. If the covariance function of the
model is continuous and differentiable, the Jacobian of the
GP-LVM mapping is well-defined and the natural metric
follows Eq. 14.

It follows from Eq. 17 and the properties of the GPs that
the distribution of the Jacobian of the GP-LVM mapping
is the product of p independent Gaussian distributions (one
for each dimension of the dataset) with mean µJ(j,:) and
covariance ΣJ . For a every latent point x∗ the Jacobian
takes the following form:

p(J | Y,X,x∗) =
p∏

j=1

N (µJ(j,:),ΣJ) (20)

=

p∏

j=1

N (∂K>x,∗K̃
−1
x,xY:,j , ∂

2K∗,∗ − ∂K>x,∗K̃
−1
x,x∂Kx,∗),

which (c.f. Eq. 14) gives a distribution over the metric ten-
sor G

G =Wq(p,ΣJ ,E[J>]E[J]). (21)

From this distribution, the expected metric tensor can be
computed as

E[J>J] = E[J>]E[J] + p ΣJ . (22)

Note that the expectation of the metric tensor includes a co-
variance term. This implies that the metric tensor expands
as the uncertainty over the mapping increases. Hence,
curve lengths also increases when going through uncertain
regions, and as a consequence geodesics will tend to avoid
these regions.

The metric tensor defines the local geometric properties
of the GP-LVM model and it can be used as a tool to
data exploration. One way to visualise the tensor metric
is through the differential volume of the high dimensional
parallelepiped spanned by GP-LVM; this, for a latent di-
mension q = 2 is known as magnification factor and it has
been introduced by [Bishop et al., 1997] for generative to-
pographic mapping (and self organising maps). Its explicit
formulation for GP-LVM is given by

MF =
√
det (E[J>J]). (23)

An example of the magnification factor is shown in Fig. 3.

4.3 COMPUTING GEODESICS

Given a latent space endowed with an expected Rieman-
nian metric, we now consider how to compute geodesics
(shortest paths) between given points. Once a geodesic is
computed its length can be evaluated through numerical in-
tegration of Eq. 4.

 

 
MF

500

1000

1500

2000

2500

Figure 3: GP-LVM latent space for the motion capture data
(see section 5 for details). White dots denote latent points
xn and the background colour is proportional to the mag-
nification factor (23).

The obvious solution to the shortest path problem is to
discretise the latent space and compute shortest paths on
the resulting graph using e.g. Dijkstra’s algorithm [Cormen
et al., 1990]. The computational complexity of this ap-
proach, however, grows exponentially with the dimension-
ality of the latent space and the approach quickly becomes
infeasible. Further, this approach will also introduce dis-
cretisation errors due to the finite size of the graph.

Instead we solve the geodesic differential equation (6)
numerically. This scales more gracefully as it only in-
volves a discretisation of the geodesic curve which is al-
ways one-dimensional independently of the dimension of
the latent space. The 2nd order ODE in (6) can be rewrit-
ten in a standard way as a system of 1st order ODEs,
which we can solve using a four-stage implicit Runge-
Kutta method[Kierzenka and Shampine, 2001]2. This gives
a smooth solution which is fifth order accurate. Alterna-
tively, such equations can be solved by repeated Gaussian
process regression [Hennig and Hauberg, 2014].

To evaluate Eq. 6 we need the derivative of the expected
metric:

∂ vecE[G(x)]

∂x
=
∂ vec(E[J>]E[J] + p · cov(J,J))

∂x
.

(24)
For the GP-LVM this reduces to computing the derivatives
of the covariance function k. Given two vectors x1,x2 ∈
Rq , a widely used covariance function is the squared expo-
nential (or RBF) kernel

k(x1,x2) = α exp
(
−ω
2
‖ x1 − x2 ‖22

)
. (25)

2We use an off-the-shelf numerical solver (bvp5c in
Matlabr); runnig times and computational cost are provided in
the reference.
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We choose here the RBF as an illustrative example, but our
approach apply to any other kernel that leads to a differen-
tial mapping. This function is differentiable in x and will
be used here (and in Section 5) to provide a specific algo-
rithm. We explicitly compute Eq. 18 and 19 for the squared
exponential kernel to have an explicit form of Eq. 20:

(∂Kx1,x2
)1,j = −ω(x(j)1 − x

(j)
2 ) k(x1,x2) (26)

(
∂2Kx1,x2

)
i,l

= (27)

=

{
ω(x

(i)
1 − x

(i)
2 )(x

(l)
1 − x

(l)
2 ) k(x1,x2), i 6= l

ω(ω(x
(i)
1 − x

(i)
2 )2 − 1) k(x1,x2), i = l

Due to symmetry, the upper triangular of the Hessian ma-
trix is sufficient to the computation. Note that, for our
choice of kernel, the Hessian is diagonal and constant for
x1 = x2, which is the case of ∂2K∗,∗, so there is no need
to compute its derivative (which appears in the expression
of ∂ vecG).

5 EXPERIMENTS AND RESULTS

Section 1 shows a first motivating example: a single im-
age of a hand-written digit is rotated from 0 to 360 degrees
to produce 200 rotated images. We then estimate3 a GP-
LVM model with a q = 2 dimensional latent space; the
latent space is shown in Fig. 1. We interpolate two points
using either a straight line or a geodesic, and reconstruct
images along these paths. The results in Fig. 4 show the
poor reconstruction of the straight-line interpolator. The
core problem with this interpolator is that it goes through
regions with little data support, meaning the resulting re-
construction will be similar to the average of the entire data
set.

In the next two sections we consider experiments on real
data, but our results are similar to the synthetic digit exper-
iment. First, we consider images of rotating objects (Sec-
tion 5.1), and then motion capture data (Section 5.2).

5.1 IMAGES OF ROTATING OBJECTS

We consider images from the COIL data set [Nene et al.,
1996], which consist of images from a fixed camera depict-
ing 100 different objects on a motorised turntable against a
black background. Each image is acquired after a 5 degree
rotation of the turntable, giving a total of 72 images per ob-
ject. Here we consider the images of object 74 (a rubber
duck), but similar results are attained for other objects.

We estimate a q = 2 dimensional latent space using
GP-LVM, and interpolate two latent points using either a
straight line or a geodesic. Reconstructed images along the

3Software from the Machine Learning group, Uni-
versity of Sheffield http://staffwww.dcs.shef.ac.uk/people
/N.Lawrence/software.html

Figure 4: Rotated digit. Inference after sampling over the
latent space following the Geodesic distance (top row) and
the Euclidean distance (bottom row); see also Fig. 1. Im-
ages are inverted and bicubically upscaled for improved
viewing.

Figure 5: COIL image reconstruction. Inference after sam-
pling over the latent space following the geodesic (top row)
and the Euclidean straight line (bottom row).

interpolated paths are shown in Fig. 5. It is clear that the
geodesic gives a better interpolation as it avoids regions
with high uncertainty.

To measure the quality of the different interpolators we re-
construct 50 images equidistantly along each interpolating
path and measure the distance to the nearest neighbour in
the training data. This is shown in Fig. 6, which, for ref-
erence, also shows the average reconstruction error of the
latent representations of the training data,

Avg. training error =
1

N

N∑

n=1

‖E [f(xn)]− yn‖. (28)

It is clear that the straight line interpolator performs poorly
away from the end-points, while the geodesic provides er-
rors which are comparable to the average error of the latent
representation of the training data.

5.2 HUMAN MOTION CAPTURE

We next consider human motion capture data from the
CMU Motion Capture Database4. Specifically, we study
motion 16 from subject 22, which is a repetitive jumping
jack motion. Each time instance of this data consist of a
human pose as acquiried by a marker-based motion cap-
ture system; see Fig. 9 for example data. We represent each

4http://mocap.cs.cmu.edu/
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Figure 6: COIL reconstruction error. Inference after sam-
pling over the latent space following the geodesic (green)
and the Euclidean straight line (brown). For reference,
the average reconstruction error of the latent observations
is shown as well (dashed). This figure is best viewed in
colour.

pose by the three-dimensional joint positions, i.e. as a vec-
tor yn,: ∈ R3P , where P denotes number of joint positions.

We estimate a GP-LVM using dynamics [Damianou et al.,
2011] as is common for this type of data [Wang et al.,
2008]. The resulting latent space is shown in Fig. 7, and
the metric tensor is shown in Fig. 3. As can be seen, the
latent points xn,: follow a periodic pattern as expected for
this motion, and the metric tensor is generally smaller in
regions of high data density.

We pick two latent extremal points of the motion (x1 and
xT ) and interpolate them using the Euclidean straight line
and the expected Riemannian geodesic. Fig. 7 show the
interpolants: again, the geodesic follow the trend of the
data while the straight line goes through regions with high
model uncertainty. Reconstructed poses along the inter-
polants are shown in Fig. 10 and 11. A comparison with the
intermediate poses (x2 . . .xT−1) in the training sequence
(see Fig. 9) show that the geodesic interpolant is a more
truthful reconstruction compared to that of the straight line.

To measure the quality of the reconstruction we note that
the length of the subject’s limbs should stay constant
throughout the sequence. Our representation does, how-
ever, not enforce this constraint. Fig. 8 show the length of
the subjects forearm for the two reconstructions along with
the correct length. The straight line interpolant drastically
changes the limb lengths, while the geodesic matches the
ground truth well. Similar observations have been made
for other limbs.

6 DISCUSSION AND FUTURE WORK

When the mapping between a latent space and the obser-
vation space is not isometric (the common case for nonlin-
ear mappings), a Euclidean distance measure in the latent
space does not match that of the original observation space.
In fact, the distance measures in the latent and observation
spaces can be arbitrarily different. This makes it difficult to

 

 

DataPoints
Geodesic
Euclidean Distance

Figure 7: GP-LVM latent space for the motion capture
data. White dots denote latent points xn and the back-
ground colour is proportional to the magnification factor
(23). The blue curve denotes the geodesic interpolant,
while the dashed red curve is the straight-line interpolant.
This figure is best viewed in colour.

perform any meaningful statistical operation directly in the
latent space as the used metric is difficult to interpret.

We solve this issue by carrying the metric from the ob-
servation space into the latent space in the form of a ran-
dom Riemannian metric. This gives a distribution over a
smoothly changing local metric at each point in the latent
space. We then provide an expression for the expected lo-
cal metric and show how shortest paths (geodesics) can be
computed numerically under the resulting metric. These
geodesics provide natural generalisations of straight-lines
and are, thus, suitable for interpolation under the new met-
ric.

For the GP-LVM model the expected metric depends on
the uncertainty of the model, such that distances become
longer in regions of high uncertainty. This effectively
forces geodesic curves to avoid uncertain regions in the
latent space, which is the desired behaviour for most ap-
plications. It is worth noting that a similar analysis for the
GTM does not provide a metric with this capacity as the
uncertainty is constant in this model.

The idea of considering the expected metric is practical as
it turns the latent space into a Riemannian manifold. This
opens up to many applications as statistical operations are
reasonably well-understood in these spaces. E.g. tracking
can be performed in the latent space through a Riemannian
Kalman filter [Hauberg et al., 2013], classification can be
done using the geodesic distance, etc.

It is, however, potentially misleading to only consider the
expectation of the metric rather than the entire distributions
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Figure 8: Length, in centimetres, of the subjects forearm
during latent space interpolation. The blue curve is accord-
ing to the geodesic interpolant, and the red dashed curve is
according to the straight-line interpolant. For reference, the
black dots show the true length.

of metrics. Although, if the latent dimension is much lower
than the data dimension, it can be shown that the distribu-
tion of the metric concentrates around its mean. But in gen-
eral random Riemannian manifolds are mathematically less
well-understood, e.g. it is known that geodesics are almost
surely not length minimising curves under a random metric
[LaGatta and Wehr, 2014]. We are suggesting that mani-
folds derived from data are necessarily uncertain, and there
is much to gain from further consideration of these spaces,
which then naturally lead to distributions over geodesics,
distances, angles, curvature and so forth.

In this paper we have only considered how geometry can
be used to understand an already estimated LVM, but it is
also worth considering if this geometry can be used when
estimating the LVM. E.g. it is worth investigating if a prior
on the curvature of the latent manifold is an effective way
to influence learning.
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Figure 9: Example poses from the motion capture data.
These poses are temporarly between the end-points of the
interpolating curves, i.e. they are comparable to the inter-
polated reconstructions.

Figure 10: Interpolated poses according to the straight-line
interpolant. In particular, note the bending of the knees,
which does not occur in the training data.

Figure 11: Interpolated poses according to the geodesic.
These are visually similar to the poses in Fig. 9.
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