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Abstract 

This Ph.D. dissertation presents the results of the investigation of a gas/solid heat exchanger, 

developed for application as a preheater in the cement industry.  

Traditionally, the process of transferring energy from hot combustion gases to raw materials in a 

cement plant is carried out in a process consisting of cyclones and riser ducts. This technology 

has been the preferred the last fifty years, despite several attempts to introduce alternative 

processes. 

Still, the cyclone-based process has some inherent undesired properties, such as high pressure 

drop (> 35 – 45 mbar), tall preheating structure (> 100 m), lack of options for integration of 

steam generating processes, and increased construction costs due to the cylindrical geometries, 

why it has been desired to develop a feasible alternative. 

A gas/solid heat exchange design, called the two-dimensional heat exchanger (2D-HX), has 

been designed and patented. The 2D-HX consists of a series of mixing and separation processes, 

similar to the cyclone-based process, while the 2D-HX has a more compact design with planar 

and square geometries, and a modular construction. 

The performance of the 2D-HX has been investigated experimentally, providing an insight in 

the internal processes of particle transport and heat exchange. For the 2D-HX, it was found that: 

(a) Stable operation could be achieved at industrial conditions, (b) the particle transport 

properties, measured as a transport efficiency, were in the same range as the cyclone preheater, 

ηTransport = 0.7 – 0.8, (c) the separation process was driven by gravity in a process termed 

accelerated settling, and (d) the thermal efficiencies were around 20 % lower than for the 

cyclone process. 

A model consisting of mass- and energy balances was developed to describe the 2D-HX 

performance and verified against experimental data. The separation and entrainment processes 

were modeled analogous to pneumatic powder transport processes.  

Model predictions for full-scale facilities were compared with the results obtained from classic 

upscaling theory, indicating that the two methods produced similar results, thereby enabling use 

of the model for upscaling purposes. 

Full-scale cement preheaters with production rates equivalent to 3000 and 6000 tons per day of 

clinker (TPDc) were evaluated. A 6000 TPDc facility with four heat exchange stages was 
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estimated to be 46 m x 13 m x 12 m in size, a structure around 40 – 60 % lower than a 

corresponding cyclone preheater.  

Estimations suggested that the 2D-HX performs 5 – 10 % poorer than the cyclone-based process 

in terms of dust loss, and that the capital costs of the two processes, quantified by the equipment 

volume, were found to be in the same order of magnitude. 

Several suggestions for optimizing the 2D-HX concept were provided, and an integrated 

preheating facility capable of superheating steam was presented, increasing the production and 

efficiency of waste heat recovery processes producing electricity. 

Concluding the work, it was found that implementing the suggested optimizations, a 2D-HX 

preheater process competitive with the cyclone-based processes could be designed. 

Finally, it has been recommended to further investigate and optimize the design, to realize the 

full potential of the 2D-HX concept. 
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Dansk Resumé 

Denne ph.d.-afhandling præsenterer resultaterne af et studie af en gas-faststof varmeveksler, 

udviklet til anvendelse som råmels forvarmer i cementindustrien. 

På en cementfabrik sker energioverførslen af varme fra forbrændingsgas til råstof i en proces 

bestående af cykloner og stigrør. Denne teknologi har været den foretrukne de sidste halvtreds 

år, på trods af flere forsøg på at introducere andre teknologier, herunder skaktforvarmere.  

Den cyklon-baserede proces har dog nogle designmæssige uønskede egenskaber, såsom højt 

trykfald (> 35 – 45 mbar ), høj forvarmerstruktur (> 100 m), manglende muligheder for 

integration af processer, der kan udnytte restvarme, samt øgede opførselsomkostninger grundet 

de cylindriske geometrier, hvorfor det har været ønsket at udvikle et konkurrencedygtigt 

alternativ. 

En gas/faststof varmeveksler, navngivet todimensional varmeveksler (2D-HX), er blevet 

designet og patenteret. Ligesom cyklonprocessen består 2D-HX af en serie af processer, hvor 

gas og faststof blandes og efterfølgende separeres, men 2D-HX har et mere kompakt design, 

samt plane og retvinklede geometrier og en modulær konstruktion. 

Designet er blevet undersøgt eksperimentelt i en større laboratorieopstilling, hvilket gav et 

indblik i den interne partikeltransport og varmevekslingen. Det konstateret at: (a) Stabil drift 

kunne opnås ved industrielle betingelser, (b) partikeltransporten, målt som en 

transporteffektivitet, lå i samme område som cyklonforvarmeren, (c) separationsprocessen var 

drevet af tyngdekraften i en proces klassificeret som accelereret sedimentering, samt (d) de 

termiske virkningsgrader var omkring 20 % lavere end for cyklonprocessen 

En model bestående af masse- og energi-balancer blev opstillet til beskrivelse af 2D-HX-

konceptet. Separation- og medrivningsprocesser blev modelleret med inspiration fra 

pneumatiske pulvertransport processer. 

Modelforudsigelser for fuldskalaanlæg blev sammenlignet med resultater fra klassisk 

opskaleringsteori. De fremkomne resultater var sammenfaldende, hvorfor modellen kunne 

anvendes til opskaleringsformål. 

Driftsparametre for fuldskala anlæg med en produktionsrater på 3000 og 6000 tons klinker om 

dagen (TPDc) blev evalueret. En firetrins forvarmer med en kapacitet 6000 TPDc blev anslået 
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til en størrelse på 46 m x 13 m x 12 m; omkring 40-60 % lavere end en tilsvarende 

cyklonforvarmer. 

Endvidere blev det fundet, at støvtabet var mellem 5 og 10 % højere i 2D-HX processen, og at 

anlægsudgifter af de to typer anlæg, beskrevet ved den indre volumen af udstyret, var i samme 

størrelsesorden. 

Sluttelig er flere forslag til optimering af 2D-HX konceptet givet, og der er præsenteret en 

integreret forvarmningsenhed, der kan anvendes til overhedning af damp, hvorved en øget 

produktion og effektivitet for spildvarmeprocesserne, der producerer strøm, opnås. 

Rapporten konkluderer, at hvis de foreslåede optimeringsforslag implementeres vil en 

konkurrencedygtig udgave af 2D-HX kunne fremstilles.  

Det anbefales at undersøge og optimere designet yderligere for at realisere det fulde potentiale 

af 2D-HX konceptet. 

 

 
iv 
 



 

List of Contents 
CHAPTER 1 INTRODUCTION ............................................................................................. 11 

1.1 Background ................................................................................................................11 

1.2 Objectives ...................................................................................................................16 

1.3 Structure of Thesis .....................................................................................................16 

CHAPTER 2 PREHEATING TECHNOLOGIES IN CEMENT PRODUCTION ................................. 19 

2.1 Historic Development ................................................................................................19 

2.2 Current Industrial Technologies .................................................................................21 

2.2.1 The Cyclone ...................................................................................................21 

2.2.2 Cement Preheater Cyclones ..........................................................................34 

2.2.3 The Cyclone Preheater Process and Operational Conditions .......................39 

2.2.4 Current Preheater Research ..........................................................................45 

2.3 Shaft Preheaters .........................................................................................................49 

2.3.1 Counter-current Shaft Preheaters .................................................................49 

2.3.2 Multistage Shaft Preheaters ..........................................................................52 

2.4 Summary of shaft preheaters ....................................................................................59 

2.5 Other Preheater Designs ............................................................................................60 

2.6 Preheater Design Summary .......................................................................................62 

CHAPTER 3 PREHEATER EFFICIENCY .............................................................................. 65 

3.1 Model Boundaries ......................................................................................................65 

3.2 Model Set Up .............................................................................................................67 

3.3 Process Efficiency .......................................................................................................69 

3.3.1 Thermal Efficiency .........................................................................................69 

3.3.2 Transport Efficiency .......................................................................................71 

3.4 Assumptions, Parameters, and Physical Properties ...................................................71 

3.5 Model Results .............................................................................................................72 

3.6 Summary ....................................................................................................................77 

CHAPTER 4 DESIGN DEVELOPMENT ................................................................................ 79 

4.1 Desired Properties .....................................................................................................79 

 
   v 

 



 
List of Contents 

 

4.2 Idea Generation ......................................................................................................... 80 

4.2.1 Draft Tube Spouted Bed (DTSB) Concept ..................................................... 81 

4.2.2 Two Dimensional Heat Exchanger (2D-HX) Concept .................................... 82 

4.3 Summary ................................................................................................................... 86 

CHAPTER 5 EXPERIMENTAL APPROACH, SET-UPS, AND MATERIALS................................. 87 

5.1 Single-stage Set-up .................................................................................................... 89 

5.2 Multi-stage set-up ..................................................................................................... 90 

5.3 Proof of Concept Set-up ............................................................................................ 92 

5.3.1 Data Acquisition ........................................................................................... 95 

5.4 Materials.................................................................................................................... 96 

CHAPTER 6 INVESTIGATION OF TRANSPORT PROCESSES ................................................. 99 

6.1 Definition of Efficiencies ............................................................................................ 99 

6.2 Results: Single-stage Set-up .................................................................................... 100 

6.3 Results: Multi-stage Set-up ..................................................................................... 102 

6.4 Results: PoC Set-up.................................................................................................. 104 

6.5 Overview and Comparison of Data ......................................................................... 107 

6.6 Visual Observations ................................................................................................. 109 

6.6.1 Separation Process ..................................................................................... 109 

6.6.2 Entrainment Process .................................................................................. 112 

6.7 Identification of Governing Mechanisms ................................................................ 114 

6.7.1 Separation Process ..................................................................................... 114 

6.7.2 Entrainment Process .................................................................................. 116 

6.8 Comparison with Industrial Preheater Cyclone ...................................................... 116 

6.9 Summary ................................................................................................................. 117 

CHAPTER 7 INVESTIGATION OF HEAT EXCHANGE PERFORMANCE ................................... 121 

7.1 Results: Thermal Performance ................................................................................ 121 

7.2 Results: Heat Loss .................................................................................................... 125 

7.3 Results: Observations .............................................................................................. 127 

7.4 Results: Pressure drop ............................................................................................. 129 

7.5 Evaluation of Thermal Performance ....................................................................... 130 

7.6 Comparison of Heat Exchanger Design with Industrial Standard ........................... 131 

 
vi 
 



 
List of Contents 

 

7.7 Summary ................................................................................................................. 132 

CHAPTER 8 MODELING OF 2D-HX ................................................................................. 135 

8.1 Modeling of the Internal Processes ........................................................................ 135 

8.1.1 Separation Process ..................................................................................... 136 

8.1.2 Entrainment ............................................................................................... 141 

8.2 Pressure Drop .......................................................................................................... 144 

8.3 Modeling of 2D-HX .................................................................................................. 148 

8.3.1 Mass and Energy Balances ......................................................................... 148 

8.3.2 Assumptions ............................................................................................... 151 

8.3.3 Solution Method ........................................................................................ 151 

8.3.4 Verification ................................................................................................. 152 

8.4 Summary ................................................................................................................. 156 

CHAPTER 9 DETERMINATION OF UPSCALING PRINCIPLE ................................................ 159 

9.1 Upscaling Strategies ................................................................................................ 159 

9.2 Selection of Upscaling Parameters ......................................................................... 163 

9.3 Parametric Design and Reference Cases ................................................................. 164 

9.4 Screening of Upscaling Parameters ........................................................................ 166 

9.5 Comparison of Classic and Model-based Upscaling ................................................ 168 

9.6 Summary ................................................................................................................. 170 

CHAPTER 10 FULL-SCALE APPLICATION OF THE 2D-HX CONCEPT ................................. 171 

10.1 Determination of Operation Conditions ................................................................. 172 

10.2 Full-scale 2D-HX Facilities ........................................................................................ 177 

10.3 Comparison of the Upscaled 2D-HX and Cyclone Preheaters ................................. 177 

10.4 Implementation in a Cement Plant ......................................................................... 182 

10.5 Pilot-Scale Facility.................................................................................................... 184 

10.6 Optimization of 2D-HX Design ................................................................................ 185 

10.6.1 Alternative Parametric Design ................................................................... 185 

10.6.2 Addition of Exit Cyclone ............................................................................. 186 

10.6.3 Alternative Separation Geometry .............................................................. 187 

10.6.4 Summary of Optimizations ......................................................................... 190 

10.7 Identified Issues ...................................................................................................... 190 

 
vii 

 



 
List of Contents 

 

10.8 Other Applications ................................................................................................... 192 

10.8.1 Co-generation of Power ............................................................................. 192 

10.8.2 Integration of Calciner/Combustion Chamber ........................................... 194 

10.8.3 Application for drying purposes ................................................................. 195 

10.9 Industry Remarks ..................................................................................................... 196 

10.10 Summary ................................................................................................................. 197 

CHAPTER 11 CONCLUSIONS AND OUTLOOK ................................................................... 199 

11.1 Outlook and Future work ........................................................................................ 202 

CITED LITERATURE ....................................................................................................... 203 

LIST OF SYMBOL AND ABBREVIATIONS .......................................................................... 215 

APPENDIX A EXPERIMENTAL PROCEDURES ...................................................................... A 

APPENDIX B DATA TREATMENT ........................................................................................ C 

APPENDIX C EXPERIMENTAL DATA ................................................................................... K 

APPENDIX D PRESSURE DROP MODEL ............................................................................. Q 

APPENDIX E 2D-HX MODEL AND IMPLEMENTATION ........................................................... Y 

APPENDIX F INSPECTIONAL AND DIMENSIONAL ANALYSIS .............................................. CC 

APPENDIX G PUBLICATIONS .......................................................................................... GG 

 

 
viii 
 



 

 





 

 

 

 

Chapter 1  

Introduction 
 

"Innovation is the process of turning ideas into a manufacturable and marketable form" 

– Watts Humphrey, American software engineer 

 

1.1 Background 

Cement and cementitious products are one of the corner stones of the modern civilization, being 

the central component of concrete, the preferred construction material of the twentieth and 

twenty-first centuries. The cement clinker, which creates the strength and durability of concrete 

and mortar, is produced in a process containing a number of different operations of which the 

most important are shown in Figure 1 [1]. 

 

 

Figure 1 – Schematic overview of the major processes in cement production [2]. 
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The raw materials, approximately 75 wt% limestone and 25 wt% clay materials containing 

alumina and iron, are stored in raw material silos when delivered to the cement plant. The 

production process is initiated by grinding and mixing the raw materials, thereby obtaining a 

powderous mixture with a particle diameter of 5 – 125 μm called the raw mix or raw meal [3]. 

The raw meal is stored in agitated silos for homogenization, before entering the hot part of the 

cement plant, called the pyroprocessing unit, consisting of the preheating and calciner1 facility, 

the rotary kiln, and the clinker cooler. 

In the preheating facility the raw meal is heated using the exhaust gases from the combustion 

processes in a stepwise counter-current suspension process. The preheating process consist of 

three to five stages, each containing a riser duct, in which the gas and particles are mixed and 

exchange heat, and a cyclone separating the two phases. Each stage increase particle 

temperatures by 150 °C – 250 °C [3]. The temperature of the preheated particles is 700 °C – 800 

°C [4].  

The preheated raw meal enters the calciner, where at least 85 wt% of the limestone is calcined at 

870 °C – 900 °C. The calcined raw meal is then fed to the rotary kiln, where further heating and 

partially melting of the solids at temperatures up to 1450 °C – 1500 °C is facilitated, forming 

the desired chemical composition of the clinker. In standard inline calciner (ILC) facilities, 60 

% of the fuel is combusted in the calciner and 40 % in the rotary kiln [1]. 

Leaving the rotary kiln, the clinker is rapidly cooled in the clinker cooler, thereby preserving the 

crystalline structure and ensuring a high content of alite [5], which is the strength giving crystal 

phase in the clinker. The heated cooling air is used as combustion air in the main burner in the 

rotary kiln and typically also as tertiary combustion air in the calciner. Additional hot gas 

streams from the clinker cooler may be utilized for waste heat recovery (WHR) purposes.  

A schematic drawing of a pyroprocessing unit, including typically encountered temperatures are 

provided in Figure 2.  

The cooled clinker is grinded to achieve a uniform, fine powder. For some types of cement 

additional mineral components such as gypsum, fly ash, or slag is added, before being stored in 

the final product silo, ready for transport [3]. 

Besides the above mentioned, processes such as gas cleaning, drying of raw meal, fuel 

preparation, and mixing processes are also vital parts of a cement production. 

1 The calciner carries out the calcination of the limestone releasing CO2, and is also often termed the precalciner in the literature and 
industry. Here only the former name will be used. 
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In modern cement plants the total thermal energy consumption is 3.0 – 3.5 MJ/kg clinker, 

indicating that between 48 – 60 % of the energy is lost through heat losses from equipment 

surfaces, and as uncooled gas and dust flows leaving the pyroprocessing unit. 

 

 

Figure 2 – Schematic illustration of the pyroprocessing unit of a five stage preheater, inline calciner (ILC) cement 

plant. Typical temperatures are given [4].  

 

Table 1 – Summarized heat balance for a pyroprocessing system for a modern cement plant [3]. 

Processes Energy consumption 

Theoretical:  

Heating and drying of raw materials 1.5 MJ/kg clinker 

Calcination 2.0 MJ/kg clinker 

Heating of calcined materials 0.6 MJ/kg clinker 

Formation of liquid phases and clinker chemisty - 0.3 MJ/kg clinker 

Cooling of clinker - 1.5 MJ/kg clinker 

Cooling of exhaust - 0.6 MJ/kg clinker 

Theoretical thermal energy consumption 1.7 MJ/kg clinker 

Inefficiencies:  

Gas and dust leaving the pyroprocessing unit 0.8 MJ/kg clinker 

Heat loss (convention and radiation)  0.7 MJ/kg clinker 

Total thermal energy consumption 3.2 MJ/kg clinker 
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Besides the thermal energy requirement approximately additional 10 % of electrical energy is 

required, mainly for crushing and fan work.  

Detailed descriptions of the cement production and cement chemistry can be found elsewhere 

[1,3,5–8]. Bhatty [3] provides an in-depth description of all aspects of cement production 

processes, Duda [8] describes extensively the historical development, while Nielsen [6] has 

made a short and concise review, describing the major processes of cement production. 

The global demand for cement continues to increase, as shown in Figure 3, driven by the 

economic growth of countries such as China, India, Brazil, and the countries in the Middle East.  

 

 

Figure 3 – Annual global cement production in million tons of cement [1,11]. 

 

The effect of the global economic recession, starting in mid-2008, can be witnessed as a 

temporary hold in the annual production. The increase following the recession is driven mainly 

by the Chinese demand. In 2006, 47.4 % of the global cement production took place in China, 

6.2 % in India while the European Union, and USA contributed with 10.5 % and 3.9 %, 

respectively [1]. In 2010, the Chinese production accounted for 55 % of the global annual 

production [9].  

Commercially available turnkey cement plants are mainly supplied by five major contractors, 

with FLSmidth and Sinoma holding the largest market shares outside China, as indicated in 

Figure 4. The market share of Sinoma on the domestic Chinese market is higher than 90 % [10]. 
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Figure 4 – Market shares of sold kiln capacity, China excluded [12]. 

 

The environmental footprint of the global cement production is significant. Around 5 % of the 

annual global emitted CO2 can be attributed cement production [13]. The CO2 release during 

cement production is approximately one kilo per kilo clinker. Approximately 60 % originates 

from the calcination process, where CO2 is released from CaCO3, the remaining 40 % is a 

product of the combustion of fuels. Other major emission species are CO, NOx and SO2. 

Typical production capacities of cement plants range from a few thousand tons per day of 

clinker (TPDc) to 12000 TPDc [14], thus the amount of energy and raw materials required are 

of similar proportions.  

The price tag of a cement plant is between 500 – 1100 DKK per ton of annual capacity, 

corresponding to a combined price of around 1 – 2 billion DKK for a standard 5000 TPDc 

facility [15,16], equivalent to approximately three years of turnover. This makes cement 

production a capital intensive industry with long payback periods. Therefore even marginal 

improvements are crucial for the cement plant providers and their customers.  

To reduce capital costs and also the environmental impact, the cement plant is continuously 

being improved. This includes substitution of fossil fuels with alternative fuels, utilization of 

thermal waste energy, and development of equipment with reduced cost. 

The cement industry is generally conservative with respect to adopting new technologies and a 

significant amount of resources is going into developing, testing, and verifying equipment 

performance before a commercialization is possible.  
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This PhD-thesis summarizes the development of a particle-gas heat exchanger for application in 

the cement plant as a raw meal preheater, replacing the traditional cyclone-based process. 

1.2 Objectives 

The objective of this project is to lower the operational and capital costs related to the preheater 

in a cement plant. This is done by reconsideration and a redesign of the preheater facility. 

Therefore, the objective of this project is not to further optimize the existing technology, but to 

rethink the entire preheating process and, if possible, to suggest a design with an integrated 

power generation system.  

In bullets, the objectives summarizes to: 

− Investigate and suggest a novel preheater facility with lower capital costs without 

reducing the performance. 

− Suggest a facility where a power generation system is integrated in the cement plant 

preheater. 

− Design and carry out experiments to verify the suggested design. 

− Set up and verify a model describing the experimental behavior. 

− Estimate full-scale facility characteristics. 

The objectives are focused on developing a cheaper preheater alternative to the cement plant, 

instead of seeking to reduce the emissions or improve efficiency. Therefore, estimations of 

emissions have not been included in the present work.  

1.3 Structure of Thesis 

This dissertation contains a total of 11 chapters and seven appendices. Publications can be found 

in appendix G. A bibliography is provided following Chapter 11, as well as list of symbols and 

abbreviations. A short overview of the chapters of the thesis is given hereafter: 

− Chapter 2 reviews the current and selected past preheater technologies, focusing on 

describing the modern cyclone preheater. This chapter contains operational and 

equipment related data as well as presents the major areas of research related to the 

preheating facility. This chapter serves as a starting point for the following design 

considerations. 
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− Chapter 3 presents a model capable of predicting the internal flows and temperatures of 

a cyclone preheater. Two thermal efficiencies are evaluated for use as comparison 

parameters for preheaters. 

 

− Chapter 4 describes the idea generation and selection process, as well as outlines the 

requirement for a new preheating process and introduces the developed heat exchanger 

design. 

 

− Chapter 5 presents the experimental set-ups used in this work, including detailed 

equipment descriptions, experimental procedure, raw materials, and method of data 

acquisition. 

 

− Chapter 6 reports the obtained experimental results related to the internal particle 

transport properties in the heat exchanger set-ups. The governing mechanisms are 

identified and the data from the novel design is compared with corresponding data for 

the cyclone preheater facility. 

 

− Chapter 7 presents data related to the heat exchange performance of the 2D-HX. Data is 

analyzed and compared with similar data for the cyclone preheaters. The heat exchange 

data also provides a proof of concept at industrial-like process conditions. 

 

− Chapter 8 describes the work related to setting up a model capable of representing the 

observed experimental behavior, and the verification of the model using experimental 

data. 

 

− Chapter 9 provides an insight in the upscaling work, identifying the relevant 

dimensionless groups and determining the upscaling procedure. 

 

− Chapter 10 presents the estimated full-scale data for the 2D-HX preheater when applied 

in a cement plant. The data is compared with relevant cyclone preheater data to evaluate 

the potential of the 2D-HX design. 

 

− Chapter 11 concludes the work and outlines suggestions for future work regarding the 

further development of the novel preheater technology.  
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Chapter 2  

Preheating Technologies in Cement 

Production 
 

“I don't know anything, but I do know that everything is interesting if you go into it deeply 

enough” 

– Richard Feynman, American theoretical physicist 

 

The purpose of the preheating processes in cement production is to facilitate the heat exchange 

between the hot flue gases created by the combustions in the rotary kiln and calciner and the 

cold powdery raw material, raw meal. This process is of great importance for the overall design 

and economy of the cement plant, as the energy recovered in the preheating process increases 

the thermal efficiency of the plant, reduces kiln length, and increases production capacity. 

2.1 Historic Development 

With the development of technologies for continuous cement production, especially with the 

introduction of the first rotary kilns at the end of the 19th century, the concept of a preheating 

process was introduced. Before the continuous methods, cement was produced batchwise: The 

ancient Greeks and Romans produced cement and mortar in open pits, which were later replaced 

by crude, dome, or shaft kilns [3].  

Up to the beginning of the 20th century the preheating and calcination of the raw meal and the 

burning of the cement clinker were facilitated in the rotary kilns. These processes would be 
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classified as either a dry or a wet process, depending on the state of the raw materials (powder 

or slurry). Both were carried out in long rotary kilns with length/diameter (L/D) ratios of up to 

40, and were characterized by a relatively poor heat exchange between the particle bed and the 

hot flue gases, resulting in gas exit temperatures of up to 700 °C and correspondingly poor fuel 

efficiencies. Chains and internally fitted ceramic heat exchangers installed in the cold end of the 

dry kilns, divided the cross sectional area into three or four zones, thereby improving the energy 

efficiency with up to 35 % (compared to the wet processes) and reduced exit gas temperatures to 

around 400 °C [3]. Structural limitations of the long kilns limited the production capacity to 

around 2000 TPDc [3]. 

In the late 1920s Lellep [17] invented a new process, named the Lepol process, where the raw 

materials were pelletized before entering the kiln. The pellets made it possible to establish an 

efficient heat exchange between raw meal and combustion gases in a travelling grate heat 

exchanger before the raw meal entered the rotary kiln, reducing kiln L/D ratios to around 12 – 

15, the exit gas temperature to 100 °C, and improved the fuel economy by 50 % compared to 

the wet process. The mechanical properties of the formed pellets were essential as their ability 

to withstand the thermal and mechanical treatment in the travelling grate heat exchange 

influenced the process efficiency: If the pellets broke apart, the efficiency of the system would 

be greatly reduced. The Lepol kiln reached production rates of up to 3000 TPDc.  

The suspension preheating processes containing riser ducts and cyclones, which is the 

preheating technology still used, led to further reduced kiln lengths and improved thermal 

efficiencies without the need of pelletization. The concept was invented in the 1930s by 

FLSmidth A/S and made commercially available by KHD Humboldt Wedag AG in the 1950s 

[8]. 

The introduction of the calciner in the 1970s, where additional fuel were combusted and the raw 

meal calcined before entering the rotary kiln, further reduced kiln L/D ratios to 10 – 14 and 

increased production capacity to more than 12000 TPDc in a single kiln [14,18]. 

The design and operating conditions of the preheaters are defined by overall cement plant 

economics, especially energy consumption, pressure drop, and capital costs are of importance. 

Furthermore, emission control and operational stability are vital parameters.  

 
20 
 



 
Chapter 2 – Preheating Technologies in Cement Production 

 

2.2 Current Industrial Technologies 

Since the 1950s, the dominating preheating process has been the cyclone-based preheater [19], 

which consists of a series of stages each comprising of a riser duct and a cyclone. In the risers, 

gas and particles are mixed and transported to the cyclone inlet. In the cyclone, the two flows 

are separated.  

The performance, operation, and design of the preheaters are the focus in the following sections, 

starting with a detailed description of the major component in the preheater, namely the cyclone. 

2.2.1 The Cyclone 

Cyclones are classic unit operations used to separate dense particles from a lighter fluid by 

centrifugal forces. In gas cyclones, the gas rotates in a helical pattern, accelerating denser 

suspended particles towards the inner walls of the cyclone, where they are deposited. At the 

wall the particles move downwards driven by gravity and the downward gas flow [20]. An 

illustration of the flows in a cyclone is depicted in Figure 5, while the nomenclature of the 

dimensions on a cyclone with a slot type2 inlet is given in Figure 6. 

 

  

Figure 5 – Internal flows of a gas cyclone. Figure 6 – Cyclone with slot type inlet and 

design dimensions. 

2 The slot type inlet is also termed tangential inlet in literature. 
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An overview of classic cyclone designs have been compiled by Leith and Mehta [21]. Selected 

data are provided in Table 2. The cyclone dimensions are normalized by the diameter of the 

cyclone body, D. All but one of the designs shown has slot type inlets, similar to the one shown 

in Figure 6. The remaining design has a wrap-around3 inlet. Generally wrap-around type inlets 

are used to achieve higher collection efficiencies and lower pressure drops at the cost of a more 

complex cyclone geometry and thereby higher installation cost [20]. The diameter of the 

cyclone body, D, can be estimated from the desired cut-size and pressure drop, as shown later in 

this section. 

 

Table 2 – Standard cyclone design ratios [21]. 

Source Recommended duty a/D b/D Dx/D S/D (H-Hc)/D H/D Dd/D 

Stairmand [22] High efficiency 0.5 0.2 0.5 0.5 1.5 4.0 0.375 

Swift [23] High efficiency 0.44 0.21 0.4 0.5 1.4 3.9 0.4 

Lapple [24] General purpose 0.5 0.25 0.5 0.625 2.0 4.0 0.24 

Swift [23] General purpose 0.5 0.25 0.5 0.6 1.75 3.75 0.4 

Stairmand [22] High throughput A 0.75 0.375 0.75 0.875 1.5 4.0 0.375 

Swift [23] High throughput 0.8 0.35 0.75 0.85 1.7 3.7 0.4 
A

 With wrap-around type gas entry 

 

For cyclones in general, the most important operational parameters are fractional efficiency, 

collection efficiency4, and pressure drop. The collection efficiency, η, of a cyclone is the ratio 

between the mass of collected solids and the mass of particles fed to the cyclone in a given time, 

while the fractional efficiency, ηi, is the collection efficiency of a given size fraction of 

particles. Note that fractional and overall efficiencies are identical, if the particles are uniform.  

The collection efficiency of the inner vortex generated in the cyclone, ηx, can be calculated from 

the fractional efficiency and the particle size distribution of the feed. 

N

x i i
i

MFη η
=

= ⋅∆∑
1

 Eq. 1 

where ΔMFi is the i’th mass fraction of the particles. The relation between η and ηx
 depends on 

the cyclone operation characteristic, as will be shown shortly here after in Eq. 2 to Eq. 15. 

3 The wrap-around inlet is also termed scroll inlet in the literature. 
4 Collection efficiency is also termed separation efficiency and overall efficiency in the literature. 

 
22 
 

 
 



 
Chapter 2 – Preheating Technologies in Cement Production 

 

Modeling of cyclone performance  

The operational parameters of interest: Pressure drop, fractional, and collection efficiencies can 

be approximated from cyclone geometry, particle properties, and operational conditions. The 

basis of the algebraic models is approximations of the velocity field within the cyclones. The 

most common models for describing the velocity field have been developed by Barth [25], 

Alexander [26], and Muschelknautz [27,28]. Based on the velocity field, expressions and 

methods for determining the cut-size diameter have been suggested by several authors, 

including Barth [25], Muschelknautz [27,28], Lapple [29], and Leiht-Licht [30].  

The method and model developed by Muschelknautz and various co-workers is considered the 

most accurate and comprehensive of the general algebraic cyclone models [20,31,32]. What sets 

Muschelknautz’s method (MM) apart from other models, is that it encompasses three 

phenomena of special interest; (a) wall roughness, (b) mass loading effects at the inlet of the 

cyclone, and (c) an inner feed with a different particle size distribution than the feed to the 

cyclone.  

In the following, the work of Muschelknautz will be outlined. The model has been the 

developed over several decades, and the full model is comprehensive. In the following the 

fundamental aspects will be presented. For further details on the model, please refer to 

[27,28,33,34] or Hoffmann and Stein [20], who made a comprehensive review covering the 

majority of the model.  

In this context the effect of the mass loading on the inner feed, mentioned as point (c) above, 

will be omitted as it according to [20] has limited effect on the collection efficiency. However, 

if the particle size distribution of the dust leaving the cyclone is of high importance, this effect 

should be included in the cyclone description.  

The applied cyclone nomenclature is illustrated by Figure 7, while the cyclone proportions are 

shown in Figure 6. The input parameters include gas flow, ṁG, cyclone geometry, and solid 

load, co.  

MM is based on the work of Barth [25], considering a particle rotating in a cylindrical control 

surface (CS) located below the vortex finder, as shown in Figure 8.  

In order to determine the collection efficiency, the cut size diameter, d50, which is the particle 

size for which 50 % of the particles are collected, must be determined. In order to achieve this, 

three velocity components inside the cyclone, νθw, νzw, and νθcs, and the friction factor must be 

determined. 
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Figure 7 – Top view of the cyclone including 

nomenclature used in the model of Muschelknautz. The 

control surface is located below the vortex finder at r = Rx 

[20]. 

Figure 8 – Depiction of the control surface (CS) and a 

particle rotating at the CS. 

 

At the inlet of a cyclone, the gas is accelerated from νIn to νθw by the force of the rotating vortex. 

According to MM the tangential velocity after the inlet at the wall, νθw is given as [34]: 

In In
w

R
Rθ

ν
ν

α
⋅

=
⋅

 Eq. 2 

where α is a constriction factor describing the ratio between the tangential momentum based on 

inlet and the cyclone body geometry. For slot type cyclones α is given by Eq. 3 [27]. For wrap 

around inlets, α is given by Eq. 4 [28].  

( ) ( )2 22 1 21 1 1 4 1
2 2 1 oc

β β ββ βα
β

 − ⋅ ⋅ −   = ⋅ − + ⋅ − ⋅ −     +    

 Eq. 3 

31 Inf R
a b
π

α
⋅ ⋅ ⋅

= +
⋅

 Eq. 4 

where β is the geometric ratio b/R and co is the solid load. The axial wall velocity, νzw, is given 

as:  

RIn

Rx
R

c0

νθw

νθCSνIn

RIn

ṁG

Control surface (CS)

Particle
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( )2 2

0.9 G
zw

m

m
R R

ν
π

⋅
=

⋅ −



 Eq. 5 

where Rm is the mean radius: m xR R R= ⋅ , and ṁG, is the known volumetric flow rate. The 

factor 0.9 is based on a 10 % lip leakage assumption, where gas shortcuts the cyclone and leaves 

through the vortex finder directly after entering the cyclone. 

The friction factor, f, needed to determine νθcs is approximated by an empiric expression, which 

consists of two additive parts; friction created by the gas and particles, respectively [33]. 

G Pf f f= +  Eq. 6 

The air friction factor, fG, depends on a cyclone Reynolds number and roughness of the cyclone 

walls. Muschelknautz define the Reynolds number for cyclones as [33]: 

2

1

In M zw G
C

zw

w

R RRe

H
θ

ν ρ

νµ
ν

⋅ ⋅ ⋅
=

  
 ⋅ ⋅ +     

 
Eq. 7 

where νθm is the mean tangential velocity: m w CSθ θ θν ν ν= ⋅ , ρG is the density of the gas and μ is 

the viscosity of the gas. νθCS is the tangential velocity of the gas at the CS, which depends on the 

friction and thereby also ReC. However, the fraction in the denominator can often be neglected, 

yielding: ( )21 1zw wθν ν+ ≈ . The friction of the air, fG, is determined graphically. At ReC > 2000, 

the values are independent of ReC and ranges from 0.005 for a smooth cyclone to around 0.03 

for cyclones with a relative roughness on the inner walls, ks/R, of 6·10-3. For the full graphical 

dependence, please refer to [28]. The solid friction, fP, can be approximated by [27]: 

5/8

0.25 o x x G
P

Str x

c Fr Df
D

η ρ
ρ

−
 ⋅ ⋅ ⋅

= ⋅ ⋅  
 

 Eq. 8 

Frx is the Froude number at the vortex finder, x x xFr R gν= ⋅ ⋅2 , and ηX is the collection 

efficiency of the inner vortex, which is the fast rotating upward moving column of gas in the 

center of the cyclone. ρStr
 is the density of the particle strands inside the cyclone. Typical values 

are around 0.4·ρP. 

Finally the tangential velocity at CS, νθCS, is given as [27]: 
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1
2

X
CS w

Tot w X

G

R R
f A R R

m

θ θ
θ

ν ν
ν

= ⋅
⋅ ⋅

+
⋅ 

 
Eq. 9 

where ATot
 is the total inside area of the cyclone, including roof, cylinder, cone, and outer 

surface of the vortex finder: 

( ) ( ) ( )( )2 2 22 2Tot x C D C D xA R R H H R R H R R R Sπ= ⋅ − + ⋅ − + + ⋅ + − + ⋅ ⋅  Eq. 10 

At this point, the flow field inside the cyclone is described, and consists of the velocities νIn, νθW, 

νZW, and νθCS. From this information, the cut-size of the inner vortex of the cyclone can be 

determined [27]: 

( )
( ) ( )50 2

18 0.9
2

G
Fact

P G CS

m
d d

H Sθ

µ
π ρ ρ ν

⋅
=

− ⋅ ⋅ −

  Eq. 11 

dFact
 is a correction factor which may be applied to match experimental data. Typically values 

are around 0.9 to 1.4. The 0.9·ṁG refers to the 10 % lip leakage assumption. The expression 

given in Eq. 11 is based on Stokes law and should only be applied when Stokes law is valid, 

Rep≤0.5 [20]. If Stokes law does not apply the force balance on the particle with the dependency 

of ReP must be set up and solved. 

The fractional efficiency curve is defined from two parameters; (a) the cut-size diameter and (b) 

a slope, m. Several different expressions are available for evaluating the efficiency curve. One 

of the most applied and practical (although empirical) are [20,35]: 

50

1

1
i m

i

d
d

η =
 +  
 

 
Eq. 12 

where di is the average particle diameter of the i’th mass fraction. According to Hoffmann and 

Stein [20] a value of the exponent, m, between 4 and 6 fits well for laboratory-scale cyclones 

and between 2 to 4 for industrial-scale applications [20]. Generally values have been found to 

vary between 2 and 7. A depiction of Eq. 12 with m = 2 is given in Figure 9. 

The separation mechanism considered until this point takes place at the inner vortex of the 

cyclone, which under light solid load is the only process of relevance. According to 

Muschelknautz, at high solid loads an additional separation mechanism is present. This is a 

mass loading process occurring at the inlet of the cyclone similar to the salting processes found 
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in horizontal pneumatic transport systems. A fraction of the incoming particles are in the first 

turn of the gas in the cyclone deposited on cyclone walls, thus they do not influence the inner 

vortex of the cyclone. The cyclone operating principle consist then of a mass loading process 

followed by a classification type process, as illustrated in Figure 10. 

 

  

Figure 9 – A general fractional collection efficiency function with m = 2 as a function of particle diameter. d50 is the 

cut-size diameter. 

 

Figure 10 – Principal processes taking place inside a cyclone operating above the critical solid load. Modified from 

[20]. 
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The limit for the mass loading process to occur is described as a critical solid load, coL [27]: 

( ) ( )
50

0.1 0.15
0.025 10

0.1 0.11 0.10 ln
k o

oL o
o omed

c kdc c for
c k cd

≥ = 
= ⋅ ⋅ ⋅   < = − − ⋅  

 Eq. 13 

where dmed is the median particle size of the feed.  

When co < coL the mass loading effect does not take place, and the collection efficiency, is given 

as: 

xη η=  Eq. 14 

When co > coL the cyclone separation is given as [28]: 

oL oL
x

o o

c c
c c

η η
   

= − + ⋅   
   

1  Eq. 15 

The solution procedure of the MM can be summarized as illustrated in Figure 11. 

 

  

Figure 11 – Algorithm for computing cyclone collection efficiency using the method of Muschelknautz. 
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Note that collection efficiency enters in Eq. 8, thereby making the solution process iterative. 

Pressure drop 

From the known flow field within the cyclone, the pressure drop can be estimated. According to 

Muschelknautz, the pressure drop of the cyclone can be attributed three phenomena. Pressure 

drop in (a) the cyclone body, ΔPBody, (b) the vortex finder, ΔPX, and (c) pressure drop caused by 

acceleration of gas and particles at the inlet, ΔPAcc. The pressure drops are estimated as: 

( )1.5

2 0.9
Tot CS w

Body
G

f A
P

m
θ θρ ν ν⋅ ⋅ ⋅ ⋅

∆ =
⋅ ⋅ 

 Eq. 16 

½ CS CS
X x

x x

P θ θν ν
ρ ν

ν ν

 
    ∆ = ⋅ ⋅ + + ⋅        

 

42
3

2 2 3  Eq. 17 

( ) ( )2 2
1 21
2acc oP c

ρ υ υ⋅ −
∆ = + ⋅  Eq. 18 

where ν1 and ν2 are upstream and downstream gas velocities of the cyclone, respectively. 

Discussion 

The model presented exemplify the models in literature that enables estimations of the vital 

cyclone operation parameters using algebraic equations obtained partly from theoretical 

considerations, partly from empirical data. The presented model has been selected due to the 

applicability and relatively high accuracy.  

The application of the model is limited by some assumptions, e.g. the applicability of Stokes 

law and ReC > 2000. These assumptions should not be problematic under normally encountered 

operation conditions and cyclone geometry. However, due to the use of empirical expressions 

and constants, it is important to verify predictions with experimental observations.  

When the mass loading effect occurs in a cyclone, this process contributes with the majority of 

the separated particles by mass, typically more than 90 % [31], with a very weak ,if any, 

classification of particles. Thus, from a collection efficiency point of view the classification 

properties of the mass loading separation process is insignificant, which is the reason for not 

providing the more recent additions to the MM, concerning particle size distribution of the inner 
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feed. These additions are necessary if the particle size distribution of the dust outlet is of 

interest, however.  

An example of the application of the MM is provided by Dewil et al. [36], who investigated a 

full-scale circulating fluidized bed (CFB) plant operating at 775 °C with a maximum thermal 

capacity of 58 MW and a cyclone with a diameter of 3960 mm. When comparing the full-scale 

cyclone performance with several cyclone models, including Barth, Leigth-licht, and 

Muschelknautz, Dewill et al. [36] found poor agreement between measured and estimated data, 

except for the Muschelknautz model. 

As defined by Treftz and Muschelknautz [27] (Eq. 13), the critical load may be reached at either 

high solid load or large difference between the median size of the fed particles and the cut-size 

diameter of inner vortex. Due to the exponent of the solid load, the effect of this parameter is 

reduced, indicating the ratio of diameters as the more important parameter. As an example a 

solid load of 1.0 kg/kg with a median particle size of 20 μm is considered. In this case, the cut 

size diameter of the inner vortex should be 28 times lower than the particle feed for this load to 

be critical. This results in a cut size diameter of 0.7 μm for the inner vortex, which is a very low 

value. However, Hoffman et al. [37] states that the critical load might be a low as 0.001 kg/m3 

gas, which is difficult to reproduce with MM. This apparent disagreement between the 

experimental results and the predictions of critical load indicates that despite MM being a 

complex model, it is not universal, and that the fundamental mechanisms of the cyclones are 

still not fully described.  

From the equations presented in the previous sections, it is possible to predict some general 

cyclone behavior: 

− The effect of the solid load on the friction factor, and thereby the collection 

efficiency, is not clear from the expressions stated Eq. 8, as both solid load and 

overall efficiency enters the expression. 

− If gas inlet velocity increases, the overall efficiency and pressure drop increases.  

The latter statement is a general rule of thumb applied in cyclone design. The former statement 

is unclear with respect to the influence on the solid load. Normally accepted is that collection 

efficiency increases with solid load, which is especially evident when co>coL. 

Experimental cyclone data reveals the complex behavior of the collection efficiency of 

cyclones, and the dependency of solid load. The effect of the solid load have been investigated 

by several researchers, including [38–44]. Hoffmann [38] showed that increasing solid load 
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increases overall collection efficiency. Experiments were carried out in a cyclone similar to high 

efficiency Stairmand cyclone with D = 0.2 m and Dx/D = 0.375. The particles used were chalk 

powder with an average diameter of 3.7 μm. Figure 12 displays some of the experimental results 

obtained by Hoffmann [38]. It is noted that especially at low solid loads, the effect on the 

overall collection efficiency is pronounced, i.e. the increase from 5 g/m3 to 10 g/m3 increases 

the overall collection efficiency from 89 % to 92 % at vIn = 15 m/s.  

 

 

Figure 12 – Fractional efficiency as a function of solid loading and gas velocity [38]. 

 

The trend of increasing collection efficiency as a consequence of increased solid load is also 

reported by Zenz and Tawari [43] and Zenz [44], who investigated solid loading between 

1.868·10-3 and 1.868 kg solid/kg gas.  

The increase of efficiency caused by higher solid loading is normally contributed two 

phenomena: (a) the presence of additional coarse particles sweeps fine particles to the cyclone 

wall for separation and (b) the formation of agglomerates, which are easier to separate from the 

gas. A third phenomenon, relevant for highly loaded cyclones, is the salting out of particles 

from the gas stream, as described by Muschelknautz. 

Fassani and Goldstein [39] studied solid loadings between zero and 20 kg solid/kg gas in a 

typical catalyst regenerator cyclone applied in cracking processes in the petroleum industry with 

D = 0.154 m. Fassani and Goldstein [39] found that the overall collection efficiency had an 
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optimum at around 12 kg solid/kg gas. Gas inlet velocities were varied between 7 and 27 m/s. 

The measured collection efficiencies are presented in Figure 13.  

 

 

Figure 13 - Overall collection efficiency as a function of solid loading and gas velocity [39]. 

 

The optimum in collection efficiency observed by Fassani and Goldstein [39] can be caused by 

an increased re-entrainment of particles from the cyclone walls at high solid loadings. Tuzla and 

Chen [45] also reports an optimum in collection efficiency for increasing solid load without 

accounting for the observed phenomena. 

Both Hoffmann [38] and Bricout and Lounge [41] also investigated the impact of the solid 

loading on pressure drop. Their results are presented in Figure 14 and Figure 15.  

Hoffmann [38] reports that the pressure drop is slightly reduced as the solid loading increases, 

as illustrated in Figure 14. This drop is more pronounced for higher gas velocities. Bricout and 

Lounge [41] found that the initial addition of particles to the gas stream had large effect on the 

pressure drop, while the additional addition of particles above co = 1 kg/kg had little effect. Chu 

et al. [40] and Fassani and Goldstein [39] reports similar trends based on experiments with solid 

loads up to 2.5 kg and 20.0 kg/kg, receptively. 
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Figure 14 – Pressure drop as a function of solid loading and gas velocity [38]. 

 

 
Figure 15 – Dimensionless pressure drop ratio as a function of solid loading and gas velocity [41]. Squares: Glass 

spheres with dp = 97 μm, circles: plastic powder, dp = 136 μm. Full line is model prediction by Muschelknautz and 

Greif [32], dashed line is model prediction by Leith and Licht [30]. 

 

Experiments carried out by Wang et al. [42] on a Lapple cyclone with D = 0.2 m confirm the 

rule of thumb regarding overall collection efficiency and pressure drop dependencies of the inlet 

velocity, as shown in Figure 16. The particles used were cement raw meal with average 

diameter of 29.90 μm. The data indicate that the pressure drop increases by a factor of 17 when 

the gas velocity is increased from 5 to 35 m/s. The collection efficiency is increased from 86% 

c0
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to 96 % in the same gas velocity range. The solid load during the experiments is not reported. 

The trends observed here are generally confirmed [20,39,40]. 

 

 

Figure 16 – Experimental data for cement raw meal with Dp = 29.90 μm as reported by Wang et al. [42]. co is not 

provided. 

 

The internal two phase flows in cyclones are complicated and not easily modeled in detail. 

Common CFD simulation tools are capable of describing gas flow with very low dust load 

accurately, including pressure drop [20]. However, effect of solids in the gas complicates the 

models. Chu et al. [40] have successfully developed a model combining CFD and discrete 

element methods to describe the behavior of cyclones at different solid loadings. The deviations 

between the model and experimental data on collection efficiency and pressure drop are less 

than 10%. Their findings indicate that when solid loading increases, the tangential component of 

the gas velocity in the cyclone decreases, which is the reason for lower pressure drops. 

2.2.2 Cement Preheater Cyclones 

The cyclones used in cement preheaters are generally designed to match the following criteria: 

− Low pressure drop (ΔP < 800 Pa) 

− Acceptable collection efficiency (η > 0.80) 

− High temperature tolerance ( Tmax
 ~ 850 – 890 °C) 

− Long lifetime (steel structure > 30 year, refractory and vortex finder > 5 year) 

− Low thermal heat loss 
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The operation conditions in modern cement plants will be presented in detail in section 2.2.3 – 

The Cyclone Preheater Process and Operational Conditions, Table 6, but selected parameters 

are summarized in Table 3. 

 

Table 3 – Selected operation conditions for cyclones in the cement industry. 

Parameter Value 

Solid load, co 0.67 – 1.2 kg solid /kg gas 

Inlet gas velocity 14 – 20 m/s 

Outlet gas velocity (at the vortex finder)  20 – 25 m/s 

Typical temperature range 50 °C – 890 °C 

 

The preheater cyclones operate at temperatures up to around 890 °C at significantly higher solid 

loads than in dust removal cyclones, which complicates the design, increases wear on internal 

surfaces, and reduces life time of the cyclones. 

The low pressure drop (LP) cyclone design used today is originally developed by FLSmidth in 

the 1980s. Compared to the previous cyclone designs, these cyclones reduce the pressure drop 

by up to 40 – 50 % [19,46]. The LP cyclones have wrap-around inlets which extends 270° as 

well as larger gas inlet and outlet areas [46,47]. The vortex finder is also enlarged. A 

comparison between a traditional cement preheater cyclone and a LP cyclone is illustrated by 

Figure 17.  

The process conditions change down through the preheater tower, why the design of the 

cyclones changes to maintain optimal performance. Four examples of cyclone designs for 

different stages are shown in Figure 18. 

The top stage cyclones are slimmer than the other stages in order to optimize collection 

efficiency and reduce dust loss [3], while the cones on the lower stage cyclones have several 

inclinations to reduce solid build-ups. Note also that the vortex finder extends further into the 

cyclone in the upper stages compared to the lower stages. This results in lower pressure drop 

and collection efficiency for the lower stage cyclones [3]. Typical overall collection efficiencies 

in the cement plant cyclones are between 0.70 – 0.95, with highest collection rate at the top 

cyclone [19]. 
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Figure 17 – Comparison between a standard cyclone (left) and a low pressure (LP) cyclone (right). Top and side 

views are shown. 

 

  

Figure 18 – Design of cyclones for use in the cement industry [3]. 
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The cyclones are typically constructed of plain carbon steel, lined with refractory and insulation 

for improved lifetime and lower thermal heat loss [3]. As the top stages are colder than the 

bottom stages, thinner lining are used. The vortex finder of the cyclones is essential for 

achieving the desired collection efficiency, but especially in the lower stages, the process 

temperatures and the presence of chloride, sulfur and alkali reduces the lifetime of the vortex 

finders. To overcome this problem vortex finders constructed of special heat and corrosion 

resistant metal alloys or ceramics have been developed. These vortex finders can be constructed 

of minor segmented parts, allowing replacement through the manholes found in the cyclones 

[3,4,48,49], reducing repleacement complexity and costs.  

The most recent development within cement plant cyclones includes the addition of a double 

vortex finder and outlet vanes. Comparing to a standard cyclone, the pressure drop can be 

reduced by 50 % in addition to an improved collection efficiency; up to 98 % at 5 – 30 μm can 

be achieved [50]. The concept (Hurriclon®) is illustrated in Figure 19. More than 150 

installations in various industries have been reported since 2000 [50,51]. The application of the 

Hurriclon® is typically the upper stages of the preheater, where thermal wear is less significant. 

 

 

Figure 19 – Cyclone with a double dip tupe installed. The unit is marketed as a Hurriclon® by ATec, Austria [51]. 

 

The size of the cyclones depends on local gas velocities in the preheater and thereby the 

production rate of the cement plant. Figure 20 summarizes cyclone sizes and production rates 
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from six sources [8,14,52–55]. The cyclone diameters are found to vary between 4.5 m and 8.5 

m. Note that this applies for the middle and lower stage cyclones. Top stage cyclones are around 

30 % smaller in diameter [8]. The cyclone stage heights have been reported to range from 11 m 

(3400 TPDc facility [55]) to 20 m (12000 TPDc facility [14]).  

 

  

Figure 20 – Typical sizes for lower stage cyclones as a function of daily production rate in tons clinker per day 

(TPDc). Sizes for the top stage cyclones are typically smaller than indicated here. Data from Duda [8], Ouhl and 

Happ [14], Wolff et al. [52], Hjuler [53], Dembla and Mersmann [54], and Mujumbar et al. [55] are displayed. 

 

Data describing cyclone design for application in cement plants are not commonly found in 

academic or patent literature, probably due to companies protecting their designs.  

Some available data is presented in Table 4: Bernardo et al. [56] have reported the geometric 

proportions of preheater cyclones. Similar proportions, except the inlet size, have been reported 

by Bhatty [3]. Compared to standard cyclones, exemplified by the Stairmand cyclone, cement 

cyclones are lower and has a shorter vortex finder.  

The operation characteristics and performance of the cyclones applied in the cement industry 

are in many aspects similar to cyclones applied in CFB, which several research groups have 

worked with, including [36,39,41,45]. Selected CFB cyclone designs are provided in Table 4. 
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Table 4 – Cyclone geometries in CFBs and cement preheaters. The high efficiency Stairmand cyclone design is 

provided for comparison. 

Source Application Inlet a/D b/D Dx/D S/D (H-Hc)/D H/D Dd/D 

Stairmand [22] General Tangential 0.5 0.2 0.5 0.5 1.5 4.0 0.375 

Bhatty [3] Cement 
preheater 

Wrap-around, 
270° 

0.6 0.3 0.6 0.4 1.3 2.1 0.2 

Bernado et al. 
[56] 

Cement 
preheater 

Wrap-around, 
180°. 

0.34 N/A 0.57 0.43 0.71 1.7 0.16 

Dewil et al. [36] CFB Tangential 0.66 0.31 0.51 0.23 1.4 2.6 0.18 

Tuzla and Chen 
[45] 

CFB Wrap-around, 
180°. 

0.61 N/A 0.62 0.75 1.3 3.5 0.32 

 

Despite the need for a low pressure drop in the CFB systems, literature mainly considers 

cyclones with tangential inlet cyclones instead of wrap around inlets. Only Tuzla and Chen [45] 

reports an wrap-around inlet. According to Tuzla and Chen [45] the highest possible collection 

efficiency of the CFB cyclones is essential due to the high particle loadings in the CFB systems, 

typically up to 8 kg/kg. A high collection efficiency of CFB cyclones increases the system 

efficiency, due to a reduced loss of unreacted particles. This is contrary to the cement preheater 

cyclones where reductions of the pressure drop while maintaining collection efficiencies above 

0.70 – 0.80 has been the major development focus of the preheater cyclones. 

2.2.3 The Cyclone Preheater Process and Operational Conditions 

The preheating facility of a given cement plant is designed to match the conditions at the plant 

site, including chemical and physical properties of raw materials and fuel, local legislation, and 

process specifications. Therefore generic preheater conditions can only be presented with wide 

intervals. The data provided in the following sections exemplifies operation characteristics and 

process configurations typically encountered. Site specific data may deviate significantly from 

the stated. 

Preheater configurations 

The cement plant suspension preheater consists of stages, each containing a riser duct and a 

cyclone. In each stage, raw meal is fed into the riser duct where it is distributed and entrained in 

the rising gas. A splash box is placed at the particle feed point to fan out the particles across the 

cross sectional area of the riser duct, thereby improving the entrainment of the particles. The gas 

and entrained particles are led into the cyclone, where the two phases are separated. At the 

bottom of the cyclone, a one-way valve ensures that gas is not moving up through the particle 

feed pipes. A schematic drawing of a preheater stage is illustrated by Figure 21. 
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Figure 21 – Heat exchange stage in a preheating process in a cement plant. 

 

The energy transfer from the gas to the particles flowing co-currently takes under ideal 

conditions less than 0.01 second [57] due to the high contact area (dP = 5 – 20 μm), and in 

practice less than one second [19]. While some experiments suggest that around 80 % of the 

heat exchange takes place in the riser and 20 % in the cyclone [8], it is generally accepted that 

the energy transfer only takes place in the riser duct, as shown by Delong and Daohe [58], and 

the cyclones act only as separators [3,57,59]. The residence time of the particles in a preheater 

stage has been measured to approximately eight seconds [1,60], and the gas residence time to 

one to two seconds [61]. The average residence time in the preheater is around 10 seconds for 

the gas and 50 seconds for the particles. 

To ensure a stable particle flow from the bottom of each cyclone and to prevent back flowing 

gas, particle gates are installed below each cyclone; typically a spring or weight controlled 

tipping gate, which allows particles to move down while preventing gas moving up. Depending 

on the raw meal flowability and the quality of the fuel, air blasters may be installed at the 

bottom of the cyclones to insure a stable particle flow and break up deposits. Industrial 

experience suggest that the particles become more sticky as temperature increases, increasing 

the need for air blasters at the particle outlets of the lower stages cyclones [62]. 

The individual preheater stages are combined in a counter-current pattern leading to a stepwise 

heating of the particles where the number of stages influences the overall heat exchange 

process. Each additional stage increases the overall heat exchange efficiency, but also increases 
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pressure drop, heat loss, construction costs, and building height. The increase in thermal 

efficiency declines for each additional stage and will, at a given point, be balanced by additional 

costs. Pressure drop, installed costs, and specific thermal energy consumption of selected 

suspension preheater systems are provided in Table 5. For comparison kiln systems with no 

suspension preheater are also shown. 

In modern cement plants, the preheaters typically consist of four to six cyclone stages, with five 

stages combined with an inline calciner (ILC) being the most common state of the art [3,61].  

The optimum number of stages depends especially on the moist content in the raw materials and 

fuel as well as the contents of sulfur, nitrogen, volatile hydrocarbons, and heavy metals [63]. 

Above a production capacity of 6000 TPDc multiple preheater strings are installed, as this is 

most economically feasible [3,19]. The thermal energy consumption of new plants is in the 

range 2.9 – 3.3 MJ/kg clinker [61]. 

 

Table 5 – Operation characteristics of selected suspension and kiln preheating processes [3,18]. 

Preheater process Specific thermal energy 
consumption (MJ/kg clinker) [18] 

Pressure drop 
(Pa) [3,4] 

Normalized 
installation cost [3] 

Wet process with internals  5.86 – 6.28 - - 

Long dry process with internals  4.60 - - 

1-stage cyclone pre-heater  4.18 - - 

2-stage cyclone pre-heater  3.77 - - 

4-stage cyclone pre-heater  3.55 - - 

4-stage cyclone pre-heater plus calciner  3.14 4000 100 % 

5-stage cyclone pre-heater plus calcinerA  3.01 4650 111 % 

6-stage cyclone pre-heater plus calciner  < 2.93 5180 122 % 
A Standard configuration for new plants. 

 

Preheater operation and process conditions 

An illustration of a preheating facility in a cement plant with a five stage cyclone-based 

preheater and an ILC is shown in Figure 22. Despite this system being termed a five stage 

preheater, only four heat exchange steps are obtained before the heated raw meal is fed into the 

calciner. The bottom cyclone, called the calciner cyclone, does not contribute to the preheating 

process as it separates the gas and calcined particles. 
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Figure 22 – A five staged cyclone preheater and calciner with relevant process conditions [19]. 

 

The gas inlet and exit temperatures shown in Figure 22 are approximate values, 850 °C and 320 

°C respectively. Other sources report inlet gas temperatures of 890 °C and exit temperatures 

down to 270 °C [4]. Despite large contact area between particles and gas and the short thermal 

equilibrium time, temperature differences of up to 20 °C between gas and particles leaving a 

stage has been reported [19]. This is likely caused by either insufficient mixing or local surface 

heat loss effects. 

The pressure drop in the depicted preheater facility is reported to be 4.0 kPa. Pressure drop for 

similar designs range from 2.7 – 4.6 kPa [3,4]. The gas is moved through the kiln, calciner, and 

preheater at subatmospheric pressure by the induced draft (ID) fans located after a gas 
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conditioning facility at the gas exit of the preheater. The ID fans utilize 5 – 8 Wh/kg clinker, 

corresponding to 30 % of the power consumed in the pyroprocessing part of the cement plant. 

The total specific electrical consumption of a plant is around 80 - 110 Wh/kg clinker 

[4,18,64,65]. 

Due to the higher temperature, the gas volume is larger in the lower stages of the preheater. To 

reduce the pressure drop without significantly increasing cyclone size, collection rates as low as 

70 – 80 % are accepted. In the top stage, two smaller cyclones are used as high collection 

efficiency is desired in order to reduce the dust leaving the system with the gas. Desirable 

collection efficiencies for the top stages are higher than 95 %  [4,19,49,66], while actual 

efficiencies may be as low as 80 % [59]. Typically found values range from 90 % to 95 %. 

As collection efficiencies are lower than one, internal recirculation of dust in the preheater 

occurs. At the lower stages, the internal particle stream is at least 40 %5 larger than the feed 

stream. This recirculation is undesired as it (a) increases pressure drop (caused mostly by 

additional particle wall friction) and more importantly (b) reduces the thermal efficiency by 

moving hot material in an undesired direction. Due to the high collection efficiency at the top 

stage cyclones, little solid material leaves the preheater with the gas, despite the low collection 

efficiencies at the bottom stages.  

Table 6 summarizes the typical operation conditions in the cyclone suspension preheater 

system. 

  

5 Estimated from mass balances, based on data provided in Figure 22. For further details on the model, please refer to Chapter 3. 

 
43 

 

 
 



 
Chapter 2 – Preheating Technologies in Cement Production 

 

Table 6 – Typical operation conditions for cyclone preheaters in cement plants. 

Parameter Value Source 

Raw material fed to preheater 1.5 – 1.7 kg / kg clinker [1,67,68] 

Gas flow in preheater 1.7 – 2.7 kg / kg clinker [57,67,68] 

Solid load (fed)A
 0.56 – 1.0 - 

Solid load (internal flow) B 0.67 – 1.4 [19] 

Gas composition 30 – 38 % CO2, 
3 – 5 % O2, 
Balance N2 

[57,67] 

Inlet gas velocityC 14 – 20m/s [8] 

Outlet gas velocity (in the vortex finder) C 20 – 25 m/s [8] 

Particle inlet temperature range 50 –60 °C [1,59,68] 

Gas temperature range 270 – 890 °C [1,19]  

Particle temperature range 50 – 790 °C [1,19,68] 

Average temperature difference between gas 
and solids after heat exchange 

~ 20 °C [19] 

Gas residence time per stage 1 – 2 seconds [1,60] 

Particle residence time per stage ~ 8 seconds [1,60] 

Dust loss D 5 – 11 % [19,59] 

Pressure drop per stage 500 – 800 Pa [3,19] 

Heat loss from preheater 4 % of thermal energy input [55,68] 
A Computed from feed rates.  
B Computed from gas feed rate and internal mass flow 
C Computed assuming a cyclone geometry as stated in Table 4, b = 0.2 · D, and an average temperature of 500 °C. 
D Computed using collection efficiencies provided by [19,59]. Data for six different plants are available. 

 

The preheater tower 

The process equipment is mounted in a steel or concrete structure. The total height, typically 

ranging from 80 m to 120 m [18,61,63], is a result of (a) the cyclone geometry, (b) the length of 

the riser ducts, and (c) the location of the calciner cyclone. Preheater structures up to 135 - 150 

m have been reported [54,69]. The calciner cyclone must be placed above than the kiln inlet, 

which is typically located 10 – 20 m above the ground. Furthermore, the angle of the particle 

transport pipe between the calciner cyclone and the kiln should be inclined about 60° – 70° to 

ensure stable particle flow. 

The preheater tower typically contains six or seven decks with a size of 14 – 20 by 18 – 24 m 

[70,71]. Besides the cyclones and risers, the preheater tower also supports the kiln inlet, the 
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calciner, the fuel and particle lift systems, the gas exit ducts, filters, alkali bypass, access 

platforms, and elevators. A picture of a preheater tower is shown in Figure 23. 

 

 

Figure 23 – A preheating facility in a cement plant. Calciner, tertiary air duct, gas exit duct, particle filters, alkali 

bypass, and kiln inlet are visible. Total height of tower: 110 meters [72]. 

 

2.2.4 Current Preheater Research 

Current preheater research is focused on four main topics: (a) reductions of capital costs, (b) 

reductions of emissions, (c) adjustments for alternative fuel firing, and (d) co-generation of 

electricity. 

Reduction of capital costs 

The reduction of the capital costs is typically achieved by a reduction of cyclone vessel size, 

simpler cyclone geometry, and a more compact arrangement of the cyclones in the preheater 

tower. Several compact cyclone designs have been developed, but none are currently 

commercially available for cement production. An example is the co-current cyclone, originally 
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patented in 1934 [73], where both particles and gas leaves the cyclone in the bottom. This 

design can reduce the cyclone stage height by a factor of 2.5 if successfully introduced in the 

cement plant [63]. Horizontal cyclones [74], tilted cyclones [75], and compact cyclones [76] are 

other examples of designs seeking to reduce construction height. Also cyclone designs that 

reduces the construction costs due to a simple geometry has been available for several decades 

[77]. These designs have not been accepted by the cement manufactures, either due to 

insufficient performance, or a general conservatism in the cement industry. 

Reduction of emissions 

The reduction of emissions are driven by legislation on species such as; SO2, NOx, CO, volatile 

hydrocarbons, particulate matter (PM), and potentially also CO2 [3,59,63,78].  

The SO2 emission from the cement plant originates from pyrites in the raw meal. The SO2 

formed in the combustion zones are effectively captured by the presence of active CaO, thereby 

forming CaSO4. In the preheater, the temperature at the release of SO2 is too low for the CaO in 

the raw meal to be active [78]. To solve this problem it has been suggested to inject hydrated 

lime in the top stages for the preheater system [59,78], alternatively a wet scrubber may be 

added for close to full capture of the SO2. A rule of thumb is that 50 % of the sulfide content 

will be released in the preheater [79]. 

The NOx emissions are reduced by introducing low NOx burners in the kiln, thereby reducing 

the formation of thermal NOx, by creating reducing conditions in the calciner, and by injection 

of ammonia in a SNCR process at the kiln inlet [78,80,81].  

In modern cement plants, where fuel combustion is well controlled, the CO emissions are 

formed in the middle stages of the preheater, where carbon in the raw meal partly combusts. A 

complete combustion is not achieved due to the low oxygen levels. For sites with a high content 

of carbon in one of the components forming the raw meal, this component may be fired directly 

into the calciner, thereby completely combusting the carbon. Alternatively a regenerative 

thermal oxidizer may be added in the gas treatment facility, fully combustion all carbon species 

on the exhaust gas, including hydrocarbons [78]. 

The emissions of PM from cement plants originate from the pyroprocessing unit, the particle 

conveying systems, and the mills. Typically fabric filters or electrostatic precipitators are 

installed on all PM generating operations. For cleaning of the exhaust gases from the 
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pyroprocessing unit, electrostatic precipitators are used because of high temperatures. 

Precipitated material is recirculated back to the process [3]. 

In 1995, Klotz [63] predicted that focus would shift towards reduction of CO2 emissions driven 

by a public focus on climate changes By signing the Kyoto protocol in 2005, the European 

countries committed themselves to a 8 % reduction of greenhouse gases before 2012, compared 

to 1990-level. This led to the introduction of the EU emission trade system (ETS), where a 

quota system were created for CO2 emissions for selected heavy industries [82]. Due to low 

quota prices and global economic recession, the EU ETS has not lead to a significant increase in 

the development of innovative low carbon emitting technologies [83]. For cement plants the 

most promising low carbon emitting technology is post process carbon capture (CC) by 

carbonate looping and oxyfuel firing [84]. In the CC process, the gas used for preheating of the 

raw materials will be the gas from a oxyfuel fired calciner, which operates at temperatures 

around 950 °C due to shifted calcination equilibrium caused by the high CO2 content in the gas. 

The gases available from the oxycalciner will contain more than 80 % CO2 and be of similar 

mass flow as the standard process, why more energy will be available for heat exchange due to 

higher heat capacity of CO2. Furthermore, due to the higher molecular weight of CO2-rich gas, 

the gas volume will be approximately 25 % lower [84]. The cyclone-based preheating process 

can still be used at these process conditions, with a potential for reducing vessel size and/or 

pressure drop. 

Use of alternative fuels 

The use of alternative fuels (AF) arose from the increased availability and need for incineration 

of waste. However, the complex chemical composition and physical diversity of the AF can be 

problematic for transport systems and burners as wells as the influence on the cement clinker 

chemistry and build-up of deposits in pyroprocessing unit can pose problems [6]. The moist 

content in AFs is up to 25 wt%, which increases the volume of the exhaust gas flow and 

increases the specific energy consumption for the clinker production [85].  

The cost of size reduction of the AF implies that relatively large particles are fed to the calciner, 

and to accommodate a complete burnout, longer residence times are needed. To obtain this, the 

calciner is elongated and equipped with a loop and long downcomer, thereby increasing 

residence time at combustion conditions. In some cases, the residence time is too low to archive 

a complete burnout, and burning particles are found in the lower stages of the preheater tower 

[72]. In certain cases to achieve high residence times, a calciner modified for AF firing can be 
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of similar height as the preheater tower itself [54,72,85]. Other problems with the AF firing 

include increased deposit build-ups in the system caused by chlorides and alkali metals. The 

depositions are found on local cold spots in the calciner and preheater system, where alkali and 

chloride components condense and stick to process equipment surfaces.  

The consequence of AF firing on preheater design involves larger gas flows caused by higher 

moist levels and lower heating values, unburned particles in lower stages of preheater, increased 

deposition of alkali and chloride components, and increased calciner size. Thus, when firing 

large amount of AF, the preheating equipment is expected to be larger or higher pressure drops 

need to be accepted. 

Introduction of electricity cogeneration  

Waste heat recovery (WHR) systems producing electricity are introduced in the cement plants 

for various reasons: (a) Utilization of thermal excess energy, (b) reduction of operation costs by 

production of electricity, and (c) compliance with local legislation.  

From the clinker cooler, and in some cases also from the preheater, gas streams with 

temperatures of around 280 – 400 °C are available for electricity production [67]. Due to the 

relative low temperatures power production processes used in traditional power plants are 

ineffective. Instead ammonia-based Kalina cycles can be utilized with acceptable efficiencies, 

when gas temperatures are above 300 °C [86]. Of the available thermal energy in the exhaust 

gases, 20 – 25 % can be converted to electricity [64,65], covering 30 % – 44% of the plant’s 

electricity need [65,67,87]. These facilities can be retrofitted onto existing plants and run 

separately without influencing the cement production. From an economy point of view, a ten 

percentage reduction of the overall operation costs with the introduction of a WHR system has 

been reported [67]. However, for plants with a need for drying raw materials, no suitable heat 

streams is available for a WHR system. 

High temperature reservoirs that could be used for increased efficiency of the WHR process, 

and increase the amount of electricity produced, are from a process condition point of view 

available in the preheater system, but currently it is not feasible to introduce heating surfaces 

directly into the cyclone due to the cylindrical geometry, limited space and high dust load. 
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2.3 Shaft Preheaters 

The shaft preheaters were developed as alternatives to the cyclone preheating processes and 

consist of single, closed, vertical shafts, in which a direct heat exchange between gas and solids 

was facilitated. The gas and particle flow patterns, and thereby also the heat exchange process, 

depended on the design and layout of the shaft and its internal constrictions. The shaft 

preheaters either facilitated a counter-current process or a stage-based co-current heat exchange 

process. 

The two main advantages of the shaft preheaters are that they are (a) self-supported structures 

and (b) can facilitate a counter-current heat exchange process, which is more energy efficient 

than the stage-based processes. The fact that the shaft preheaters are self-supporting reduces 

capital costs as no additional scaffolding or structural support is needed for the preheater. Thus, 

the potential of the shaft preheater is to reduce both capital and operational cost of the 

preheating facility. Other parameters such as overall pressure drop and height of the preheater 

can potentially also be reduced. This is possible as the designs are not limited by the geometry 

of the cyclones. Furthermore, the shaft preheaters are less sensitive to build-ups and blockages 

of ducts, compared to the cyclone preheaters. 

In the following sections, a series of shaft heat exchanger designs will be presented. The 

advantages and disadvantages of each design will be outlined, and a summary will conclude the 

presented designs. These designs are mainly found in the patent literature, whereas little can be 

found in the academic literature. 

The shaft preheater designs will be named by their principle of operation, after their inventor, 

and/or by their denomination in the literature. 

2.3.1 Counter-current Shaft Preheaters 

The counter-current shaft preheater are characterized by facilitating a true counter-current heat 

exchange process, which, in terms of energy efficiency, is the most effective process possible. 

FLSmidth Helix preheater 

The FLSmidth Helix preheater is developed for preheating raw meal and was patented in 1969 

[88]. The design consists of a vertical shaft with a smooth sloping helix shaped constriction 

inside. An illustration of the design is given in Figure 24. Once entering the top of the shaft, the 

cold particles move onto the helix and towards the central opening of the shaft due to the inward 

slope of the helix-shaped surface. At the central opening, the raw meal is mixed with the rising 
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gas, which is being fed from the bottom of the shaft. The helix geometry creates a swirling 

motion of the gas, facilitating a separation of the two phases.  

The particles and gases exchange heat and separate continuously down through the shaft, 

creating a continuous heat exchange process. The particles are intended to follow a combined 

spiral and helix movement [88]. According to the patent [88] the heat exchange is very efficient 

and the total height of the preheating facility can be reduced if this principle is applied in a 

cement plant. 

The design of the FLSmidth Helix preheater will potentially allow particles to move down 

though the central opening, while the gas will move in a swirling upwards motion under the 

ceiling of the helix around the central opening, thus never coming in contact with the downward 

flow of particles. If this is the case, high gas exit temperatures and poor heat exchange 

performance must be expected. 

These issues have also been considered by the engineers of FLSmidth, as a modified design was 

patented shortly after the original helix design [89]. The modified design, presented in Figure 

25, is different from the original helix preheater in several ways: (a) There is no central opening 

in the middle of the helix, (b) the surface of the helix is sloping towards the outer wall of the 

shaft and (c) baffles have been installed below the ceiling of the helix and on the shaft walls to 

interrupt the gas flow to ensure a more turbulent flow and a better mixing of particles and gas. 

For both versions of the FLSmidth Helix preheater, cyclones are installed on top of the shaft for 

separating the gas and entrained dust, which is returned to the shaft. Separation efficiencies in 

the shaft are not high, why a substantial amount of internal recirculation would be expected.  
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Figure 24 – Internal view of the helix in the 

FLSmidth Helix shaft preheater [88]. 

Figure 25 – Schematic drawing of the modified FLSmidth 

Helix heat exchanger mounted in the kiln assembly [89]. 

 

 

10 Preheater 
11 Shaft 
12 Helix 
12a Material inlet 
14 Central opening 
V Angle between helix and shaft walls 

1 Shaft 18 Downwardly sloping surface 
2 Rotary kiln 19 Helical column  
3 Kiln inlet 21 Free space 
4 Cut section (not used) 22 Baffles 
13 Refractory lining 23 Vertical partitions 
14 Support pillars 
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Other counter-current shaft preheater designs 

Several other shaft preheater designs have been patented. A few of the more promising counter-

current processes are shortly summarized in Table 7. 

 

Table 7 – List of additional counter-current shaft preheater designs. 

Preheater name Patent 

year 

Comments Source 

Raining bed 1999 Developed for partially calcining of limestone and heating of glass 

cullets. Particles are distributed over the cross sectional area of the 

shaft and ‘rains’ down against the rising gas. The process is driven by 

gravity. 

[90] 

Wilhelm-Röder  1956 Developed for cooling of particles. Particles move downwards 

distributed on a spiral, while gas from a central vertical pipe exits 

through gaps in the spiral. Can work as a particle heater. Process not 

truly counter-current, as gas only makes one direct heat exchange with 

particles. Remaining heat exchange effects are indirect. 

[91] 

Dorst Counter-

Current 

1993 Developed for preheating of raw meal. Consists of a shaft with a helix 

structure inside. In the center of the helix is a vertical shaft. Gas slits 

are made in helix surface, allowing gas from beneath the helix to enter 

up through the slit while heat exchanging with the particles located on 

the helix surface. 

[92] 

 

2.3.2 Multistage Shaft Preheaters 

The stage-based processes are in theory less efficient than the true counter-current processes, 

but for application in the cement industry the stage-based processes are easier to control and 

operate. 

FLSmidth Zig-Zag preheater 

The FLSmidth Zig-Zag preheater consists of a zig-zag shaped shaft, patented in 1963 [93]. A 

drawing of the system, including transport patterns for gas and particles, can be found in Figure 

26.  
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Figure 26 – Schematic drawing of the FLSmidth Zig-Zag heat exchanger installed in a rotary kiln assembly [93]. 

 

At the bends in the shaft the particles moving along the downward sloping surfaces will be 

entrained in the gas, and as the gas also changes direction, some of the particle will be separated 

from the gas and collected at the walls and the sloping floor. The particles will then slide down 

the floor until they are reentrained at the subsequent bend. The heat exchange in the straight 

sections is limited due to small contact areas. According to the inventor [93], the system should 

internally recycles up to four times the feed stream to perform optimally. The entrained particles 

that leave the shaft are returned using a cyclone.  

As the large recycled streams reduce the thermal efficiency, increases the pressure drop, and 

wear, this illustrates that at the time of patenting, the full consequences of the particle 

recirculation were not thought through. Later designs, such as the helix designs [88,89] try to 

address these issues. 

 

 

1 Rotary kiln 
2 Zig-zag shaft 
3 Screw conveyer 
4 Particle feed pipe 
5 Particle feed control valve 
6 Bend in zig-zag shaft 
7 Cyclone separator 
8 Gas exit 
9 Particle return pipe 
10 Particle return control valve 
11 Manholes 
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FLSmidth Titan preheater 

The operation principles of FLSmidth Titan6 preheater [94] resembles the concept of the 

FLSmidth Zig-Zag heat exchanger, where areas with local mixing are achieved. Internal baffles 

divide the shaft into chambers and guide the gas flow through the shaft.  

The baffles create local eddies which ensures a good local mixing of gas and particles. The 

particles separated from the gas by the swirling gas motion, will end up on the sloping plates 

and move towards the center of the shaft, eventually being re-suspended in the gas. The gaps 

between the baffles are designed to obtain the desired flow patterns and gas velocities (5 to 15 

m/s) [94]. To further ensure the flow of particles through the system, vibrators may be installed 

at each baffle. See Figure 27 for further details.  

 

 

 

Figure 27 – Schematic drawing of the FLSmidth Titan heat exchanger [94]. Figure 28 – Alternative baffle design 

and dust separation device for the 

FLSmidth Titan heat exchanger [94]. 

6 The name Titan refers to the name of this device internally used in FLSmidth A/S. 

Gas exit

Particle return
Particle feed

Particle outlet

Gas inlet

1 Shaft with refractory lining 
2 Hopper bottom 
3 Top plate 
4 Chambers 
5 Partitions 
6 Internal opening 
7 Gas inlet 
8 Gas exit 
9 Cyclone 
11 Particle return pipe 
12 Particle return control valve 
13 Particle feed pipe 
14 Particle feed controle valve 
15 Particle exit 
16 Flap valve 
17 Elongation of partition for vibration 
18 Fixing point for vibrator 
19 Fixing point for vibrator 
20 Vibrator 
95 Manholes 
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Several different baffle geometries have been suggested. An example of a different partition 

design is illustrated in Figure 28. The slopes of the partitions in the system depicted in Figure 28 

are created by particles, which have settled on horizontal baffles. At the critical angle of the 

pile, an equilibrium is achieved, and the net deposition of particles will equal zero. Common to 

all the designs are that the baffles slope towards the center of the shaft and that they divide the 

shaft into separate chambers. 

Tests performed by FLSmidth indicated that the FLSmidth Titan preheater used approximately 

15 % more thermal energy pr. kg hot raw meal compared to a standard four stage cyclone 

preheater [95], but also revealed that the pressure drop was lower than in cyclone preheaters. 

Krupp shaft preheater 

The Krupp shaft preheater, developed by Krupp Polysius Company, consists of a shaft with 

constrictions, which separates individual chambers. At the top of the shaft, a double cyclone for 

reduction of dust loss is utilized. The raw meal is fed at the inlet to the cyclones, after separation 

the solids move down through the equipment and heat exchange with the rising gas. In each 

stage a solid saturation is archived, forcing a downward solid movement. The gas and raw meal 

is forced into contact at the narrowings between each chamber. A schematic drawing of a five 

stage Krupp preheater is given in Figure 29. 

 

 
Figure 29 – Schematic drawing of the Krupp shaft preheater [8]. 

1-4 Heat exchange chambers 
5 Cyclones 
6 Riser duct 
7 Exit gas duct 
A Raw meal feeding point 
B Rotary kiln 
 

 
55 

 



 
Chapter 2 – Preheating Technologies in Cement Production 

 

The Krupp shaft preheater was commercially available in the 1960’s and early 1970’s, and 

plants utilizing this technology has been constructed in Germany and China [8,96,97]. 

According to Duda [8], the pressure drop over the Krupp preheater was in the range of 2450 – 

2650 Pa, while the specific heat consumption is around 3.6 MJ/kg clinker, and production rates 

up to 1650 TPDc could be archived. A 1650 TPDc faclity were 7.8 m in diameter and around 60 

m tall. Bohman [96] reports that a 300 TPDc facility were around 3.4 meters in diameter and 42 

meters tall and had a pressure drop of around 3900 Pa. 

Bohman [96] also reports that the Krupp shaft had a low labor demand and installation cost as a 

consequence of the simple construction. Furthermore, the design did not contain any high 

temperature ducts with small diameters, as found below cyclones, which rendered the Krupp 

shaft preheater resilient to depositions and blockages. Despite the apparently reasonable 

operational characteristics of the Krupp shaft preheater, the operational performance was not 

satisfactory [97]. 

In literature, the Krupp preheater is mentioned as a counter-current system. Here it is presented 

as a multistage system as it must be expected that a swirling motion is generated in each 

chamber, equaling out temperature differences within the chamber, thus making the system 

operates as a multistage co-current heat exchanger. 

KHD preheater 

In 1969 Klockner-Humboldt-Deutz (KHD) [98] patented the multistage heat exchanger concept 

depicted in Figure 30. The internal constrictions generate a gas flow pattern, which is flowing 

upwards at the feeding points of the particles, entraining the particles in the gas. Flow of gas and 

entrained particles undergo two 180° turns in each stage where the particles are forced toward 

the wall, thus resembling the cyclones, but with less rotation of the gas. The separated particles 

are withdrawn from material outlets and introduced at the consecutive feeding point. A 

depiction of the concept is shown in Figure 30. 

The particle-gas separation in each stage is expected to be less efficient than in traditional 

cyclones due to lower gas velocities and shorter travelling path.  

In 1970, KHD patented a dual shaft preheater design [99] consisting of  two KHD shaft 

preheaters placed next to each other and where the particles are transported from one shaft to the 

other, increasing the number of heat exchange processes and thereby the thermal efficiency. The 

drawback of this concept is that twice the number of hot particle streams needs to be handled 

and transported horizontally.  
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Figure 30 – Schematic drawing of the KHD heat exchanger design [98]. 

 

Sket-Zab preheater 

The Sket-Zab preheater was developed for preheating of raw meal. It consists of a shaft with 

alternating inward sloping walls, forming a strand of particles that moves down though the 

upward flowing gas. Two cyclone stages are mounted on top of the shaft for recirculation of 

dust. A schematic drawing is provided in Figure 31. 

1 Shaft 
4 Vertical partitions 
5 Sloping floors 
6 Gas inlet 
7 Gas exit duct 
8 Cyclone 
9 ID Fan 
10 Storage bin 
11 Particle inlets 
12 Particle oulet of cyclone 
13 Particle feed control valve 
14 Gas shut off device 
15 Particles 
17 Particle return pipe 
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Figure 31 – Illustration of the Sket-Zab shaft preheater. 

 

The static pressure drop has been reported to be around 2500 – 4000 Pa [8] and the thermal 

efficiency to be 20 % lower than cyclone preheaters with similar number of stages [69]. 

Mukherjee [69] reports that a five stage SKET-ZAB preheater, supplied by Voest Alpine, were 

in operation in an United Arab Emirate cement plant from 1982 to 1992, capable of producing 

1600 TPDc. In this plant, the Sket-Zab preheater were 4.6 m in diameter and 69 m tall. It was 

replaced by a cyclone preheater for higher efficiency. Production rates up to 2000 TPDc have 

been reported using Sket-Zab preheaters [8]. 

Other multistage shaft preheaters 

Two additional stage-based shaft preheater designs are summarized in Table 8. 

 

Cyclone stages

Shaft stages

Raw meal feed

Gas exhaust

Gas inlet and 
particle outlet

Gas flow

Particle flow
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Table 8 – Additional shaft preheaters with multiple stages and co-current heat exchange. 

Preheater 

name 

Patent 

year 
Comments Source 

Polysius 1968 Developed for preheating of raw meal. Design contains cyclone like geometries 

mounted in a vertical shaft. Flow principles are similar to cyclone preheater. 

Cyclones mounted on top of each other with no external ducts in between. 

Internal recirculation is low. 

[100] 

Westfalia 1969 Developed for preheating raw meal. Consists of a shaft with narrowings 

separating a series of chambers, similar to the Krupp preheater. Each chamber 

is well mixed and particles are transported to underlying chambers via separate 

particle ducts, while gas exits through a central opening to the adjacent 

chamber. The gas velocity between chambers can be controlled by reducing the 

cross sectional area of the opening between chambers. 

[101] 

 

2.4 Summary of shaft preheaters 

The development of the shaft preheaters in the late 1950s and 1960s followed the introduction 

of the cyclone suspension preheaters and operated at production rates up to 2000 TPDc [8]. The 

theoretical main advantage of the counter-current shaft preheaters is the potential of providing a 

highly efficient heat exchange process. The shaft preheater potentially can reduce the 

construction complexity and costs as well as pressure drop compared to the cyclone preheaters. 

The present review of shaft preheater designs identified that establishing the desired flow 

patterns of the gas and particles is the greatest challenge for the true counter-current heat 

exchanger. For the multistage shaft preheater, the major challenge is to reduce internal recycling 

of particles.  

In the table given hereafter, the identified advantages and disadvantages of the two types of 

shaft exchangers have been summarized. 

The most interesting of the shaft designs presented seems to be the KHD shaft due to the active 

separation of gas and particles in each stage and a simple compact self-supporting structure. 

However, no evidence of the testing of this design has been found in the available scientific 

literature or the product portfolio of KHD Humboldt Wedag. Furthermore, no citations of the 

patents presented here nor any later patents with these topics have been found, indicating that 

the development of this technology has not been continued.  
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Table 9 – Overview of shaft preheater designs properties. 

Advantages Disadvantages 

Shaft heat exchangers in general 

− Compact structure. 

− Simple design. 

− Self-supporting structure. 

− Lower pressure drop than cyclone preheater 

due to lower gas velocities. 

− Design not vulnerable to depositions and 

blockages. 

− Possible high internal metal temperatures, 

which are difficult to control or cool. 

− Designs not refined/optimized through decades 

as cyclone heat exchanger designs. 

− Lower separation efficiency of each stage than 

cyclone preheaters. 

Counter-current shaft heat exchangers 

− Highest theoretical thermal efficiency. − Establishing a true counter-current process not 

practically possible for a raw meal / gas heat 

exchange. 

− Suggested designs require particle saturation, 

which yields low thermal efficiency. 

Multi stage shaft heat exchangers 

− Operation principle similar to cyclone 

process. 

− Easier to facility than counter-current 

process. 

− Lower particle separation efficiency at a given 

stage than cyclone towers. 

− Heat exchange processes limited by number of 

stages (similar to cyclone heat exchangers). 

 

Some operational data were available for the Krupp and Sket-Zab shaft preheaters, which were 

in operation in the 1960’s to 1980’s. They were later decommissioned due to poor performance 

and replaced by cyclone preheaters. This trend is general, and for the last thirty years, no 

evidence of a commercial available shaft preheater for application in the cement industry have 

been found in the scientific literature, patents, and products portfolios of relevant companies. 

2.5 Other Preheater Designs 

The preheating processes considered in previous sections are the shaft preheaters and the 

modern cyclone preheater. While the presentation of the shaft preheaters highlighted the variety 

of the designs, only a single version, the modern standard, of the cyclone preheaters was 

presented, despite numerous designs of preheaters utilizing cyclones have been developed since 

the introduction of the technology some 80 years ago.  
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Besides the suspension processes, other technologies for cement plants have also been 

investigated. Among these are fluidized beds and indirect heat exchangers. In the following 

some of these processes, including an alternative cyclone-based preheater will be briefly 

touched upon. 

Alternative suspension preheater designs 

The designs of preheaters utilizing cyclones are numerous, and the designs vary considerably: 

The simplest example of preheaters are the two stage cyclone systems, which were retrofitted on 

long dry rotary kilns in order to improve energy efficiency [8]. More complex systems has been 

proposed, utilizing combinations of risers, swirl tubes, furnace chambers, and multiple cyclones 

in each stage for improved feasibility. A single example of the numerous designs, the Dopol 

preheater designed by Krupp Polysius Co, shown in Figure 32, will be presented here. 

The advantages of this design, according to Duda [8], are that large production capacity can be 

archived, up to 7200 TPDc in a single string, and that two cyclones in each stage potentially 

have better separation than a single large cyclone. Furthermore, the symmetric design reduces 

tensions in the support structure thereby reducing construction costs. 

 

 

Figure 32 – Schematic drawing of the Dopol preheater [8]. 

1 Stage 1; two cyclones, one riser 
2 Stage 2; one cyclone, two risers 
3: Stage 3; two cyclones, one riser 
4: Stage 4 (top stage); four cyclones, two risers 
A Raw meal feeding point 
B Rotary kiln 
C Exit gas duct 
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Fluidization and indirect processes 

The nature of the raw meal, which is classified as group C particles by Geldart [102], makes it 

impossible to apply simple fluidizing or bubbling beds directly. As stated in section 2.1 – 

Historic Development, the raw meal can be pelletized and then fluidized. This process is more 

costly than the cyclone suspension preheating process, however. 

Designs such as the Solex indirect heat exchanger [103], used for sugar cooling, is not 

applicable for cement production either, as the large production rates of modern plants rule out 

indirect heat exchange processes due to limited heat transfer rates. Additionally in the Solex 

process, the raw meal would not flow properly through the narrow slits between the heat 

exchange panels. Other processes with too low heat transfer rates include rotating shell heat 

exchangers and modified screw conveyers [104]. 

2.6 Preheater Design Summary 

From the development of the cyclone preheaters in the 1930’s, this technology has been 

prevailing within cement production and subject for continuous improvement. Numerous 

designs utilizing cyclones and risers have been published during the last 80 years, yet the 

apparently simple designs containing a single cyclone and riser duct in each stage are the most 

successful.  

The shaft preheaters were developed to compete with cyclone-based processes, especially with 

respect to the size of the preheater facility and the thermal performance. In practice, the shaft 

preheaters were not successful due to large internal recirculation, resulting in poor thermal 

performance, despite promising operation characteristics. 

A timeline overview of the development of the preheater systems in the 20th century is shown in 

Figure 33. 
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Figure 33 – Timeline of major events in the development of the suspension preheater in the 20th century. 

 

The current standard preheater design applied for new cement plants is a five stage cyclone-

based process with an ILC. This process is currently the best compromise between thermal 

performance, pressure drop, and construction costs. Production rates in each cyclone string can 

reach up to 6000 TPDc and gas exit temperatures are around 270 – 320 °C. Separation 

efficiencies of the cyclones range between 0.75 and 0.95. 

Alternative heat exchange principles, such as fluidized beds and indirect heat exchange 

processes have not been applied successfully in cement production due to challenging raw meal 

powder properties and insufficient heat transfer rates, respectively. 

From a process point of view, the combination of riser ducts and cyclones is very suitable for 

performing the desired heat exchange processes. However, due to a continuous desire to reduce 

costs and improve performance, some inherent design problems are apparent: (a) The geometry 

and arrangement of the cyclones and risers makes the tower tall, (b) the cylindrical geometry 

alone also increases capital costs and (c) makes it difficult to integrate power production 

processes, (d) the gas velocities inside the cyclones induces a relative high pressure drop, and 

(e) the design is not easily scalable. 
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Chapter 3  

Preheater Efficiency 
 

"When you can measure what you are speaking about, and express it in numbers, you know 

something about it. When you can't measure it, your knowledge is meager and unsatisfactory"  

– Lord Kelvin, British mathematical physicist and engineer 

  

Thermal evaluation and comparison of preheaters is not easily done due to the varying operation 

conditions, design specifications, and lack of generalized comparison parameters. Typically, the 

industry uses the caloric energy consumption per mass unit of clinker or gas exit temperatures 

for comparisons, but these values depend on all the processes in the pyroprocessing unit, 

including calciner and kiln, why they for a comparison of preheaters only are not practical.  

The purpose of this section is twofold: (a) Suggest and apply generalized comparison 

parameters, and (b) using these parameters, investigate how the entrainment and separation 

processes influence the thermal performance of the preheater. 

In order to thermally evaluate a preheater, knowledge of the sizes and temperatures of the mass 

flows is required. These can be estimated by setting up and solving mass and energy balances 

for gas and particles in the preheater. Such a model and the resulting simulated process 

conditions are described in the following sections.  

3.1 Model Boundaries 

The model is set up for an ILC preheater. The model boundaries enclose the cyclone stages 

above the calciner, leaving the calciner and calciner cyclone out of the model. The temperature 

in the calciner cyclone is determined by the operation conditions of the calciner and not the heat 

exchange performance of the preheater, why it is of no interest from a heat exchange point of 

view. The model contains N-1 stages, where N denotes the official number of stages in the 
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preheater system. A schematic drawing showing the model boundaries on a five stage preheater 

is given in Figure 34.  

There are two inlet particle streams, the cold particle feed and hot dust from the calciner 

cyclone, and particle outlets from stages N-1 and 1, while there is only a single gas in- and 

outlet. 

 

 

 

Figure 34 – Model boundaries for the preheater 

model shown for a five stage system. Dominant flows 

are depicted. 

Figure 35 – Modeled gas and particle flows in a five stage 

preheater. 
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3.2 Model Set Up 

Each stage consists of a riser and a cyclone, as shown in Figure 35. In each riser, particles, 

which enter from the cyclones above and below, are assumed mixed with the gas. In the riser, a 

fraction of particles are entrained and fed to the cyclone in the same stage, while the remaining 

fraction falls through the riser to the cyclone below. Complete entrainment in the risers is 

assumed under normal operation conditions in cement plants, but for the sake of completeness, 

an option for not entrained particles is included in the model. In each cyclone, a fraction of the 

particles entering the cyclones is separated from the gas, and directed to the riser below. The 

particles not separated follow the gas to the cyclone above as entrained dust. A mixing of 

particles and gas takes place, as well as a split of the particle streams can occur, in both riser and 

cyclone. In both types of units ideal heat exchange and instant mixing are assumed. 

The model consists of mass and energy balances, generally given as:  

In+ Produced =Out + Accumulated
 

Eq. 19 

At steady state, the Accumulated-term equals zero. No mass or heat is assumed produced, why 

the Produced-term equals zero as well. A schematic drawing of a single stage, illustrating the 

nomenclature of the relevant flows, is displayed in Figure 36. 

 

  

Figure 36 – Schematic drawing of a preheater stage with indication of particle and flows. 
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Pm denotes mass flow of particles, indices R, C, D, and NE, short for riser, cyclone, dust, and 

not entrained, are: Entrained flow in the riser, separated particles in the cyclone, particles not 

separated in the cyclone, and particles not entrained in the riser, while indices i, i+1, and i-1 

represents the respective stages. Gm is the mass flow of gas.  

The mass balances for gas and particles in stage i are given as: 

Particles, riser: −  P,R,i P,C,i-1 P,D,i+1 P,NE,im = m + m m  Eq. 20 

Particles, cyclone: −= + −  P,R,i P,C,i P,D,i P ,NE,im m m m 1  Eq. 21 

Gas, riser: += G ,R,i G ,C,im m 1  Eq. 22 

Gas, cyclone: = G ,C,i G ,R,im m  Eq. 23 

Top and bottom stages differ from the above stated, as not all streams are present.  

The energy balances for each unit in stage i are given as: 

Cyclone

: 
( )( ) ( )

( ) ( )( ) ( )
P,P P,C,i P,D,i P ,G G,C,i C ,i Ref

P ,P P,R,i Riser ,i Ref P,NE,i R ,i Ref P ,G G,R,i R,i Ref

C m m C m T T

C m T T m T T C m T T− −

⋅ + + ⋅ ⋅ − =

⋅ ⋅ − + ⋅ − + ⋅ ⋅ −

  

  1 1

 

Eq. 24 

Riser: ( )( ) ( )
( ) ( )( )

( )

P,P P,R,i P,NE,i P ,G G,R,i R ,i Ref

P ,P P,C,i C ,i Ref P,D,i C ,i Ref

P ,G G,C,i C ,i Ref

C m m C m T T

C m T T m T T

C m T T

− − + +

+ +

⋅ + + ⋅ ⋅ − =

⋅ ⋅ − + ⋅ − +

⋅ ⋅ −

1 1 1 1

1 1

  

 



 

Eq. 25 

The reference temperature, TRef, is set to 25 °C. TC and TR are the temperatures of the cyclones 

and risers, respectively. At full entrainment the temperature in the riser and cyclone will be 

identical in a given stage.  

The split of particles in cyclones and risers are described by two efficiencies; an entrainment 

efficiency and a separation efficiency. The entrainment efficiency describes how much is 

entrained in the riser, compared to the amount fed. The separation efficiency describes the 

amount of separated particles in the cyclone, compared to the amount fed to the cyclone. The 

entrainment and separation efficiencies are defined as: 
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Cyclone: 
P,C,i

Sep ,i
P,R,i P,NE,i

m
m m

η
−

=
+ 1



 

 
Eq. 26 

Riser: 
P,R,i

Ent ,i
P,C,i P,D,i

m
m m

η
− +

=
+1 1



 

 
Eq. 27 

The two particle streams, particles fed to the calciner and dust from the calciner cyclone, are 

related as: 

( )P,D,N Sep ,N P,C,Nm mη −= − ⋅ 11 

 
Eq. 28 

For N ≥ 2, the model computes 6·(N – 1) mass flows and 2·(N – 1) temperatures using 4·(N – 1) 

mass balances, 2·(N – 1) efficiency expressions and 2·(N – 1) energy balances. Input parameters 

are inlet temperatures, size of particle feed, solid load, number of stages, specific heat 

capacities, and separation and entrainment efficiencies for each stage. A total of 8+2·(N – 1) 

input parameters are required. 

Using the model as stated above, the simulated temperatures will be the highest possible at the 

given conditions, as no heat loss is considered.  

3.3 Process Efficiency 

In order to evaluate the performance of a preheater, it is desired to provide a parameter, which 

encapsulates the performance. Normally for heat exchangers such numbers are a thermal 

efficiency or number of transfer units, but designing efficiency parameters for a system such as 

the preheater is more complicated than for a continuous shell and tube heat exchanger. 

Considerations regarding the definition of both thermal and particle transport efficiency 

parameters are provided in the following sections.  

3.3.1 Thermal Efficiency  

The recirculation of particles, the particle stream from the calciner cyclone, and the stage-based 

nature of the preheater system complicate matters in terms of determining an efficiency 

parameter, which can be used to compare different systems and which behaves intuitively 

correct.  

Defining a traditional particle heating efficiency, considering the energy in the heated particle 

streams and available energy in the inlet streams, yields: 
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( ) ( )
( ) ( )

P,C,N -1 P,P C,N -1 P,In P,NE,N -1 P,P R,N -1 P,InP
Abs

Avialable G P,G G,Inlet P,In P,Cal P,P Cal P,In

m C T -T m C T -TQ
Q m C T -T m C T -T

ϕ
⋅ ⋅ + ⋅ ⋅∆

= =
∆ ⋅ ⋅ + ⋅ ⋅

 

 

 Eq. 29 

where index Cal describes calciner cyclone conditions. QP is the energy content of the particle 

streams. In Eq. 29, the energy content of the two particle flows that leaves the system at stage 

N-1 constitutes the nominator, while the denominator is the energy content in the gas and 

particle inlets at the stage N-1. The cold particle feed is being used as reference state, why it is 

omitted. 

The undesirable property of this definition is, despite considering a process with no heat or dust 

losses and infinitely many stages, φAbs may never reach unity. This is caused by the difference in 

the heat capacity of the gas and solid streams. Therefore φAbs cannot be used to determine how 

close to ideal operation a given system is, as the maximum achievable efficiency for the given 

configuration is unknown. However, it summarizes the absolute performance of the system, 

indicating how much of the inlet energy that is utilized as intended. 

Alternatively, the energy in the outlet particle streams could be normalized with the maximum 

obtainable energy, as computed for a system with similar inlet conditions, full separation and 

entrainment, and an indefinite number of stages. Intuitively, this would yield values between 

zero and unity. The normalizing parameter then depends on solid load for the given system, thus 

this thermal efficiency cannot be used to compare systems operating at different conditions. 

Instead, it provides a relative thermal performance relating the performance of a given system to 

the performance of an ideal system with an infinite number of stages, operating under similar 

conditions. The relative thermal efficiency, φRel, is defined as: 

,

, ,

Abs NP
Rel

P N Abs N

Q
Q

ϕ
ϕ

ϕ
≠∞

=∞ =∞

∆
= =
∆  

Eq. 30 

Principally, the thermal efficiencies could also be based on the gas stream. This is not 

advantageous as the cooling of the gas not only reflects performance of the heat exchange with 

particles but also heat loss and false air sucked into the system. Both of these phenomena would 

yield a better cooling of the gas, but reduce the amount of energy available for the gas-particle 

heat exchange. 

Summarizing the two suggested efficiency parameters: For evaluating the performance of a 

given system, the relative efficiency holds information on how efficient the system is compared 
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to an ideal system, while the absolute efficiency describes how much of the inlet energy that is 

utilized as intended. 

Work found in literature [105,106] considers a thermal efficiency similar to the one given in 

Eq. 29, considering either a single stage [106] or on tri-string cyclone preheater configuration 

[105], while neglecting the dust stream from the calciner cyclone. 

3.3.2 Transport Efficiency 

To describe the internal particle transport in each stage, a stage transport efficiency, ηTransport, is 

applied, defined as the product of the entrainment and separation efficiencies for a given stage i: 

, , ,Transport i Ent i Sep iη η η= ⋅  Eq. 31 

The transport efficiency describes the ratio between the particles separated in the cyclone and 

the particles fed to the stage. As stated previously, in a cement plant during normal operation, 

the entrainment efficiency is close to one, reducing the stage transport efficiency to: 

,
P,C,i

Transport i Sep,i
P,Ci-1 P,D,i+1

m
m m

η η= =
+



 

 Eq. 32 

3.4 Assumptions, Parameters, and Physical Properties 

To simplify the model, the following assumptions are made:  

− System is in steady state. 

− Ideal, instant heat exchange takes place in both riser and cyclone. 

− No heat loss. 

− Constant mass of gas (no false air). 

− Temperature independent specific heat capacities of gas and particles. 

− No chemical reactions or phase transitions. 

The operational and physical parameters needed to solve to the model are presented in Table 10.  
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Table 10 – Parameters needed for preheater efficiency considerations. 

Parameters Value Source 

Gas inlet temperature (operation temperature of calciner), TG,In 850 °C [19] 

Particle inlet temperature, TP,In 50 °C [87] 

Heat capacity for particles, CP, P 900 J/Kg/K [67] 

Heat capacity for gas, CP, G 1071 J/Kg/K [87] 

Variables   

Number of stages, N 2 – 6 - 

Solid load (feed), c0 0.6 – 1.0 kg solid/ kg gas - 

ηTransport,i = ηEnt,i · ηSep,i 0.1 – 1.0 - 

 

Due to the recycled particle streams moving upwards in the system, the solution procedure is 

iterative, both for determining mass flow of particles and temperatures. The computational 

algorithm is shown in Figure 37. 

 

 

Figure 37 – Computational algorithm for cyclone preheater model. 

 

3.5 Model Results 

Solving the model yields the temperature profile and mass streams in a cyclone preheater, 

thereby enabling computation of the efficiency parameters.  

To investigate the influence of the solid load and number of stages on φAbs and φRel, the thermal 

efficiencies has been computed for systems with solid loads between 0.6 kg/kg and 1.0 kg/kg, 

two to six stages, inlet temperatures as stated in Table 10, and ηTransport = 1.0 for all stages. The 

results are provided in Figure 38 and Figure 39.  
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Figure 38 – Absolute efficiencies for systems containing 

between two and six stages. ηTransport = 1.0. 

Figure 39 – Relative efficiencies for systems containing 

between two and six stages. ηTransport = 1.0. 

 

The absolute efficiency, φAbs, increases with the solid load, indicating that a larger fraction of 

energy is transferred from the hot gas to the particle outlet streams when more particles are 

present due to larger heat capacity of the particle streams. The relative efficiency decreases with 

increasing solid load, indicating that the highest possible efficiency increases more than the 

absolute efficiency. Furthermore, the influence of the number of stages shows that the more 

stages, the better thermal performance, and that the gain for each additional stage is reduced as 

the number of stages increases. At solid loads of 0.6 kg/kg, the relative efficiency of a six stage 

system is close to unity, indicating that no gain will be achieved if adding more stages. The 

effect of adding stages is more profound at higher solid loads.  

In order to analyze the influence of the transport parameters on the thermal performance, a five 

stage preheater is considered. Solid load = 1.0 kg/kg and ηTransport in the form of ηEnt and ηSep are 

varied between zero and unity. The results of analyzing three different series; (a) 

{ηEnt = ηSep = [√(0.1)  … √(1.0)]}, (b) {ηSep = 1, ηEnt =  [0.1 … 1.0]} and (c) {ηEnt = 1, 

ηSep =  [0.1 … 1.0]} are provided in Figure 40. Only the absolute efficiencies are provided, as 

the trends of the relative and absolute parameters are identical due to the single value of the 

normalizing parameter, φAbs, N=∞ = 0.84. 
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Figure 40 – Absolute thermal efficiency for systems with N = 5 as a function of ηTransport. c0 = 1.0 kg/kg. 

 

Values below ηTransport = 0.1 have not been investigated as system performance at these settings 

becomes highly effected by the large internal recirculation, especially when both ηEnt and ηSep 

are close to zero. 

The separation efficiency has the largest impact on the thermal performance, indicted by a 

thermal performance close to zero for low values of the separation efficiency. The effect of the 

entrainment efficiency is insignificant, which is the consequence of constant number of heat 

exchange steps. Varying both ηEnt and ηSep (series a) results in a behavior lying between the two 

extreme conditions.  

To further evaluate the usability of the suggested thermal efficiencies, efficiencies are computed 

for a series of preheater configurations found in literature. The available preheater data is 

provided in Table 11, where also systems with ηTransport = 1.0 are provided for comparison.  

The thermal efficiencies for these configurations are given in Table 12 using both simulated and 

measured temperatures, principally corresponding to systems with and without heat loss. The 

inlet gas temperatures for the ideal systems are set to 850 °C. 

 

The absolute thermal efficiencies based on the measured temperatures reveal for all the 

considered preheater configurations that φAbs are between 61 % and 71 %. According to φAbs, the 
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best performing system is the six staged Plant A, while Plant C is the poorer. The four staged 

Plant E performs better than the five staged plant B, due to slightly higher separation 

efficiencies and a 7 % higher solid load, while the modern standard preheater with five stages at 

the given conditions performs slightly poorer than the six staged Plant A. The relative thermal 

efficiencies, φRel, indicate that the systems perform between 74 % and 97 % of the maximal heat 

exchange possible.  

 

Table 11 – Evaluation and comparison of preheater configurations from literature. 

Description N c0 [kg/kg] ηSep,i Measured temperatures [°C]B Source 

Ideal 4 4 1.0A
 {1.0, 1.0, 1.0, 1.0} - - 

Plant C 4 1.02 {0.90, 0.90, 0.80, 0.85} {74, 345, 563, 708C ,870} [59] 

Plant D 4 0.92 0.91, 0.82, 0.69, 0.83} {60, 336, 521, 709, 817} [59] 

Plant E 4 0.98 {0.92, 0.78, 0.79, 0.66} {60, 358, 576, 730, 893} [59] 

Ideal 5 5 1.0A {1.0, 1.0, 1.0, 1.0, 1.0} - - 

Modern standard 5 0.94D {0.96, 0.90, 0.90, 0.85, 0.80} {60A, 310, 480, 640, 785, 850} [19] 

Plant B 5 0.92 {0.80, 0.75, 0.75, 0.85, 0.60} {60, 368, 552, 693, 808, 870} [59] 

Ideal 6 6 1.0A {1.0, 1.0, 1.0, 1.0, 1.0, 1.0} - - 

Plant A 6 0.87 {0.92, 0.90, 0.86, 0.82, 0.80, 0.55} {25, 287, 478, 617, 719, 787,864} [59] 
A Chosen value, yielding highest possible φAbs. 
B Temperatures given as {particle feed, stage 1, …, stage N (calciner cyclone)} 
C Measured data not available, temperature modeled by [59]. 
D Assumed equal to the average of the values found in [59]. 

 

Table 12 – Computed thermal efficiencies with and without heat loss. 

Description φAbs
 φRel

 φAbs
 φRel

 

Computed from 
Simulated temperatures 
(Heat loss not included) 

Measured temperatures 
(Heat loss included) 

Ideal 4 0.68 0.81 - - 

Plant C 0.64 0.78 0.61 0.74 

Plant D 0.61 0.79 0.62 0.80 

Plant E 0.70 0.82 0.67 0.78 

Ideal 5 0.73 0.86 - - 

Modern standard 0.73 0.92 0.71 0.90 

Plant B 0.64 0.83 0.63 0.82 

Ideal 6 0.75 0.90 - - 

Plant A 0.75 1.02 0.71 0.97 
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The computed thermal efficiencies, given in Table 12, reveal that efficiencies for the ideal 

systems can be surpassed, exemplified by the data from Plant A. The reason is that the increased 

recycled particle stream from calciner cyclone increases both temperature and mass flow in the 

lower stages of the preheater, and in terms of energy content dominates over the feed stream, 

why systems with low separation in the calciner cyclone can have a higher thermal efficiency 

than the desirable ideal systems. These “better-than-ideal” systems are in practice not favorable, 

due increased pressure drop, higher fuel demand in the calciner, and higher gas exit 

temperatures, however. These parameters are not included in the definition of the thermal 

efficiencies, why these unwanted properties are not reflected in the computed values. 

The general trend for the actual preheater configurations is that the more stages, the higher 

relative thermal efficiency, which is similar to the trend shown in Figure 39. The absolute 

thermal efficiencies based on the simulated temperatures reveal the same ranking as found from 

the actual temperatures, and also indicates that around 2 – 5 % of the thermal performance is 

lost due to heat loss, which are close to the typical value of 4 % [55,68]. Note that the inlet 

temperatures of particles and gas do not influence the thermal efficiencies, but only the 

temperature profile in the preheater. 

An example of the output data for the ideal five stage system is shown in Figure 41. For 

comparison Figure 42 shows the result of simulating the modern standard plant. Particle 

recirculation and increased temperatures are the consequences non-ideal particle transport 

patterns. 

Note that for Plant D and the Modern Standard the measured temperatures are higher than the 

computed temperatures, indicating that the model does not account for all processes 

contributing to the temperature or site specific conditions. The neglected processes could be 

combustion of fuel particles or recarbonization of CaO to CaCO3. Alternatively, the specific 

heat capacities might be significantly different from the ones considered in the model.  

The exothermic recarbonization reaction is potentially significant. Incorporating the 

recarbonization process into the model requires the risers and cyclones characterized as reactors 

in terms of residence time and degree of mixing, besides adding component mass balances and 

temperature specific kinetics, which for a simple evaluation of the preheaters are not relevant. 
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Figure 41 – Modeled temperatures and particle flows in 

a five stage preheater under ideal conditions, ηTransport = 

1.0, c0 = 1.0 kg/kg, ṁP,In = 1.0 kg/s, TP,In = 60 °C, and 

TG,In = 850 °C. 

Figure 42 – Modeled temperatures and particle flows in 

a five stage preheater using separation efficiencies stated 

by Alsop [19]. c0 = 0.94 kg/kg, ṁP,In = 1.0 kg/s, TP,In = 60 

°C, and TG,In = 850 °C. 

3.6 Summary 

The cyclone preheater model provided a tool for obtaining flows and temperatures in cyclone 

preheaters, and enabled an analysis of the suggested thermal efficiencies. The analysis of the 

preheaters in terms of thermal efficiency revealed that the thermal performance can be described 

by a set of parameters, an absolute and a relative thermal efficiency. Definitions and 

descriptions are provided in Table 13. 
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Table 13 – Definition and descriptions of use for the thermal efficiencies. 

Name Expression Comments 

Absolute thermal efficiency 
P

Abs
Avialable

Q
Q

ϕ
∆

=
∆

 

Describes the fraction of energy transferred to the desired 

particle streams. Does not reach unity even for ideal 

systems. Rewards large recirculation from calciner cyclone. 

Relative thermal efficiency 

,

P
Rel

P N

Q
Q

ϕ
=∞

∆
=
∆

 

Describes the performance relative to ideal performance. 

Cannot be used comparison of systems. Rewards large 

recirculation from calciner cyclone. 

 

An analysis showed that the absolute efficiency increased with solid load, while the relative 

thermal efficiency decreased. Both efficiencies increased with number of stages in the preheater, 

and the additional performance gain for each additional stage became lower and lower. The 

analysis also showed that the higher solid load, the larger gain for each additional stage, thus the 

higher the solid load, the larger number of stages might be feasible. The analysis also revealed 

that the separation efficiency is the major particle transport parameter in terms of achieving high 

thermal performance, while the entrainment efficiency was insignificant.  

Analyzing six actual preheater configurations revealed that φAbs ranged between 61 % and 71 %, 

and φRel were between 74 % and 97 %. Generally, both thermal efficiencies increased with the 

number of stages.  

The model generalized and simplified the preheater conditions, which in some cases lead to 

systems that were not described as intended, yielding lower simulated than actual temperatures. 

This indicated that processes such as recarbonization or combustion of fuel in the lower stages 

might contribute significantly to the temperature profile in some specific cases. Furthermore, 

φRel > 1 could be achieved in certain cases when the separation efficiency in the calciner cyclone 

is low. This was caused by recirculation of hot particles from the calciner cyclone, which 

dominated both temperature and sizes of mass flows in stage N-1. A value above unity did not 

mean that such a system performs better than an ideal system, but merely indicates a 

shortcoming of the definition of the efficiency parameter, which does not include the effects of 

increased fuel consumption, increased pressure drop, and increased recirculation in the lower 

parts of the preheater. 

Despite these inaccuracies the suggested thermal efficiencies proved useful for evaluating actual 

preheater performance.  
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Chapter 4  

Design Development 
 

“Better one idea too many, than one too few”  

– Klaus Hjuler, research engineer at FLSmidth A/S, supervisor 

 

This project is concerned with the development of a novel preheater concept, which can 

compete with the cyclone preheaters in terms of performance and feasibility. The reason for not 

seeking to enhance knowledge and performance of the existing technology, as done over the last 

80 years by both companies and researchers, can be found in the outline for this project. From 

the project objective: 

“… the objective of this project is not to further optimize the existing 

technology, but to rethink the entire preheating process…” 

The first generations of this new process may not be directly competitive with the highly 

optimized industrial standard but should have potential to be at least equally efficient and 

economical feasible.  

This chapter outlines the development of the chosen heat exchanger design from idea generation 

and selection to evaluation of working mechanisms and identification of critical aspects.  

4.1 Desired Properties 

Objectives in the early phases of the project included development of a new preheater with 

improved thermal efficiency and reduced emissions. However, for a new radically different 

preheater to be accepted by the cement producers, economic aspects weigh heavier than 

potential emission reductions and marginal thermal improvements. Therefore the main objective 

of the development described in this work, is focused on developing a design with reduced 

construction costs, while maintaining similar thermal performance as the current facilities. The 
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operational cost, consisting mainly of the thermal efficiency and the pressure drop, is also an 

important comparison parameter, as well as operational stability and acceptable performance for 

a wide range of operation conditions. This includes resilience to blockages and deposition on 

internal surfaces. The major desired properties for preheater can be summarized to: 

− Lower capital costs than cyclone preheater. 

− At least similar thermal efficiency to the cyclone preheater. 

− Similar or lower pressure drop than cyclone preheater. 

− High operational stability. 

− Wide operation range in terms of varying gas velocities and solid load. 

Other desired properties include co-generation of power in the preheater. Currently, trends in 

the cement industry focuses on generating power from waste heat production process, but the 

power produced does not cover the need of the cement plant. An integrated power and cement 

plant, self-sustained with power has not been realized, mostly due to difficulties of designing a 

three way heat exchanger, heating particles and generating steam from the combustion gases 

created in the calciner and kiln.  

Also easy scalability and reduced construction height are desired. The reduced building height 

is tightly related to the construction costs, but also serves to reduce the visual impact of the 

cement plant in the landscape. From a practical point of view it is desired to develop a design, 

which is testable in the available pilot hall facilities. The desired secondary properties can be 

summarized to: 

− Utilization of process gases for steam production. 

− Easily scalability. 

− Low building height. 

− Design testable in available facilities. 

4.2 Idea Generation 

Idea generation was undertaken in a series of meetings between academia and industry, 

supported by studies of literature and patents. These studies, which in a condensed and revised 

form are presented in Chapter 2, revealed a series of preheater designs and highlighted some of 

the operational issues. For the shaft preheater, especially the disadvantages of the particle 

saturation driven separation, and uncontrolled gas and particle flow patterns were problematic. 
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Besides revealing shortcomings of the alternative preheater configurations, the study also served 

to provide inspiration for the development of new designs.  

During the initial period of the project numerous ideas were discussed and evaluated. Two 

designs were more promising, why they were considered in more detail. These two; (a) a design 

based on draft tube spouted beds (DTSB) and (b) a design with similar operational principles as 

the cyclone preheater, called the two dimensional heat exchanger (2D-HX), are described in the 

following sections.  

The latter design proved to be the most promising idea generated, and was selected for 

experimental investigations. Therefore more details about this concept will be presented, than 

for the DTSB concept. 

4.2.1 Draft Tube Spouted Bed (DTSB) Concept 

DTSBs are typically handling particles that do not easily fluidize, such as group D particles as 

defined by Geldart [102], but can also be used with group C particles, such as raw meal [107]. A 

jet of gas is introduced at the bottom of the reactor, entraining particles from a moving bed. The 

jet and entrained particles move up through a central draft tube and, once reaching the 

freeboard, the entrained particles spout onto the top of the moving bed. An illustration of the 

principle is given in Figure 43. Preliminary tests carried out in a lab-scale glass DTSB reactor 

showed that stable operation with raw meal could be achieved. 

For application as a preheater the gas should be brought in contact with particles of increasing 

temperature, which could be achieved in a series of draft tubes units. Combining the individual 

units into a single rectangular unit, where particles moves sideways due to either gravity or 

inclined jets, while the gas moves from down and up, could principally establish the desired 

heat exchange process. The concept is illustrated in Figure 44.  

Several issues, including controlling and generating the jets of hot gas and ensuring that the 

particles do not leave with the gases, has been identified. Furthermore, the behavior of a hot 

moving raw meal bed is unknown. The advantages of this design would be a very low 

construction height, simple geometries, and easily scalability. This idea in its original form was 

proposed by Hjuler [108]. 
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Figure 43 – Illustration of the draft 

tube spouted bed principle. Dashed 

lines indicate particle movement, full 

lines gas movement. 

Figure 44 – Conceptual 3-D drawing of the draft tube spouted bed heat 

exchanger. 

 

4.2.2 Two Dimensional Heat Exchanger (2D-HX) Concept 

From desires to produces a shaft preheater with fewer or no of the shortcomings of the 

previously presented designs, the concept of the two dimensional heat exchanger (2D-HX) were 

devised. Inspiration the KHD shaft, pneumatic transport systems, and even cyclone preheater 

designs are identifiable. 

The operational principle of the 2D-HX consists of a series of mixing and separation processes 

carried out in a counter-current pattern. The principle is illustrated in Figure 45. Cold raw meal 

is fed to the top stage, where a moving particle bed is formed. From the bottom of the moving 

bed, particles are fed into a fast flowing gas, where they are entrained. Once the particles are 

transported through a narrow channel, called the transport channel, the particles and gas are 

separated in a separation chamber, where a second moving particle bed is formed. In the 

transport channel, the gas and particles heat exchange.  
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Leaving the separation chamber, the gas moves upwards, while the heated particles moves 

down, creating the counter-current pattern. These processes are repeated in each stage. The 

particles leave the system from the lowest stage (not depicted in Figure 45), while gas exits the 

system from the top stage. 

 

   

Figure 45 – Schematic drawing of the operation principles and nomenclature of the two-dimensional heat exchanger 

(2D-HX). Nomenclature is given in italic. Only the top part is displayed. 

 

The separation is expected to be driven by two processes; a gravimetrical and an inertial driven 

process. Despite the inertial process only consist of a single turn of the gas flow, the efficiency 

can be as high as 95 %, as shown by Gartside and Woebcke [109] for 50 μm particles.  

The 2D-HX is expected to perform better than the shaft preheaters considered in Chapter 2 due 

to (a) better control of the process, (b) higher thermal efficiency due to less recirculation, and (c) 

the physical separation of the two internal processes, entrainment and separation, allows 

individual optimization of the design in order to improve both processes. 

The major problems related to this design are expected to be to (a) ensure a stable particle flow, 

(b) control the particle flow from each bed, (c) ensure sufficient separation, and (d) maintain 

two-dimensional operation. 
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Properties of design 

The properties of the 2D-HX are related to the simple design. One of the major advantages is 

the so-called two-dimensional design. A two-dimensional design can be described as design 

where the major features can be enclosed in a single vertical cross section of the equipment. To 

exemplify the two-dimensional concept, a bookshelf as shown in Figure 46 is considered: The 

bookshelf can be defined in the depth and height dimensions, while the length does not hold any 

significant design aspects. The length determines the capacity, and can during the design phase 

be adjusted to suit the requirements. The same principles apply to the 2D-HX, where the major 

design aspects can be found in the length and height dimensions, while the depth of the system 

can be adjusted to the desired capacity. The definitions of dimensions can be found in Figure 46 

and Figure 47. 

 

  

Figure 46 – An example of a two-dimensional design, 

a bookshelf. Length can be adjusted to suit capacity 

requirements [110]. 

Figure 47 – Definition of dimensions for the 2D-HX. 

Depth can be adjusted to suit capacity requirements. 

 

The individual stages in the 2D-HX design are identical, which, together with the two-

dimensional aspect, makes the design modular. This means that the heat exchanger can be 

designed with a specific number of stages and capacity from a single basic unit. By increasing 

the number of stages in a stack, the thermal performance increases to a certain point, and by 

placing more stacks next to each other, the production rate can be increased. The concept and 

relevant denominations are illustrated in Figure 48. 

 

He
ig

ht

Depth

Lenght Length

DepthHe
ig

ht

 
84 
 



 
Chapter 4 – Design Development 

 

 
Figure 48 – The modular concept of the 2D-HX. 

 

The geometries of the 2D-HX are mostly planar, which reduces cost and construction 

complexity. Furthermore, the design allows prefabrication of elements of which to construct the 

heat exchanger, another similarity to the bookshelf, shown in Figure 46. These elements could 

preferably be produced on a central factory, and then transported by sea or land to the 

construction site. This one-design-fits-all reduces further the construction costs. The feature, 

being a central element of the design, has been patented [111]. This idea is originally proposed 

by Dam-Johansen [112]. 

Design considerations 

A detail from the first sketch of the 2D-HX design has been provided in Figure 49.  

 

 
Figure 49 – Original sketch of the 2D-HX principle [112]. 
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The original design, shown in Figure 49, could principally work, but to improve operation with 

raw meal, several things have been considered and modified. The slope of the internal surfaces 

were originally around 20°, which could be advantageous for handling free flowing particles, 

but for operation with raw meal, the slope should be steeper to avoid dead areas or blockages. In 

the first version for experimental testing, an angel of 45° has been chosen. The disadvantage of 

increasing the angle is higher construction height.  

To increase the entrainment of particles, some internal constrictions have been installed, forcing 

the gas flow close to the particle bed. The design development is summarized in Figure 50. 

 

 
Figure 50 – Design development of 2D-HX before actual testing. Gas and two-phase flow indicated by dashed lines. 

Solid flows are indicated with full lines. 

The particle flow rates from each particle bed should be controlled to ensure stable operation. 

For this purpose, a simple particle gate, either sliding or tipping should be sufficient. The gate 

should be operated according to the particle bed level, keeping it constant at a certain level. To 

ensure flow of particles, air nozzles could be installed in each the particle bed to break up 

undesired stable particle formations. 

4.3 Summary 

Through a series of meetings with industry and academia, several ideas for a novel preheater 

were identified. Of these, two were presented: The DSTB and the 2D-HX. The 2D-HX concept 

proved the most promising. This concept was chosen for further experimental investigation due 

to expected low construction costs, similar operational principles to cyclone preheaters, simple 

geometries, modular construction, and realizable operation. Furthermore, the design could be 

tested in the pilot facilities available. From the original design, the 2D-HX has been modified 

for better performance before actual testing. 

Original design Steeper slopes Gas flow forced vertical 
beneath particle beds
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Chapter 5  

Experimental Approach, Set-ups, and 

Materials 
 

"Getting there is half the fun" 

Slogan of Cunard Line 

 

The experimental work of this thesis is focused on documenting the performance of the 

suggested heat exchanger design. This is done though investigations of (a) particle flow patterns 

and (b) thermal performance. Observations regarding stability and operability are also of 

interest for validating the design. An experimentally stepwise approach has been applied, 

involving three set-ups of increasing complexity. This approach has made it possible to 

gradually confirm operation principles and gain insight in system performance. The 

observations made on each set-up have been implemented to improve design and operation of 

the following. An overview of the aim of each set-up, as wells as the obtained types of data are 

given in Table 14, while operational characteristics can be found in Table 15.  

The first two set-ups were semi-continuous systems operating at ambient temperature, 

developed to investigate the particle transport patterns, and located at DTU. These set-ups were 

designed to prove the heat exchanger concept in terms of particle transport patterns, before a hot 

heat exchanger set-up was designed, and not designed for intensive experimental work. The 

third set-up was a continuous proof of concept (PoC) bench-scale heat exchanger designed to 

operate at temperatures up to 800 °C in order evaluate heat exchange performance. This set-up 

was, due to its size, production rate of hot particles, necessary auxiliary equipment, and the 

dusty nature of raw meal, located at Dania, FLSmidth’s test center, 50 km north of Aarhus, 

Denmark. 

 

 
   87 

 



 
Chapter 5 – Experimental Approach, Set-ups, and Materials 

 

Table 14 – Overview of experimental work and obtained data. 

Set-up name Objective Session 
 Obtained data 

 Flow patterns  Thermal  

Single-stage Investigation of transport properties in a single stage. -  X - 

Multi-stage Investigation of transport properties in multiple 
stages, particle bed behavior, and separation process. 

-  X A - 

Proof of 
Concept (PoC) 

Detailed investigation of transport properties, 
operational stability using one to four stages. 
Designed to achieve proof of hot operation. 

1st  (X) B (X) B 

2nd  X X C 

3rd  X - 

A Experimental work performed by Andersen [113]. 
B Commissioning, reported by Quintero [114]. 

C Experimental proof of concept. 

 

Table 15 – Overview of operational characteristics of experimental set-ups. 

Set-up name No. of 
stages 

Type of 
particles 

Maximum particle feed 
rate 

Maximum gas 
temperature 

Maximum gas 
feed rate 

Operation 
modes 

Single-stage 1 Sand and 
raw meal 

180 kg/h Ambient 63 kg/h Semi-
continuous 

Multi-stage 4 Raw meal 180 kg/h Ambient 90 kg/h Semi-
continuous 

Proof of 
Concept (PoC) 

1 – 4 Raw meal 200 kg/h 800 °C 200 – 425 kg/hA Continuous 

A Depending on temperature. The lower the temperature, the higher the available gas flow. 

 

Due to time restrictions on use of existing auxiliary equipment and project economy, the 

experimental work on Dania has been limited to three sessions. A timeline for the experimental 

work is provided in Figure 51. 

 

 

Figure 51 – Timeline of experimental work. 
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In the following sections, descriptions of each set-up and summarized experimental procedures 

will be provided, as well as the materials used, will be described. Please refer to Appendix A for 

detailed experimental procedures. 

5.1 Single-stage Set-up 

The Single-stage set-up consisted of a single stage of the heat exchange design. It was equipped 

with an air inlet and outlet, three access points for emptying and cleaning the set-up, nozzles for 

local fluidization of particles in feed chamber, and a particle gate. Construction materials were 

wooden panels with a transparent polycarbonate front. A schematic drawing and a photo are 

provided in Figure 52 and Figure 53, respectively. 

An overview of the set-up, including auxiliary equipment, is provided in Figure 54. A rotameter 

was used as flow meter, and was calibrated using a gas meter. The filter system consisted of an 

industrial size vacuum cleaner. The maximum air flow rate was around 63 kg/h, limited by the 

suction capacity of the vacuum cleaner. Sub atmospheric pressure was desired in the system to 

limit dust emissions. 

 

 
 

Figure 52 – Schematic drawing of the Single-stage set-up. Figure 53 – Photo of the Single-stage 

set-up. Fluidization nozzles not installed 

at the time of the photo. 
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Figure 54 – Process diagram of the Single-stage set-up, including filters, flow meter, and valves. 

 

The system was a semi-continuous system, initially loaded with a known mass of particles in 

the particle feed chamber. The gas flow was adjusted to the desired level, and the particle gate 

was opened, allowing a certain mass flow of particles. The system was then run until depletion 

of particle feedstock. Data was obtained by weight measurements of particles accumulated at 

the different locations after each experiment, and visual observations made through the 

transparent front panel. 

5.2 Multi-stage set-up 

Principally, the Multi-stage set-up was similar to the Single-stage set-up but instead of one 

stage, it contained four stages. A schematic drawing and a photo of the multistage heat 

exchanger design can be found in Figure 55 and Figure 56. Construction materials were wooden 

panels and transparent polycarbonate. 

The individual stages were identical to the Single-stage set-up. The total height was 

approximately 1750 mm. Compared to the single set-up, the most significant changes were: (a) 

four stages, (b) improved particle gates, constructed as a tilting plate, rotating around an axis, 

(c) increased capacity for particles at the bottom and top stages for longer operation, and (d) 

upgraded filter capacity. Flow for both fluidization and main gas was measured by rotameters. 

A process diagram is shown in Figure 57. 
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Figure 55 – Schematic drawing of the Multi-stage set-up with expected 

particle and gas flows. 

Figure 56 – Photo of the Multi-stage set-up. 

Fluidization nozzles were not installed at the 

time of the photo. 

 

  
Figure 57 – Process diagram of the Multi-stage set-up, including filters, flow meter, and valves. 
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The startup and shutdown procedures for the Multi-stage set-up were similar to the Single-stage 

set-up: Initially all particle gates were closed and the top compartment was filled with a 

weighted amount of particles. After adjusting the gas flows to the desired levels, the top stage 

particle gate was opened and particles were transported to the second stage. Once enough 

particles were present to ensure no gas could pass through the formed particle bed, the gate at 

the second stage was opened and so on. When not enough particles were present at a given 

stage, the gate was closed. Depending on the initial mass of particles in the feed stock, not all 

stages were active simultaneously. Quasi-steady state could be achieved on the individual stages 

for shorter periods of time when the net transport to the given bed was zero. Data was obtained 

from weight measurements of particles at each of the final bottom locations and the filter.  

5.3 Proof of Concept Set-up 

The PoC set-up has been constructed of high temperature resistant steel, equipped with up to 

twelve thermocouples, and five differential pressure sensors. Due to a modular construction, the 

system could be reconfigured in terms of number of stages and positioning of sensors, 

depending on the purpose of the experimental work carried out. This also enabled a stepwise 

introduction of stages when commissioning the set-up. A schematic drawing of the four stage 

set-up and standard position of sensors are provided in Figure 58. A process diagram of the 

entire set-up is provided in Figure 59. The modular construction of the system is evident from 

the construction drawings, Figure 60, and the photo of the actual set-up, Figure 61. 

The depth of the system was 200 mm, and the dimensions of the transport channels were 50 mm 

by 200 mm. The installed height of the entire set-up was approximately 4000 mm. At each 

stage, three sight glasses were installed for visual access to the particle bed. The gates were 

principally similar to the gates in the Multi-stage set-up, but instead of introducing fluidization 

air in the particle beds, the gates were vibrated to ensure a stable particle flow. The gates were 

operated manually according to visual observations. The angels of the internal walls were 70°. 

Feeder and containers collecting heated particles had capacities to run between one and three 

hours, depending on particle feed rate. During hot operation, the system was isolated with 100 

mm isolation material. Hot air was supplied from an electrical gas preheater. 

To achieve isothermal conditions, a flow of hot gas was used to heat up the entire set-up. Once 

thermally stable conditions were achieved, particle flow could be initiated. The particle beds 

were filled from the top and down. During initial operation with particles, the temperature of the 

set-up decreased. After a certain period, typically around a half to one hour, an operational 
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steady state was reached. During this steady state, experimental data was achieved. Data 

consisted of continuous temperature, pressure and weight data. A description of the data 

acquisition can be found in section 5.3.1 – Data Acquisition. 

 

  
Figure 58 – Configuration of a four stage system 

during heat exchange experiments. Temperature and 

pressure sensors are depicted. 

Figure 59 – Process diagram of PoC set-up. Existing 

equipment at Dania is shown outside the dashed line. 
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Figure 60 – Solid works drawings of the PoC set-up with four 

stages. A center cut plane is shown to the right. 

Figure 61 – Photo of set-up without isolation. 

Visible are the identical three center stages and the 

top stage. 

 

For visual access to the gas and flow patterns, a special stage for the 2D-HX was designed with 

transparent sides. Backlit video material were produced at 300 frames per second, capturing the 

dynamic flow pattern of particles for analysis. The recordings were obtained in the system 

schematically depicted in Figure 62. Figure 63 shows the actual transparent module with light 

source installed oppositely. 

Due to constructional limitations, the entire process could not be seen through the transparent 

stage. For example the entire entrainment region could not be viewed and the vertical channel 

below entrainment area was also difficult to visually access. The system could only be run at 

ambient temperature, when inclosing the transparent module. 
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Figure 62 – Set-up for live recording of 

separation behavior. 

Figure 63 – Internal view of transparent model. Light source 

installed oppositely. 

 

5.3.1 Data Acquisition 

The data from the PoC set-up were recorded using the control and data collection software at 

Dania, ECS. Data were recorded once per second. A screen dump, showing the tailored 

configuration for the PoC set-up with a single stage, is given in Figure 64.  

 

 
Figure 64 – Screen dump from the data logging software, ECS. 

 

From the continuously recorded data, the operational steady state was identified in each 

experiment, and the relevant data excerpted. The duration of the steady state was between 10 

and 30 minutes, defined by temperature changes of less than 5 % / min. An example of a full 

data-set is given in Figure 65. The operational steady state is marked by two vertical lines at 

approximately t = 6500 s and t = 8300 s. The experimental data from the PoC set-up, presented 
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in Chapter 6 and 7, are steady state data; average temperatures and collected mass of particles 

during steady state. The inlet conditions are constant during experiments. A full description of 

the data treatment is provided in Appendix B. 

 

 
Figure 65 – Temperatures of experiment PoC#2. Vertical lines indicate the two periods of stable operation: Initial 

and operational steady state, respectively. 

5.4 Materials 

The relevant properties of particles used in the experimental work, sieved beach sand and three 

industrial raw meals, are summarized in Table 16. The cumulative size distributions are 

provided in Figure 66. The particle size data have been obtained by laser diffraction, and the 

flow ability and density using a Schulze ring shear tester [115]. The particle flowability factor 

numerically expresses the flowability of powders: The higher the number, the easier flowing 

powder. 

 

 

 
96 
 



 
Chapter 5 – Experimental Approach, Set-ups, and Materials 

 

Table 16 – Properties of particulate material used during experimental work. 

Particle type 
Volumetric 

mean diameter 
[μm] 

Loose 
density 
[kg/m3] 

Particle 
classification 

[102] 
Particle flow factor Used in 

Sand 137  1.4·103  Group B 17 (free flowing) Single-stage set-up 

Raw meal “Dalen” 30.1 1.0·103 Group C N/A Single-stage set-up 

Raw meal “Cimpor” 25 1.2·103 Group C 2.8 (cohesive) Multi-stage set-up 

Raw meal “Pilot 2” 12 1.1·103 Group C 1.7 (very cohesive) PoC set-up 

 

 

Figure 66 – Cumulative size distribution for the used particles. 

 

The gas used is air, supplied at either ambient or elevated temperatures and at a pressure around 

1 bar, depending on operation conditions and set-up. 
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Chapter 6  

Investigation of Transport Processes 
 

“Felix, qui potuit rerum cognoscere causas” (approximately: Fortunate is he, who is able to 

know the causes of things) 

– Vergil, ancient Roman poet 

 

This chapter presents selected results of the investigation of the transport processes in the 2D-

HX, which consists of entrainment and separation processes. The results presented in this 

section are based all three set-ups, and are presented in chronological order to illustrate the 

progress in the experimental work, and the development of insight in the performance of the 

heat exchanger.  

Experimental results are given in full details in Appendix C. 

6.1 Definition of Efficiencies 

Recalling Chapter 3, particle transport in a system similar to the cyclone prheater can be 

described by a separation and an entrainment efficiency. The overall stage transport efficiency is 

the product of these two parameters. Considering a single stage, as shown in Figure 67, the 

efficiencies are defined as:  

B D B B
Transport Ent Sep

Feed B D Feed

m m m m
m m m m

η η η +
= ⋅ = ⋅ =

+
   

   

 Eq. 33 

In the semi-continuous systems, the efficiencies will not be computed from mass flows, but the 

masses of particles collected at the relevant positions after each experimental run.  
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Figure 67 – Schematic drawing of particle flows in a single stage in the 2D-HX. 

 

6.2 Results: Single-stage Set-up 

To gain a first insight in the transport performance of the 2D-HX, experiments was carried out 

on the Single-stage set-up. Initially sand was used due to the easy handling and free flowing 

properties. The effects of (a) average gas velocity in the transport channel, (b) initial mass of 

particles in feed stock, and (c) solid load, on the entrainment and separation efficiencies have 

been investigated by a two level fractional experimental design with four center points, applied 

on the three experimental parameters; gas flow, particle gate gap, and initial mass of particle sin 

feed stock. An analysis of variance (ANOVA) has been carried out on the resulting conditions. 

Experimental settings and measured efficiencies are given in Table 17. The gas velocity has 

been computed from the cross sectional area of the transport channel and the measured 

volumetric gas flow, while the solid load has been obtained from the initial mass of particles, 

the duration of each experiment, and the gas flow. The results of the ANOVA are presented in 

Table 18.  

The term treatment covers the effects considered. Both single and two-factor effects are 

investigated to reveal if any interaction is significant. The F-ratio is a measurement of the 

influence of the treatment compared to the experimental uncertainties7. The column Prob. > F 

indicates the probability of the treatment not having a significant influence on the investigated 

parameter (separation or entrainment efficiencies) [116]. Here, an uncertainty level of 5 % (α = 

0.05) is chosen. Significant effects are marked by bold. 

7 F-ratio is computed as the mean sum of squares for each treatment divided with the mean square of the error. 
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Table 17 – Experimental settings and results for used in an ANOVA for sand particles in the Single-stage set-up. 

Ex. 
name 

Particle gate 
opening 

[mm] 

Duration 
[s] 

Initial 
weightA [g] 

VelocityA 
[m/s] 

Solid loadA 

[kg/kg] ηSep ηEnt 

S#1 6 30 30 3.10 3.16 0.97 0.67 

S#2 6 34 1010 3.10 2.80 0.96 0.75 

S#3 6 36 1001 3.10 2.62 0.96 0.77 

S#4 6 30 1000 3.10 3.14 0.96 0.65 

S#5 3 56 755 2.52 1.62 0.96 0.50 

S#6 3 73 1259 2.52 2.00 0.84 0.57 

S#7 9 15 755 2.52 5.84 0.97 0.57 

S#8 9 25 1249 2.52 5.80 0.97 0.62 

S#9 3 104 751 3.68 0.57 0.96 1.00 

S#10 3 108 1256 3.68 0.92 0.97 1.00 

S#11 9 22 756 3.68 2.73 0.96 0.79 

S#12 9 31 1256 3.68 3.21 0.93 0.91 
A Used for ANOVA 

  

Table 18 – Results of the ANOVA for the Single-stage set-up 

Treatment 
Separation  Entrainment 

F Ratio Prob. > F  F Ratio Prob. > F 

Weight 2.5 0.19  4.2 0.11 

Solid load 0.54 0.50  4.4 0.10 

Gas velocity 1.2 0.33  51 0.0020 

Weight x Solid load 1.8 0.25  0.24 0.65 

Weight x Gas velocity 3.1 0.15  0.36 0.58 

Solid load x Gas velocity 1.7 0.26  11 0.029 

Residual plot OK – random deviation  OK – random deviation  

 

The results of the ANOVA for the entrainment efficiencies suggest that only two treatments are 

significant: The gas velocity and the interaction between solid load and gas velocity. The 

remaining parameters were reported insignificant. Regarding the separation efficiency, the 

ANOVA showed that no treatments were significant, indicating that the influence of the 

treatments on the separation efficiency at the investigated conditions is indistinguishable from 

the experimental uncertainties. The standard deviations of the entrainment and separation data 

have been reported to be 0.05 and 0.03, respectively, indicating good reproducibility. 
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Following the conclusion of the ANOVA, the effect of gas velocity on Dalen raw meal have 

been investigated. Obtained efficiencies are provided in Figure 68 and Figure 69. Note that both 

efficiencies are depicted against the characteristic velocity, which is the average gas velocity in 

the transport channel. The gas velocity in the separation chamber is up to eight times lower, 

depending on position and gas flow patterns.  

 

  

Figure 68 – Measured separation efficiencies for Dalen 

raw meal in the Single-stage set-up. 

Figure 69 – Measured entrainment efficiencies for Dalen 

raw meal in the Single-stage set-up. 

 

For increasing gas velocities, the entrainment efficiency increases, while the separation 

efficiency apparently increases slightly. The data above yield transport efficiencies, as 

computed by Eq. 31, between 0.24 to 0.72. The highest values are found at the highest gas 

velocities. Comparing the separation efficiency of the raw meal with the separation efficiency of 

sand, significantly lower values are found for the raw meal, caused by the smaller particle sizes. 

6.3 Results: Multi-stage Set-up 

The transport patterns for particles repeatedly entrained and separated in four consecutive stages 

have been investigated in the Multi-stage set-up. The results of a series of experiments with 

Cimpor raw meal as particulate matter and gas velocities between 1.8 m/s and 4.4 m/s are 

provided in Figure 70. Results indicate that increasing the gas velocity increases the entrainment 

efficiency, as found in the Single-stage set-up, and increases the size of the dust stream leaving 

the system. Figure 71 provides an explanation of the particle locations mentioned in Figure 70. 
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Figure 70 – Final distribution of particles in the Multi-stage set-up. Figure 71 – Position of initial 

and final positions of particles 

in the Multi-stage set-up 

Entrainment and separation efficiencies are not directly obtainable from the experimental data. 

To gain information on the internal transport processes on each stage, the overall system 

behavior is modeled using coupled mass balances for all stages, similar to the cyclone preheater 

model presented in Chapter 3. Additional information on the model can be found in [113]. Data 

from the Single-stage set-up indicated that the separation efficiency did not depended on gas 

velocities in the actual range of gas velocities, and that the entrainment efficiency as a function 

of the gas velocities yielded an s-shaped curve. Therefore, for simplicity, the entrainment 

efficiency is assumed to follow a Sigmoid function, while separation is assumed constant, 0.70. 

The general Sigmoid function is provided in Eq. 34, where C is a fitting parameter. 

GEnt v Ce
η − +=

+
1

1
 Eq. 34 

By fitting model predictions to the data shown in Figure 70, the fitting parameter C = 2.9 is 

found. The model predictions and experimental data are compared in Figure 72. A depiction of 

the assumed entrainment and separation efficiencies can be found in Figure 77 and Figure 78. 
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Figure 72 – Comparison between predicted particle distribution and measured data. 

 

The model fits the experimental data reasonably, with deviations of up to 20%, and trends 

represented correctly. The predicted optimum for the outlet #2 is shifted to the left, compared to 

the experimental data. Deviations are largest at low gas velocities. The model results indicate 

that the entrainment and separation efficiencies applied in the model resemble the actual system 

behavior reasonably, thereby confirming the observations made on the single stage set-up. 

6.4 Results: PoC Set-up 

A thorough analysis of entrainment and separation efficiencies has been carried out on the PoC 

set-up. For these experiments, the PoC set-up was configured to contain one stage, and was 

operated at ambient conditions, enabling shorter time between experiments. Each data set is 

obtained during a steady state of 10 – 20 minutes, smoothing out operational disturbances. The 

analysis of entrainment and separation has been investigated in both second and third 

experimental session (see Table 14, Chapter 5), and three independent data sets exist. All 

obtained data have been collected in section 6.5 – Overview and Comparison of Data as well as 

provided in Appendix C. In this section, the experiments P3#9 – P3#35 are treated.  

Gas velocities in the transport channel between 1.5 and 9.9 m/s have been investigated at 27 

different conditions. Experiments were divided into four data series, depending on the solid 

load, and labeled according to the desired solid load. Actual solid loads were deviating slightly 
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from the desired values, due to varying gas flow. Solid load was varied between 0.45 and 1.06 

kg solid/kg gas. The solid load and the gas velocity could be varied independently within the 

range of available particle and gas feed rates. Particle feed rates of 60, 100, 140 and 200 kg/h 

have been applied. Results are presented in Figure 73 and Figure 74. 

 

 
Figure 73 – Separation efficiencies obtained from experiments on the PoC set-up with a single stage. TG, In = 20 °C. 

 

 
 

Figure 74 – Entrainment efficiencies obtained from experiments on the PoC set-up with a single stage. TG, In = 20 °C. 

 

The trend shown in Figure 74 is similar to the trend observed in the data from the Single- and 

Multi-stage set-ups, while the data in Figure 73 show a trend of decreasing separation 
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efficiencies as gas velocity increases. This has not been seen in the previous data series, likely 

due to the low gas velocities previously applied, and uncertainties related to the semi-

continuous operation.  

To identify if solid load influences the efficiencies, the data of Figure 73 and Figure 74 are 

plotted against solid load in Figure 75 and Figure 76. Indications of gas velocity are provided as 

dashed lines.  

 

 
Figure 75 – Separation efficiencies from the PoC set-up with a single stage. Dashed lines indicate gas velocity 

ranges. TG,In = 20 °C. 

 

 
Figure 76 – Entrainment efficiencies obtained from the PoC set-up with a single stage. Dashed lines indicate gas 

velocity ranges. TG, In = 20 °C. 
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It is noted that plotting the efficiencies against gas velocity yields more clear trends, while the 

data, when plotted against solid load, yields a murkier picture with less clear trends. The 

presented data does not unambiguously indicate the effect of the solid load.  

An ANOVA has been performed on both efficiencies. The results of the analysis, provided in 

Table 19, show that given the actual data, the solid load under the tested conditions neither 

influences the separation nor the entrainment process. In the investigated operation range, both 

processes depends only on gas velocity at the given uncertainty level (α = 0.05). 

 

Table 19 – Results of ANOVA for entrainment and separation efficiencies 

Treatment 
Separation  Entrainment (0.10 < ηEnt < 0.90) 

F Ratio Prob. > F  F Ratio Prob. > F 

Solid load 1.53 0.23  1.89 0.21 

Gas velocity 109 <0.0001  142 <0.0001 

Solid load x Gas velocity 1.79 0.19  3.92 0.095 

Residual plot OK – random deviation  OK – random deviation  

 

The linear fit of parameters in the ANOVA was unable to match the full range of entrainment 

data satisfactory, yielding a nonrandom distribution of residuals, why 0.10 < ηEnt
 < 0.90 were 

used in the analysis. This data range contains the dynamic behavior of the entrainment process. 

For ηEnt
 > 0.90 very little dependency of either gas velocity or solid load is observed.  

The ANOVA is only applied to data from the third session (#2). Testing all available data from 

the PoC set-up yields similar results. 

6.5 Overview and Comparison of Data 

Plots showing all obtained separation and entrainment data from the PoC set-up are provided in 

Figure 77 and Figure 78, respectively.  
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Figure 77 – Collection of all measured entrainment data on the three set-ups as a function of the characteristic gas 

velocity (the velocity in the transport channel). 

 

  
Figure 78 – Collection of all measured separation data on the three set-ups as a function of the characteristic gas 

velocity (the velocity in the transport channel). 
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Recall, that in the multistage set-up, the entrainment and separation efficiencies could not be 

measured directly and were identified by modeling the system. The entrainment efficiencies 

were assumed to follow a Sigmoid function, and the separation efficiencies were assumed 

constant. 

The data series PoC (second session) and PoC (third session#1) have not been presented 

previously, while the remaining data has.  

The fitted Sigmoid function from the multistage set-up fits well the entrainment efficiency, 

while the assumed separation efficiency seem under estimated. 

 

Comparing the data from all experimental sessions, differences of around 20 % are found. These 

differences are attributed to usage of different raw meal as well as the geometry of the 

entrainment area differs slightly in the three set-ups. Furthermore, the data PoC (third session 

#2) are obtained during under sub atmospheric conditions, similar to the industrial process, 

where the PoC (second session) and PoC (third session #1) are run with small over pressure in 

the system. 

The separation efficiencies are forming a band with a width of approximately 20 % and appears 

to have an optimum around νChar = 3 m/s. This is discussed in section 6.7.1 – Separation 

Process. 

6.6 Visual Observations 

In the following, the visual observations during work on the PoC set-up will be presented. These 

observations are aimed to increase understanding of internal mechanisms. 

The visual observations presented here are obtained during experiments with characteristic gas 

velocities of approximately 2.5 m/s. The expected entrainment efficiency is around 0.5 and the 

separation around 0.9. The described trends have also been confirmed at νG
 = 5.1 m/s. 

6.6.1 Separation Process 

The slow motion videos show that gas and particle flows within the system are very dynamic 

and pulsating in behaviour. The observed particle trends include (a) formation of ropes or 

strands of particles in the separation chamber moving downward as a single unit, (b) the 

position of the particle rope varies dynamically between left and right chamber walls but is most 
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often found in the center, (c) the main flow of particles are observed in the center of the 

chamber, moving downward, (d) some particles impinge occasionally on wall opposite of the 

inlet, (e) the observed vertical particle velocity is approximately 0.5 – 1.5 m/s (average gas 

velocities in chamber ≈ 0.77 m/s), and (f) instable eddies form at the sloping wall just below the 

inlet to the chamber, lifting deposited particles into the gas. Examples of the visual data 

obtained are provided in Figure 79. In the provided photos, the transport channel is visible to the 

right and the separation chamber to the left. Particles and gas flow from right to left. 

 

 

The observations are summarized in Figure 80, where the location of (a) the main flow of 

particles, (b) the temporary eddy, and (c) the occasional impingement of particles on the left 

wall of the separation chamber are depicted.  

In order to gain information on the gas flow patterns in the system, CFD simulations have been 

performed at conditions similar to the conditions during the video recording. The resulting gas 

flows are depicted in Figure 81.  

 

  

Figure 79 –Selected pictures from high speed recording during experiments. Points of interest marked by arrows. 

Left: System before flow of particles is started. Right: Rope of particles visible in the center of the chamber.  
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Figure 80 – Summary of visual observations of particle flow influencing the separation process. 

 

   

Figure 81 – Gas velocity profiles from CFD 

simulation. Red = 5 m/s, yellow = 3 m/s, turquoise 

= 2 m/s. Light blue = 1 m/s. 

Figure 82 – Combination of simulated gas flow and visual 

particle flow patterns. 

 

The simulations show that there is a pocket of low gas velocities underneath the band of fast 

flowing gas. By comparison of the visual observations and the CFD simulations, it is found that 

the particles move down in the low gas velocity pocket, as seen in Figure 82. Gravity forces the 

particles to leave the high gas velocity band, and once in the low gas velocity area, the 

horizontal velocity component is reduced, and the particles have time to settle. 
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The eddy, also found in Figure 81, is unwanted, as it lifts deposited particles from the wall into 

flowing gas.  

The impingement of particles on the wall opposite the inlet occurs when particles have not been 

separated from the main gas flow. At the contact with the wall the particles loses momentum, 

but as the gas is flowing along the left wall, the impinged particles are reentrained into the gas. 

Thus, the particles separated by impingement do not contribute to the overall separation, as they 

are most likely re-entrained at a lower point in the system. 

6.6.2 Entrainment Process 

The visual observations regarding the entrainment process can be summarized to: (a) 

Entrainment occurs two places: Directly below the particle gate and in the vertical channel at 

bottom of entrainment area, (b) particle clouds are transported up through the entrainment area, 

(c) a stable eddy is formed below particle gate, creating an area with low concentration of 

particles, (d) some particles fall from particle gate directly down on plate below, and slides 

downwards, inducing the eddy motion, and (e) system pulsates, induced by the entrainment of 

particles. An example of the visual observations of the entrainment area obtained during 

operation is provided in Figure 83.  

 

  

Figure 83 – Particle void with low 

particle concentration in the entrainment 

area. Point of interest is marked by 

arrow. 

Figure 84 – Picture of the particle flow from the particle gate. No gas flow 

is present. Particles fall in a curtain-like pattern. 
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The stable eddy is visible as a light area with low concentration of particles. Gas is flowing 

vertically, from the bottom and up, while particles are fed from the top. The geometry of the 

separation chamber can be seen in Figure 84, as well as the curtain like particle flow from the 

particle bed above. No gas flow is present in this photo. 

The observations of the particle flow in the entrainment region are summarized in Figure 85, 

and compared to the results of the CFD simulation in Figure 86.  

 

  
Figure 85 – Summary of observations in the entrainment area. 

The area visible through the transparent stage is marked by a 

dashed line. 

Figure 86 – Comparison between observations 

and CFD simulations in entrainment area. Gas 

velocities: Red = 5 m/s, yellow = 3 m/s, turquoise 

= 2 m/s. Light blue = 1 m/s. 
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It is noted that directly below the particle gate, the gas velocities are relatively low, 0.5 – 1.5 

m/s with average values around 1 m/s, compared to the velocities in the channels. This causes 

particles to occasionally fall through the gas stream and land on the inclined plate. The majority 

of the particles are, however, entrained directly below the particle gate at the given conditions.  

Once the particles reach the channel on the upside of the particle gate, where the gas velocities 

are increased, very few particles leave the gas. Furthermore, it should be noted that the 

formation of the eddy below the particle gate is not predicted by the CFD simulations. As seen 

in Figure 86, no counter-current flow of gas is expected from the gas flows alone at this 

position, why the downward gas flow must be generated by the flow of particles. 

6.7 Identification of Governing Mechanisms 

Based on the observations and measured data, the fundamental mechanisms governing the 

separation and entrainment processes are sought identified. In the following, a discussion will 

outline the possible processes. 

6.7.1 Separation Process 

The separation process was expected to be constituted by partly by an inertial separation, 

created by the 180° turn of the gas stream at the outlet of the separation chamber, and partly by 

a gravity-driven process. 

Generally, it is considered that the effect of an inertial separation increases with gas velocities as 

seen for cyclones, but neither observations nor measured data indicate any such trend, why the 

separation process most likely is not inertial driven.  

Therefore the separation process must be gravity driven. However, the observed particle settling 

velocities were in the order of 0.5 – 1.5 m/s, which is much higher than the terminal settling 

velocity of single raw meal particles according to Stokes law (νStokes ≈ 0.01 m/s). 

Principally, two mechanisms can explain the observed accelerated gravitational settling: 

1. When two or more particles moves through an infinite, otherwise empty fluid under 

influence of gravity, the settling velocity is higher than for individual particles 

[117,118]. The increased settling velocity is a result of inter-particle forces, which 

pushes and drags the particles to a faster settling. In the current case, the separation 

chamber is “empty” from the point-of-view of the particles at the front of each particle 

strand, suggesting that this phenomenon can occur. 
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2. Formation of raw meal particle clusters or agglomerates, increasing the effective 

diameter of the particles to achieve the observed settling velocities. Applying Stokes 

Law of settling, assuming a cluster density of 1/3 – 1/10 of the single particle density 

[119], the cluster size can be estimated to 0.2 mm to 0.5 mm (approximately 20 – 40 

times the average single particle diameter). 

The findings and discussions regarding the separation process are summarized in Table 20. The 

two explanations mentioned above are summarized under the term accelerated gravitational 

settling. 

 

Table 20 – Summarization of discussion of separation mechanisms. 

Hypothesized 

separation mechanism 

Comments Effect on separation 

process 

“Normal” gravitational 

settling 

Settling of particles, caused by gravity, transport particles 

away from the band of moving gas. This increases the 

residence time, and allows the particle to settle. 

Minor effect 

Accelerated 

gravitational settling 

1. The particles are observed to move in rope formations. 

The particles at the front of the particle band initiate a 

local downward flow of gas as well as enhance the 

settling of the following particles by dragging them 

downwards. 

2. The particles form agglomerates or clusters, thereby 

settling faster than the single particles 

Major effect 

Impingement on 

chamber walls 

Particles impinge on the wall of the chamber, but re-

entrains in the gas on the way down 

Little to no overall effect 

Inertial separation The particles in the main gas flow could be forced out of 

the gas by the 180° turn at the outlet of the separation 

chamber, but no experimental data indicate an inertial 

separation process. 

Little to no overall effect 

 

In the measured data, decreasing separation efficiencies were observed at increasing gas 

velocities. This trend corresponds well with a process driven by gravitational settling: When 

increasing the gas velocity, the residence time is reduced, yielding shorter time for the particles 

to leave the main gas flow, reducing the separation. 
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The ANOVA performed on the data from the PoC set-up, revealed that no influence of the solid 

load on the separation efficiency could be identified, while the separation mechanism suggested 

above implies that the local particle concentrations are the contributing to the separation. This 

indicates that in the range of solid loads investigated the effect on the separation efficiency is 

small, compared to the experimental uncertainties. 

Principally, the solid load would be expected to influence the separation process: Increasing 

solid loads should yield increasing separation and wise versa, which could explain the tendency 

of low separation efficiency at low gas velocities and the optimum behavior seen in Figure 78. 

At low gas velocities are solid load in the separation chamber low as a consequence of a small 

amount of entrained particles  

6.7.2 Entrainment Process 

The entrainment of particles occurs when the drag force, exerted by the gas on the particles, 

exceeds the gravitational force. Therefore, the entrainment process was expected to depend on 

the gas velocity, as well as density difference between gas and particles, system geometry, and 

mass flow of particles. 

In the present experimental work, the entrainment process was found to depend on gas velocity. 

Solid load was not found to significantly influence the entrainment efficiency. Dependencies of 

geometry and density difference have not been investigated. 

The entrainment process has been identified to take place at two locations; directly below the 

particle gate and in the vertical channel. The entrainment of particles in the vertical channel 

pulsates. Particles are entrained after a short built up period, where the particle concentration 

locally increases. When the particles are entrained a lower concentration is left behind and 

particle concentration builds up again. This pulsation is creating the very dynamic behavior 

witnessed in the separation chamber.  

6.8 Comparison with Industrial Preheater Cyclone 

To compare the performance of the 2D-HX with the performance of the industrially available 

preheater cyclones, the transport efficiencies are computed. The resulting graph is a volcano 

curve, shown in Figure 87.  

To the left of the optimum, the entrainment efficiencies are low, yielding low transport 

efficiencies, while to the right the separation efficiencies are low. The optimum is located at 
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characteristic gas velocities of 4 – 5 m/s, with around ηTransport = 0.80. The preheater cyclone 

transport efficiencies have previously been reported to be in the range of 0.70 – 0.95.  

 
Figure 87 – Experimentally obtained transport efficiencies for the 2D-HX. Typical data range of industrial cyclones 

is given as an interval marked by horizontal dashed lines. 

 

A summarized comparison of the 2D-HX and the industrial preheater cyclone is provided in 

Table 21. The major differences are the separation principle and the gas velocities in the system. 

 

Table 21 – Comparison of transport properties of industrial preheater cyclone and 2D-HX design. 

 Preheater cyclone 2D-HX 

Separation principle Inertial Accelerated settling 

ηTransport at optimal conditions 0.70 – 0.95 0.70 – 0.80 

vG, entrainment 20 – 24 m/s 4 – 5 m/s 

vG, sep N/A 1.3 – 1.7 m/s 

 

6.9 Summary 

The internal separation and entrainment processes in the 2D-HX have been experimentally 

investigated.  
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An analysis of the results from the Single-stage set-up showed that the entrainment process 

depended on the gas velocity with solid load playing a minor role. The test series performed on 

the Multi-stage set-up suggested that the entrainment efficiency depended highly on the gas 

velocity, following approximately a Sigmoid function with the constant = 2.9. The more 

thorough test series, carried out on the PoC set-up, revealed that the solid load did not influence 

the entrainment efficiency in the range of solid loads investigated, 0.5 – 1.0 kg/kg. 

Visual observations provided additional information on the mechanism of the entrainment 

mechanism: The entrainment of particles occurs at two locations in the entrainment area of the 

set-ups; directly below the particle gate and in the vertical channel. The entrainment process 

generated pulsating gas and particle flow, which was visible in the separation chamber. 

The separation efficiency was also investigated in the three set-ups. The results were less clear, 

compared to the entrainment efficiency, however. The separation data from the Single-stage set-

up did not reveal any trends, due to experimental uncertainties. The Multi-stage set-up showed 

that constant separation efficiency in the investigated range of gas velocities, 1.8 – 3.4 m/s, was 

reasonable. An ANOVA performed on test data from the PoC set-up indicated that the 

separation efficiency only depended on the gas velocity, but the identified mechanism, 

accelerated settling, and the few data points obtained at gas velocities lower than 2 m/s (causing 

low entrainment and thereby low solid load in the separation chamber) suggested that solid load 

did influence the separation: The higher solid load, the higher separation efficiency.  

In the separation chamber the particles formed ropes, moving downwardly, separating the 

particles from the gas flow. The operation principle of the separation process was identified to 

be an accelerated gravitational settling with vertical settling velocities of around 0.5 – 1.5 m/s. 

Impingement and inertial separation mechanism were found to be insignificant at the 

operational conditions tested. 

Transport efficiencies were found to follow a volcano curve with optimum around characteristic 

gas velocities at 4 – 5 m/s and maximal values of ηTransport = 0.80. Outside the optimum, either 

low entrainment or low separation efficiencies dominated the transport efficiency. Compared to 

the industrial standard, the optimum values are in the lower range of acceptable values, typically 

ranging from 0.70 to 0.95. 

Several similarities in terms of flow patterns were found by comparing the visual observations 

and CFD simulations performed for the system, thereby supporting that correct flow patterns are 

obtained by the CFD. The CFD simulations showed that local gas velocities in both entrainment 
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area and separation chamber varies significantly, and that the transport processes depends on the 

gas flow patterns and thereby the system geometry.  

The effect of different geometry has not been investigated, as experiments have been limited to 

the three set-ups described previously. 
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Chapter 7  

Investigation of Heat Exchange 

Performance 
 

“Chemical Engineers are not gentle people, they like high temperatures and high pressures” 

– Steve LeBlanc, professor and reaction engineering textbook author 

 

Selected results of the thermal investigation of the 2D-HX, as well as phenomena observed 

during high temperature operation of the PoC set-up are presented in this chapter. The data 

includes information on heat loss, thermal performance, and evaluation of the heat exchange 

process. In this section also the measured pressure drops will be presented. 

Not all available data will be presented in detail in the following sections. Complete datasets are 

available in Appendix C. 

7.1 Results: Thermal Performance 

In order to evaluate the performance of the heat exchange process between gas and solids in the 

2D-HX, and to identify potential operation related issues, the PoC set-up has been operated at 

inlet temperatures of up to approximately 800 °C. Seven experiments, called proof of concept 

(PoC) experiments, testing the design at as close to industrial conditions as possible, will be 

reported here. The hot experiments can be divided into two categories: (a) Experiments carried 

out at industrial conditions; gas inlet temperatures above 700 °C and solid loads around one in a 

four stage heat exchanger (experiments PoC#1 – #3) and (b) experiments carried out at lower 

temperatures aimed at investigating the heat exchange performance of the system (experiments 

PoC#4 – #7).  
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The temperatures have been measured at different locations. In all experiments gas temperatures 

at inlet to each stage were measured, additionally particle bed temperatures were measured in 

PoC#4 – #7. In PoC#6 and #7 also the freeboard temperature were also measured. In PoC#6 and 

#7 the PoC set-up contained one stage. In the remaining experiments reported, four stages were 

used. 

  

   

Figure 88 – Results from PoC#5 with indication of 

position of thermocouples. Temperatures measured in 

particle beds and at gas inlet to each stage. 

Figure 89 – Results from PoC#6 with indication of 

position of thermocouples. Temperatures measured in 

particle bed, the freeboard and at gas inlet to the stage. 
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Two examples, PoC#5 and #6, highlighting the different configurations investigated, are 

provided in Figure 88 and Figure 89. The locations of the thermocouples and the measured 

average values at steady state are shown.  

Summarized operational data for all seven PoC experiments are provided in Table 22. Flow 

rates of gas and particles have been conservatively chosen due to capacity limitations of the gas 

cooling equipment and the temperature requirements of the bag filter handling the exhaust gases 

from the set-up. 

 

Table 22 – Summary of PoC experiments. 

System configuration PoC#1 PoC#2 PoC#3 PoC#4 PoC#5 PoC#6 PoC#7 

Number of stages, N 4 4 4 4 4 1 1 

Location of temperature 
measurements 

Stage 
inlets 

Stage 
inlets 

Stage 
inlets 

As PoC #1 
and in 

particle 
beds 

As PoC #1 
and in 

particle 
beds 

As 
PoC #4 
and in 

freeboard 

As 
PoC #4 
and in 

freeboard 

Experimental settings 

Duration [min] 84 109 36 84 56 60 35 

Duration of steady state [min] 30 30 10 17 13 19 8 

Gas flow [kg/hr] 80 80 100 90 90 80 146 

Particle flow [kg/hr] 78 94 94 61 78 78 78 

Characteristic gas velocities 

Top stage [m/s] 3.8 4.0 5.0 4.8 4.1 2.9 5.3 

Bottom stage [m/s] 6.8 6.8 6.2 7.1 7.0 N/A N/A 

Distribution of particle  

Particle outlet#1 0.55 0.46 0.39 0.21 0.54 0.77 0.51 

Particle outlet#2 0.13 0.13 0.07 0.02 0.07 0.07 0.07 

Particles blown out 0.32 0.41 0.54 0.78 0.41 0.15 0.41 

In- and outlet temperatures 

TG,inlet [°C] 790 790 707 710 707 324 243 

TG,outlet [°C] 321 354 361 398 309 183 180 

TP,inlet [°C] 20 20 20 20 20 20 20 

TP,outlet,average [°C] 522 505 564 508 541 159 162 

Characteristic parameters 

Solid load, co [kg/kg] 1.0 1.2 0.9 0.7 0.9 1.0 0.5 

Stability [max(%change)/min] 0.24 0.30 1.30 0.7 2.5 0.9 1.0 

Absolute thermal efficiency, φAbs 0.30 0.50 0.36 0.08 0.39 0.29 0.18 
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Initially, it should be noted that operation at close to industrial conditions with raw meal is 

possible. The particles are heated from 20 °C to 522 – 564 °C in four heat exchange steps. The 

gas is correspondingly cooled by approximately 350 – 400 °C. The distribution of particles, 

especially in PoC#3, indicates that the separation efficiency in the top stage is far from unity. 

Considering the gas velocities in the top stage, and the separation efficiency data presented in 

Chapter 6, separation efficiencies between 0.6 and 0.8 would be expected.  

The absolute thermal efficiencies suggest that under the given settings between 8 % and 50 % of 

the energy in the hot gas has been utilized for particle heating. The major reason for the low 

values is the low separation efficiency, reducing the particle flows from the outlets at bottom of 

the system. 

The temperature profiles of PoC#4 and PoC#5, depicted in Figure 90, reveal that the particle are 

being heated in each stage, and that the temperature gain in each stage decreases as the particles 

approaches the gas temperature, as expected. 

 

 

Figure 90 – Steady state temperatures of gas and particles during PoC#4 and PoC #5. 
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The inlet temperatures of gas and particles to a given stage are plotted at the same x-axis 

position in Figure 90. After the heat exchange in a given stage, the resulting particle 

temperatures can be found at a lower stage (higher stage number), while the resulting gas 

temperatures can be found a higher stage (lower stage number).  

The effect of increased solid load can be seen on Figure 90, where lower temperatures are 

archived for PoC #5 (co
 = 0.9 kg/kg) than PoC #4 (co

 = 0.7 kg/kg), due to the higher heat 

capacity of the particle stream. Remarkably, the temperature of particle outlet #1 during PoC#4 

is lower than the temperature measured at the inlet of stage 4. This indicates either (a) an 

incomplete heat exchange, (b) a fall through of colder particles from stage 3 cooling the 

thermocouple, or (c) a significant local heat loss.  

From the measured particle bed temperatures, several things should be noticed; (a) the particle 

bed in the top/feed stage is hotter than the particle feed, indicating that the particles in the 

top/feed stage are heated by conduction through the walls and internal plates of the set-up, (b) 

some particle beds are hotter than the gas leaving the stage. This could further indicate that 

thermal conduction in the system is significant, or that fall through of particles from the above 

stage cools the gas leaving the stage, and (c) the temperature difference between gas and solid 

after heat exchange is in the range of 20 – 30 °C. 

Furthermore, it was found that the heat exchange takes place in the transport channel, as 

observed from Figure 89, where the freeboard temperature is similar to the outlet gas 

temperature. In experiments PoC#6 and PoC#7, the residence time of particles and gas in the 

transport channel is in the range of 80 – 140 ms, theoretically allowing enough time for a full 

heat exchange to take place, yet the temperature difference between the particle bed and gas 

outlet indicates that the heat exchange is not complete under the given settings, which is most 

likely caused by insufficient and/or too slow mixing. 

Finally, the evaluation of the steady state periods reveals that the system can be kept stable 

during operation, indicated by a maximum %-wise temperature change per minute between 0.30 

% and 2.5 %. This instability is generated by the manual operation of the particle gates at each 

stage. 

7.2 Results: Heat Loss  

The heat loss from the system was measured during periods of operation with no particle flow, 

typically between PoC experiments, where the set-up and gas preheater needed to reach a new 
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thermal equilibrium. Summarized data for the heat loss experiments, TEQ#1 – #10, are given in 

Table 23. 

The actual heat losses are found from an energy balance, and estimated to between 0.9 and 4.1 

kW. Due to a leak in the electric gas preheater, the precise gas flows are uncertain in some of 

the experiments, thereby also the actual thermal heat loss.  

 

Table 23 – Comparison of characteristic data for heat loss experiment. 

Ex. name TOut [°C] TIn [°C] Gas flow [kg/h] Heat loss, [kW] φLoss φLoss, computed 

TEQ#1 656 781 80 3.4 0.18 0.20 

TEQ#2 655 805 80 4.1 0.21 0.20 

TEQ#3 484 534 100 1.6 0.10 0.13 

TEQ#4 672 865 75A 3.3 0.24 0.22 

TEQ#5 576 690 75 A 1.9 0.18 0.17 

TEQ#6 392 451 75 A 0.9 0.14 0.11 

TEQ#7 555 622 60 A 0.9 0.12 0.16 

TEQ#8 578 728 60 A 2.0 0.22 0.18 

TEQ#9 377 424 112.5 A 1.1 0.12 0.11 

TEQ#10 427 510 112.5 A 2.0 0.17 0.13 
Á Electric gas preheater leaking, estimated gas flow. 

 

The heat loss from the set-up depends on (a) the gas velocities, which determines the convective 

heat transfer coefficients, (b) the temperatures, determining the driving force, (c) the geometry 

of the system, (d) the isolation characteristics, and (e) the surface area.  

Generally a more or less linear dependency of the temperatures and the heat loss should be 

expected, but due to the uncertainties of the measured gas flows, the effect of different gas 

velocities, and the isolation not being uniformly distributed around the set-up, a simplified 

approach is considered: Defining a heat loss parameter, φLoss, as:  

( )
( )

,G ,

,G ,

1ϕ
⋅ −

= = −
⋅ −

P G Out AmbLoss
Loss

In P G In Amb

C T TQ
Q C T T

 Eq. 35 

where Q is energy content, T temperature, indices Out, In and Amb are outlet, inlet and ambient 

(20 °C) conditions, respectively, and CP,G is the specific heat capacity computed as 20 % O2 and 

balance N2 [104]. The heat loss parameter describes the fraction of the supplied thermal energy 
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that is converted to energy loss, and is independent of the mass flows, as long as the mass flow 

through the 2D-HX set-up is constant. 

An observed general trend is that the higher the inlet temperature, the higher heat loss. 

Simplifying the data trend by assuming a linear dependence between heat loss and gas inlet 

temperatures, a useful, although purely empirical, correlation can be obtained; 

[ ]42.6 10 0.0052Loss InT Cϕ −= ⋅ ⋅ ° −  Eq. 36 

Note that at 20 °C, the heat loss is computed to zero. The unit of the constant, kheat, is [°C-1] 

while φLoss is dimensionless. Absolute deviation between the computed and the measured values 

are between 1 and 4 %, as seen in Table 23. 

This simple equation can be used to predict heat loss from the PoC set-up of a given 

temperature. However, applying this equation to other systems, significant uncertainties must be 

expected. As mentioned previously, a more complete model for the heat loss has not been 

established due to uncertainties regarding gas flows, isolation, and changing temperature 

differences.  

7.3 Results: Observations 

The temperature during PoC#1 – #3 were high enough for impurities in the raw meal to ignite. 

An example of glowing particles during PoC#3 is shown Figure 91. Temperatures between 650 

°C and 700 °C were measured at the time of the photo. 

  
Figure 91 – Photo of an igniting particle observed at stage 

3 just before the start of experiment PoC#3. 

 
Figure 92 – Red glowing interior at stage 4 before start of 

experiment PoC#2. 
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At gas inlet temperature around 790 °C, the interior of the system glowed dark red as shown in 

Figure 92, displaying the red glow of the interior seen through gaps in the deposited raw meal. 

Judging from the color of the glowing metal, the temperature is between 700 and 800 °C, which 

corresponds well with the measured temperatures, 750 – 800 °C. 

 

 

Figure 93 – Indirect effects of externally applied shocks to stage 4 during PoC#1. The time axis relates to the given 

data file. 
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above 500 °C particles stuck to internal surfaces, making visual observations difficult and 

yielding problems ensuring stable particle bed levels. To ensure the flow of particles, external 

shocks were applied on the system to reinitiate particle flow. As seen in Figure 93, the shocks 

initiated particle flow, indicated by increased pressure drop of the stage and reduced 

temperature. Approximately one shock per minute was necessary. 

To further investigate the flowability of raw meal at elevated temperatures, a separate study has 

been carried out in a powder strength measuring monoaxial shear tester. The results indicated 
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by calcination or belite formation in the raw meal. The reporting of this work has been carried 

out separately and is provided in appendix G. 

Particle deposition on the interior was also observed during disassembling of the set-up. Where 

gas velocities were low (νG
 < 1 – 2 m/s) or particles impacted on walls, deposits of up to 2 cm in 

thickness were found. Photos of the interior are provided in Figure 94 and Figure 95. Deposits 

were soft and easily removed. 

 

  

Figure 94 – Side view of the interior of the bottom stage 

after the PoC experiments, showing particle outlet #1 

Figure 95 – Top view of the interior of the bottom stage 

after the PoC experiments. Two thermocouples are visible: 

Particle outlet #2 and inlet to bottom stage. 

 

7.4 Results: Pressure drop 

During experiments, pressure drop over each stage and the overall set-up were measured. The 

pressure drops are very dynamic during experiments, depending strongly on (a) particle flow, 

(b) gas velocity, and (c) blockages of pressure transmission lines. The measured pressure drops 

are averaged during steady state and over the stages in the set-up. Data can be found in Table 

24. The operational characteristics of the experiments can be found in Table 22. For later 

modeling purposes, both the pressure drop with and without particles have been provided. 

The data suggests that the gas friction in the system corresponds to 0.1 – 0.8 mbar/stage, 

depending on operation conditions. When particles are introduced in the system, the pressure 

drop increases to around 1 – 2 mbar per stage, accumulating to 4 – 8 mbar for the total system. 
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Thus, 0.5 – 2.4 mbar per stage are contributed by the particle-wall and particle-gas interaction, 

which corresponds to between 48 % – 86 % of the total pressure drop. 

 

Table 24 – Measured average pressure drops over a single stage with and without the presence of particles. 

Name ΔPG [mbar/stage] ΔPG+P [mbar/stage] 

PoC#1 0.1 0.7 

PoC#2 0.4 0.9 

PoC#3 0.6 2.2 

PoC#4 0.3 1.2 

PoC#5 0.3 2.7 

PoC#6 0.5 0.8 

PoC#7 0.8 1.4 

 

7.5 Evaluation of Thermal Performance 

Using the thermal efficiencies described in Chapter 3, experiments PoC#1 – #7 have been 

evaluated. The results are provided in Table 25. Thermal efficiencies, corrected for heat loss in 

order to enable a truer comparison of the 2D-HX with the cyclone preheater, where heat loss is 

significantly lower, are also given. The correction is done by assuming the thermal efficiencies 

are increased with 50 % of the heat loss, thereby suggesting that some of the energy, instead of 

being lost, is used for higher particle and gas temperatures. 

 

Table 25 – Summary of thermal efficiency for PoC#1 – #7. 

System configuration PoC#1 PoC#2 PoC#3 PoC#4 PoC#5 PoC#6 PoC#7 

Number of stages, N 4 4 4 4 4 1 1 

Estimated heat loss, φLoss 0.20 0.20 0.18 0.18 0.18 0.08 0.06 

Thermal efficiencies        

Absolute thermal efficiency, φAbs 0.50 0.30 0.36 0.08 0.39 0.29 0.18 

Relative thermal efficiency, φrel 0.69 0.37 0.53 0.14 0.58 0.64 0.61 

Corrected thermal parameters        

Corrected heat loss, φLoss, corrected 0.10 0.10 0.09 0.09 0.09 0.04 0.03 

Corrected absolute thermal 
efficiency, φAbs, corrected  

0.60 0.40 0.45 0.17 0.48 0.33 0.21 

Corrected relative thermal efficiency, 
φrel, corrected 

0.83 0.50 0.67 0.31 0.71 0.72 0.71 
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The measured absolute thermal efficiencies are between 0.08 and 0.50, corresponding to relative 

efficiencies between 0.14 and 0.69. The normalization values used to compute the relative 

thermal efficiencies are computed using the model described in Chapter 3, which under ideal 

conditions (full entrainment and separation) is applicable for the 2D-HX. The heat losses are 

estimated using Eq. 36. The relative thermal efficiency allows comparison of the experiments 

with a single stage and four stage, and indicates that the single stage systems perform 

reasonable well, with corrected relative thermal efficiencies around 0.71. For PoC#6 – #7, the 

absolute efficiencies are low as a consequence of only one heat exchange process. 

 

7.6 Comparison of Heat Exchanger Design with Industrial Standard 

The thermal performance parameters of the 2D-HX are summarized and compared with the 

corresponding parameters for the cyclone preheater in Table 26. Only the data from PoC#1 – #3 

are reported, as gas inlet temperatures should be comparable. The cyclone preheater properties 

have been given previously in Chapters 2 and 3. 

 

Table 26 – Comparison of thermal properties of industrial cyclone preheater and the 2D-HX. 

 Preheater cyclone 2D-HX 

Gas inlet temperature 817 – 893 °C 707 – 790 °C 

Particle inlet temperature 50 – 60 °C 20 °C 

Particle outlet temperatures 700 – 800 °C 505 – 564 °C 

φAbs 0.61 – 0.71 0.36 – 0.50 

φRel 0.74 – 0.97 0.37 – 0.69 

φLoss ~ 0.04 0.18 – 0.20 

φLoss, corrected N/A 0.09 – 0.10 

φAbs, corrected N/A 0.45 – 0.60 

φRel, corrected N/A 0.50 – 0.83 

Temperature difference 20 – 30 °C 20 – 30 °C 

 

The gas and particle inlet temperatures are up to 100 °C and 50°C lower in the experiments, 

respectively, causing lower particle outlet temperatures. This aspect, combined with the higher 

heat loss, accounts for the lower particle outlet temperatures of the PoC set-up. 
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Comparing the thermal efficiencies, it is found that the industrial system performs about 25 % 

better than bench-scale 2D-HX. When correcting for the heat loss, the difference is around 20 

%. The temperature differences between gas and particles after heat exchange in a given stage 

are similar in the two preheaters. Both processes are limited by insufficient mixing or time for 

full heat exchange. Note that despite the residence time in the riser ducts of the cyclone 

preheaters is around 200 ms – 400 ms, this time is insufficient due to the large amount of 

particles that needs to be entrained, mixed and then heat exchange. The amounts handled in the 

2D-HX are significantly lower, so is the residence time, 80 – 140 ms. 

The measured pressure drop data is closely related to the actual set-up, and a comparison 

between the industrial cyclone preheater and the 2D-HX is not relevant, why it has been omitted 

from Table 26. The pressure drops will at a later point be used for estimating large-scale facility 

performance. 

7.7 Summary 

The thermal performance of the 2D-HX has been investigated using the PoC set-up. Results 

from experiments with conditions similar to the industrial process confirmed that stable 

operation is possible. In experiments PoC #1 – #5 the particles were heated to above 500 °C in 

four heat exchange steps with a gas at inlet temperatures between 707 and 790 °C. Thermal 

efficiencies between 0.08 and 0.50 were measured, while heat loss was estimated to 18 % to 20 

% of the available energy for the high temperature experiments.  

The comparison of heat loss-corrected thermal efficiencies for the 2D-HX and corresponding 

data for the industrial preheater showed that the industrial process thermally performs around 20 

% better, mostly caused by lower dust loss.  

The heat exchange process in 2D-HX was found to take place in the transport channel. 

The hot experiments revealed several issues, which might be of interest: (a) Particle flowability 

deteriorates at temperatures above 500 °C, (b) deposits build up internally where gas velocities 

are low, (c) manual operation of the system induces disturbances, and (d) batch-wise collection 

and feeding of particles limits continuous operation on the PoC set-up time to 1 – 3 hours. 

During disassembling and reconfiguration of the set-up soft and easily removed build-ups were 

observed.  
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The deteriorating particle flowability was confirmed in a separated investigation, using a 

monoaxial shear tester. 

Temperatures were high enough for impurities in the raw meal feed to ignite, possibly affecting 

temperature and gas composition. The consequences of this have not been investigated. 

The pressure drops were measured to 4 – 8 mbar for a four stage system. Without particles, the 

pressure drops were in the range of 1 – 2 mbar for a four stage systems. The friction created by 

the particles thus contributed with the major part of the pressure drop. The pressure drops were 

not compared to the industrial cyclone preheater, as the parameters are not comparable due to 

differences in production capacity. 
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Chapter 8  

Modeling of 2D-HX 
 

“Everything must be made as simple as possible. But not simpler” 

– Albert Einstein, German theoretical physicist 

 

To predict the performance of the 2D-HX concept at conditions different from the experimental 

settings, and the capacity of full-scale facilities, a model describing mass and energy flows is 

required. Similar to the model for the cyclone preheater described in Chapter 3, the 2D-HX 

model will be founded on energy and mass balances, while additional mathematical descriptions 

of the two internal processes, entrainment and separation, are needed to describe system 

behavior.  

The pressure drop will also be included, as it is a major comparison parameter describing 

preheater performance. 

In this chapter, a model describing the 2D-HX will be set up. To illustrate the validity of the 

model, computed results will be compared with experimentally obtained data. 

8.1 Modeling of the Internal Processes 

The development of models describing the internal processes is based on the experimental data 

and observations presented in Chapter 6. The turbulent and pulsating behavior of the gas and 

particle flows, and the uncertainty related to the measured data do not allow detailed 

mechanistic models that consider individual particles and local gas flow patterns, why macro 

models, depending on geometry and process conditions, are desired. Generic models for this 

type of processes are not available in literature, but the likeness between the 2D-HX and both 

cyclones and pneumatic transport systems provides inspiration for the model set up.  
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8.1.1 Separation Process 

The separation mechanism was in Chapter 6 found to depend on the gas velocity, while 

influence from the solid load could not be directly identified. Yet evidence of solid load 

influencing separation was found, and as literature describing particle-gas separators often 

reports of solid load having an effect on separation [20,120], solid load will be included in the 

modeling of the separation process. 

To illustrate the considerations regarding modeling the separation process, three models will be 

presented and evaluated according to their capabilities of describing the measured data, and 

dependencies of operational and geometric parameters. The models are based on different 

particle-related phenomena. 

Model #1: Froude number 

In literature describing processes where the particle-gas interaction is influenced gravity the 

Froude number, Fr, is often encountered [34,120–122]. The Froude number is the ratio between 

inertia of a body, and the gravitational forces on the same body. 

2
GFr

g L
υ

=
⋅

 Eq. 37 

where g is gravitational acceleration, νG is gas velocity and L is the characteristic length of the 

considered system. Applying the dimension of the separation chamber and the gas velocity, 

νG,Sep: 

0.18SepL m=  Eq. 38 
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0.05
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G ep Channel Channel
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L m
L m

ν ν ν= ⋅ = ⋅  Eq. 39 

Plotting the measured separation efficiencies against the Froude number divided by the solid 

load is shown Figure 96. A decreasing trend is observed, which can be approximated by an 

exponential function that has the correct limiting behavior. 

The exponential model is given as: 

1expSep
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Frk
c

η
 
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 Eq. 40 
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where k1 is a fitting parameter, equal of 0.164. The fit of the model is illustrated in Figure 97. 

The majority of the computed data points fits the measured within 10 %, and only one data 

point is represented with more than 25 % deviation.  

  

Figure 96 – Measured separation efficiencies depicted 

against Fr/co. An exponential declining function has been 

fitted to data. 

Figure 97 – Measured separation efficiencies depicted 

against computed (ηSep = exp(-0.164· Fr/co)). Deviations of 

10 and 25 % are shown. 

 

Model #2: Pneumatic transport analog 

Model #2 assumes that the gas and particle behavior in the separation chamber behaves similar 

to a horizontal pneumatic transport pipe, enabling the saltation velocity to be computed. The 

saltation velocity is the gas velocity where particles start to leave the gas flow and deposit on 

the bottom of a pipe [120]: 
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Eq. 42 

ṁp,Sal is the mass flow of particles entering the separation process, ρG is the gas density, A is the 

cross sectional area, and dp is the mean particle diameter. To transform the computed saltation 

velocity to a separation efficiency, an efficiency expression, with desirable limiting behavior 

from the cyclone theory, is modified and applied: 

y = e-0.151x 
R² = 0.8719 
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 Eq. 43 

To compensate for the geometry and process being different from a pneumatic transport pipe, 

the saltation velocity is corrected by a constant, k2. The exponent m is the slope of the efficiency 

curve. At k2 = 0.44 and m2 = 4, the data points are represented as illustrated in Figure 98. As k2 

< 1 the actual saltation velocity is lower than in a pneumatic transport pipe as expected. 

Reasonable accuracy is achieved and data is represented with less than 25 % deviation.  

Model #3 – Accelerated settling  

Assuming that in the separation chamber, the gas flows in a band with a similar width as the 

transport channel, and that the particles that leave this band of fast flowing gas are separated, it 

is possible to utilize the vertical settling velocity of the particles to obtain an expression for the 

separation. The relation between the length travelled by the particles, and the width of the 

transport channel is given as: 
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 Eq. 44 

Thus, particles which travelled a distance equal to the half the width of the transport channel 

have a 50 % chance of being separated. The distance travelled, LV, is found from the residence 

time, τ, and vertical velocity, νv: 

V VL vτ= ⋅  Eq. 45 

The vertical velocity, νv can be described by Stokes law of settling particles at low (<1) particle 

Reynolds numbers: 

( )4
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⋅ ⋅
 Eq. 46 

where fp is the friction factor, normally determined graphically from the particle sphericity and 

Rep [35]. In Chapter 6, it was observed that the settling velocities of the particles exceeded the 

theoretical terminal velocity of single particles due to the formation of particle strands. In these 

strands, the average particle has a lower friction factor than a single particle, resulting in higher 
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velocities. The effective particle friction can be found by fitting the model to the measured data. 

The computed efficiencies are shown in Figure 99.  

 

  

Figure 98 – Measured separation efficiencies depicted 

against computed (Model #2). Deviations of 10 and 25 % 

are shown. 

Figure 99 – Measured separation efficiencies depicted 

against computed (Model #3). Deviations of 10 and 25 % 

are shown. 

 

The effective friction factor, fp,eff, is determined to 3.9, which is approximately four to five times 

lower than for single particles in an empty fluid at similar Reynolds number. The effective 

friction factor may also cover over a downward moving gas flow in the particle strand, induced 

by the particles. The resulting terminal velocity is around 0.30 m/s, which is in the same order 

of magnitude as the observed particle velocities. The exponent, m3, in the efficiency expression 

is found to 3. 

Discussion 

In the modeling work, several approaches, besides the ones presented here, have been 

investigated, including models based on the critical load limit, as suggested by Muschelknautz 

[27] or Wang et al. [123]. These models performed in terms of fit and parameter dependencies 

poorer than the models presented here. Considering the separation chamber as a settling tank 

yielded even poorer results.  
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The models have varying degrees of theoretical foundation, all contain experimentally fitted 

constants, consider gravity as the driving force, and the inertia of the gas as the counteracting 

force. The separation models are compared in Table 27.  

 

Table 27 – Summary of separation process Models #1 – #3. 

 Model #1 – Froude no. Model #2 – Pneu. Trans. Model #3 – Acc. Settling 

Fitting parameters k1 = 0.12 k2 = 0.44, m2 =4 fp,eff = 3.9, m3 = 3 

Sum of errorsA 0.14 0.15 0.15 

Parameters νG, LSep and co νG, LSep, co, dp
 and ρgas νG, LSep, dp, ρG and LChannel 

Major assumptions Separation process can be 

described by Froude number 

System is analogous to 

pneumatic transport systems 

Particles move as a single 

particles with reduced friction 

Li
m

iti
ng

 b
eh

av
io

r 

νG νG → ∞: ηSep → 0 

νG → 0: ηSep → 1 

νG → ∞: ηSep → 0 

νG → 0: ηSep → 1 

νG → ∞: ηSep → 0 

νG → 0: ηSep → 1 

LSep LSep → ∞: ηSep → 0 

LSep → 0: ηSep → 1 

LSep → ∞: ηSep → 1 

LSep → 0: ηSep → 0 

LSep → ∞: ηSep → 1 

LSep → 0: ηSep → 0 

co co → ∞: ηSep → 1 

co → 0: ηSep → 0 

co → ∞: ηSep → 1 

co → 0: ηSep → 0 

- 

dp - dp→ ∞: ηSep → 1 

dp → 0: ηSep → 0 

dp→ ∞: ηSep → 1 

dp → 0: ηSep → 0 

ρG - ρG → ∞: ηSep → 0 

ρG → 0: ηSep → 1 

ρG → ∞: ηSep → 0 

ρG → 0: ηSep → 1 

Lchannel - - Lchannel → ∞: ηSep → 0 

Lchannel → 0: ηSep → 1 
     

A ( )2

Measured computedSoE η η= −  

 

Overall, the models show similar limiting behavior and accuracy. From a process modeling 

point of view, Model #3 is less interesting, as it does not consider the effect of the solid load. 

Model #1 has a slightly better fit than Model #2, while Model #2 includes on the gas density, 

which is expected to be significant when modeling systems at temperatures different from 

ambient.  

Due to the accuracy and the origin in pneumatic transport regimes, which legitimates the 

parameter dependencies, Model #2 will be applied to illustrate the methodology of the model 

implementation and solution in the following. Principally Model #1 and #3 might have served 

equally well.  
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8.1.2 Entrainment 

Two models for the entrainment process will be suggested, and the better model identified. To 

reduce confusion, the models of the entrainment process will be named models #4 and #5.  

According to the findings of Chapter 6, the entrainment process depends solely on the gas 

velocities in the entrainment area. 

Model #4: Pneumatic transport analog 

Similar to Model #2, the system is considered as a pneumatic transport system, and assuming 

that the particle pickup velocity can be used to describe the entrainment of particles, a model 

can be set up [120]: 

0 25 0 75
0 1750 0428

. .
. Ent P

Pickup P,Pickup
P

LFr . Re
d

ρ
ρ

   
= ⋅ ⋅ ⋅ ⇒   

  
 Eq. 47 

0.250.175 0.75

0.0428Pickup Ent Pickup Ent P

PP

L L
dg d

υ ρ ν ρ
µ ρ

⋅ ⋅     
= ⋅ ⋅ ⋅ ⇒    ⋅       

Eq. 48 

( )

1
0.250.175 0.75 0.825

0.50.0428 Ent Ent P
Pickup P

P

L L g d
d

ρ ρυ
µ ρ

  ⋅    = ⋅ ⋅ ⋅ ⋅ ⋅            

Eq. 49 

where νPickup
 is the velocity where particles are entrained from a horizontal surface. ReP,Pickup is 

the particle Reynolds number at the pickup velocity. In the entrainment area LEnt = 0.05 m, and 

the gas velocity is equal the characteristic gas velocity. 

The pickup velocity is combined with an efficiency expression and a constant, k4: 

( )

( )

4

4

4

4

1

m

gas

Pickup
Ent m

gas

Pickup

k

k

υ
υ

η
υ

υ

 
  ⋅ =
 

+   ⋅ 

 Eq. 50 

The predicted results are shown in Figure 100 and Figure 101. The parameters have been 

estimated to m4 = 4 and k4 = 2.57. As k4>1, the gas velocity needed to entrain the particle is 

larger than the gas velocity needed to suspend particles from the walls of horizontal transport 

pipes. This is caused by the particles shadowing each other from the gas flow, and by the 

particles having downward inertia at the feeding point to the gas. The geometry of the 
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entrainment area is important for the entrainment process, why the factor k4 most likely is highly 

geometry dependent. 

 

  

Figure 100 – Measured and computed entrainment 

efficiencies (Model #4) depicted as a function of gas 

velocity in the transport channel.  

Figure 101 – Computed entrainment efficiencies (Model 

#4) depicted against the measured entrainment 

efficiencies. Deviations of 10 and 25 % are shown. 

 

Generally, the entrainment efficiency is reasonable represented, but the model underestimates 

the majority of the data sets at entrainment efficiencies close to one. This is caused by the model 

not being capable of predicting the sharp rise to full entrainment around νG = 4 m/s. The 

computed trend, shown in Figure 100, appears reasonable, compared to the experimental data. 

Model #5: Force balance 

Applying a similar approach as in Model #3, using Stokes law, as stated in Eq. 46, to describe 

the vertical velocity of the particles in the entrainment area, while fitting an effective friction 

coefficient, yields an applicable model of the entrainment. The applied efficiency expression is 

different from that of Model #3 due to the direction of the gas flows. 

5
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 Eq. 51 
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The friction factor, fp,eff is found to be 0.04, approximately 200 – 300 times lower than expected 

for a single settling sphere. The computed results are shown in Figure 102 and Figure 103. 

 

  

Figure 102 – Measured and computed entrainment 

efficiencies (Model #5) depicted as a function of gas 

velocity in the transport channel.  

Figure 103 – Computed entrainment efficiencies 

depicted against the measured entrainment efficiencies 

using Model #5. Deviations of 10 and 25 % are shown. 

 

Similar to Model #4, the sharp rise of entrainment efficiencies is difficulty described by model 

#5. Both trend, Figure 102, and fit, Figure 103, appear reasonable. Deviations of up to 30 % 

have been found. 

Discussion 

For the entrainment, it has not been possible to identify a model of similar simplicity as Model 

#1, as the sharp rise of the entrainment efficiency at velocities at 3 – 4 m/s is difficulty modeled 

by the use of dimensionless groups alone. 

The two models describing the entrainment process are compared in Table 28. 
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Table 28 – Summary of entrainment process models#4 and #5. 

 Model #4 – Pneumatic Transport Model #5 – Force balance 

Fitting parameters k4 = 2.57, m4 =4 fp,eff = 0.04, m4 = 4 

Sum of errorsA 0.22 0.21 

Dependence of νG, lsystem, dp , ρG and μ νG, dp and ρG  

Major assumptions 
System is analogous to pneumatic transport 

systems 

Particles move as a single particles with 

reduced friction 

Li
m

iti
ng

 b
eh

av
io

r 

νG 
νG → ∞: ηEnt → 1 

νG → 0: ηEnt → 0 

νG → ∞: ηEnt → 1 

νG → 0: ηEnt → 0 

lsystem 
lsystem → ∞: ηEnt → 0 

lsystem → 0: ηEnt → 1 
- 

ρG 
ρG → ∞: ηEnt → 1 

ρG → 0: ηEnt → 0 

ρG → ∞: ηEnt → 1 

ρG → 0: ηEnt → 0 

dp 
dp→ ∞: ηEnt → 0 

dp → 0: ηEnt → 1 

dp→ ∞: ηEnt → 0 

dp → 0: ηEnt → 1 

μ 
μ → ∞: ηEnt → 1 

μ → 0: ηEnt → 0 
- 

   

A ( )2

Measured computedSoE η η= −  

 

When comparing Model #4 and #5, two aspects are of identified: (a) The temperature 

dependence of Model #4 is expected to be better than Model #5 as both fluid density and 

viscosity is present. Both parameters of importance for evaluating drag and lift forces on an 

object. Secondly (b), the models predict the entrainment with similar precision and identical 

efficiency parameters, m4 and m5. 

As accuracies are similar, Model #4 is selected for modeling of the 2D-HX due to the 

relationship with the chosen separation model and the dependencies of several parameters, 

reported by literature, to be significant for drag and lift forces on particles [35,124].  

8.2 Pressure Drop 

Modeling of the pressure drop is not directly relevant for establishment of the 2D-HX model, 

but from a process evaluation and comparison point of view, the pressure drop is of interest. 

Two approaches for modeling the pressure drop will be described; a (a) pneumatic transport 

analog and (b) CFD simulation.  

The numeration of the models will be continued from the previous sections to avoid confusion. 
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Model #6: Pneumatic transport analog 

Rhodes [120] describes a method for determining the pressure drop in a pneumatic transport 

system founded on a momentum balance. The overall pressure drop can be attributed pressure 

drop generated by friction, acceleration and elevation for both gas and particles: 

( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,

1 2 3 4 5 6
Stage G Fric G Acc G Elv P Fric P Acc P ElvP P P P P P P∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆  Eq. 52 

which can be approximated by: 

( ) ( )

( )
( ) ( )

( )

( )

( )

, ,sin

sin

P PG G
Stage W P P W G

G

P F L L g F L

L g

ρ ε νρ ε ν
ρ ε θ

ρ ε θ

⋅ − ⋅⋅ ⋅
∆ = ⋅ + + ⋅ − ⋅ ⋅ ⋅ + ⋅ +

+ ⋅ ⋅ ⋅ ⋅

22

31 4
2 5

6

1
1

2 2  Eq. 53 

where FW,G and FW,P is the wall friction force between gas, particles and wall, respectively, ε is 

the void fraction, θ is the angle of the pipe section, while L is the length. The numbers in 

parentheses identifies the terms from Eq. 52 to Eq. 53 

It is assumed that the gas pathway can be approximated by series of pipe sections, as illustrated 

in Figure 104, while the particle pathway is simply assumed to consist of a horizontal and 

vertical transport, as shown in Figure 105. Upon reaching the separation chamber, the particles 

are assumed to not influence the pressure drop. 

 

  

 

Figure 104 – Approximated gas pathway in a single stage 

of the 2D-HX.

 

Figure 105 – Approximated particle pathway in a 

single stage

 
 

Approximated gas pathway

Actual pathway

Approximated pathway
0.1 m

0.4 m 0.42 m
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The evaluation of the Model #6, Eq. 53, is described in Appendix D, where also it is shown that 

the resistance in the gas pathway is equivalent to 110 m of pipe with D = 0.1 m. The results of 

the pressure drop computations are given in Figure 106. 

Model #6 over predicts the pressure drop by up to 200 %, while absolute deviations are less 

than 2 mbar. The gas friction term (term 1 in Eq. 52), is responsible for between 60 % and 80 % 

of the computed pressure drop, indicating that the equivalent pipe length has possibly been 

estimated too high. The particle friction term (term 4) contributes with between 10 % and 30 % 

of the total pressure drop. The model will not be attempted improved as the measurements of 

the pressure drop are related to large deviations and uncertainties. Especially the fluctuation of 

the measured pressures induces large uncertainties, and the occasional blockage of pressure 

transmission lines reduces usability of the data. The results of this model should be used with 

additional caution, yet the computed results indicate the order of magnitude of the pressure drop 

correctly. 

 

Figure 106 – Comparison of measured and computed pressure (Model #6). Deviations of 25 % and 50 % are 

indicated. 

 

Model #7: CFD simulation 

The CFD model used to investigate the internal flow patterns, described in Chapter 6, can also 

be used to determine the pressure drop of the system when no particles present. The pressure 

difference over a stage is obtained as the difference between the absolute pressures at the 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Co
m

pu
te

d 
pr

es
su

re
 d

ro
p 

[m
ba

r]

Measured pressure drop [mbar]

Data

Centre line

25 % deviation

50 % deviation

 
146 
 



 
Chapter 8 – Modeling of 2D-HX 

 

entrance and the exit of a stage in an isothermal system, as illustrated in Figure 107. As 

isothermal conditions are assumed, the pressure drops over all stages are identical. The 

temperature is set to the average temperature of the system. 

The deviation between the measured and computed pressure drops are up to 60 %, while the 

absolute deviations are below 0.35 mbar.  

 

 
 

Figure 107 – Velocity profile for 

PoC#1 with indications of 

measurement points for pressure. 

Figure 108 – Comparison of measured and computed pressure drops for pure gas 

flows (Model #7). Deviations of 25 % and 50 % are indicated.  

 

Discussion 

The order of magnitude of the pressure drop over a single stage can be approximated by both a 

pneumatic transport model (Model #6) and a CFD model (Model #7) with absolute deviations 

of less than 2 mbar. The CFD model predicts more accurately the particle free pressure drop, but 

cannot account for any significant amount of particles.  

An analysis of the pressure loss computations shows that the friction of the gas and the friction 

of the particles are the major contributors to the pressure loss, contribution with more than 90 % 

of the total pressure. The acceleration and elevation terms are in comparison neglectable. 
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For the modeling of the 2D-HX, the pneumatic transport model, Model #6, will be used, as this 

model is capable of predicting the pressure drop of the system with particles, which is a cardinal 

point. Furthermore, Model #6 can be incorporated in the model of the 2D-HX, which is not an 

option with the CFD computations. Upon implementation, Model #6 will be simplified by 

neglecting the acceleration and elevation terms. Uncertainties, in same order of magnitude as 

the computed pressure drops, must be expected.  

8.3 Modeling of 2D-HX 

A model covering the 2D-HX is set up and described in the following. An outline of the 

relevant internal gas and particle flows, assumptions, and solution procedure is given, before the 

model and estimated parameters are verified against experientially obtained data.  

8.3.1 Mass and Energy Balances 

The mass and energy balances represent the flows and internal processes in the 2D-HX. An 

illustration of the considered flows and sub-stage processes in a given stage is provided in 

Figure 109. 

 

  

Figure 109 – Drawing of the simulated particle flows and processes in a single stage. Gas flow is not depicted. 

 

Three processes are considered: (a) The freeboard, (b) the vertical channel, and (c) the particle 

bed. The gas, not depicted in Figure 109, flows up through the vertical channel, below the 

particle bed, into the freeboard, and out through the vertical channel, etc. Schematically, the 

particle flows depicted in Figure 109, translates to the box diagram shown in Figure 110. 
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The major heat exchange is assumed to take place in the freeboard, wherefrom the particles are 

directed to either the particle bed or the dust flow. Secondary heat exchange processes are 

assumed to take place in both the vertical channel and the particle bed. In the vertical channel, 

the mass flows of the entering particles steams are assumed constant. The heat loss is assumed 

to only affect the freeboard. 

 

 

Figure 110 – Stage boundary and internal processes considered in the 2D-HX model. 

 

The entrainment efficiency used to determine the flows ṁP,NE,i and ṁP,Ent,i are dictated by the 

flows and temperatures entering from the vertical channel of stage i+2. Combining the 

individual stages yields a model covering the entire system, as shown in Figure 111 for a system 

with of N stages. 
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Figure 111 – Schematic overview of mass and energy balances for the 2D-HX concept. 

 

The feed stage shown in Figure 111 is not a heat exchange stage, why it has not been 

numerated. The feed stage is the top chamber, into which the particles are fed. The major 

difference between the modelling of the cyclone preheater and the 2D-HX is that the streams 

ṁP,NE skips a stage, thus these streams experience fewer heat exchange steps than the ṁP,Ent 

streams.  

The implemented mass and energy balance equations can be found in Appendix E. 
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8.3.2 Assumptions 

The following assumptions are made to simplify the model: 

− The system is in steady stage. 

− Heat exchange takes place in the freeboard, the vertical channel, and the 

particle bed. 

− Each stage sub-process is considered isothermal and the heat exchange is 

instant. 

− The flows ṁP,Dust and ṁP,NE only exchanges heat in the vertical channel. 

− The gas stream is constant, neglecting calcination and false air. 

− Heat capacity of gas and particles are independent of temperature. The used 

values are: CP,P = 900 J/kg/K and CP,G
 = 1071 J/kg/K. 

− The heat loss is described as a linear function of the stage temperatures, as 

derived in Chapter 7. The slope of the linear function is kheat. 

 

8.3.3 Solution Method 

The mass and energy balances and entrainment and separation models have been implemented 

in MatLab. The computational algorithm is depicted in Figure 112. The solution procedure is 

iterative with two nested loops computing mass flows and temperatures.  

The main script, main2DHX.m, contains the energy and mass balances, while the entrainment 

and separation models are constructed as functions, n_S.m and n_E.m, requiring gas velocities, 

geometry and particle properties as input. The input to the model, including experimental data, 

is given in a separate input file. 

As seen in Figure 111, top and bottom stages are different from the middle stages in terms of 

mass flows. In the model, they are computed similar to the middle stages, but irrelevant streams 

are set to zero, why generic expressions can be used for all stages but the feed stage, which has 

been specified separately. Details on the implementation in MatLab can be found in Appendix 

E. 
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Figure 112 – Algorithm for the 2D-HX model.  

 

8.3.4 Verification 

To verify the model applicability, modeled results have been compared with experimental data. 

Two comparison parameters are used: (a) The dust fraction, given as the amount of dust leaving 

the system divided by the particle feed, and (b) the temperatures measured at each stage and at 

the gas outlet. The model contains four empirically fitted parameters: (a) k2, relevant for the 

separation process, (b) k4, relevant for the entrainment process, (c) kheat, relevant for the heat 

loss, and (d) m = m2 = m4, the slope of the efficiency curve. These parameters have in section 

8.1 – Modeling of the Internal Processes and Chapter 6 been determined to k2 = 0.44, k4 = 2.57, 

kheat = 2.6·10-4 °C-1, and m = 4, respectively.  

A comparison between the predicted performance and measured values from the PoC set-up 

experiments P3#9 – #35 and PoC #6 and #7 are given in Figure 113 and Figure 114. 

Experiments PoC#6 and #7 are carried out at elevated temperatures, while the data remaining 

data is obtained at ambient temperatures. Therefore, when comparing the estimated and 

computed temperatures, only four data points are available.  
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Figure 113 – Comparison between measured and 

computed dust fractions for PoC single stage 

experiments. k2 = 0.44, k4 = 2.09 and kheat = 2.6·10-4 °C-

1. 

Figure 114 – Comparison between measured and 

computed temperatures for PoC single stage 

experiments. k2 = 0.44, k4 = 2.09 and kheat = 2.6·10-4 °C-

1. 

 

The model is capable of predicting the majority of the measured dust fractions with less than 25 

% deviation and absolute deviations below 0.10. The temperatures are predicted up to 70 °C too 

low. Considering the uncertainty of the original data, the model performs acceptably.  

The results of applying the model to the PoC experiments with four stages, PoC #1 – #5, are 

provided in Figure 115 and Figure 116. 

The major difference between the PoC single stage and PoC four stage experiments are, besides 

the number of stages, the temperature range. The poor fit, illustrated in Figure 115 and Figure 

116, indicates that either the temperature dependence of the internal processes is wrongly 

represented, or that the individual stages in the four stage set-up do not behave similar to set-up 

containing only a single stage.  
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Figure 115 – Comparison between measured and 

computed dust fractions for four stage experiments. k2 = 

0.44, k4 = 2.09 and kheat = 2.6·10-4 °C-1. 

Figure 116 – Comparison between measured and 

computed temperatures for four stage experiments. k2 = 

0.44, k4 = 2.09 and kheat = 2.6·10-4 °C-1. 

 

To better represent the multi stage behavior, the empirical fitted parameters k2, k4, and kHeat, have 

been adjusted to optimize the model performance, using the MatLab function fminsearchbnd.m. 

The cost-function, needed for the optimization, contains the average temperature deviation, 

average dust fraction deviation, and a penalty for low values of k4. Each term is weighted in 

order for the gradients to be approximately of similar order of magnitude. The penalty is 

necessary to ensure the physical resemblances of the resulting optimized parameters. The cost 

function is given by Eq. 54 

( )
4

1 1
4, 4,

T Dn n

Meas Com Meas Com
i i

T D original opt k
T D

T T D D
Cost w w k k w

n n
= =

− −
= ⋅ + ⋅ + − ⋅
∑ ∑

 Eq. 54 

where n is the number of data points for temperature and dust fractions, while wT, wD wk4 are 

weights used to ensure equal weighting of the gradients of each. Here wT = 1, wD = 500 and wk4 

= 5 is used. The resulting optimized parameters are: k2 = 0.29, k4 = 1.52 and kheat = 1.5·10-4 °C-1.  

The optimized parameters indicate that the separation process is performing poorer than 

expected, while the entrainment process performs better. The heat loss parameter is found to be 

significantly lower than initially expected. The resulting data is plotted in Figure 117 and Figure 

118. The model, using the optimized parameters, is capable of predicting the dust fractions with 

up to 30 % deviation and absolute deviations below 0.1, while deviations for the temperatures 
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are up to 80°C. Comparing the fit of the model using the optimized parameters and the original 

values, significant improvements have been achieved, especially in the prediction of the dust 

fraction. 

 

  

Figure 117 – Comparison between measured and 

computed dust fractions for four stage experiments. K2 = 

0.29, k4 = 1.52 and kheat = 1.5·10-4 °C-1. 

Figure 118 – Comparison between measured and 

computed temperatures for four stage experiments. K2 = 

0.29, k4 = 1.52 and kheat = 1.5·10-4 °C-1. 

 

Besides being capable of predicting the system behavior, the 2D-HX model can be used to gain 

information on the internal processes, especially the transport efficiency, which is a major 

comparison parameter for cement plant preheaters. Furthermore, the transport efficiency can be 

used to ensure that the system performance using the optimized parameters is reasonable.  

Transport efficiencies for the top stage of a four stage cold system (TIn
 = 20 °C) and a hot 

system (TIn
 = 790 °C) have been computed as a function of the characteristic velocity, using 

both the original and the optimized parameter sets. The results are shown in Figure 119.  
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Figure 119 – Computed top stage transport efficiencies for a N = 4 system using both original and optimized 

empirical parameters. Particle feed rate is set to 0.028 kg/s and gas feed rate is varied between 2.8·10-3 and 0.13 kg/s.  

 

The transport efficiencies computed using the optimized parameters resemble the data computed 

with the original parameters in trends, but with the optima shifted toward lower gas velocities, 

still indicating that the optimized parameters yields reasonable values for the transport 

efficiencies. 

Furthermore, the difference between the two data series, suggests that either the empiric values 

have a temperature dependence, or more likely that the developed models lacks some 

temperature dependency.  

The model is intended to model high temperature processes, why the optimized parameters will 

be used. 

8.4 Summary 

From the experimental data obtained on the PoC set-up with a single stage, the entrainment and 

separation processes were modeled. Several models for each process have been proposed and 

evaluated. The chosen model considers the system as a pneumatic transport and combines 

velocity expressions with a cyclone efficiency expression, thereby yielding a satisfactory 
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mathematical description. Both the entrainment and the separation models contained a 

correction factor and an efficiency parameter, all empirically fitted. The values were found to k2 

= 0.44, k4 = 2.57. The constant used for heat loss, as described in Chapter 7, was found to kheat = 

2.6·10-4 °C-1. 

Combining the models of the entrainment and separation processes, the heat loss estimation, and 

energy and mass balances for the individual stages, resulted in a model describing the entire set-

up. The model have been implemented and solved in MatLab, and the results verified against 

the experimentally obtained data. The model fitted well the dust fraction and temperatures 

measured on PoC single stage experiments. Deviation for the dust fractions were less than 25 % 

with absolute deviations below 0.10. The representation of PoC experiments with four stages 

was poor with deviations in the order to 200% - 400 % for the dust fractions.  

Parameters optimized to fit experimental data, k2 = 0.29, k4 = 1.52 and kheat = 1.5·10-4 °C-1, 

resulted in an improved model fit, with deviations lower than 80 °C for the temperatures and 0.1 

for the dust fractions. The optimized parameters indicated higher entrainment, lower separation 

and heat loss in the four stage configuration, compared to system with a single stage.  

Transport efficiencies computed using the optimized parameters were found to lie within the 

expected range, and with reasonable gas velocity dependence, thereby confirming the model 

yielded physical realistic results.  

The difference in behavior between the experiments with a single stage and four stages could be 

related to the absence of a particle bed in the bottom stage and dust in the fed gas flow. Another 

reason might be that the temperature dependence of the internal processes was not properly 

represented in the model.  

A model of the pressure drop has also been developed: Considering a stage as a pneumatic 

transport system consisting of a series of bends and pipe sections yielded values in similar order 

of magnitude as the measured data. The model was not capable of precisely predicting the 

pressure drop. A CFD model performed better, predicting only gas flows. 

Generally, an exact fit between model and data have not be expected due to the uncertainty of 

the data, including deviations from stable operation. Despite this, the developed models predict 

performance reasonable. 

The developed model will be used to predict the performance of 2D-HX systems during 

upscaling and optimization. These topics are covered in Chapters 9 and 10. 
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Chapter 9  

Determination of Upscaling Principle 
 

”Scale-up is still not an exact science, but is rather that mix of physics, mathematics, witchcraft, 

history, and common sense that we call engineering”  

– J. M. Matsen, engineer and researcher 

 

To evaluate the operation characteristics of an industrial-scale 2D-HX facility, and thereby the 

commercial potential of the 2D-HX design, upscaling from the bench-scale experiments is 

necessary. The 2D-HX model, developed and verified in Chapter 8, principally describes a 

system of any size and could be used for scaling purposes. However, the model contains fitted 

elements, and has not been verified against data from equipment of other sizes than the PoC set-

up, and using the model for scaling can be questionable. Another method to gain insight in the 

performance of the full-scale facility is to apply classic upscaling theory, thereby generating a 

basis for validation of the model performance. 

In the following an introduction to classic upscaling strategies is provided. To uncover the 

scaling parameters relevant for the 2D-HX, inspiration from upscaling of systems with particle-

gas interaction, such as fluidized and spouted beds will be considered. The identified scaling 

parameters will be evaluated, and the resulting equipment dimensions and performance 

presented. The results will be compared with data obtained from the model. 

A thorough study of the full-scale performance of the 2D-HX can be found in Chapter 10, while 

in present chapter, only the upscaling principles are determined. 

9.1 Upscaling Strategies 

Scaling-up equipment from laboratory-scale is necessary for any chemical production at 

industrial-scale. A typical upscaling pathway includes, according to Knowlton et al. [125], who 

developed a roadmap for scale-up of fluidized beds; (a) Selection of appropriate operation 
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regime in the reactor, (b) construction of a continuous pilot plant, (c) construction of 

demonstration plant, and finally (d) construction of commercial plant. 

As stated by Knowlton et al., a typical upscaling strategy involves several intermediate steps 

between lab- and full-scale, including testing in bench- and pilot-scale facilities, before 

designing the commercial-scale facility.  

An overview of the different categories of equipment used in the scale-up procedures of the 

cement industry, as well as standard production rates and scale ratios are provided in Table 29. 

 

Table 29 – Typical scale-up ratios between different equipment categories in the cement industry. 

Equipment category Typical daily production ratesA Scale-up ratios 

Laboratory-scale ~ 1 TPDc 

 

Bench-scale ~ 5 TPDc 

Pilot-scale ~50 TPDc 

Commercial-scale 1000 – 6000 TPDc 

A Bench- and laboratory-scale units normally does not run continuously. The daily 

production rates are theoretically estimated from the production rates during operation. 

 

The total scale ratio between laboratory- and full-scale is typically around 1:1000 – 6000, 

indicating a very large span between the two types of equipment. This range is not rare in 

upscaling problems [126], however. 

Upscaling is not unproblematic as a variety of issues arise from the larger dimensions and 

higher flows in upscaled equipment. Typical issues relate to reduced heat and mass transfer 

rates, incomplete mixing, reduced wall effects, and possibly change of operation regimes. 

Furthermore, impurities in the full-scale raw materials or undesirable local conditions may 

cause unexpected problems. 

A successful scale-up maintains similarity between the two scales of the process in terms of 

dynamic, kinematic, geometric, thermal, and chemical behavior. Scale-up literature, here 

exemplified by processes with a significant gas-solid contact [127–134], is focused on the use of 

dimensionless groups to describe process relevant phenomena. Keeping these groups constant 

during scale-up ensures similarity. Other researchers, such as Datta and Ratnayaka [135], 

1:5

1:10

1:20 – 120
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develop semi-theoretical or empirical correlations for description of process parameters across 

different scales.  

An overview of selected dimensionless scaling parameters presented in literature for a variety of 

particle-gas systems has been collected in Table 30. For a comprehensive comparison of 

fluidized bed scaling parameters, Rüdisüll et al. [134] made a summarizing review. 

Table 30 – Overview of scaling parameters reported in literature for particle-gas systems. The nomenclature of this 

work has been applied, and the dimensionless groups have been standardized. 

Author 
Scaling 

ratio A Unit Scaling parameters 

Weinell [127] 19:1 Circulation 

fluidized bed 

combustor 

2
g

P p P P

L D, , , , ,PSD,geometry
g d d d

ρν
ρ

Φ
⋅

 

Glicksman [128] 

(viscous limit set, 

Re < 4) 

16:1 Fluidized 

bed 

2
p p g

P p

d
, , , ,PSD,geometry

g d
ρ ν ρν

µ ρ
⋅ ⋅

Φ
⋅

 

Glicksman [128] 

(inertial limit set, 

Re > 1000) 

16:1 Fluidized 

bed 

2
g

P p

, , ,PSD,geometry
g d

ρν
ρ

Φ
⋅

 

Glicksman et al. 

[129] (full set) 

256:1 Fluidized 

bed 

3 2

2
p g P g g P

P p p

d g L m, , , , , ,PSD,geometry
g d

ρ ρ ρ ρ νν
ρ µ ρ νµ

⋅ ⋅ ⋅ ⋅ ⋅
Φ

⋅ ⋅


 

Glicksman et al. 

[129] (simplified 

set) 

256:1 Fluidized 

bed 

2
g

P p mf

, , , ,PSD,geometry
g d

ρν ν
ρ ν

Φ
⋅  

He et al. [130] 1:4 Spouted bed 2
g P g

P p P P

d L D, , , , , , , ,PSD,geometry
g d d d

ρ ν ρν φ ε
µ ρ
⋅ ⋅

Φ
⋅  

Béttega et al. [131] 1:16 Spouted bed 2 2
g P g

P p P P

d H D, , , , , , , ,PSD,geometry
g d g D d d

ρ ν ρν ν ε
µ ρ
⋅ ⋅

Φ
⋅ ⋅  

Du et al. [132] 1:2 Spouted bed 2
p P g

P p P P

d H D, , , , , , , ,PSD,geometry
g d d d

ρ ν ρν φ ε
µ ρ
⋅ ⋅

Φ
⋅

 

Datta and 

Ratnayaka [135] 

1:2 Pneumatic 

conveying 

system 
2

sus EntryK
P

ρ ν⋅ ⋅
∆ =

 

A
 Given as ratios of characteristic areas of scaled equipment

 
Nomenclature: ν = characteristic gas velocity, g = gravitational acceleration, ρ = density, D = characteristic diameter, L 

= characteristic length, dP = mean particle size, Φ = particle sphericity, μ = fluid viscosity, ϕ = internal angle of friction, 

ε = void in bulk, PSD = non dimensional particle size distribution. Index mf = minimum fluidization. 
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Parameters such as the Archimedes number, Ar, Froude number, Fr, Reynolds number for both 

gas and particles, Re and ReP, and Stokes number, Stk, appear frequently. The mentioned 

dimensionless groups and their typical definitions are presented in Table 31. Other parameters 

such as the term geometry and the non-dimensional particle size distribution (PSD) are present 

in all but the last of the given sets of scaling parameters shown in Table 30. The term geometry 

contains non-dimensional parameters describing the geometry of the given unit, e.g. height to 

diameter ratios.  

 

Table 31 – Often encountered dimensionless groups in particle-gas systems. 

Name Symbol Definition 

Archimedes number Ar 
( )p g p gd g ρ ρ ρ

µ

⋅ ⋅ ⋅ −3

2  

Euler number Eu 2
p

p
ν ρ
∆
⋅

 

Froude number Fr 
pg d

ν
⋅

2

 

Reynolds number Re g Dρ ν
µ
⋅ ⋅

 

Reynolds particle number ReP P Pdρ ν
µ
⋅ ⋅

 

Stokes number (Rep<1) Stk 
2

18
p pd

l
ρ ν

µ
⋅ ⋅

⋅ ⋅
 

 

For scaling of fluidized beds, the full parameter set developed by Glicksman et al. leaves few 

degrees of freedom for the design of the scaled fluidized bed, which may result in either 

impractical dimensions of the scaled model or unachievable operation conditions, why the 

simplified parameter set is often applied instead [134,136]. Validation of the scaling parameters 

have reported by several authors, among others [137–139], with varying success. Fitzgerald et 

al. [137] built a 0.4 x 0.4 m scale model of an industrial 1.8 x 1.8 m combustor, considering Rep, 

Fr, L/dp, and the density ratio as scaling parameters. Comparison of full-scale and down-scaled 

model showed similar hydrodynamic behavior, but a statistical analysis showed that coincident 

results could not be confirmed with 95 % statistical significance, however. Nicastro and 
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Glicksman [138] validated the use of the full parameter set with success on a downscaled 

version of a 0.61 x 0.61 m hot combustor. 

The sets of scaling parameters, provided in Table 30, have been obtained by either inspectional 

analysis of the governing equations or by dimensional analysis.  

9.2 Selection of Upscaling Parameters 

In the 2D-HX, the heat exchange efficiency is the major performance parameter, but as 

indicated for the cyclone preheaters in Chapter 3, the transport efficiency dominates the heat 

exchange process, and as shown in Chapters 6 and 7, the separation process is the most critical 

internal process. The separation process will therefore be the focus for the scaling-up procedure. 

Two approaches: Inspectional analysis and dimensional analysis have been applied to identify 

the parameters relevant for scaling of the separation process in the 2D-HX. The analyses are 

provided in Appendix F, while the identified parameters are given in Table 32. The parameter 

sets are homogenized when possible. This is done by combination of the parameters, e.g. 

combining Re and LSep/dp yields a parameter proportional to the Stokes number. LSep is the length 

of the separation chamber, as shown in Figure 120. 

 

Table 32 – Summary of identified scaling parameters. 

Method Scaling parameters as found Scaling parameters homogenized 

Inspectional analysis 
SepG D

p p p

L L,Eu,Re,Fr, ,
d d

ρ
ρ  

G D

p Sep

L, ,Eu,Re,Fr,Stk
L

ρ
ρ

 

Dimensional analysis ( )
0

p G D

G Sep

L, Stk,Re,Fr,Eu,PSD,c
L

ρ ρ

ρ

−
 0

G D

p Sep

L, Eu,Re,Fr,Stk,PSD,c
L

ρ
ρ

 

 

The parameters; Re, Fr, Eu, Stk, and ρg/ρp are found in both analyses, while intuitively important 

parameters such as PSD and c0 has not been identified by the inspectional analysis.  

The Euler number contains the differential pressure of the process, and thereby indirectly the 

dimensions of the equipment. However, as neither a detailed model for neither the pressure nor 

detailed pressure measurements of the separation process are available, Eu is disregarded as 

scaling parameter. 
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The density ratio cannot be applied as scaling parameter, as it depends on the gas temperatures, 

composition and the particle density, and thus not the dimension of the design itself. However, 

the ratio is relevant in order to ensure similar hydrodynamical behavior. The same applies for 

PSD and c0. 

This reduces the list of relevant scaling parameters to: LD/LSep, Re, Fr, and Stk.  

9.3 Parametric Design and Reference Cases 

The selected design parameters contain constrains for the dimension LSep, which is the length of 

the separation chamber, and the ratio LD/LSep. To this point the remaining design has not be 

specified.  

Assuming a geometrically similar system, a parametric design can be constructed from a 

characteristic dimensions, here chosen to be LChannel. All the relevant dimensions and their 

measures in the PoC set-up can be found in Figure 120 and Table 33. 

 

 

Figure 120 – Generic design for intermediate 
stages of the PoC set-up. 

Table 33 – Actual and normal dimensions of PoC set-up. 

Parameter 
Length in 

PoC setup 

Normalized 

length 

LChannel 50 mm 1 

LTransport 160 mm 3.2 

LSep 175 mm 3.5 

HStage 325 mm 6.5 

WStage 450 mm 9 

LD – depth of system, not depicted 

in Figure 120. 

200 mm 4 

 

 

For a given LSep and the desired number of stages, the remaining design can be determined. The 

total height of the system, HTotal is computed as: 

( )1Tot StageH H N= ⋅ +  Eq. 55 

Hstage

LChannel

LChannel

LTransport

LSep

wstage

70º
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The +1 accounts for additional height needed for the top and bottom stages respectively. The 

width of the system is equal to the stage width, Wstage, while the depth of the system can be 

found as: 

P,Tot
D,T ot D

P,Module

m
L L

m
= ⋅





 Eq. 56 

Where ṁP,Total is the total desired production capacity, and ṁP, Module is the production rate of the 

designed module. For more information of the modularity and overall design of the 2D-HX, 

refer to Chapter 4. 

 

Table 34 – Characteristic parameters of the reference cases used for upscaling. 

Parameter P3#32 PoC#2 

Relevant Process and material properties 

Estimated daily production rate 3.2 TPDc 1.5 TPDc 

TIn 20 °C 790 °C 

νChannel
A 4.5 m/s 6.6 m/s 

ρG 1.21 kg/m3 0.33 kg/m3 

LSep 0.18 m 0.18 m 

Scaling parameters 

LD/LSep 1.33 1.33 

PSD Particle size distribution as shown in Chapter 5. 

c0 1.05 1.2 

ReA 1.46·104 2.47·103 

StkA,B 6.99·10-3 4.30·10-3 

FrA
 0.9 2.0 

Process key parameters   

Number of stages, N 1 4 

ηEnt 1.0 C 0.93 D 

ηSep 0.74 C 0.72 D 

Dust loss  0.26 C 0.32 C 

A
 Computed at inlet conditions in the lowest separation chamber. 

B Computed as stated in Table 31. Rep > 1 in all cases. 
C Measured values 
D Average values estimated using the model developed in Chapter 8. 
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When applying classic upscaling theory a reference case is used as a starting point, from where 

the system performance is extrapolated. To illustrate the influence of the reference case, two 

cases have been selected for scale-up. These selections are made to ensure best possible 

performance of the scaled-up system, why high transport efficiency and feed rates are desired. 

The characteristic performance and scaling parameters for the two reference cases are presented 

in Table 34. 

9.4 Screening of Upscaling Parameters 

As the design can be specified from LSep and LD, only two degrees of freedom exist. LD is 

determined by the ratio LD/LSep, leaving a single degree of freedom for determining LSep. 

Therefore only one of the parameters Re, Stk, and Fr can be used. Principally, experiments at a 

different scale should be carried out to determine which of the parameters that represents the 

performance of the scaled process. To identify the influence, if any, of Re, Stk and Fr, 

experiments should be planned to keep one of the parameters constant while varying the other. 

Performing this for each parameter, the scaling parameter or scaling function could be 

identified. This has not been possible due to limitations in time and resources. Instead, an 

analysis will be carried out to evaluate the effect of the different parameters on the upscaled 

design, and a single parameter selected for upscaling purposes. 

To identify the effect of each scaling parameter, vG have been evaluated as function of the 

scaling ratio. The results are given in Figure 121. As temperatures and particle size are 

predetermined, keeping Re constant requires that the term L·νG is kept constant results in a 

hyperbola function, while keeping Stk constant requires the term ν/L constant results in a 

straight line. Constant Froude number requires that νG
2/L is constant, yielding a function of the 

form νG ∝ √(L).  

The gas velocities in the up-scaled systems are much too low in the case of the Reynolds 

number and much too high in the case of the Stokes number. Application of Re and Stk would 

yield either too large and thereby expensive equipment or too high velocities resulting in high 

wear, high pressure drop, and poor separation performance, while the velocities dictated by Fr 

appears reasonable. Furthermore, in Chapter 8, the Froude number appeared to be closely 

related to the performance of the separation process.  
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Figure 121 –Velocity in the lower most transport channel as a function of scaling ratio and different scaling 

parameters, using PoC#2 as reference case. 

 

In short it must be concluded, if the Froude number is not capable of describing the upscaling 

process, the potential of the 2D-HX is naught.  

Thus, the selected scaling parameters related to the design of the 2D-HX are: 

and D

Sep

LFr
L  

while the parameters: 

( )
0

p G

G

,c ,PSD
ρ ρ

ρ

−
 

should be kept constant to ensure similar hydrodynamic behavior.  

To illustrate the effect of different reference cases, a comparison of estimated particle feed rates 

and velocities are given in Figure 122 for up-scaled systems based on PoC#2 and P3#32, 

respectively.  
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Figure 122 – Characteristic gas velocities as a function of particle feed rate for up-scaled equipment using Fr, c0, 

L/LD, and PSD as scaling parameters. Two series representing the two reference cases are shown. 

 

The reference case influences the gas velocity, as shown, but also the transport efficiency, 

particle feed rate, and overall size of the equipment. Comparing the two reference cases, 20 – 30 

% higher gas velocities are expected using PoC#2, resulting in smaller dimensions of the 

equipment. 

9.5 Comparison of Classic and Model-based Upscaling 

To compare the estimations obtained from classic and model-based upscaling, a system with a 

1000 TPD particle feed rate is considered. The classic upscaling process is applied on each of 

the two reference cases. The model-based upscaled system is based on a characteristic length 

equal to the average of the values determined by the classic upscaling process. This forces the 

computed Fr to be in the same range as the values found in the reference cases, and enables a 

comparison of the two methods. Selected parameters for the reference cases and the upscaled 

systems are provided in Table 35. 

Initially, the similarity of the predicted entrainment and separation efficiencies between the 

model-based scale-up and the classic upscaling should be noticed. This indicates that the model-

based scale-up is equally well suited for scaling purposes as the classic scale-up process. 

Furthermore, the model provides a more detailed estimate, as it is capable of predicting 

stagewise efficiencies and temperatures as well as allows optimizations. For these reasons, 

model-based upscaling will be applied to evaluate the full-scale performance of the 2D-HX. 

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000

v c
ha

ra
ct

er
is

tic
 [m

/s
]

Particle feed rate [TPD]

Reference case: PoC#2

Reference case: P3#32

 
168 
 



 
Chapter 9 Determination of Upscaling Principles 

 

The estimated production rates for the upscaled processes are around 50 % of the feed. These 

rates are given as production of clinker, and the low values are caused by dust loss and mass 

loss of CO2, released in the calcination process, which takes place after the preheating process. 

The LOI of raw meal is around 34 %- 38 % [3]. For comparison, the maximum production rate 

possible for a 1000 TPD feed is around 650 TPDc, while a modern cyclone preheater would 

produce up to 616 TPDc.  

The estimated sizes of the upscaled equipment are 20 – 24 meters in height, 6 – 7 meters wide, 

and 3 meters in depth. A detailed analysis of predicted sizes and performances of the 2D-HX 

concept is given in Chapter 10.  

 

Table 35 – Comparison of characteristic parameters for a 1000 TPD particle feed rate system obtained from different 
scaling methods. 

Parameter 
Reference case  Classic upscaling Model-based 

upscaling P3#32 PoC #2  P3#32 PoC #2 

TG,In [°C] 20 790  850 850 850 

ṁP,In [TPD] 4.8 A 2.7 A  1000 1000 1000 

LChannel [m] 0.05 0.05  0.72 0.62 0.67 B 

νChannel [m/s] 4.42 7.9  17 23 20 

N 1 4  4 4 4 

Dimensions 

 (H x W x D) [m] 

0.7 x 0.5 x 0.2 1.6 x 0.5 x 0.2  23.5 x 6.5 x 2.9 20.1 x 5.6 x 2.5 21.8 x 6.0 x 2.7 

ηEnt  1.0 C 0.93 D  1.0 E ≥0.93 E 0.97 F 

ηSep  0.74 C 0.72 D  0.79 0.72 E 0.80 F 

Fr (lowest stage) 0.9 2.0  0.9 2.0 1.41 

Dust loss  0.26 C 0.32 C  0.26G 0.35G 0.11F 

ṁClinker [TPDc] H 2.3 1.0  481 423  578  

A Estimated from production rate during semi-continuous operation.  
B Chosen as the average value of the two lengths found using the classic upscaling approach.  
C Measured values 
D Average values estimated using the model developed in Chapter 8. 
E Assumed to be similar or better than in reference cases due to increased gas velocities. 
F Average values found using the model under upscaled conditions  
G Obtained by simulation assuming constant ηEnt

 and ηSep
 in all stages. 

H
 LOI = 0.35 assumed. 
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9.6 Summary 

Both inspectional and dimensional analyses, based on maintaining the similarity of the 

separation process during upscaling, revealed that ρG/ρp, LD/LSep, Eu, Re, Fr, and Stk were the 

relevant scaling parameters. The dimensional analysis furthermore suggested c0 and PSD as 

important parameters. 

The parametric design of the 2D-HX left only one degree of freedom for determining LSep. A 

screening of Re, Fr, and Stk showed that only Fr produced reasonable gas velocities in the up-

scaled systems.  

For this reason, and as Fr and the separation process were in Chapter 6 found tightly related, Fr 

was chosen as scaling parameter determining LSep. 

The list of chosen scaling parameters has been identified to: 

( )
0

p GD

Sep G

LFr, , ,c ,PSD
L

ρ ρ

ρ

−

 

Principally no guarantee for the performance of the scaled-up equipment can be made when the 

scaling parameter is selected by preference. The choice made here is, from a process 

understanding point of view, reasonable, though.  

A comparison between classic and model-based upscaling showed that the estimations are 

similar, why the model will be applied for upscaling purposes. In the evaluation of the upscaling 

methods, it was found that a four stage 2D-HX preheater, with an clinker production capacity of 

around 400 – 600 TPD would be around 20 – 24 meters in height, 6 – 7 meters wide, and 3 

meters in depth. 
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Chapter 10  

Full-scale Application of the 2D-HX 

Concept 
 

“The science of today is the technology of tomorrow” 

 – Edward Teller, Hungarian theoretical physicist 

 

In this chapter the full-scale characteristics of a raw meal preheater based on the 2D-HX 

concept are evaluated, and compared with corresponding cyclone preheater data. The 2D-HX 

model, developed in Chapter 8 and selected for upscaling purposes in Chapter 9, is used to 

predict the full-scale performance. 

Recalling the scaling principles of the 2D-HX, described in Chapter 4, the scaling is based on 

designing stacks, which consists of a number of stages. The stacks can be combined to increase 

the production capacity to the desired rate, as illustrated for a four stage system in Figure 123. 

 

 
Figure 123 – Upscaling principles of the 2D-HX: Predefined stacks consisting of a number of stages are combined 

horizontally to achieve the desired production rate. 

The capacity of the single stacks influences the characteristics of the full-scale facilities. Stacks 

with particle feed rates of 2000 TPD, 4000 TPD, and 6000 TPD will be evaluated. Besides the 
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full-scale facilities, an estimate for a pilot-scale facility is also generated, providing information 

on a possible next phase in the development of the 2D-HX technology. 

This section also contains suggestions for design improvements and alternative applications for 

a modified 2D-HX. Finally, the identified design and operation related issues are presented. 

10.1 Determination of Operation Conditions 

The 2D-HX model predicts the operational conditions using dimensions, particle-, and gas feed 

rates as input. The model is applied on a range of values for the characteristic length, LChannel. In 

order to determine the best combination of conditions, the resulting performance is analyzed. 

This analysis is described in the following, exemplified by a four stage 2D-HX stack with a 

particle feed rate of 2000 TPD. The parameters applied in the upscaling process are similar to 

the operation conditions of the cyclone preheater and given in Table 36. 

 

Table 36 – Parameters used for prediction of full-scale 2D-HX performance. 

Parameter Symbol Value 

Gas inlet temperature  TG,In 850 °C 

Particle inlet temperature  TP,In 60 °C 

Number of heat exchange stages  N 4 

Particle feed rate  ṁP,Feed 23.1 kg/s / 2000 TPD 

Solid load  c0 1.0 kg/kg 

Particle diameter  dP 12·10-6
 m 

Specific gas heat capacity  CP,G 1071 J/Kg/K 

Specific particle heat capacity  CP,P 900 J/Kg/K 

Absolute pressure  P 98045 PaA 

Loss on ignition LOI 35 % 

LD / LChannel - 4 

LSep / LChannel - 3.5 
A Pressure in the computations assumed constant, equal to the average 
absolute pressure in the preheater. 

 

To identify the optimal value of LChannel, several process relevant parameters must be considered, 

including (a) gas velocity, (b) transport efficiency, (c) dust loss, and (d) equipment volume.  

The computed relationship between LChannel and the maximal gas velocity, found in the transport 

channel in the lowest stage in the system, is shown in Figure 124. The velocity is dictated by the 
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temperatures in each stage and the cross sectional area. As expected, the larger the dimensions, 

the lower the gas velocity.  

 

  
Figure 124 – Gas velocity in the transport channel at the 

lowest stage as a function of the characteristic length of the 

system, LChannel. TG,In = 850 °C, TP,In = 60 °C, ṁP,Feed = 2000 

TPD, c0 = 1.0, N = 4. 

 

Figure 125 – Entrainment, separation, and transport 

efficiency at the lowest stage of the four stage preheater 

as a function of the gas velocity in the transport channel 

at the lowest stage. TG,In = 850 °C, TP,In = 60 °C, ṁP,Feed = 

2000 TPD, c0 = 1.0, N = 4. 

 

The gas velocity affects the internal processes, such as the separation efficiency, which, as 

illustrated in Figure 125, has a peek around vG = 10 m/s. At higher velocities the separation 

efficiency drops due to high gas velocity, while at lower velocities, the reason is low solid load 

(due to reduced entrainment). The transport efficiency has an optimum around 15 m/s. The dust 

loss and production rate, depicted in Figure 126, show that the higher the gas velocity, the 

higher the dust loss, which reduces the production rate. The maximal production rate is dictated 

by the LOI of the raw meal and is equal 1300 TPDc for the 2000 TPD stack. Finally, the 

thermal efficiencies for the upscaled system, displayed in Figure 127, indicate that the optimal 

velocity is around 12 – 15 m/s. 
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Figure 126 – Dust loss and production rate in tons clinker 

per day [TPDc] for an upscaled system as a function of the 

gas velocity in the transport channel at the lowest stage. TG,In 

= 850 °C, TP,In = 60 °C, ṁP,Feed = 2000 TPD, c0 = 1.0, N = 4. 

Figure 127 – Thermal efficiencies as a function of gas 

velocities in the lowest transport channel. TG,In = 850 °C, 

TP,In = 60 °C, ṁP,Feed = 2000 TPD, c0 = 1.0, N = 4. 

 

Instead of designing the system according to the performance of the internal processes, the 

system could be designed to have the highest production rate in the smallest equipment volume.  

The approximate volume of the 2D-HX can be found from LChannel. 

( )( ) ( ) ( ) ( ) 36 5 1 9 4 19 5 1Stack Channel Channel Channel ChannelV H W D . L N L L . N L= ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ = ⋅ + ⋅  Eq. 57 

Considering the production rate per equipment volume as a function of the gas velocity yields a 

selection criterion, as shown in Figure 128 for the 2000 TPD system. 
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Figure 128 – Clinker production rate per equipment volume as a function of the characteristic length, LChannel. The 

maximum represents the optimal length for the given conditions in terms of equipment size. 

 

The 2D-HX should be designed to match the optimum of the curve given in Figure 128. 

However, in some cases, this selection criterion would select systems with dust fractions higher 

than 15 % – 20 %, which is unacceptable. Therefore the determining criterion will be that the 

dust fraction should be below 15 %, with as high as possible volumetric production rate. In 

practice this results in dust losses around 15 %. For the 2000 TPD stack, this leads to LChannel = 

0.92 m. 

The predicted temperatures and mass flows for a 2000 TPD four stage stack are provided in 

Figure 129. Table 37 summarizes the operational and design related data. 

The particles are heated to around 710 °C, while the exhaust gas leaves at 300 °C. The relative 

thermal efficiency is 0.72 and the dust loss 14 %. The heat loss is according to the predictions 

around 6 %. The size of the stack is found to be 30 meters tall, eight meters wide and four 

meters deep.  

The estimated pressure drop is around 41 mbar per stage. For comparison, the cyclone preheater 

has a pressure drop of 30 – 40 mbar for the entire preheater [3,19]. The estimated pressure drop 

in the 2D-HX is significantly higher than expected, as gas velocities in the system described 

here are lower than in the cyclone preheater, why lower pressure drops are expected. This 

indicates that either the considered geometry induces a significantly higher pressure drop than 

anticipated, or that the empirical equations used to predict the pressure drop are applied outside 

their validated range of application, yielding wrong estimations. The latter being the most 
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likely. Despite the apparent inaccuracy of the pressure drop model, the model will be evaluated 

for the remaining estimations as well. 

 

 

Table 37 – Summarized operational parameters 

for an upscaled 2000 TPD 2D-HX. 

Parameter Value 

ṁP,Feed 23.1 kg/s / 2000 TPD 

N 4 

co 1.0 

φAbs 0.60 

φRel 0.72 

φLoss 5.8 % 

ṁP,Clinker 12.9 kg/s / 1114 TPD 

vg, Channel 15 – 23 m/s 

Size (H x W x D)  30 m x 8 m x 4 m 

Dust loss 14 % 

Pressure drop/stageA  41 mbar 

A Computed assuming a temperature of 600 °C 
 

Figure 129 – Predicted temperatures and mass flow for a stack with 

four stages and a particle feed rate of 2000 TPD. 

 

Gas inlet
Particle outlet #2Particle outlet #1

Particle feed

850 ºC

60 ºC

TB ,Feed= 60 ºC
ṁP,NE,Feed= 0.7 kg/s
ṁP,E,Feed= 22.4 kg/s

TG= 465ºC
ṁP,Dust,2= 6.1 kg/s

TG= 706 ºC
ṁP,Dust,4= 10.8  kg/s

TOut#1= 710 ºC
ṁP,Out#1= 19.4 kg/s

TG= 301 ºC
ṁP,Dust,1=  3.3 kg/s

TB,1= 301 ºC
ṁP,NE,1= 0.6 kg/s
ṁP,E,1= 24.7 kg/s

TG= 579 ºC
ṁP,Dust,3= 9.0 kg/s

TB,3= 602 ºC
ṁP,NE,3= 0.5 kg/s
ṁP,E,3= 29.7 kg/s

Tout#2= 846 ºC
ṁP,out#2= 0.5 kg/s

TB ,2= 473 ºC
ṁP,NE,2= 0.5 kg/s
ṁP,E,2= 27.8 kg/s

TG= 846 ºC

Gas outlet
301 ºC
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10.2 Full-scale 2D-HX Facilities 

The evaluation of full-scale facilities is based on stacks with particle feed rates of 2000 TPD, 

4000 TPD, and 6000 TPD. As illustrated in Figure 123, these stacks are the starting point for 

achieving the desired production capacities. Each stack is designed as described in the previous 

section. Data for the upscaled 2D-HX facilities are summarized in Table 38. 

 

Table 38 – Predicted operational data for three 2D-HX stack sizes. 

Parameter 2000 TPD 4000 TPD 6000 TPD 

ṁP,Feed  23.1 kg/s / 2000 TPD 46.6 kg/s / 4000 TPD 64.4 kg/s / 6000 TPD 

N 4 4 4 

co 1.0 1.0 1.0 

φAbs 0.60 0.61 0.60 

φRel 0.72 0.73 0.72 

φLoss 5.8 % 5.9 % 5.8 % 

ṁP,Clinker  12.9 kg/s / 1114 TPDc 26.2 kg/s / 2262 TPDc 38.7 kg/s / 3347 TPDc 

LChannel 0.92 m 1.21 m 1.43 m 

TP,Out 710 °C 710 °C 709 °C 

Size (H x W x D) 30 m x 8 m x 4 m 39 m x 11 m x 5 m 46 m x 13 m x 6 m 

Dust loss 14 % 15 % 14 % 

Pressure drop/stageA 41 mbar  60 mbar 77 mbar 

A Computed assuming a temperature of 600 °C. Pressure drop most likely overestimated. 

 

Thus, a facility capable of producing 6000 TPD clinker would consists of approximately five 

2000 TPD units, three 4000 TPD units, or two 6000 TPD units.  

10.3 Comparison of the Upscaled 2D-HX and Cyclone Preheaters 

As highlighted in Chapter 6, one of the major performance parameters for the cyclone 

preheaters is the transport efficiency. Using the 2D-HX model, the transport efficiencies for the 

2000 TPD and the 6000 TPD facilities are predicted. In Figure 130, the data is compared with 

typical cyclone preheater data.  

The performance of the lowest stages is similar in the cyclone preheater and 2D-HX, indicated 

by a ηTransport
 around 0.75 – 0.80, while the top cyclones perform better than the top stages in the 
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2D-HX, which has maxima around 0.90. Note that the maximum vales of ηTransport
 for the 6000 

TPD facility are around 0.05 higher than for the 2000 TPD stack. The maxima are located 

around 12 – 15 m/s for the 2000 TPD stack and around 15 – 18 m/s for the 6000 TPD stack. 

 
Figure 130 – Comparison of transport efficiencies in two different 2D-HX stacks and cyclone preheaters. 2000 TPD 

and 6000 TPD particle feed stacks are shown. 

 

Another comparison parameter is the construction height. A graphical comparison of the height 

of the 2D-HX and the cyclone preheaters are given in Figure 131, displaying a standard tower, a 

very tall six stage facility, described by Dembla and Mersmann [54], and two 2D-HX facilities. 

To compensate for the height of the auxiliary equipment an extra height of 15 meters have been 

added in Figure 131. The 2D-HX preheater is between 40 and 60 % lower. Note that the cyclone 

preheater structure also contains the calciner, which in some cases is up to 100 meters tall [54], 

thus the preheating facility is not the only unit dictating the preheater structure height.  

To compare the capital costs of the 2D-HX and the cyclone preheaters, the volume of the 

equipment is used as a quantity proportional to the capital costs. The cyclones are assumed 

cylindrical with height equal to twice the diameter, which is in line with the findings for cement 

cyclones as stated in Chapter 2. Ducts and structural support is not included in the cyclone 

volume estimated. The 2D-HX volume is computed by Eq. 57. The 2D-HX volumes are 

compared with cyclone data from various sources [8,14,52–55] in Figure 132. 
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Figure 131 – Comparison of preheater heights. Required additional height for auxiliary equipment for the 2D-HX is 

assumed to be 15 m. Data from Dembla and Mersmann [54] shown. 

 

 
Figure 132 – Comparison of inner volumes for four stage 2D-HX and cyclone preheaters. Two stack sizes are 

considered for the 2D-HX concept: 2000 TPD and 6000 TPD particle feed rate. Cyclone volumes are estimated from 

diameters, assuming cylindrical geometry. No ducts are included in the estimates. The maximal single cyclone 

preheater string production rate is indicated by a vertical line. Cyclone data from Duda [8], Ouhl and Happ [14], 

Wolff et al.[52], Hjuler [53], Dembla and Mersmann [54], and Mujumbar et al. [55] is provided for comparison. 

 

The variations in the computed cyclone volumes are related to site specific conditions and the 

cyclone technology at the time of publication. The data of Duda [8] is approximately 30 years 

old, and the data of Dembla and Mersmann [54] describes a high altitude facility, where low 

pressure drop and low environmental impact is required. The remaining data indicates smaller 

volumes of the cyclones.  
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The two 2D-HX facilities yield different volumes: The lower stack capacity has the higher 

volume, indicating that the 6000 TPD stack is more feasible than the 2000 TPD. Comparing the 

2D-HX and the cyclone volume, the 2000 TPD facility is in the upper range of cyclone sizes, 

while the 6000 TPD facility is slightly lower than the data of Duda [8] and Dembla and 

Mersmann [54]. The modern cyclones have smaller volumes than both the 2D-HX facilities 

considered here, but the volume of the two different technologies is in the same order of 

magnitude under the given assumptions. 

A more detailed cost estimate of both the cyclone preheater and the 2D-HX concept has not 

been made for several reasons. Especially challenging is the cost of the cyclone preheater 

support structure, the influence of the calciner on the support structure and cyclone preheater 

layout, and the detailed design of the 2D-HX: Material thickness, size, and requirements for 

auxillary support structure, and connection segments with the remaining of the pyroprocessing 

system. 

Considering clinker production rates of 3000 and 6000 TPDc, a comparison of all relevant 

parameters between the cyclone preheater and two different preheaters utilizing the 2D-HX 

concept is given in Table 39. Stack sizes of 2000 TPD and 6000 TPD is considered. 

The thermal efficiencies, φAbs and φRel of the 2D-HX are similar to the values for the cyclone 

preheater, around 0.61 and 0.72, respectively, but are in the lower end of the reported range for 

the cyclone preheater. The transport efficiencies around 0.10 percentage point lower for the 2D-

HX, resulting in a larger dust loss. The gas velocity range, thermal loss, and expected volumes 

are of similar values, while the height is significantly reduced for the 2D-HX. 

As the construction height of the 2D-HX is significantly lower than the cyclone preheaters, it 

may be feasible to consider adding more stages to the preheater, thereby improving the thermal 

efficiency and raising particle outlet temperatures. A stack size of 6000 TPD with four to seven 

stages has been evaluated. The data can be found in Table 40. As the number of stages 

increases, the both thermal efficiencies increases, averagely 2 % per additional stage caused by 

increasing particle outlet temperatures and reduced dust loss. On the contrary, the volume and 

the pressure drop of the system increases proportional to the number of stages. 
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Table 39 – Comparison of properties of cyclone preheaters and 2D-HX designs. 

 Preheater cyclone Stack size = 2000 TPD Stack size = 6000 TPD 

Number of stacks  

(3000 TPDc/6000 TPDc) 

- 3/5 1/2 

φAbs 0.61 – 0.71 0.60 0.61 

φRel 0.74 – 0.97 0.72 0.73 

Heat loss  ~ 4 % 6 % 6 % 

ηTransport at optimal conditions 0.75 – 0.95 0.75 – 0.85 0.66 – 0.88 

Dust Loss  5 – 11 % 14 % 14 % 

Pressure drop / stageA ~ 10 mbar 41 mbar 77 mbar 

vg, ent  20 – 24 m/s 15 – 23 m/s 18 – 28 m/s 

Overall size (H x W x D) 

(3000 TPDc/6000 TPDc) [m] 

80 – 120 m x 10 m x 10 mB 30 m x 8 m x 12 m / 

30 m x 8 m x 20 m 

46 m x 13 m x 6 m / 

 46 m x 13 m x 12 m 

Estimated equipment volume  

(3000 TPDc/6000 TPDc) C 

1500 – 3500 m3 /  

3900 – 4300 m3 

2733 m3 / 4555 m3  3421 m3 / 6842 m3 

A Computed at 600 °C. Model most likely overestimating the pressure drop. 
B The size estimate for entire preheater structure does not depend on production capacity. Specific estimates have not 

been possible to obtain. The given size also encompasses other process equipment. 
C Volume of cyclones approximated by assumption of cylindrical geometry and a height of 2·D and identical 

cyclones in all stages. 

 

Table 40 – Overview of the performance of a 6000 TPD stack size for different number of heat exchange stages. 

 4 stages 5 stages 6 stage 7 stages 7 stages 

Absolute thermal efficiency 0.60 0.63 0.66 0.67 0.66 

Relative thermal efficiency 0.72 0.76 0.78 0.81 0.78 

Particle outlet temperature 709 °C 735 °C 754 °C 767 °C 768 °C 

LChannel  1.43 m 1.43 m 1.43 m 1.43 m 1.38 m 

Height  47 m 56 m 65 m 74 m 72 m 

Volume, approximately 3400 m3 4100 m3 4900 m3 5700 m3 4900 m3 

Dust loss 14 % 13 % 12 % 11 % 15 % 

 

The last column of Table 40 shows the characteristic of a system designed as a seven stage 

system, where the other configurations are designed as four stages facilities. It is observed that 

height can be reduced by a couple of meters, without sacrificing particle outlet temperature.  

As stated in Chapter 4, another property of the 2D-HX design is the modular or piecewise 

construction. This concept is illustrated in the patent application [111] and shown in Figure 133. 
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The production of the elements of which to construct the 2D-HX can be standardized, thereby 

obtaining construction cost reductions by series production. Two options exist: Either (a) the 

elements are produced centrally and thereafter transported to the construction site by ship and/or 

truck or (b) the elements are produced near the construction site. Principally the simple 

geometry of the majority of the elements means lower capital cost per equipment volume than 

for the more complexly shaped cyclones.  

 

 
Figure 133 – Example of a piecewise construction of a four stage 2D-HX preheater [111]. 

 

10.4 Implementation in a Cement Plant 

Implementing the 2D-HX concept into a cement plant requires the plant layout of the 

pyroprocessing unit to be re-done to incorporate the requirements of the 2D-HX. The layout 

must be optimized to improve stability and robustness of the process and reduce capital costs. 

An illustration of the plant layout with a 2D-HX is given in Figure 134. The units are drawn 

approximately to scale for a 3000 TPD plant with a five stage preheater. Only the major 

components and ducts are displayed.  
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Figure 134 – Schematic drawing showing the integration of the 2D-HX in an 3000TPDc ILC cement plant replacing 

the cyclone preheater stages. Top and side views are shown. Scale is approximate. 

 

The combustion gases from the kiln are led into the calciner from the cold end of the rotary kiln. 

From the calciner, gas and particles are led to the calciner cyclone via the calciner downcomer. 

The gas from the calciner cyclone is then led to the 2D-HX preheater, while the particles are fed 

to the rotary kiln. Raw meal is fed to the preheater and after preheating into the calciner. The 

cooled gas from the preheater is typically utilized for drying or heating of raw materials or 

utilized in a waste heat recovery facility for power production (not depicted in Figure 134).  

The illustration given in Figure 134 serves only to provide a starting point for layout 

discussions, and can undoubtedly be improved by industrial designers and cement plant experts. 

Rotary kiln

Calciner

Gas duct to 
preheater

Rotary kiln

Calcincer 
cyclone

Calciner

2D-HX
Raw meal 

feed

Side viewTop view

Raw meal 
feed

Gas from 
preheater

Gas duct to 
preheater

Downcomer 
from calciner

Calcincer 
cyclone

Kiln feed

Gas from 
preheater

2D-HX

2D-HX

Kiln feed

Downcomer 
from calciner

0 m 5 m 10 m 15 m

Approximate scale

 
183 

 



 
Chapter 10 – Full-scale Application of the 2D-HX Concept 

 

10.5 Pilot-Scale Facility 

The next phase in the development of the 2D-HX could be to establish a pilot-scale facility. 

This would allow testing in larger scale and for longer periods of time. To improve the basis for 

decision, a pilot-scale facility is presented here. The designed pilot-scale facility consists of four 

stages. The particle feed rate is set to 48 TPD. The predicted operational parameters are given in 

Table 41. 

 

Table 41 – Predicted operational data for a four stage pilot-scale 2D-HX. 

Parameter Pilot-scale 

ṁP,Feed  0.56 kg/s / 48 TPD 

co  1.0 kg/kg 

N  4 

φAbs 0.61 

φRel 0.73 

φLoss 6 % 

ṁP,Clinker  0.32 kg/s / 27 TPDc 

LChannel  0.21 m 

TP,Out 702 °C 

Size (H x W x D) (rounded up) 7 m x 2 m x 1 m 

Dust loss 12 % 

Pressure drop/stage A  6 mbar 

A Computed assuming a temperature of 600 °C. Pressure drop 

most likely overestimated 

 

An illustration of the size of the existing four stage cyclone pilot-scale preheater at the test 

center of FLSmidth A/S, Dania, and a 2D-HX with similar performance characteristics are 

given in Figure 135.  
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Figure 135 – Comparison of a 2D-HX pilot-scale and the existing pilot-scale facility at FLSmidth.  

 

The existing pilot-scale facility is around 30 – 35 m tall with a foot print of around seven by 

seven meters and includes four heat exchange cyclones. The structure furthermore includes 

calciner and exhaust gas stack. These units are included in the structure shown in Figure 135. A 

structure below the pilot-scale 2D-HX has been added to indicate that additional auxiliary 

equipment is necessary for the 2D-HX to be operational. The size of the structure displayed is 

six by four meters and should include feeder, particle handling equipment and structural 

support. 

10.6 Optimization of 2D-HX Design 

The 2D-HX design considered and described until this point has been developed conservatively 

to ensure a successful proof of concept. The design can be optimized in several ways, thereby 

improving the potential of the 2D-HX. Based on the 2D-HX model and visual observations 

during the experimental sessions three ways to improve the operation of the 2D-HX is described 

and evaluated in the following section. The aim of the design changes is to reduce the size of the 

full-scale facilities by improving the performance. 

10.6.1 Alternative Parametric Design 

The size of the full-scale facility is obtained from the parametric design, presented in Chapter 9. 

From the chosen LChannel, the equipment height and volume is determined, including the length 

of the separation chamber, LSep. The ratio LSep / LChannel = 3.5 used in the experimental work was 
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determined from the available gas and flow rates. It is expected that the design can be improved 

by changing this ratio. 

To obtain the most compact equipment, the highest gas flow rates possible should be used, and 

to ensure the best possible separation, LSep should be highest possible, leading to the conclusion 

that the higher LSep / LChannel ratio, the better, with a limitation to the gas velocities in the system, 

chosen to be similar to the velocities in the cyclone preheater, around 25 m/s. For a 2000 TPD 

facility, a ratio, LSep / LChannel = 4 and a LChannel = 0.87 yields the best performing system. A 

comparison between the original 2000 TPD facility and the optimized is given in Table 42. 

 

Table 42 – Comparison of orignal 2000 TPD facility and a facilty optimized with respect to the ratio LSep / LChannel. 

Parameter Original Optimized 

ṁP,Feed  23.1 kg/s / 2000TPD 23.1 kg/s / 2000 TPD 

N 4 4 

LSep / LChannel 3.5 4 

co 1.0 1.0 

ηTransport, bottom stage 0.64 0.66 

φAbs 0.60 0.62 

φRel 0.72 0.74 

φLoss 6.1 % 6.1 % 

ṁP,Clinker  12.9 kg/s / 1114 TPDc 13.3 kg/s / 1145 TPDc 

LChannel 0.92 0.87 

Size (H x W x D)  30 m x 8 m x 4 m 32 m x 8 m x 3 m 

Volume 911 m3 900 m3 

Dust Loss 15 % 12 % 

 

The optimized 2000 TPD unit has a significantly lower dust loss, higher thermal efficiency, and 

approximately 1 % smaller volume. The maximum gas velocity in the optimized 2000 TPD 

facility is 25 m/s. 

10.6.2 Addition of Exit Cyclone 

To reduce the dust loss, a traditional top cyclone can be installed at the gas outlet of the 2D-HX. 

The collected dust can be recycled back to the 2D-HX. To reduce the dust loss to desired levels, 

5 – 11 %, the top cyclone should have a collection efficiency of 30 – 70 %.  
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The effect of adding a cyclone is shown in Table 43 assuming that the collected dust is recycled 

to the bed of stage 1, and collection efficiency of the cyclone is 70 %  

Table 43 – Effect of top cyclone mounted on gas exit. Both the optimized and original 2000 TPD facilities are 

considered. 

Parameter 
Original Optimized  

Standard With cyclone Standard With cyclone 

ṁP,Feed  
23.1 kg/ s / 2000 

TPD 

23.1 kg/ s / 2000 

TPD 

23.1 kg/ s / 2000 

TPD 

23.1 kg/ s / 2000 

TPD 

N 4 4 4 4 

LSeparation / LChannel 3.5 3.5 4 4 

co 1.0 1.0 1.0 1.0 

ṁP,Clinker 
12.9 kg/s / 1114 

TPDc 

14.3 kg/s / 1234 

TPDc 

13.3 kg/s / 1145 

TPDc 

14.3 kg/s / 1234 

TPDc 

LChannel 0.92 m 0.88 m 0.87 m 0.81 m 

2D-HX Size (H x W x 

D)  
30 m x 8 m x 4 m 

29 m x 8 m x 4 m 32 m x 8 m x 3 m 30 m x 8 m x 3 m 

Volume  911 m3 907 m3 A 900 m3 846 m3 A 

Dust loss 15 % 5 % 12 % 5 % 

ηcyclone - 70 - 70 

A Top cyclone with D = 3.6 m and H = 10.8 m assumed [8]. V = 110 m3.  

 

The cyclone reduces the dust loss to 5 %, at the cost of increased pressure drop (not computed), 

and increases process complexity. The volume reduction achieved by reducing the 2D-HX size 

is counteracted by the additional cyclone volume, and the final reductions are between one and 

four percentage. The reduced dust loss enables an increased production capacity of 10 % of the 

stacks. The gas velocities in the systems are unaffected by the additional cyclone and in the case 

of the optimized system with cyclone where LChannel
 has been lowered to 0.81 m, the gas 

velocities are up to 29 m/s, exceeding the limit of 25 m/s.  

A system operating at the maximum velocity limit cannot be reduced in size without violating 

the velocity criterion. Dust loss can still be reduced, though. The solid load in the stream fed to 

the cyclones is in the order of 0.1 – 0.2 kg/kg at 300 °C. 

10.6.3 Alternative Separation Geometry 

As previously mentioned the geometry of the separation chamber in the experimental set-up was 

determined by the available flow rates, and the angles (70°) of the internal plates were 
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conservatively chosen to ensure particle flow. Significant height, and thereby volume 

reductions, can be achieved if these angles can be lowered. The geometric relation between 

angles of the internal plates and height reductions are given in Figure 136. The reference case is 

the 70° design. 

 

  

Figure 136 – Height reductions as a function of the angles on the internal plates. The 70° case is used as reference. 

 

If the angles can be lowered to 60°, the height can be reduced with up to 35 % without affecting 

the gas flow significantly.  

In the early experimental versions of the 2D-HX, an angle of 45° was used. This angle was 

insufficient for raw meal operation, but more than adequate for easier flowing particles, such as 

sand.  

Angles between 55° and 70° should be investigated for raw meal operation as even minor 

reductions of angles yields significant volume reductions. 

Changing the geometry of the plates, not just the angles, may additionally improve operation in 

terms of lower pressure drop and/or improved separation efficiency. The experimental work, 

described in Chapter 6, revealed that an inertia driven separation did not take place in the 

separation chamber with the current design of the internal plates. It was also shown that full 
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entrainment was readily obtainable at full-scale relevant gas velocities. Therefore a design 

modification as shown in Figure 137 might beneficial.  

 

 

Figure 137 – Suggested design for improved separation efficiency. 

 

The removal of the vertical part of the internal plates will cause the gas and carried particles to 

impact on the side wall instead of the vertical plate. The gas is forced upward and the particles 

downward. No crossing of the separated particles and gas flow occurs, contrary to the current 

design. This is expected to improve separation efficiency, especially at higher gas velocities, 

while possible reducing the entrainment efficiency. This design resembles an intermediate 

design presented in Chapter 4. It was opted out of to increase entrainment efficiency, which, as 

it turns out, is most likely not necessary. 

Other designs of the internal plates can be designed. In order not to deteriorate the separation 

process, the following criteria should be fulfilled: (a) A sharp edge at the entrance to the 

separation chamber should be present (the edge creates an eddy with moves particles 

downward), (b) no obstructions to the gas flow forcing the gas downward when the majority of 

the particles are still entrained should be installed, and (c) the gas flow should not be forced to 

cross a flow of already separated particles.  

Attention should also be given to horizontal surfaces, where particles will collect. The collected 

particles will form a pile corresponding to the nearby gas flows, but in a full-scale facility the 

weight of the pile can be in order of tons on each stage, requiring additional structural strength 

and possess a safety hazard both during production and maintenance operations. 
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10.6.4 Summary of Optimizations 

The effects of the suggested optimizations on the size of the 2D-HX are quantitatively 

summarized in Table 44. A reduction of the internal angles of both 5°and 10° has been 

considered. 

 

Table 44 – Summarization of optimization suggestions. 

Suggestion Estimated volume/cost reduction compared to original design 

Addition of cyclone 10 % 

Reduction of angle from 70° to 65°/ 60° 20% / 35 % 

Optimization of LD/LSep 1 – 2 % 

 

The combined effect of the suggested optimizations yields a 30 – 45 % volume reduction of the 

original design, thereby making the 2D-HX concept significantly more feasible, as estimated 

volumes of full-scale designs are slightly smaller than the comparable cyclone processes. 

Not included in these estimates are the potential savings from series production, simple and 

planar geometry, and reduced preheating support structure, which further enhances the potential 

of the 2D-HX concept. 

10.7 Identified Issues 

In the course of the development and testing of the 2D-HX, and in discussions with relevant 

people from both industry and academia, potential issues have been identified. In the following, 

the major issues mentioned during the discussions are described.  

Maintaining two dimensional operation 

The concept of the 2D-HX requires continuous two dimensional operation, which, as the depth 

becomes larger, becomes increasingly difficult to maintain. If two dimensional operation cannot 

be maintained, the flow patterns of gas and particles can pass each other without heat 

exchanging. Another issue of the two dimensional operation is the operation of the particle gates 

over a length of several meters. The particle gates should be capable of dosing the same amount 

of particles per meter of the equipment, taking into consideration local conditions, such as 

differences in temperature, gas velocity, particle deposition, and particle flowability. The gates 
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are one of the most critical elements of the 2D-HX technology. Each particle gate should consist 

of a series of sections, each allowed to move independently of the adjacent sections.  

It must be expected that a maximum depth of the system exists, why the two dimensional 

concept cannot be expanded indefinitely. The exact value for the maximum depth must be 

determined experimentally, simultaneously evaluating the performance and design of the 

particle gates. If the desired production rate requires a larger depth than allowable, the stacks 

must be separated physically. 

Inlets and outlets 

Another aspect of the two dimensional operation is the design of the inlets and outlets. The gas 

inlet and outlets should be constructed with manifolds, ensuring an equal gas flow over the 

entire depth of the heat exchanger. A more pressing issue is the feeding and collection of 

particles. Designing the feed stage properly, the particles can most likely be fed from few 

feeding points. The bottom of the piles of raw meal created in the top stage spreads out over the 

depth of the equipment, thus a particle feeding manifold in not required in the same way as for 

gas. The collection of the hot particles from the bottom of the 2D-HX is more problematic. The 

particles should preferable move without mechanical aid into the calciner. To accommodate 

this, the angle of the particle pipes should be in the range of 60° – 70°. This means that for each 

meter the particles needs to move sideways, approximately 1.5 – 2.5 meters of height is 

required. Furthermore, these ducts require additional materials, raising the cost of the 2D-HX. 

These criteria are also setting a maximum depth for the 2D-HX. 

Particle flowability 

The operation of the 2D-HX depends highly on the continuous flow of particles in each particle 

bed. The experiences gathered in present experimental work suggest that the flowability of raw 

meal is acceptable, and particle flow can be ensured at high temperatures with external means 

such as vibration.  

The experiments carried out did not simulate the presence of neither carbonating nor re-

carbonating particles, nor was the temperature high enough for belite formation to start. These 

reactions influences the flowability of the raw meal, and at temperatures higher than 550°C 

flowability is deteriorated [140] (see appendix G). 

Another aspect not considered is the presence and recirculation of alkali sulfate, typically 

originating from alternative fuels. The alkali sulfates evaporate in the kiln and condensates at 
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temperatures below 800 [3]. Between 600 °C and 800 °C a melt is formed, which condensates 

on the raw meal, thereby reducing the flowability. To ensure a stable particle flow, even during 

severe deposition, air blasters should be installed, and the dimensions of the design should allow 

some deposition without blocking. 

Thermal resistance of internal plates 

The final issue mentioned here is a lifetime issue of the internal surfaces in the 2D-HX. The 

internal plates separating the chambers are exposed to high temperatures without the possibility 

for external cooling. Thus, despite isolation protecting the structural elements, the temperatures 

might reach critical levels. Similar aspects are found for the rotary kilns, where too high shell 

temperatures are problematic. For the cyclones the heat loss to the surroundings from the outer 

surface areas protects the structure from overheating. 

Normally a layer of refractory lining is installed in the pyroprocessing equipment for thermal 

and wear protection of the steel structure. The refractory should be installed on all internal 

surfaces in the 2D-HX, including the undersides of all chamber and channel lofts. On these 

planar horizontal surfaces, the refractory lining are especially difficult to install and keep in 

position, according to the industry [53].  

10.8 Other Applications 

The 2D-HX concept has been developed for heat exchanging the hot combustion gases and cold 

raw meal particles in the cement industry, but during the development, modifications and 

additional areas of application have been identified. 

In the following some of these are briefly described. The ideas mentioned are not designed in 

detail, but serves to illustrate potential applications of the 2D-HX given further development. 

10.8.1 Co-generation of Power 

As stated in Chapter 4, one of the secondary objectives for the 2D-HX is integration of a steam 

generating circuit for power production with higher efficiency than is obtainable using the 

exhaust gases from the preheater. The planar geometry of the walls and internal plates are well 

suited for integration with heating surfaces for steam production, turning the 2D-HX preheater 

into a three-way heat exchanger.  
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The steam could be produced counter-current to the gas flow, ensuring maximal outlet 

temperature and, if needed, additional heating surfaces could be installed at the gas inlet to the 

2D-HX. A conceptual drawing is shown in Figure 138. 

For a four stage 6000 TPD stack producing 3350 TPDc with LChannel = 1.43 m, the area available 

for heating of a working fluid, including the additional heating surfaces at the gas inlet, is at 

least 600 m2. Additional heating surfaces could be installed in vertical wall elements as well. 

Installing heating surfaces on the upward facing surfaces should be avoided as deposits will 

form and reduce the energy transfer significantly. 

 

 
Figure 138 – Schematic drawing of the 2D-HX concept with integrated heating surfaces for steam production. 

 

Estimations show that the overall heat transfer coefficient from the process gas to the steam is in 

the range of 12 – 16 W/m2/K without significant depositions and neglecting any radiation 
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contribution, leading to an energy transfer of around 1 MW from the process gas to the steam. 

For comparison, the gas at the inlet to the preheater contains more than 40 MW of thermal 

energy. The energy transferred to the stream is not in itself sufficient to produce any significant 

amounts of power. Instead the 2D-HX in this configuration should work as a superheater, 

heating the steam used in a WHR system, thereby increasing the efficiency of power generation 

cycle.  

Assuming an inlet temperature to the 2D-HX superheater of 315 °C, a steam flow of 10 kg/s 

[141], and an energy transfer in the 2D-HX superheater of 1 MW to the steam, the steam can be 

heated to approximately to 365 °C. Comparing theoretical Carnot efficiencies, assuming a cold 

reservoir temperature of 40 °C, the efficiency of converting the thermal energy to electricity can 

be increased from 47 % to 51 %. The additional energy in the stream would also yield an 

additional increase in power production. 

Deposits will form on the heating surfaces, lowering the heat transfer coefficient. Effective 

values of the overall heat transfer coefficient down to 1 – 5 W/m2/K must be expected during 

severe deposition. The deposits should periodically be removed, either by air blasters or thermal 

shedding. 

The thermal energy for superheating the working fluid might not be present in adequate 

quantities at the current conditions in the preheater and additional thermal energy must be 

supplied. Assuming this additional fuel is alternative fuels, cheap power can be made available, 

and a larger fraction of the power requirements of the cement plant can be covered, thereby 

reducing operation costs. 

An advantage besides generating power is the temperature reduction of the internal surfaces, 

which reduces the thermal wear and increases lifetime, as well as eliminates the requirement of 

refractory lining on some of the downward facing surfaces. Some of the drawbacks of 

integrating steam and power production are increased process complexity and capital costs. 

Another issue to consider is conservatism of the cement producers towards integrated processes 

and radically different technologies.  

10.8.2 Integration of Calciner/Combustion Chamber 

The 2D-HX can be equipped with a combustion chamber below the lowest heat exchange stage. 

This combustion chamber can either supply additional thermal energy for heat exchange 

purposes, including steam generation mentioned previously or act a calciner, thereby replacing 

the separate calciner and calciner cyclone. The expected advantages of the integrated calciner 
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include increased fuel particle residence time, reduced construction costs, and simpler plant 

layout.  

The particles combust in the freeboard under suspension fired conditions, similar to the current 

calciner.  

 

 
Figure 139 – Illustration of the 2D-HX preheater with a combustion chamber integrated in the bottom of the 

preheater stack. 

 

10.8.3 Application for drying purposes 

The 2D-HX concept might also be adapted for drying purposes in a simplified smaller version, 

providing a simple, low cost solution for drying of e.g. grain and malt.  

Typical drying times for wheat are under fluidized bed conditions in the range of milliseconds 

to seconds [142], while drying in drying chambers are in the range of minutes [143]. The time 

scale for larger fixed bed in the range of hours [144,145].  

Large scale drying is typically performed in large fixed bed, resulting in poor drying 

performance, and occasional spoiled crops due to insufficient and too slow drying. The safe 

moisture content in the kernels is 15 wt% on a dry basis [142].  
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In the 2D-HX, the drying process would create a co-current heat exchange under transport 

conditions in each stage, enabling a fast and efficient drying process. During the drying process 

the gas cools, and water content increases, resulting in the dew point might be reached. This is 

undesirable as drying cannot be undertaken under such conditions, thus from a process point of 

view, a maximal number of stages exists. 

The process should be driven by a compressor, thus operating above atmosphere pressure for 

simplicity. The heat can be supplied by combustion of natural gas or from an electrical heater. 

When drying malt, a dual operation can be achieved, both drying the kernels and separating the 

rootlets from the kernels. 

10.9 Industry Remarks 

The comments from the industry regarding the commercial aspects of the 2D-HX preheater are 

summarized in a strength-weaknesses-opportunities-threats (SWOT) diagram shown in Table 45 

[53].  

 

Table 45 – SWOT table summarizing the commercial aspects of the 2D-HX preheater [53]. 

Technical (internal) 

Strengths Weaknesses 

− More compact than cyclone preheater 
− Self-sustained construction 
− Pre-cast/pre-manufactured construction 

elements 
− Capacities can be increased by adding stacks  
− Low pressure drop 
− Lower heat loss due to compact structure 
− Lower false air entrainment 
− Easier access for maintenance 
− Integrated membrane walls for superheating of 

steam 

− Large area of internal flow divider plates 
− Thermal stresses in square design 
− Subject to material build-ups  
− Operation of mechanical valves required 
− Exit gas cyclone required 
− Process control more complicated  
− Split of material feed to 2D HX stacks 
− Layout of piping to calciner/kiln 

 

Customers/Competition (external) 

Opportunities Threats 

− Lower building height of preheater 
− Lower civil construction costs 
− Lower power consumption 
− Easy retrofit of preheater capacity 
− Higher steam temperature for higher electricity 

generation efficiency 

− Further development of cyclone preheater 
design 

− “Shaft preheater design” conceived as outdated  
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Generally the positive aspects focus on reduced capital costs, lower construction height, and 

possibility for superheating of steam, while the negative aspects are related to the construction 

of the internal plates, mechanically operated particle gate, and layout of piping and ducts. 

10.10 Summary 

The full-scale 2D-HX for application in a cement plant as a preheater was evaluated. Based on 

three different particle feed rates (2000 TPD, 4000 TPD, and 4000 TPD), three stacks were 

designed. The design criterion, determining the characteristic width of the transport channel, 

was chosen to ensure dust fraction lower than 15 %, with as high production rate per equipment 

volume as possible. Applying these criteria, a LChannel
 for the 2000 TPD facility were determined 

to be 0.93 m, yielding a 30 m tall structure. The 6000 TPD facility was found to be 47 meters 

tall and LChannel = 1.45 m.  

A comparison between a full-scale 2D-HX for application in a cement plant and the standard 

cyclone preheater revealed that the 2D-HX have (a) 4 – 10 percentage point higher dust loss, (b) 

similar thermal efficiencies, (c) 40 – 60 % lower construction height, (d) around 10 percentage 

point lower transport efficiency, and (e) comparable equipment volume. Taking the equipment 

volume as a measure of the capital costs, the capital costs of the two types of heat exchangers 

have thus been found to in the same order of magnitude.  

The pressure drop was computed for the 2D-HX facilities using the model developed in Chapter 

8, and found to be in the range of 41 – 77 mbar per stage, which were higher than anticipated. 

The gas velocities in the 2D-HX are lower than the in cyclone preheater, but the computed 

pressure drops of the 2D-HX is multiple times larger, which indicates that the applied model 

might not represent the actual pressure drop correctly. 

Suggestions for optimization of the separation chamber geometry were provided. The most 

significant height and volume reductions could be obtained by reducing the angle of the internal 

plates. As example, a reduction from 70° to 60° yielded a height and volume reduction of up to 

35 %. Other suggestions included varying the parametric design, especially the ratio LSep / LChannel, 

which yielded improvements in the order of 1 – 3 %, both for thermal performance and for 

volume. Larger improvement could be made, but gas velocities increased to values above 25 

m/s, which were evaluated as too high in terms of wear and pressure drop.  
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Adding a top cyclone at the gas stream from the 2D-HX was also considered. This reduced the 

dust fraction significantly, and increased the production rate about 10 % without, while the 

volume was not reduced. The cyclone increases pressure drop and process complexity. 

Applying the suggested optimizations to a full-scale 2D-HX preheater, volume reductions of 

between 30 and 45 % were found, thereby making the full-scale 2D-HX smaller than the 

cyclone preheaters with similar dust loss, thermal performance, and lower construction height. 

In this estimate, the possible cost reductions of reduced preheater support structure, simple 

geometry, and series production of the 2D-HX have not been included. 

Generally, the current estimates show that overall the 2D-HX and a modern cyclone preheater 

are more of less comparable in thermal performance and dust loss, while the 2D-HX is expected 

to be more complicated to control but significantly lower. 

The estimates given in the present chapter illustrate the expected behavior of the 2D-HX at the 

current level of process understanding. The 2D-HX model has been used to predict the full-scale 

facility mass and temperature flows. As stated in Chapter 9, this assumes that the model can be 

used across a scale ratio of 1000.  
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Chapter 11  

Conclusions and Outlook 
 

“Discussion is just a tool. You have to aim; the final goal must be a decision”  

– Harri Holkeri, former Prime Minister of Finland 

 

The main objective of present work has been to develop and test a gas/solid heat exchanger, 

which could be used as a preheater in the cement industry replacing the cyclone-based processes 

used today.  

The work has been initiated by a review of previous and current preheating technologies, which 

revealed that the cyclone-based preheaters in terms of operational efficiency and stability are the 

other suspension preheating processes superior. During the development of the cyclone 

preheater technology in the 1950s – 1970s, several alternative concepts including shaft 

preheaters were investigated, and opted out of due to too high energy consumption. For the shaft 

preheater, the major issue identified was the large internal recycling of particles and poor 

separation. 

The standard preheating facility today consists of a five stage preheater facility with an inline 

calciner (ILC). The operational parameters of interest are the thermal energy consumption, 

pressure drop, lifetime, and capital costs.  

Using a model, based on mass- and energy balances for the cyclone-based preheating process, it 

has been found for five actual preheater configurations that between 61 and 71 % of the thermal 

energy in the inlet gases were transferred to the raw meal particles before being fed to the 

calciner, and that this corresponded to between 74 and 97 % of the maximal energy transfer 

possible.  

Following the literature review and analysis of the cyclone preheaters, several design 

suggestions for an alternative to the cyclone preheater have been made. Of these, the most 
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promising was the two-dimensional heat exchanger (2D-HX), which performed the heat 

exchange between gas and particles in a similar process as the cyclone preheaters but in a more 

compact structure, and using a different particle-gas separation technique. The major design 

features of the 2D-HX were a modular construction, planar geometries, compact structure, easy 

scaling, and a two-dimensional design. 

The 2D-HX has been tested in three different set-ups: Single-stage set-up, Multi-stage set-up, 

and proof of concept (PoC) set-up. The experimental work was aimed at three targets: (a) 

Investigating the two internal processes, the separation and the entrainment, (b) achieving a 

proof of concept at industrial conditions, and (c) providing data for modeling purposes. 

The experimental data indicated that the separation process is determined by a mechanism 

described as accelerated settling, where particles settled in ropes or clusters thereby allowing a 

higher settling velocity (0.5 – 1.5 m/s), than anticipated from the settling velocities given by 

Stokes Law of settling (< 0.01 m/s).  

Applying an analysis of variance (ANOVA) on the separation data, only the gas velocity has 

been found to influence the process, but evidence, in form of visual observations and a few data 

points obtained as low gas velocities (νG < 2 m/s), indicated that solid load also influenced the 

separation process. The separation efficiency decreased with increasing gas velocities. 

Analyses of the data describing the entrainment process showed that the entrainment is 

improved by increasing gas velocities.  

Separation and entrainment efficiencies have been found comparable in all three set-ups, despite 

powder and operational conditions were slightly different. Compared to the cyclone preheater, 

the transport efficiency, defined as the product of the separation and entrainment efficiencies, 

were 10 – 20 % lower in the 2D-HX. 

During experiments with inlet gas temperatures around 800 °C, it has been showed, that the 

system could be operated satisfactorily, heating particles to around 500 °C – 550 °C in a four 

stage heat exchange process. Heat loss, pressure drop, and thermal efficiencies have been 

evaluated. The thermal efficiencies were around 20 % lower than found for the cyclone 

preheaters, caused by larger dust losses, slightly lower inlet temperature difference, and larger 

heat loss.  

The flowability of the raw meal has been investigated both in situ during hot operation of the 

PoC set-up and in a separate monoaxial shear tester. Results from both set-ups indicated that 
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flowability deteriorated at temperatures from around 500 °C and up, probably due to the 

sintering the raw meal caused by the initiating belite formation.  

The internal processes in the 2D-HX have been modeled by considering the system analogous 

to a pneumatic transport system. The separation mechanism has been modeled by salting out 

mechanisms, and the entrainment using pick-up mechanisms. This has been chosen after a 

screening of several relevant model suggestions. Each internal process model contained two 

fitting parameters. The overall system has been modeled using mass- and energy balances.  

To estimate full-scale parameters, the relevant scaling parameters have been identified using 

inspectional analysis and dimensional analysis. The resulting parameters were Re, Stk, Fr, PSD, 

LSep/LD, ρG/ρp, and c0, of which only one of the parameters Re, Stk, Fr could be chosen. A 

screening showed that only using Fr, competitive full-scale parameters could be achieved. 

Therefore Fr, PSD, LSep/LD, ρG/ρp, and c0 have been assumed applicable as scaling parameters. 

Using the model, predictions of full-scale 2D-HX-based preheaters indicated that the capital 

cost, estimated as the equipment volume, is in the same order of magnitude as the cyclone-based 

preheaters. The most modern cyclone-based preheaters have according to a direct comparison 

up to 30 – 40 % smaller volumes, however. Furthermore, the comparison has revealed that dust 

loss was higher in the 2D-HX, the thermal efficiencies comparable, and the height of the 2D-

HX is 40 – 60 % lower than the cyclone-based preheater facilities. The overall size of a 3000 

TPDc 2D-HX preheater was 46 x 13 m x 6 m.  

Suggestions for optimizing the 2D-HX have been provided, potentially reducing the volume of 

the full-scale 2D-HX with between 30 and 45%, thereby making the 2D-HX smaller than the 

cyclone preheater facility, and reducing dust loss to 5 %.  

Possible additional reductions of capital costs associated to the reduced preheater structural 

support structure, the simple planar geometry of the 2D-HX, and the series production have not 

been quantified. 

Furthermore, the 2D-HX may be integrated with other processes in the cement plant, such as 

waste heat recovery and the calciner, thereby providing alternatives, which are not possible with 

the current cyclone design.  
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11.1 Outlook and Future work 

A significant work before commercialization of the 2D-HX can be achieved, still lies ahead. 

Future investigation and development of the 2D-HX concept could progress as follows: 

1. Application of computational particle fluid dynamic (CPFD) models such as 

Barracuda®. The experimental data should be used to verify model predictions, where 

after full-scale facilities can be investigated. The model could also be used to verify the 

selection of scaling parameters chosen in present work. 

2. Based on model results and present work, a pilot-scale 2D-HX facility should be 

constructed. Subsequently continuous testing of process performance, stability, and 

control should be performed. Overall design and operational parameters have been 

suggested in section 10.5 – Pilot-Scale Facility. 

3. Installation of 2D-HX on a side-stream in a cement plant for testing under actual plant 

conditions. 

This author recommends that at least the 2D-HX is sought described using CPFD, and full-scale 

characteristic and performance are re-evaluated before any further decisions are taken regarding 

the application of this technology. The overall evaluation of whether or not the 2D-HX is 

competitive with the cyclone preheater should not be made at current time. 

Academically, the following are suggested as follow-ups on the present work: 

− Establishment of flexible particle-gas equipment test facility, containing particle feed 

and dust handling systems, which would allow test of alternative geometries of the 

internal plates for use in the 2D-HX, thereby optimizing the performance and reducing 

costs.  

− Development of a more suitable powder flowability evaluation method, as very little 

work has been made on the topic of temperature dependent powder flow properties. The 

influence of alkali condensation, raw meal size distribution, and CO2 content in the gas 

are obvious subjects for investigation. 

− Identification of other areas of application of the 2D-HX, and execution of detailed 

evaluations, including modeling and experimental work, for the application in other 

industries, such as drying of grain or malt. 
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List of Symbol and Abbreviations 
Symbols 

Symbol Description Unit 

A Area [m2] 

a Inlet height of a cyclone [m] 

b Inlet width of a cyclone [m] 

c0 Solid load [kg/kg] 

c0L Limiting solid load [kg/kg] 

CP Specific heat capacity [J/kg/K] 

dP Particle diameter [m] 

D Diameter [m] 

ΔMFi I’th mass fraction of a certain particle size [kg] 

f Friction factor - 

g gravity [m/s2] 

H Height [m] 

HC Height of cyclone cone [m] 

ks Roughness of wall [m] 

k Fitting parameter - 

L Length [m] 

ṁ Mass flow [kg/s] / [kg/hr] 

m Slope of efficiency curve - 

n Number of data points - 

N Number of stages - 

P Pressure [Pa] / [Bar] 

R Radius [m] 

Q Energy content [J] 

S Height of vortex finder [m] 

T Temperature [°C] 

w Weight for cost function - 

Greek letters 

α Constriction factor - 

β Geometric ratio, a/R - 
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List of Symbols and Abbreviations 

 

Symbol Description Unit 

Δ Difference - 

ε Void in bulk  - 

ρ Density [kg/m3] 

η Particle transport related efficiency - 

φ Thermal related efficiency - 

Φ Particle sphericity - 

ϕ Internal angle of friction - 

θ Angle of pipe section [°] 

 ν Velocity [m/s] 

μ Viscosity [kg/m/s] 

   

Indices 

1 – 7 Model number - 

50 Cut size - 

Abs Absolute - 

Acc Acceleration - 

amb Ambient - 

B Bed - 

C Cyclone  - 

Channel Transport channel - 

Cal Calciner conditions - 

Com Computed - 

cs Control surface - 

D Dust - 

Body Cyclone body - 

Eff Effictive - 

Elv Elevation - 

Ent Entrainment - 

F Freeboard - 

Fric Friction - 

G Gas - 

H Horizontal  

Heat Parameter describing heat loss - 
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List of Symbols and Abbreviations 

 
 

Symbol Description Unit 

i Stage/interval reference - 

In Inlet conditions - 

Loss Loss - 

mf Minimum fluidization - 

NE Not entrained - 

Opt Optimized - 

Out Outlet  - 

P Particles - 

Pickup Pickup conditions  - 

R Riser - 

Re Reynolds number - 

Ref Reference condition - 

Rel Relative  - 

m mean - 

Meas Measured - 

med median - 

Module Module specific - 

Sal Saltation conditions - 

Sep Separation - 

Stokes Stokes terminal settling velocity - 

Str Particle strand/rope - 

T Temperature - 

Tot Total - 

v Vertical channel/Vertical - 

w wall - 

x vortex - 

z Axial - 

θ tangential - 
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List of Symbols and Abbreviations 

 

Abbreviations 

2D-HX – Two dimensional heat exchanger 

AF – Alternative fuel 

ANOVA – Analysis of variance 

CS – Control surface 

CC – Carbon capture 

CFB – Circulating fluidized bed 

CFD – Computational Fluid dynamics 

DTSB – Draft tube spouted bed 

ECT – Emission trade system 

ILC – Inline Calciner 

L/D – Length/Diameter ratio 

LP – Low pressure drop 

MM – Muschelknautz’s method 

PM – Particulate matter 

PoC – Proof of concept 

SoE – Sum of Errors 

SWOT – Strength, Weaknesses, Opportunities, and Threats 

TPD – Tons per day [Ton/day] 

TPDc – Tons per day of clinker [Ton/day] 
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Appendix A 

Experimental Procedures 
 

In this appendix, experimental procedures for the three set-ups are provided. 

Single-stage set-up 

 

Figure 140 – Schematic drawing of the 1-stage, cold set-up. Numbered indications are: (1) Initial particle location, 

(2) Final location of entrainment particles, (3) final location of particles not entrained. 

Initially the set-up was loaded with a weighted amount of particles into the feed chamber, (1) in 

Figure 140. The mass of the filter bag was noted. Vacuum cleaners were turned on, followed by 

setting of desired gas flow. The particle gate was opened at the desired gap and particles start 

pouring out into the gas. If necessary fluidization air could be applied. Once the particle stock 

has been depleted, the system was shut down in reverse sequence. The particles collected at (2) 

and (3) were weighed for data on the particle distribution at the given settings. Weight of 

particles collected in filter bag could be used for controlling the mass balance. The particle feed 

rate was obtained from initial mass loaded particles and the time between particle gate opening 

and particle stock depletion. 
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Air outlet
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Multi-stage set-up 

Startup procedure was similar to Single-stage procedure. At initiation of experiments, all 

particle gates must be closed. Top stage particle gate was moved to the desired opening and 

particles started to move to stage number 2. Once appropriate layer of particles (2-3 cm) was 

present in stage number 2, the particle gate of stage 2 was opened. The procedure is repeated for 

all stages. Once the particle layer was below 2-3 cm or if gas was penetrating the particle layer, 

the gates opening was reduced or closed. Once all particles were transported to the bottom 

stage, system was shut down. Collected particles at the two bottom locations were weighed, as 

well as the particles collected in the filter system.  

For further details, please see Andersen [113]. 

 

Proof of concept set-up 

When system is configured as desired (number of stages and instrumentation), the gas flow at 

the desired temperature was started. At steady state conditions in the system, the particle feed 

and vibration was started. Particles were collected at top stage until layer of particles were 

visible thorugh sight glasses. Particle gate was opened and controlled, ensuring stable particle 

level. This procedure is repeated for each stage, while controlling level at all active stages. 

System run until new steady state has been reached. 

At shutdown, the particle feed was stopped and each particle bed emptied. The gas preheater 

was turned off, while maintaining a gas flow of 30 kg/hr. When system is colder than 100 °C, 

gas flow could be stopped. Data was automatically collected at all times. 

Detailed procedure has been provided by Quintero [114]. 
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Data Treatment 
 

The following exemplifies the data acquisition and treatment yielding the data for the PoC set-

up. The experiment selected as example for the following descriptions is called PoC #2. The 

dynamic data for this experiment is provided in Figure 141, Figure 142 and Figure 147. Not all 

experiments are similar to PoC#2 in operation characteristic, but overall trends are similar. The 

example also serves for understanding the steady state data presented in the main text. 

For the used example, the experiment were started at time = 1800 s and terminated at time = 

8500 s. The time scale is independent for each experiment and only relates to the start of the 

data file for that given experiment.  

During PoC #2, the gas inlet temperature was approximately 795 °C – 810 °C and the particle 

inlet temperature around 20 °C. The measurement of the particle feed temperature is done in the 

upper part of the set-up, why the temperature is affected by the temperature of the hot gas. 

Initially the stable temperatures of the system shown at the initiation of the experiment in Figure 

141, should be noticed. This indicates that the system, including the gas preheater, was in 

thermal equilibrium. At time = 1800 s, the particle flow was initiated to stage 1, which can be 

seen as a drop in the particle feed temperature. The starting point of the experiment can also be 

identified from the feeder setting (Figure 142). At approximately time = 2100 s, the gate of 

stage 1 was opened. The result was a temperature drop in the gas exit temperature, caused by 

the heat exchange process taking place in stage 1. Afterwards the gates of stages 2, 3 and 4 were 

opened, resulting in temperature drops in the entire system. The temperature of the inlet to stage 

4 was not lowered, indicating that very little heat exchange takes place in the inlet to stage 4. 

This indicates that only a minor portion of the particles are present in the part of the system, as 

expected. 
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Figure 141 – Temperatures during PoC #2. 

 

 

Figure 142 – Dynamic weight data during PoC #2. 

 

The set-up cooled down until a new operational steady state at a lower temperature was reached. 

The slow cooling of the system was caused by a relatively large thermal mass of the set-up.  

The fluctuations observed in the temperatures during the experiments are mainly a consequence 

of the control and position of each particle gate: If a gate was opened more, more particles were 
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transported to the stage below, cooling this area more than before and vice versa when the gates 

were closed. Furthermore, if the position of a lower level gate (stage 2, 3, or 4) was changed, 

this influenced temperature in all the above stages. This was the main reason for the smaller 

fluctuations. The larger fluctuations seen in Figure 141 were caused by a stage running low of 

particles, which resulted in the particle gate being closed with a large temperature increase in 

the entire system as a consequence. This was the case at the peak around 6000 s.  

Steady state considerations 

To evaluate the overall performance of the system it is useful to consider temperatures and 

weights at the initial conditions and at the start and end of the operational steady state. 

In Figure 143, the temperatures of the system are depicted together with the selected periods 

used for computing the initial and steady state conditions. The marked intervals are a period of 

120 seconds and 1800 seconds respectively. Note that the position and length of the two stable 

periods depends on each experiment and are chosen to represent the data as well as possible. 

The steady state period at the end of the experiment are shown separately in Figure 144. 

 

 
Figure 143 – Temperatures of PoC#2 with indication of start and end conditions. 
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Figure 144 – Dynamic temperature data of PoC #2 in the steady state period. 

 

 

Figure 145 – Temperatures of the system at steady state before and during the experiment, POC #2 

 

The temperature averages for each measurement point at the initial and steady state are plotted 

in Figure 145. This figure summarizes the thermal performance of the system during the stable 

operation. From the initial conditions, it was found that there was an energy loss in the empty 

set-up corresponding to 150 °C in this experiment. This is the temperature difference between 

the gas inlet and the gas exit. The red bars, indicating average temperatures during the 
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operational steady state show that the temperatures were lowered during the experiment, and 

that the exit gas temperature of was lowered from approximately 650 °C to 325 °C. Also the 

temperature increased for both particle outlets. The temperature difference at the initial 

conditions between the two particle outlets was caused by their physical location: Particle outlet 

2 was close to the gas inlet causing high temperature in that part of the system. Oppositely 

where no gas movement was present during the initial period, the temperatures were lower.  

The steady state data indicates that heat exchange occurs at all four stages. The temperature 

profile in the system shows that the temperature change over each stage is around 100 °C per 

stage, with the largest difference over stage 1 and smallest over stage 4. This is in agreement 

with the expected behavior of the system. 

The inlet gas temperatures were fairly constant during the experiment, which is also evident 

from Figure 145. 

During operational steady state, the particle exit temperatures were highest at particle exit #2 as 

expected as this was where the hottest gas is present. As described previously, not much 

material ended in particle outlet #2 during operational steady state. 

The measured weights during the steady state are depicted in Figure 146. The blue bars indicate 

the mass at the start of steady state and the red bars the mass at the end of the operational stable 

period. Thus, the weight data depicted are not averages, but data points at the beginning and end 

of the stable period, marked by the third and fourth vertical black line from left on Figure 143. 

The weight gain of the system was neglectable during steady state. The amount of particles 

collected in particle outlet #1 was approximately 18 kg and for particle outlet #2 the amount 

was approximately 5 kg. The total amount of particle fed during the experiment was, according 

to Figure 142, 40 kg. 
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Figure 146 – Weights of the system at steady state before and during the experiment, POC #2 

 

Pressure drop 

The pressure drop over each stage and the total system was monitored by five differential 

pressure sensors. The obtained data is provided in Figure 147. 

The maximum total pressure drop over the entire set-up reached around 12 mbar during the 

experiment, but was typically in the range of 4 – 6 mbar. The pressure drop over each stage 

depended on the gas velocity, amount of particle transported and possibly also the amount of 

build-up in pressure transmission lines. Note that the exact pressure drops over each stage 

should be compared with care as the pressure sensors were prone to build-up in the pressure 

transmission lines and measurement points. The absolute values were therefore not completely 

reliable. This was also the reason for some of the pressure drop being negative. However, in 

terms of trends and order of magnitude of the pressure drop, the data is trustworthy. Figure 148 

contains a zoom of the data presented in Figure 147, where the initial period of the experiment 

can be studied. 

From the data in Figure 148 it is evident that the gates are opened in the sequence 1, 2, 3 and 4 

as previously described. This can be seen from the increases in pressure drop over each stage at 

the beginning of the experiment. 
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Figure 147 – Dynamic pressure drop data during PoC #2. 

 

 

Figure 148 – Pressure drop of PoC #2 at the start of the experiment.  
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Experimental Data 
 

Investigation of Transport Processes 

Table 46 – Experimental settings and results for used in an ANOVA for sand particles in the Single-stage set-up. 

Experiments carried out at ambient temperature 

Ex. 

name 

Particle gate 

opening [mm] 

Duration 

[s] 

Initial 

WeightA [g] 

VelocityA 

[m/s] 

Solid loadA 

[kg/kg] 
ηSep ηEnt 

S#1 6 30 1006 3.10 3.16 0.97 0.67 

S#2 6 34 1010 3.10 2.80 0.96 0.75 

S#3 6 36 1001 3.10 2.62 0.96 0.77 

S#4 6 30 1000 3.10 3.14 0.96 0.65 

S#5 3 56 755 2.52 1.62 0.96 0.50 

S#6 3 73 1259 2.52 2.00 0.84 0.57 

S#7 9 15 755 2.52 5.84 0.97 0.57 

S#8 9 25 1249 2.52 5.80 0.97 0.62 

S#9 3 104 751 3.68 0.57 0.96 1.00 

S#10 3 108 1256 3.68 0.92 0.97 1.00 

S#11 9 22 756 3.68 2.73 0.96 0.79 

S#12 9 31 1256 3.68 3.21 0.93 0.91 
A Used for ANOVA 

 

Table 47 – Experimental settings and results from the Single-stage set-up using Dalen raw meal particles. 

Experiments carried out at ambient temperature 

Ex. 

name 

Particle gate 

opening [mm] 

Duration 

[s] 

Initial 

Weight [g] 

Velocity 

[m/s] 

Solid load 

[kg/kg] 
ηSep ηEnt 

R#1 6 84 1579 3.10 1.77 0.83 0.77 

R#2 6 N/A 1118 3.98 N/A 0.84 0.85 

R#3 6 50 984.2 3.68 1.56 0.85 0.82 

R#4 6 21 1020 3.10 4.58 0.88 0.74 

R#5 6 23 704.9 2.52 3.56 0.92 0.63 

R#6 6 18 640 1.94 5.37 0.82 0.53 

R#7 6 18 603 1.35 7.24 0.84 0.33 
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Table 48 – Experimental settings and results from the Multi-stage set-up using Cimpor raw meal particles. 

Experiments carried out at ambient temperature 

Ex. name 
Velocity 

[m/s] 

Initial 

Weight [g] 

Collected 

filter 

Collected particle 

outlet #1 

Collected particle 

outlet #2 

M#1 1.8 2788 150 2500 195 

M#2 2.3 2918 140 2120 690 

M#3 2.8 3450 240 2421 723 

M#4 3.4 3439 295 2075 945 

M#5 2.8 4523 697 1955 750 

M#6 2.8 3454 811 1720 405 

 

Table 49 – Experimental settings and results from the PoC set-up using Pilot 2 raw meal particles. Second session, 

the number of stages is one. 

Ex. name Velocity [m/s] Temperature [ °C] Particle flow [kg/hr] Solid load [kg/kg] ηSep ηEnt 

P2#1 2.32 20 78 0.78 0.90 0.25 

P2#2 4.48 20 78 0.40 0.77 0.84 

P2#3 2.92 20 78 0.62 0.90 0.46 

P2#4 3.71 20 78 0.49 0.85 0.66 

P2#5 3.71 20 78 0.49 0.82 0.73 

P2#6 1.56 20 78 1.16 0.86 0.12 

P2#7 3.71 20 78 0.49 0.82 0.72 

P2#8 0.77 20 78 2.37 0.40 0.04 

P2#9 3.71 20 78 0.49 0.78 0.73 

P2#10 3.71 20 61 0.38 0.81 0.79 

P2#11 3.71 20 94 0.59 0.81 0.79 

P2#12 3.71 20 61 0.38 0.77 0.92 

P2#13 5.66 214 78 0.53 0.56 0.94 

P2#14 7.29 204 78 0.40 0.40 0.98 

 

Table 50 – Experimental settings and results from the PoC set-up using Pilot 2 raw meal particles. Third session #1, 

pressure above atmospheric. Experiments carried out at ambient temperature, and the number of stages is one. 

Ex. name Velocity [m/s] Particle flow [kg/hr] Solid load [kg/kg] ηSep ηEnt 

P3#1 4.87 140 0.67 0.61 0.84 

P3#2 5.04 100 0.46 0.78 0.87 

P3#3 5.11 140 0.64 0.80 0.88 

P3#4 2.24 100 1.04 1.00 0.19 

P3#5 3.27 100 0.71 0.93 0.55 

P3#6 4.01 100 0.58 0.94 0.80 

P3#7 2.75 120 1.02 0.80 0.49 

P3#8 3.97 180 1.06 0.90 0.83 
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Table 51 – Experimental settings and results from the PoC set-up using Pilot 2 raw meal particles. Third session #2, 

pressure below atmospheric. Experiments carried out at ambient temperature, and the number of stages is one. 

Ex. name Velocity[m/s] Particle flow [kg/hr] Solid load [kg/kg] ηSep ηEnt 

P3#9 4.37 140 0.75 0.80 1.00 

P3#10 5.29 160 0.71 0.73 1.00 

P3#11 5.63 176 0.73 0.73 0.99 

P3#12 6.05 200 0.77 0.61 1.00 

P3#13 1.51 47 0.73 0.90 0.21 

P3#14 1.93 61 0.74 1.00 0.25 

P3#15 3.28 100 0.71 0.78 0.75 

P3#16 3.78 120 0.74 0.79 0.85 

P3#17 3.19 100 0.73 0.94 0.77 

P3#18 4.03 120 0.69 0.80 0.98 

P3#19 5.21 100 0.45 0.69 0.99 

P3#20 6.89 140 0.47 0.39 1.00 

P3#21 6.13 120 0.46 0.51 0.99 

P3#22 9.91 200 0.47 0.30 0.99 

P3#23 4.2 100 0.56 0.80 1.00 

P3#24 5.17 120 0.54 0.67 0.97 

P3#25 5.8 140 0.56 0.60 1.00 

P3#26 6.8 160 0.55 0.62 0.99 

P3#27 7.48 180 0.56 0.48 0.91 

P3#28 8.15 200 0.57 0.36 1.00 

P3#29 2.69 61 0.53 0.84 0.53 

P3#30 5.88 140 0.56 0.67 1.00 

P3#31 4.16 100 0.56 0.82 0.85 

P3#32 4.45 200 1.05 0.74 0.99 

P3#33 1.47 61 0.97 1.00 0.16 

P3#34 2.35 100 0.99 0.95 0.38 

P3#35 2.65 120 1.06 0.84 0.63 

 

Investigation of thermal performance 

A complete summary of experimental for PoC and TEQ data are provided in the following 

tables. 
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Table 52 – Summary of PoC experiments: Overview of experimental settings. 
System configuration PoC #1 PoC #2 PoC #3 PoC #4 PoC #5 PoC #6 PoC #7 

Number of stages, N 4 4 4 4 4 1 1 

Location of temperature 

measurements 

Stage 

inlets 

Stage 

inlets 

Stage 

inlets 

As PoC 

#1 and in 

particle 

beds 

As PoC 

#1 and in 

particle 

beds 

As PoC 

#4 and in 

freeboard 

As PoC 

#4 and in 

freeboard 

Experimental settings        

Duration [min] 84 109 36 84 56 60 35 

Duration of steady state [min] 30 30 10 17 13 19 8 

Gas flow [kg/hr] 80 80 100 90 90 80 146 

Particle flow [kg/hr] 78 94 94 61 78 78 78 

 
Table 53 – Summary of PoC experiments: Particle distribution. 

Particle distribution PoC #1 PoC #2 PoC #3 PoC #4 PoC #5 PoC #6 PoC #7 

Particles fed during steady state [kg] 47.1 38.9 15.7 21.2 16.2 24.3 10.8 

Particle outlet #1, steady state [kg] 30.6 18.2 8.1 4.1 10.8 17.9 6.1 

Particle outlet #2, steady state [kg] 7.5 5.3 1.5 0.3 1.5 1.6 0.9 

System weight change A [kg] -8.8 B -0.9 -5.3 B 1.8 -3.9B 1.2 -1.3 

Particle, blown out C [kg] 17.8 16.4 11.4 15.1 7.8 3.6 5.0 

Particle distribution outlet#1 0.55 0.46 0.39 0.21 0.54 0.77 0.51 

Particle distribution outlet#2 0.13 0.13 0.07 0.02 0.07 0.07 0.07 

Particles distribution blown out 0.41 0.32 0.54 0.78 0.41 0.15 0.41 
A The weight change of the system is used to correct the particles fed, when computing the mass balance and particle 

distributions. 
B System weight not stable as this prolongs the operational period at the end of each experiment (emptying of top stage) 
C Computed from a total mass balance at steady state 
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Table 54 - Summary of PoC experiments: Temperatures. 

Average temperatures PoC #1 PoC #2 PoC #3 PoC #4 PoC #5 PoC #6 PoC #7 

TG,In [°C] 790 790 707 710 707 324 243 

TG,stage 4 [°C] 711 717 688 660 659 N/A N/A 

TG,stage 3 [°C] 655 642 565 643 593 N/A N/A 

TG,stage 2 [°C] 571 547 591 584 508 N/A N/A 

TG,stage 1 [°C] 480 412 464 475 371 295 247 

TG,outlet, [°C] 354 321 361 398 309 183 180 

TG,freeboard,stage 1 [°C] N/A N/A N/A N/A N/A 184 176 

TP,In [°C] 20 20 20 20 20 20 20 

TP,stage 1 [°C] N/A N/A N/A 65 57 40 57 

TP,stage 2 [°C] N/A N/A N/A 402 314 N/A N/A 

TP,stage 3 [°C] N/A N/A N/A 505 424 N/A N/A 

TP,stage 4 [°C] N/A N/A N/A 539 493 N/A N/A 

TP,outlet #1 [°C] 481 505 562 500 530 154 156 

TP,outlet #2 [°C] 591 596 573 599 606 223 206 

TP,outlet,average [°C] 505 522 564 508 541 159 162 

 

Table 55 - Summary of PoC experiments: Computed relevant parameters. 

Characteristic parameters PoC #1 PoC #2 PoC #3 PoC #4 PoC #5 PoC #6 PoC #7 

Solid load, co [kg/kg] 1.0 1.2 0.9 0.7 0.9 1.0 0.5 

Stability [max(%change)/min] 0.24 0.30 1.30 0.7 2.5 0.9 1.0 

Absolute thermal efficiency, φAbs 0.30 0.50 0.36 0.08 0.39 0.29 0.18 

Relative thermal efficiency, φRel 0.69 0.37 0.53 0.14 0.58 0.64 0.61 

 

Table 56 – Summary of TEQ experiments: Temperatures. 

Ex. name 
Avg. temp. 

gas exit 

Avg. 

gas feed 

Avg. inl. 

stage 1 

Avg. inl. 

stage 2 

Avg. inl. 

stage 3 

Avg. inl. 

stage 4 

Avg. particle 

outlet#1 

Avg. particle 

outlet#2 

TEQ#1 656 781 679 723 741 723 338 591 

TEQ#2 655 805 674 729 755 736 255 600 

TEQ#3 484 534 499 510 520 512 379 435 

TEQ#4 672 865 715 770 807 787 574 670 

TEQ#5 576 690 603 635 656 632 382 541 

TEQ#6 392 451 408 425 430 420 243 357 

TEQ#7 555 622 577 595 607 594 440 510 

TEQ#8 578 728 607 656 679 675 296 526 

TEQ#9 377 424 393 407 412 396 282 345 

TEQ#10 427 510 447 472 481 473 271 406 
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Table 57 – Summary of TEQ experiments: Gas flow and computed parameters. 
Ex name Gas flow [kg/h] Steady state [max(%change)/min] Actual heat loss, [kW] Loss 

TEQ#1 80 0.00 3.4 0.18 

TEQ#2 80 0.05 4.1 0.21 

TEQ#3 100 0.00 1.6 0.10 

TEQ#4 75A 0.06 3.3 0.24 

TEQ#5 75 A 0.00 1.9 0.18 

TEQ#6 75 A 0.01 0.9 0.14 

TEQ#7 60 A 0.05 0.9 0.12 

TEQ#8 60 A 0.64 2.0 0.22 

TEQ#9 112.5A 0.08 1.1 0.12 

TEQ#10 112.5 A 0.15 2.0 0.17 
Á Electric gas preheater leaking, estimated gas flow. 
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Pressure Drop Model 
 

Pneumatic transport pressure drop model, as described by Rhodes [120]. 

The pressure drop over a given stage consists of a contribution from the gas and a contribution 

from the particles.  

Stage G PP P P∆ = ∆ + ∆  Eq. 58 

 

Each contribution can be divided in three terms: Friction, acceleration and elevation: 

( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,

1 2 3 4 5 6
Stage G Fric G Acc G Elv P Fric P Acc P ElvP P P P P P P∆ = ∆ + ∆ + ∆ + ∆ + ∆ + ∆  Eq. 59 

These values can be mathematically evaluated by considering a momentum balance. A 

schematic drawing used for setting up a momentum balance is presented in Figure 149. 

 

Figure 149 – Schematic drawing of a section of pneumatic transport pipe. 

Setting up a momentum balance and integrating, assuming constant density of air, yields: 
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( ) ( )

( )
( ) ( )

( )

( )

( )

,G ,sin

sin

ρ ε νρ ε ν
ρ ε θ

ρ ε θ

⋅ − ⋅⋅ ⋅
∆ = ⋅ + + ⋅ − ⋅ ⋅ ⋅ + ⋅ +

+ ⋅ ⋅ ⋅ ⋅

P PG G
Stage W P W P

G

P F L L g F L

L g

22

31 4
2 5

6

1
1

2 2  Eq. 60 

Where, F is the wall friction force between gas and wall (subscript W,G) and particles and wall 

(subscript W,P). ε is the void fraction. 

A priori none of the above terms can be neglected, and each of the terms must be evaluated at 

the desired conditions and relevant geometries. 

Approximated system 

For evaluation of the momentum balance, the system is represented by a simplified system. 

Assumed particle and gas trajectories in a single stage are provided in Figure 150. 

 

Figure 150 – Schematic drawing of particle and gas pathways. 

To simplify the computations and enable the use of the pneumatic transport equations, both 

particle and gas pathways are simplified: 

− The particle pathway will be considered as shown in Figure 152. The particles are 

assumed to leave the gas flow at the entrance to the separation chamber. The path of 

the particles is assumed to consist of a horizontal and a vertical part.  

Gas pathway

Particle pathway

 
R 
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− The gas pathway will be described as a series of pipe sections, bends and diameter 

changes, as shown in Figure 151, which will yield an equivalent length of pipe that 

offers the same friction as the geometries considered. 

 

 

Figure 151– Approximated gas pathway in a single stage of 

the 2D-HX.

 

Figure 152 – Approximated particle pathway in a 

single stage.

 
The friction of each of the geometries shown in Figure 151 corresponds to a length of pipe 

providing the same friction, called the equivalent length, Lequivalent. These are provided in Table 

58.  
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Actual pathway

Approximated 
pathway

0.1 m
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Table 58 – Overview of gas pathway geometries. 

Geometry Dimensions Friction loss (equivalent pipe length) [35] 

45 ° bend 
 

Dmean = 0.10 m 15 m 

Straight section 
 

Dmean = 0.10 m 0.42 m 

45 ° bend 
 

Dmean = 0.10 m 15 m 

Expansion 
 

Dmean = 0.10 m -> 

Dmean = 0.17 m 
10 m 

Straight section 
 

Dmean = 0.17 m 0.30 m 

Contraction 
 

Dmean = 0.17 m -> 

Dmean = 0.10 m 
20 m 

180° Bend 
 

Dmean = 0.10 m 50 m 

   ∑ = 110.72 m 

 

Note that the straight sections only contribute with a very minor part of the pressure loss, why 

they could in this case be neglected. However, they are included for the sake of completion.  

Pressure Model Setup 

In the horizontal part, the elevation terms are zero. The acceleration is also assumed to take 

place in the horizontal part, why in the vertical part, the acceleration terms are zero. 

Thus the model consists of the following expressions: 

Horizontal pressure drop: 

( ), ,
, , ,

G H G H P H P H
H W P H W G H equivalentP F L F L

ρ ε ν ρ ε ν⋅ ⋅ ⋅ − ⋅
∆ = + + ⋅ + ⋅

2 21
2 2

 Eq. 61 

Vertical pressure drop: 

( ), ,H W P V W G V P V V G V VP F L F L L g L gρ ε ρ ε∆ = ⋅ + ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅1  Eq. 62 

Where indices H and V refers to horizontal and vertical, respectively. Indices P and G refers to 

particles and gas, respectively. LH,equivalent is the equivalent of pipe which corresponds to the 

 
T 
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friction created by the gas flowing through the various geometries in the system. ν is the 

superficial gas. νG and νH are actual velocities of gas and particles respectively. 

Parameters 

The particle and gas specific data used for computing the pressure drop as well as the relevant 

geometries are provided in Table 60, while operation conditions of selected experiments for 

investigation of the pressure drop model is provided in Table 59. 

Table 59 – Operating conditions for selected experiments. 

Name Particle flow [kg/hr] Gas flow[kg/hr] Average temperature [ °C] 

PoC #2 77.681 80 572 

PoC #1 94.247 80 556 

EX #1 94.247 100 534 

PT#3 61.115 90 554 

PT#4 77.681 90 508 

PT#1 77.7 80 254 

PT#2 77.7 146 211 

 

Table 60 – Parameters for computing pressure drop. 

Parameter Value Reference 

Particle density 2300 kg/m3 [104] 

Particle diameter 12 μm Measured volumetric diameter 

Gas density Given by: P·V=n·R·T and M = 29 

g/mol 

- 

Gas viscosity μ = f(T) [146] 

Gravitational acceleration 9.82 m/s2 [147] 

LH 0.10 m Approximated horizontal length 

LH, equivalent 110 m Equivalent horizontal length 

LV 0.40 m Vertical lifting height 

DMean 0.10 m   D L LDepth Channel= ⋅  

 

Evaluation of Acceleration terms 

The acceleration terms, given as a standard kinetic energy expression can be evaluated once the 

void and actual gas and particle velocities are computed. For the horizontal sections, a semi-

theoretical expression derived by Hinkle[148] can be applied: 

( ). .
, .P H G P Pdν ν ρ= − ⋅ ⋅0 3 0 51 0 0638  Eq. 63 
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From continuity: 

( ) ,
,

1 1 P
P P H P H H

P P H

mm A
A

ρ ε ν ε
ρ ν

= ⋅ − ⋅ ⋅ ⇒ = −
⋅ ⋅


  Eq. 64 

Where ṁP is mass flow [kg/s], A is cross sectional area, and ε is void. ṁP/A [kg/s/m2] can 

advantageously be computed as a single parameter. 

,G H
H

νν
ε

=  Eq. 65 

For the vertical section the relevant equations are:  

,P V Stokes
v

νν ν
ε

= −  Eq. 66 

Where νStokes
 is the terminal velocity, computed by Stokes settling law and  

( ) ,1P P V P Vm Aρ ε ν= ⋅ − ⋅ ⋅  Eq. 67 

Wall friction terms 

The wall friction terms, terms (3) and (4) is given by Fannings friction factor [120]. For the 

horizontal sections: 

( ) 2

,

2 1P P H PH H
W P H

mean

f L
F L

D
ρ ε ν⋅ ⋅ − ⋅ ⋅

⋅ =  Eq. 68 

And 

2
,

,

2 G G H equivalent
W G H

mean

f L
F L

D
ρ ν⋅ ⋅ ⋅ ⋅

⋅ =  Eq. 69 

The particle friction factor, fP, is determined as: 

2

, ,

,

3
8

G H P HG mean
P D

P P P H

Df C
d

ν νρ
ρ ν

 −
= ⋅ ⋅ ⋅ ⋅  

 
 Eq. 70 

Where:  

( )Re F FH PH P
P

U U dρ
µ

⋅ − ⋅
=  Eq. 71 

For ReP <1: 

24
ReD

P

C =  Eq. 72 
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The gas friction factor, fG, depends on Re and the relative roughness of the pipe. A value of 

0.005 is assumed here. For the vertical section and expression is available for FW,P·LV 

0.057 P
WP V V

mean

m gF L L
A D

⋅ = ⋅ ⋅
  Eq. 73 

The gas friction factor is similar to the horizontal expression: 

( ) ,
,

P P V P V V
W P V

mean

f L
F L

D
ρ ε ν⋅ ⋅ − ⋅ ⋅

⋅ =
22 1

 Eq. 74 

Where fP again is assumed to 0.005. 

Elevation terms 

The elevation terms are evaluated as presented in the equations with the relevant lengths, voids 

and velocities. 
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2D-HX model and Implementation 
 

The implemented mass and energy balances are given in the following.  

The entrained flow from the particle bed: 

( ), , , .i , , 2P E i P B P NE i Entm m m η−= + ⋅    Eq. 75 

The not entrained flow from the particle bed: 

( ) ( ), , , .i , , 2 1P NE i P B P NE i Entm m m η−= + ⋅ −    Eq. 76 

The dust from the freeboard: 

( ) ( ), , , , 1 , , 1 1 η+ −= + ⋅ −  P D i P D i P E i Sepm m m  Eq. 77 

The particle flow from freeboard to bed 

( )P,B, , , 1 , , 1 η+ −= + ⋅  i P D i P E i Sepm m m  Eq. 78 

Energy balance for the i'th freeboard 

( ) ( )( ) ( )
( ) ( )( )

, , 1 , 1 , , 1 v, 1 ,P , 1 ,G v, 1

F, ,P , , , ,G

P E i B i R P D i i R P G i P i R

i R P B i D i G i P

m T T m T T C m C T T

T T C P P m C

− − + − + +⋅ − + ⋅ − ⋅ + ⋅ ⋅ − =

− ⋅ ⋅ + + ⋅

  



 Eq. 79 

Energy balance for the i'th vertical channel: 

( ) ( )( ) ( )
( ) ( )( )

, , 2 , , ,i f, ,P , ,G , ,i f,

v, ,P , , 2 , , , ,P

P NE i B i R P D i R P G i P P D i R

i R P P NE i P D i G i P

m T T m T T C m C m T T

T T C m m m C

−

−

⋅ − + ⋅ − ⋅ + ⋅ + ⋅ − =

− ⋅ ⋅ + + ⋅

   

  

 

Eq. 80 

Energy balance for the i’th particle bed: 

( ) ( )( ) ( ) ( ), , 2 v, P,B,i f, , , , , ,P NE i i R i R B i R P NE i P E im T T m T T T T m m− ⋅ − + ⋅ − = − ⋅ +     Eq. 81 

Abbreviation has been used: Index R for Reference. 
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The model has been implemented in MatLab. The main script is Main2DHX.m, which calls the 

remaining functions and generates the results. In order to use the mass and energy balances 

stated above for all stages, all data vectors, including vectors with mass flow and temperatures 

have length N+4, where N is the number of stages modelled. The generally positions 3:N-2 

contains the computed data, while the remain positions are set equal zero. The inlet gas 

temperature is set in Tv,N+4 and the particle feed in ṁP,E,1. 

An overview of all used functions and scripts are given in Table 61. Some generic functions not 

developed during this work have been utilized as well for simpler and faster solution 

procedures. 

 

Table 61 – Overview of scripts and functions used to solve the model of the 2D-HX. 

Name Description Input 

Main2DHX.m 
Main file containing mass and energy balances 

in nested loops for iterative solution procedure. 
None. 

n_S.m Function containing separation model. 
Gas velocity, particle mass flow, temperature, 

pressure and geometric parameters and k2. 

n_E.m Function containing entrainment model. 
Gas velocity, particle mass flow, temperature, 

pressure and geometric parameters and k4. 

rho_gas.m 
Function computing gas velocity, assuming 

ideal gas behaviour. 
Temperature and Pressure. 

visc.m 
Function computing the gas viscosity using 

Sutherlands formula[149]. 
Temperature. 

func_v_gas.m 
Function computing local gas velocities 

assuming ideal gas behaviour 
Temperature and pressure. 

Import_Model.m 
Import function reading values from the input 

file 

Input file name and identification number of 

desired experiment. 

Opti_k.m 

Optimization routine for experimentally 

determined constants. Calls Model.m and 

generates plots 

None. 

Model.m 
Function with similar content as Main2DHX, 

used for optimization of constants 
k4, k4 and heat loss constant. 

Inputfile.csv 

Input file containing geometric and operational 

parameters and experimentally obtained data. 

Data given as comma separated values. 

None. 
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Name Description Input 

ceil2.m 
Generic function ceiling a number with desired 

steps[150]. 
A number and a target ceiling step. 

fminsearchbnd.m 

Generic optimizing function searching for the 

optimum solution within a specified range of 

parameter values[150]. 

Target function, initial guess, upper and lower 

parameter value limits. Solution options are 

optional. 

 

Tolerances for the iteration loops have been set to 1·10-7, 1·10-4 and 1·10-6 for the mass flow 

loop, temperature loop and overall loop, respectively. The target functions for the loops are the 

differences between guessed values and computed values. Table 62 displays the effect and 

selection criteria of the tolerances. 

 

Table 62 – Determination of tolerances. Tolerances chosen marked by bold. Values computed from PoC#1. 

 1·100 1·10-1 1·10-2 1·10-3 1·10-4 1·10-5 1·10-6 1·107 1·108 

ṁP,E,3 [kg/s] - - - 0.022733 0.023115 0.023077 0.023078 0.023079 0.023079 

Tv,3 [K] 463.385 512.448 512.446 512.446 512.447 512.447 - - - 

ηSep,3 [-] - - - 0.789429 0.785670 0.786009 0.786037 0.786037 0.786037 
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Inspectional and Dimensional Analysis 
 

Inspectional Analysis 

When the governing equations for the process under consideration are known differential 

equations, dimensionless groups relevant for scaling the process can be identified by 

inspectional analysis. The groups will appear as factors in the non-dimensionalized equations.  

For particle-gas systems, including the 2D-HX and fluidized beds, the governing equations are 

determined equations of motion and conservation of mass. Assuming constant μ and ρ the 

Newtonian equation of motion for the fluid reduces to the Navier-Stokes equation, Eq. 84. 

Furthermore, assuming diluted particle concentration (no particle interaction) the particles are 

described by Eq. 85. Eq. 82 and Eq. 83 are the conservation of mass for fluid and particles, 

respectively [128]. 

( ) 0Gε∇ ⋅ =v  Eq. 82 

( )( )1 0Pε∇ ⋅ − ⋅ =v
 

Eq. 83 

( ) 0G G G G G P GP
t

ε ρ χ ε ρ∂ ⋅ ⋅ ⋅ + ⋅∇ +∇ + ⋅ − + ⋅ ⋅ = ∂ 
v v v v v g  Eq. 84 

( ) ( ) ( )1 1 0P P P P G P Pt
ρ ε β ε ρ∂ − ⋅ ⋅ + ⋅∇ − ⋅ − + − ⋅ ⋅ = ∂ 

v v v ν ν g  Eq. 85 

where χ is the drag force between gas and particles. Introducing the following non-dimensional 

parameters:  

0G Gv ν ν=

, 0P Pv ν ν= , ( )0 /pt d tν=


, pd∇ = ⋅∇


, 2
P Pp p ρ ν= ⋅  

where ν0 is the characteristic velocity in the system. Eq. 82 to Eq. 85 transform into: 

( ) 0Gε∇ ⋅ =v  Eq. 86 
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( )( )1 0Pε∇ ⋅ − ⋅ =v
 

Eq. 87 

( ) ( ) ( )
2 2

0 0
0 0P

G G G G G P G
p p

p
d t d
ν ρ ν

ε ρ ν χ ε ρ
⋅∂ ⋅ ⋅ ⋅ ⋅ + ⋅∇ + ∇ ⋅ + ⋅ ⋅ − + ⋅ ⋅ = ∂ 

v v v v v g
 

     

  Eq. 88 

( ) ( ) ( ) ( )
2

0
01 1 0P P P P G P P

pd t
ν

ε ρ ν χ ε ρ∂ − ⋅ ⋅ ⋅ ⋅ + ⋅∇ − ⋅ ⋅ − + − ⋅ ⋅ = ∂ 
v v v ν ν g



   



 Eq. 89 

The non-dimensional form is obtained by multiplication each term with dp/(ρpar·ν0
2): 

( ) ( ) ( ) 2
0 0

0p pG G
G G G G P

P P P

d d
p

t
χρ ρ

ε ε
ρ ν ρ ρν

⋅ ⋅     ∂ ⋅ ⋅ ⋅ + ⋅∇ +∇ ⋅ + ⋅ − + ⋅ ⋅ =      ∂ ⋅       

g
v v v v v

 

     


 Eq. 90 

( ) ( ) ( ) ( )2
0 0

1 1 0p p
P P P G P

P

d d
t

χ
ε ε

ν ρ ν
⋅ ⋅   ∂ − ⋅ ⋅ + ⋅∇ − ⋅ − + ⋅ − =    ∂ ⋅     

g
v v v ν ν



   



 Eq. 91 

The term dp·χ/(ν0·ρpar) can be substituted with Re, as the drag force, χ, depends on Re [128]. 

Characteristic length scale can be normalized with dp. The following non-dimensionalized 

groups can be identified: 

G S D

P p p

L L,Eu,Re,Fr, ,
d d

ρ
ρ  

which is the relevant parameters for scaling purposes of the 2D-HX according to this analysis. 

The geometry is represented by the characteristic length of the separation chamber, LSep, and the 

depth of the system, LD, normalized by dP. Note that from an inspectional analysis point of 

view, the hydrodynamic behavior of all particle-gas systems can be described by the parameter 

set provided. This assumes that the particle-particle interaction is neglected, however. The 

particle-particle interaction can be expressed mathematically in various ways [151,152], and 

may yield additional scaling parameters. These are typically derived for fluidized beds, where 

particle-particle interaction is pronounced.  

The requirement of governing equations capable of describing all relevant phenomena in the 

process is one of the short comings of the inspectional analysis. 

Note that the model developed in Chapter 8 describing the separation process could also have 

been subjected to investigational analysis instead of the more general equations of motion and 

mass conservation. The result would have been that the separation process depends on Fr and 
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c0. The model has not been used for the inspectional analysis as it has not been verified over a 

wide range of equipment sizes and therefore cannot be accepted as generally valid.  

Dimensional Analysis and Pi-theorem 

The dimensional analysis is an alternative to the inspectional analysis, which, contrary to the 

inspectional analysis, does not require a complete model describing the process of interest. 

According to Zlokarnik [133], a typical dimensional analysis involves the following steps: (a) 

Definition of relevance list, (b) application of pi-Theorem8, (c) generation of dimensionless 

groups, and (d) identification of independent groups. For details on the procedure and the pi-

theorem, please refer to Zlokarnik [133]. 

The relevance list is the list of process parameters relevant for the process. These parameters 

may be process-, geometry-, physical- or material related and may be either dimensional or non-

dimensional. For the separation process in the 2D-HX, the relevance list is identified as: 

ηSep = f(dp, PSD, Φ, Agg, ρp, μG, ρP, (ρP -ρG), geometry, c0, vG, g, Δp) 

In a first approximation, agglomeration of particles is neglected and the particles are assumed 

spherical, which removes Agg and Φ from the list. Furthermore, PSD and c0 are already 

dimensionless, why they for now can be omitted from the relevance list: 

ηSep = f(dp, ρP, μG, ρP, (ρP –ρG), geometry, vG, g, Δp) 

By application of the pi-Theorem it is possible to non-dimensionalize the above parameters. The 

core parameters are chosen to be ρP, dP, and νG. The resulting dimensional matrix is given in 

Table 63. The transformed unity matrix is also shown. 

 

Table 63 – Original and transformed dimensional matrix for the separation process. 

Original dimensional matrix  

 ρP dp νG g LS LD ρG ρP – ρG μG Δp 

Mass M 1 0 0 0 0 0 1 1 1 1 

Length L -3 1 1 1 1 1 -3 -3 -1 -1 

Time T 0 0 -1 -2 0 0 0 0 -1 -2 

Transformed dimensional matrix 

Z1 = M 1 0 0 0 0 0 1 1 1 1 

8 Also known as the Buckingham pi-theorem. 
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Z2 = 

L+3M+T 

0 1 0 -1 1 1 0 0 1 0 

Z3 = -T 0 0 1 2 0 0 0 0 1 2 

This yields the set of non-dimensional parameters presented in Table 64, remembering the two 

dimensionless groups from the relevance list. 

 

Table 64 – Identified dimensionless groups for relevant scaling of 2-D HX. 

Pi-sets Manipulation of the Pi-sets 

Π1 = g dP/ νG
2 Π1 → Π1

-1 · Π2 = νG
2 /(g ·dp) = Fr 

Π2 = LSep/ dp Π2 → Π6
-1 · Π2

-1 = (dp·ρG·νG)/μG · (dp/ LS) ∝ Stk 

Π3 = LD/ dp Π3 → Π2
-1 · Π3 = LD/LSep 

Π4= ρg / ρP It is typically assumed that Π5 and express the same Π4 [133], why Π4 (or Π5) can be 

neglected 

Π5 = (ρP – ρG )/ρP Π5 → Π5 · Π4
-1 = (ρP – ρG )/ρP · ρP / ρG = (ρP – ρG )/ρG 

Π6 = μg/(dP·ρp·νG) Π6 → Π6
-1 · Π2= (LS ·ρG·νG)/μG = Re 

Π7 = PSD - 

Π8 = c0 - 

Π9 = Δp/( ρP·νG
2) Π9 = Eu 

 

According to the dimensional analysis, the parameters needed describe the separation process 

are: 

( )
0

P G D

G Sep

L,Stk,Re,Fr,Eu,PSD,c ,
L

ρ ρ
ρ
−

 

Keeping these parameters constant during scale-up should ensure physical and dynamical 

similarity between the bench-scale and the full-scale system. Note that Π6 could also have been 

transformed into Rep. Additional geometry parameters could also have been introduced, if 

desired. 
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Publications 
 

Two publications have been made in relation to this work:  

− A patent, covering the modular construction of the 2D-HX concept, filled in October 

2011,  

− A short article summarizing the work investigating the powder flowability properties of 

raw meal, accepted by Powder Technology 

Furthermore, a manuscript covering the experimental work on the PoC set-up is under 

preparation at the time of printing. 

The two published items are found here after. 
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Abstract	

The	flowability	of	cement	raw	meal	is	investigated	at	temperatures	up	to	850°C	in	a	specially	designed	

monoaxial	shear	tester.	Consolidation	stresses	of	0.94,	1.87	and	2.79	kPa	are	applied.	The	results	show	

that	 the	 flowability	 is	 reduced	 as	 temperature	 is	 increased	 above	 550°C,	 indicated	 by	 increasing	10 

unconfined	 yield	 strength	 and	 reduced	 flowability	 factors.	 Deviation	 and	 reproducibility	 are	

acceptable	for	all	temperatures	but	850°C	where	belite	formation	and	possibly	also	calcination	sinter	

the	raw	meal.	

Keywords	

Powder	flowability,	monoaxial	shear	tester,	high	temperature,	cement	raw	meal	15 

1.	Introduction	

In	the	literature	the	term	powder	flowability	is	often	encountered,	describing	the	ability	of	a	powder	

to	flow,	but	this	quantity	is	not	easily	defined	nor	measured	[1].	Powder	flow	properties	depend	not	

only	on	the	chemical	compounds	in	the	particles,	but	also	on	particle	size	distribution,	shape,	density,	

surface	 texture,	 moisture	 content,	 electrostatic	 charge,	 and	 consolidation	 stress	 and	 time	 [2].	20 

Furthermore,	the	flow	properties	depends	on	equipment	design,	 i.e.	surface	roughness,	dimension	of	

openings,	 etc.	 [1].	 The	 complex	 nature	 of	 powder	 flowability	 complicates	 equipment	 design	 from	 a	

priori	knowledge.	
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Relations	 based	 on	 semi‐theoretical	 or	 empirical	 relations	 [3,4]	 between	 design	 parameters	 for	

powder	handling	equipment,	e.g.	siloes	and	hoppers,	and	powder	properties	have	been	available	 for	25 

decades.	An	example	is	the	work	of	Jenike	[5],	who	developed	relations	between	the	measured	shear	

forces	in	a	Jenike	shear	test	cell	and	the	design	parameters	of	hoppers,	which	still	is	widely	used	today		

[3].	Lately,	advances	in	computational	particle	fluid	dynamics	have	shown	that	the	behavior	of	some	

powders	 can	 be	 represented	 by	 a	 fully	 theoretical	 approach	 [6].	 However,	 the	 application	 of	 these	

models	still	seems	limited	to	certain	non‐cohesive	powders	[6‐8],	why	powder	testing	is	still	essential.	30 

The	majority	of	powder	testing	procedures	involve	inducing	and	measuring	a	shear	force	required	to	

form	a	shear	region	 in	a	powder	sample,	which	has	been	consolidated	by	a	known	normal	 force	[4].	

The	 equipment	 used	 ranges	 from	 simple	 uniaxial	 tests	 [4],	 to	more	 complex	 automated	 ring	 shear	

testers	[9,10].	Equipment	for	characterizing	powder	flowability	by	the	angle	of	repose	(AOR),	such	as	

the	device	used	by	Wouters	and	Geldart	[11],	are	widely	used	in	the	industry,	but	the	lack	of	known	35 

consolidation	and	shear	stresses	in	these	devices	only	enables	qualitative	comparisons	of	powders.	

If	the	unconfined	yield	strength,	σC,	and	the	consolidation	stress,	σ1	are	known,	the	flow	properties	of	

powders	can	be	expressed	numerically	as	a	flowability	factor,	ffc,	[5]:	

ffc	=	σ1	/	σC	

This	parameter	is	used	to	classify	the	powder	flowability	as	indicated	in	Table	1.	Typically	ffC	increases	40 

with	increasing	σC,	why	it	is	necessary	to	provide	the	consolidation	stress	at	which	the	measurements	

are	performed	[3,12].	Table	2	contains	flowability	data	for	selected	inorganic	powders.	
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Table	1	–	Classification	of	

powder	flowability	by	flow	

index.	45 

Value:	 Flow	
characteristic:	

ffC	<	1	 Not	flowing	

1	<	ffC	<	2	 Very	cohesive	

2	<	ffC	<	4	 Cohesive	

4	<	ffC	<	10	 Easy	flowing	

10	<	ffC	 Free	flowing	

	

	

Table	2	–	Mean	particle	size,	Geldart	classification	and	flowability	function	of	selected	inorganic	
powders.	

Powder	name	 Mean	particle	size	
[μm]	

Geldart	classification	
[13]	

Consolidation	
stress,	σ1	[kPa]	

ffc	 Reference	

CaCO3	 4.6	 C	 N/A	 1.81	 [14]	

Cement	raw	meal	A	 12.8	 C	 7.8	 2.38	 [15]	

KCl	 481.1	 B	 N/A	 5.75	 [14]	

	50 

As	 mentioned,	 testing	 of	 particle	 flowability	 has	 traditionally	 been	 focused	 on	 designing	 silos	 and	

hoppers,	which	are	subject	to	ambient	temperatures,	atmospheric	pressure,	varying	relative	humidity,	

and	 storage	 time	 [16].	 Testing	 of	 powders	 has	 therefore	 been	 performed	 at	 these	 conditions	 at	

relevant	consolidation	stresses.	However,	in	many	industrial	processes	the	flow	properties	at	elevated	

temperatures	are	of	interest,	but	few	tests	at	elevated	temperatures	have	been	reported	[16].		55 

Pilz	 [17]	 constructed	 a	 ceramic	 Jenike‐type	 shear	 tester	 for	measuring	 the	 properties	 of	 filter	 dust	

from	 coal	 combustion	 up	 to	 850°C,	 and	 found	 that	 the	 unconfined	 yield	 strength	 increased	 with	

temperature.		

Yaojin	et	al.	[18]	reports,	using	a	Jenike	shear	cell,	that	the	flowability	of	cement	raw	meal	is	slightly	

reduced	 between	 20°C	 and	 700°C,	 while	 in	 the	 temperature	 range	 of	 800	 –	 1000°C,	 the	 raw	meal	60 
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becomes	sticky	and	flowability	is	significantly	deteriorated.	Yaojin	et	al.	does	not	state	the	reasons	for	

this	changed	behavior.	The	sticky	 tendency	 is	also	observed	by	Telschow	[19],	who	 investigated	 the	

cement	clinker	nodulization	in	a	rotary	kiln	simulator.	At	900°C	soft	nodules	of	raw	meal	were	formed,	

indicating	 significantly	 changed	 powder	 flowability,	 compared	 to	 room	 temperature	 behavior.	 The	

composition	 of	 the	 nodules	 showed	 that	 calcination	 of	 the	 limestone	 had	 taken	 place	 and	 a	minor	65 

amount	(8.5	wt%)	of	belite	(Ca2SiO4)	had	been	formed.		

For	 commercial	 purposes	 the	 company	 Jenike	 and	 Johanson,	 Inc.	 offers	 flowability	 testing	 at	

temperatures	up	to	1200°C	using	modified	Jenike	cells.	

In	 present	work,	 the	 powder	 flowability	 of	 cement	 raw	meal	 is	 investigated	 at	 temperatures	 up	 to	

850°C.	Secondly,	in	order	to	evaluate	the	chosen	test	method,	the	produced	data	is	compared	with	data	70 

from	the	more	standardized	Jenike	type	shear	tester,		

2.	Equipment	

For	 the	purpose	of	 investigating	 the	 flowability	of	 cement	 raw	meal	 at	 temperatures	up	 to	850°C,	 a	

monoaxial	 shear	 tester	was	constructed	 from	high	 temperature	resistant	steel.	The	monoaxial	 shear	

test	cell	was	chosen	due	to	its	simple	geometry,	compatibility	with	an	existing	muffle	furnace,	and	low	75 

cost	 [3,	 16].	 However,	 a	 major	 disadvantage	 of	 this	 type	 of	 test	 is	 the	 reduced	 forces	 due	 to	 the	

anisotropic	effects	caused	by	the	consolidation	and	strength	measurement	not	being	performed	in	the	

same	direction	and	influence	of	the	 friction	of	the	sliding	wall.	A	schematic	drawing	of	the	system	is	

provided	in	Figure	1.	
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		80 

Figure	1	–	Schematic	drawing	of	the	monoaxial	shear	test:	Inside	a	muffle	furnace,	the	sample	is	

consolidated,	then	after	10	minutes	sheared	by	a	piston	from	outside	the	furnace	wall.	Consolidation	

stress	and	shearing	force	are	recorded.	

	

The	 powder	 compartment	 in	 the	 test	 cell	 measured	 140mm	 x	 100mm	 x	 30mm	 (length	 x	 width	 x	85 

depth)	with	fixed	walls	on	three	sides.	The	fourth	wall	is	a	sliding	wall.		

The	entire	setup	is	placed	in	a	muffle	furnace.	Through	a	hole	in	the	side	of	the	furnace,	the	sliding	wall	

is	moved	by	a	piston	with	a	speed	of	1mm	/	s,	and	the	forces	exerted	by	the	piston	on	the	sliding	wall	

is	 continuously	 recorded	 at	 a	 100	 hertz	 sampling	 rate	 using	 a	 tension/compression	 transducer	 	 (S	

Beam	model	TCTN‐9110,	0	–	50	N).	The	linear	motor	driving	the	piston	is	a	Linak	actuator	(LA23).	90 

An	illustration	of	 the	 idealized	continuous	data	obtained	in	each	experiment	 is	provided	in	Figure	2,	

while	an	example	of	actual	data	is	shown	in	Figure	3.	

The	powder	used	was	industrial	cement	raw	meal,	called	Cement	raw	meal	B.	Powder	specific	data	are	

provided	in	Table	3.	
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	95 

Figure	2	–	Idealized	continuous	force	measurement.	tStart	indicates	the	
initiation	of	the	piston	movement.	tfailure	indicates	the	failure	of	the	powder	

bed.	

			

Figure	3‐	Actual	measured	data	for	T	=	550°C,	σ1.		=	2.79	kPa,	1st	repetition.	100 

 

Table	3	–	Properties	of	Cement	Raw	meal	B,	[15]	

Mean	volumetric	
particle	diameter	

Packed	bulk	
density		

Loose	bulk	
density		

Approximate	composition		 ffC	A	

28.8	μm	 1286	kg/m3	 1040	
kg/m3	

75	wt%	limestone	(CaCO3),	25	wt%	clay	
(mainly	SiO2,	Fe2O3	and	Al2O3)	

2.8	

A	Measured	using	a	Schulze	Ring	shear	tester	at	a	consolidation	stress	of	5.8	kPa.	
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3.	Experimental	Procedure	

150	g	of	Cement	raw	meal	B	 is	poured	 into	 the	powder	compartment	of	 the	 test	cell	and	 leveled	by	

gently	 tapping	 the	 cell,	 before	 the	 powder	 level	 is	 recorded,	 before	 being	 placed	 in	 the	 preheated	105 

muffle	 furnace.	 Consolidation	 is	 performed	 inside	 the	 furnace,	 using	 different	 lids	 corresponding	 to	

consolidation	stresses,	σ1,	of	0.94,	1.87,	and	2.79kPa.	The	consolidation	time	is	10	minutes.	Once	the	lid	

is	removed,	the	force	required	to	induce	a	failure	in	the	powder	bed	is	measured.	

At	 each	 temperature,	 a	 series	 of	 references	 measurements	 are	 performed	 on	 an	 empty	 system	

enabling	 correction	 for	 the	 friction	of	 the	 sliding	wall	 and	 the	piston	 support.	 The	unconfined	yield	110 

strength	is	given	by:	




 Test System

c

F F

A 	

Where	 F	 is	 the	 measured	 forces,	 indices	 Test	 and	 System	 refer	 to	 the	 powder	 and	 reference	

measurements,	respectively.	A	is	the	contact	area	between	the	sliding	wall	and	the	powder.		

4.	Results	115 

Six	temperatures	and	three	consolidation	stresses	have	been	investigated.	Each	powder	measurement	

is	repeated	three	times,	the	reference	measurements	six	times.	

Pooled	 variance	 is	 used	 to	describe	 the	deviations	 at	 each	 temperature,	 as	 the	major	uncertainty	 is	

assumed	to	be	related	to	the	temperature	specific	nature	of	the	powder	and	test	cell,	and	is	given	as	

[20,21]:		120 

 
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i
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Where	k	is	the	different	measurement	series,	ni	is	the	number	of	samples	in	each	series,	and	si	 is	the	

variance	of	each	series.	Results	and	computed	deviations	are	provided	in	Table	4	and	Figure	4.	
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Table	4	–	Monoaxial	test	results	of	Cement	raw	meal	B	at	different	temperatures.	

	125 

T	[°C]	 FSystem	[N]	 σ1	[kPa]	
Area		

[10‐3	m2]	

σC	[kPa]	

sp2	Repetition	#1 Repetition	#2 Repetition	#3

22	 1.59	

0.94	 1.89	 0.43	 0.57	 0.23	

0,05	1.87	 1.74	 0.36	 0.62	 0.36	

2.79	 1.70	 0.71	 1.14	 1.24	

200	 1.12	

0.94	 1.90	 0.11	 0.30	 0.50	

0.31	1.87	 1.78	 1.35	 1.27	 1.24	

2.79	 1.71	 0.49	 1.65	 N/A	A	

400	 2.16	

0.94	 1.92	 0.36	 0.16	 0.33	

0.14	1.87	 1.84	 1.01	 0.78	 0.06	

2.79	 1.78	 0.99	 0.75	 1.15	

550	 3.07	

0.94	 2.00	 0.69	 0.04	 N/A	A	

0.09	1.87	 1.86	 0.77	 0.68	 0.67	

2.79	 1.81	 1.52	 1.47	 1.27	

700	 2.80	

0.94	 2.04	 0.89	 0.62	 0.35	

0.11	1.87	 1.88	 0.93	 1.24	 0.77	

2.79	 1.88	 1.84	 2.21	 1.36	

850	 4.03	

0.94	 2.04	 4.82	 1.86	 1.61	

2.41	1.87	 1.97	 1.11	 3.97	 2.55	

2.79	 1.95	 1.06	 3.47	 1.32	

A	Conditions	replicated	twice.	
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	Figure	4	–	Measured	unconfined	yield	strength	at	different	consolidation	

stresses	and	temperatures	of	Cement	raw	meal	B.	Error	bars	indicate	

temperature	specific	pooled	deviations.	

	130 

The	 results	 indicate	 that	 the	 unconfined	 yield	 strength	 is	more	 or	 less	 constant	 until	 550°C,	where	

after	it	increases.	Increased	consolidation	stress	increases	the	unconfined	yield	strength,	as	expected.	

Note	the	data	point	σ1	=	1.87	kPa	at	200°C	seems	to	deviate	from	the	described	trends.	

Reproducibility	is	acceptable	at	all	temperatures	but	850°C.	The	increased	variance	at	850°C	and	the	

measured	 force	 indicate	 that	 the	 flowability	of	 the	 sample	 changes	 significantly	between	700°C	and	135 

850°C.	 This	 is	 most	 likely	 primarily	 due	 to	 initiating	 belite	 (Ca2SiO4)	 formation	 and	 possible	

calcination.		

If	we	 ignore	 the	 anisotropic	 effects	 and	 compute	 ffc,	 a	 classification	 of	 the	 cement	 raw	meal	 can	be	

made.	 The	 results	 (Figure	 5)	 show	 that	 the	 raw	meal	 sample	 can	 be	 categorized	 as	 cohesive	 in	 the	
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range	 from	 room	 temperature	 to	 550°C,	 and	 as	 very	 cohesive/not	 flowing	 at	 850°C.	 This	 trend	140 

corresponds	with	practical	observations	in	the	cement	industry,	suggesting	that	preheated	or	calcined	

raw	meal	flow	more	poorly	than	unheated	raw	meal.	However,	it	is	not	yet	clear	to	which	degree	this	is	

due	to	calcination,	recarbonisation,	belite	formation,	or	reaction	with	components	in	kiln	gases.	

	

Figure	5	–	Flowability	functions	as	a	function	of	consolidation	stress	and	temperature	of	145 

Cement	raw	meal	B.	Powder	flowability	classifications	provided.	

	

5.	Discussion	

Due	to	the	anisotropic	effect,	the	flow	factors	found	using	the	monoaxial	shear	tester	are	expected	to	

be	higher	than	similar	measurements	performed	with	a	more	complete	tester,	such	as	the	a	ring	shear	150 

tester.	Comparable	results	were	obtained	with	the	monoaxial	shear	tester	at	22°C,	ffc	=	2.3	–	4.2	(σC	=	

0.94	–	2.79kPa),	and	the	ring	shear	tester,	ffc	=	2.8	(σC	=	5.9kPa).	Flowability	factors	determined	using	

the	two	different	testers	should	be	compared	with	caution.	[3].	
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Comparing	the	results	of	present	work	with	the	work	of	Yaojin	et	al.	[18],	similar	trends	are	found	in	

the	 actual	 temperature	 range.	 A	 comparison	 of	 normalized	 flowability	 factors	 obtained	 in	 present	155 

work	and	by	Yaojin	et	al.	[18]	is	displayed	in	Figure	6.	This	indicates	that	the	trends	produced	using	

the	monoaxial	 shear	 tester	 are	 similar	 to	 the	 ones	 produced	 using	 the	more	 complex	 Jenike	 shear	

tester,	thereby	enabling	hot	powders	to	be	classified	in	a	low	cost,	simple	tester.	

	

Figure	6	–	Normalized	flowability	factors	from	Yaojin	et	al.	[18]	compared	to	the	2.79	kPa	data	series	160 

of	present	work	displayed	as	a	function	of	temperature.	The	data	has	been	normalized	to	enable	

comparison	of	trends.	

	

The	 tapping	used	during	preparation	of	 the	 test	 cells	may	cause	 the	particles	 to	 interlock	with	each	

other,	 thereby	 yielding	 a	 higher	 ffC,	 than	 obtained	 in	 a	 non‐tapped	 sample.	 This	 is,	 however,	 not	165 

expected	to	change	the	observed	trends.	

The	consolidation	stresses	applied	here,	which	are	 lower	 than	 in	other	reported	work	 [2,12,15],	are	

chosen	from	two	criteria:	
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1. The	consolidation	stresses	correspond	to	raw	meal	layers	in	the	range	of	0.1m	–	0.3m,	

which	may	be	found	in	cyclone	preheaters	170 

2. Limited	 space	 for	 applying	 the	 consolidation	 weights	 inside	 the	 muffle	 furnace,	 and	

thereby	also	size	of	the	lids.	

Higher	 consolidation	 stresses	 would	 have	 been	 useful	 for	 simulating	 higher	 particle	 levels	 and	

reducing	 the	 uncertainties.	 The	 influence	 of	 the	 low	 consolidation	 stress	 applied,	 especially	 σ1	 =	

0.94kPa,	might	 also	 be	 seen	 from	 the	 relative	 low	values	 of	 the	 unconfined	 yield	 strength,	which	 is	175 

problematic	in	terms	of	the	signal	to	noise	ratio	of	the	data.		

Assuming	a	reaction	in	the	particle	bed	takes	place,	the	significant	increase	in	data	variance	at	850°C	

can	be	caused	by	varying	degrees	of	conversion	as	a	consequence	of	too	short	consolidation	time,	not	

allowing	full	conversion	in	the	powder	bed.	The	influence	of	varying	consolidation	time	has	not	been	

further	investigated	in	this	work.	180 

The	 reactions	 capable	 of	 taking	 place	 in	 the	 powder	 are	 either	 calcination	 or	 belite	 formation.	

However,	 further	 experiments	 at	 higher	 temperatures	 with	 simultaneous	 measurement	 of	 carbon	

dioxide	formation,	and	analysis	of	the	belite	content	of	the	sample	after	testing	may	clarify	the	exact	

mechanisms.	In	practice,	raw	meal	flowability	may	be	significantly	affected	by	the	presence	of	gaseous	

components,	 such	 as	 CO2,	 alkali	 sulfates,	 and	 chlorides.	 Such	 effects	 have	 not	 been	 studied	 in	 the	185 

present	work.	

6.	Conclusion		

A	simple	low	cost	monoaxial	shear	tester	was	constructed	for	investigating	powder	flow	properties	at	

elevated	 temperatures.	 Tests	 carried	 out	 with	 cement	 raw	 meal	 at	 three	 different	 consolidation	

stresses,	0.94,	1.87,	and	2.79kPa	showed	that	the	powder	flowability,	expressed	as	either	flowability	190 

factors	or	unconfined	yield	strength	is	more	or	less	constant	from	room	temperature	to	550°C,	above	

which	it	deteriorates.	The	reproducibility	was	satisfactory	at	all	temperatures	but	850°C,	where	large	
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deviations	in	the	test	results	were	observed.	This	variance	may	be	due	to	reactions	in	the	sample,	e.g.	

formation	 of	 belite	 or	 related	 to	 the	 equipment,	 e.g.	 the	 friction	of	 the	 sliding	wall.	 The	data	 trends	

produced	with	the	monoaxial	shear	tester	resembled	data	trends	from	Jenike	shear	tests,	confirming	195 

that	the	monoaxial	shear	tester	can	be	used	for	high	temperature	powder	classification.		

7.	Acknowledgement	

Acknowledgement	is	given	to	Professor	Dr.‐Ing.	Dietmar	Schulze	for	discussions	during	design	of	the	

set‐up	and	evaluation	of	data,	and	to	M.Sc.	Arnau	Mestres	Rosás	for	conducting	the	experiments.	

Literature cited 200 

[1] J. Prescott, R. Barnum, On powder flowability, Pharmaceutical Technology. October (2000). 

[2] H. Jaeda, The Use of a Ring Shear Tester to Evaluate the Flowability of Pharmaceutical Bulk Solids, 
Heinrich-Heine-Universität Düsseldorf, 2009. 

[3] D. Schulze, Powders and Bulk Solids, Springer Berlin Heidelberg, 2008. 

[4] L. Parrella, D. Barletta, R. Boerefijn, M. Poletto, Comparison between a Uniaxial Compaction Tester 205 
and a Shear Tester for the Characterization of Powder Flowability, KONA Powder and Particle 
Journal. 26 (2008) 178–189. 

[5] A.W. Jenike, Storage and flows of solids, Bull. 123, Engineering Experiment Station, Univeristy of 
Utah, 1964. 

[6] D.M. Snider, Three fundamental granular flow experiments and CPFD predictions, Powder 210 
Technology. 176 (2007) 36–46. 

[7] C. Chen, J. Werther, S. Heinrich, H.-Y. Qi, E.-U. Hartge, CPFD simulation of circulating fluidized 
bed risers, Powder Technology. 235 (2013) 238–247. 

[8] J. Parker, K. LaMarche, W. Chen, K. Williams, H. Stamato, S. Thibault, CFD simulations for 
prediction of scaling effects in pharmaceutical fluidized bed processors at three scales, Powder 215 
Technology. 235 (2013) 115–120. 

[9] D. Schulze, Flow properties of powders and bulk solids and silo design for flow, Produktbroschüre, 
Partec, Nürnberg. (2001) 3–4. 

[10] D. Schulze, Flow properties of powders and bulk solids, www.dietmar-schulze.de. (2006). 

[11] I. Wouters, D. Geldart, Characterising Semi-Cohesive Powders using angle of repose, Particle & 220 
Particle Systems, 13 (1996) 254–259. 



Page	14	

[12] J.J. Fitzpatrick, T. Iqbal, C. Delaney, T. Twomey, M.K. Keogh, Effect of powder properties and 
storage conditions on the flowability of milk powders with different fat contents, Journal of Food 
Engineering. 64 (2004) 435–444. 

[13] D. Geldart, Types of Gas Fluidization, Powder Technology. 7 (1973) 285–292. 225 

[14] F. Podczeck, Y. Miah, The influence of particle size and shape on the angle of internal friction and 
the flow factor of unlubricated and lubricated powders, International Journal of Pharmaceutics. 144 
(1996) 187–194. 

[15] FLSmidth, Laboratory Data, (2011). 

[16] J. Schwedes, Review on testers for measuring flow properties of bulk solids, Granular Matter. 5 230 
(2003) 1–43. 

[17] T. Pilz, Zu den Wechselwirkungen bei der Oberflachenfiltration unter besonderer Berücksichtigung 
der HeiBgasreinigung mit keramischen Filtern, Universität Fridericiana Karlsruhe, 1996. 

[18] Z. Yaojin, Y. Li, U. Xuecheng, Preliminary Studies on flowability of cement raw mix at high 
temperature, Cement. 7 (1993). 235 

[19] S. Telschow, Clinker Burning Kinetics and Mechanism, Ph.D. thesis, Department of Chemical and 
Biochemical Engineering, Technical Univeristy of Denmark, 2013. 

[20] S. V. Gupta, Measurement Uncertainties, Springer, Berlin Heidelberg, 2012. 

[21] M. Nic, J. Jirat, B. Kosata, A. Jenkins, IUPAC Compendium of Chemical Terminology - The Gold 
Book, Union of Pure and Applied Chemistry. (2006).  240 


	CMA - Samlet afhandling ver5
	Chapter 1  Introduction
	1.1 Background
	1.2 Objectives
	1.3 Structure of Thesis

	Chapter 2  Preheating Technologies in Cement Production
	2.1 Historic Development
	2.2 Current Industrial Technologies
	2.2.1 The Cyclone
	2.2.2 Cement Preheater Cyclones
	2.2.3 The Cyclone Preheater Process and Operational Conditions
	2.2.4 Current Preheater Research

	2.3 Shaft Preheaters
	2.3.1 Counter-current Shaft Preheaters
	2.3.2 Multistage Shaft Preheaters

	2.4 Summary of shaft preheaters
	2.5 Other Preheater Designs
	2.6 Preheater Design Summary

	Chapter 3  Preheater Efficiency
	3.1 Model Boundaries
	3.2 Model Set Up
	3.3 Process Efficiency
	3.3.1 Thermal Efficiency
	3.3.2 Transport Efficiency

	3.4 Assumptions, Parameters, and Physical Properties
	3.5 Model Results
	3.6 Summary

	Chapter 4  Design Development
	4.1 Desired Properties
	4.2 Idea Generation
	4.2.1 Draft Tube Spouted Bed (DTSB) Concept
	4.2.2 Two Dimensional Heat Exchanger (2D-HX) Concept

	4.3 Summary

	Chapter 5  Experimental Approach, Set-ups, and Materials
	5.1 Single-stage Set-up
	5.2 Multi-stage set-up
	5.3 Proof of Concept Set-up
	5.3.1 Data Acquisition

	5.4 Materials

	Chapter 6  Investigation of Transport Processes
	6.1 Definition of Efficiencies
	6.2 Results: Single-stage Set-up
	6.3 Results: Multi-stage Set-up
	6.4 Results: PoC Set-up
	6.5 Overview and Comparison of Data
	6.6 Visual Observations
	6.6.1 Separation Process
	6.6.2 Entrainment Process

	6.7 Identification of Governing Mechanisms
	6.7.1 Separation Process
	6.7.2 Entrainment Process

	6.8 Comparison with Industrial Preheater Cyclone
	6.9 Summary

	Chapter 7  Investigation of Heat Exchange Performance
	7.1 Results: Thermal Performance
	7.2 Results: Heat Loss
	7.3 Results: Observations
	7.4 Results: Pressure drop
	7.5 Evaluation of Thermal Performance
	7.6 Comparison of Heat Exchanger Design with Industrial Standard
	7.7 Summary

	Chapter 8  Modeling of 2D-HX
	8.1 Modeling of the Internal Processes
	8.1.1 Separation Process
	8.1.2 Entrainment

	8.2 Pressure Drop
	8.3 Modeling of 2D-HX
	8.3.1 Mass and Energy Balances
	8.3.2 Assumptions
	8.3.3 Solution Method
	8.3.4 Verification

	8.4 Summary

	Chapter 9  Determination of Upscaling Principle
	9.1 Upscaling Strategies
	9.2 Selection of Upscaling Parameters
	9.3 Parametric Design and Reference Cases
	9.4 Screening of Upscaling Parameters
	9.5 Comparison of Classic and Model-based Upscaling
	9.6 Summary

	Chapter 10  Full-scale Application of the 2D-HX Concept
	10.1 Determination of Operation Conditions
	10.2 Full-scale 2D-HX Facilities
	10.3 Comparison of the Upscaled 2D-HX and Cyclone Preheaters
	10.4 Implementation in a Cement Plant
	10.5 Pilot-Scale Facility
	10.6 Optimization of 2D-HX Design
	10.6.1 Alternative Parametric Design
	10.6.2 Addition of Exit Cyclone
	10.6.3 Alternative Separation Geometry
	10.6.4 Summary of Optimizations

	10.7 Identified Issues
	10.8 Other Applications
	10.8.1 Co-generation of Power
	10.8.2 Integration of Calciner/Combustion Chamber
	10.8.3 Application for drying purposes

	10.9 Industry Remarks
	10.10 Summary

	Chapter 11  Conclusions and Outlook
	11.1 Outlook and Future work

	Cited Literature
	List of Symbol and Abbreviations
	Appendix A Experimental Procedures
	Appendix B Data Treatment
	Appendix C Experimental Data
	Appendix D Pressure Drop Model
	Appendix E 2D-HX model and Implementation
	Appendix F Inspectional and Dimensional Analysis
	Appendix G Publications

	Blank page - Copy
	WO2013053890A1
	Bibliography
	Abstract
	Description
	Claims
	Drawings

	Blank page
	Powder tech

