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Hyperentangled photon sources in semiconductor waveguides
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We propose and analyze the performance of a technique to generate mode and polarization hyperentangled
photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-
conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering which allows
for simultaneous modal phase matching with the pump beam in a higher-order mode. Paired photons generated
in each process are cross polarized and guided by different guiding mechanisms, which produces entanglement
in both polarization and spatial mode. Theoretical analysis shows that the output quantum state has a high quality
of hyperentanglement by spectral filtering with a bandwidth of a few nanometers, while off-chip compensation
is not needed. This technique offers a path to realize an electrically pumped hyperentangled photon source.

DOI: 10.1103/PhysRevA.89.023833 PACS number(s): 42.65.Lm, 03.67.Bg, 42.50.Dv, 42.82.Et

I. INTRODUCTION

Paired photons that are entangled in multiple degrees of
freedom (DOFs), or hyperentangled, have attracted a lot
of interest in recent years [1–4]. Due to the presence of
quantum correlations in several DOFs, they offer significant
advantages in quantum information processing, in particular in
tasks such as superdense coding, multidimensional quantum
cryptography, and the efficient construction of cluster states.

In superdense coding, for example, paired photons simul-
taneously entangled in polarization (spin) and orbital angular
momentum were shown to provide a channel capacity that
exceeds the limit of standard quantum dense coding with
linear optics [5]. In addition to the applications mentioned
above, hyperentangled photons can also enhance the degree of
violation of Bell’s-like inequalities [6] and reduce the detection
efficiency required for closing the detection loophole in Bell
tests [7].

The most extensively used method to produce entangled or
hyperentangled photons is via the nonlinear optical process of
spontaneous parametric down-conversion (SPDC) in nonlinear
crystals with a second-order susceptibility χ (2). Photon pairs
generated via SPDC have many DOFs available, such as
frequency, temporal location, linear momentum, spatial shape
(orbital angular momentum), and polarization. Even though
different types of nonlinear crystals have been used for
generating paired photons via SPDC, driven by the demand
for high-efficiency single and two-photon sources, and the
need for on-chip integration of quantum computing, there has
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been a focus on periodically poled lithium niobate (PPLN)
and potassium titanyl phosphate (PPKTP) waveguides. This
class of sources makes use of quasi phase matching (QPM)
to provide access to the highest nonlinear coefficient of the
material [8]. In these waveguide sources, the photon pair
generation rates are increased by orders of magnitude over
their bulk crystal counterparts, and the use of well-confined
waveguide modes makes the collection of generated photons
in optical circuits easier.

To date, energy-time and polarization entanglement have
been demonstrated using these waveguide sources in various
configurations [8]. Hyperentanglement has not been demon-
strated so far. However, it has been proposed that some
higher-order spatial modes of these waveguides could be used
to produce and manipulate modal and hyperentangled photons
on a chip [9,10]. Moreover, experimental progress has been
reported on the use of spatial modes of different orders in
SPDC using waveguide devices [11–13].

While the use of PPLN and PPKTP waveguides certainly
provide an interesting platform for studying quantum nonlinear
optics, these ferroelectric materials cannot be monolithically
integrated with photonics devices with complex functions
or pump lasers on the same chip, hindering further on-chip
integration. To this end, the III-V semiconductor system
GaAs/AlGaAs is a promising alternative. These structures
can be integrated with both active and passive photonic
components. Various strategies have been developed to
achieve phase matching (PM) in AlGaAs waveguides [14,15]:
QPM [16–18], form birefringence [19,20], modal phase
matching (MPM) [21], counterpropagating modes [22], and
the use of Bragg reflection waveguides (BRWs) [23,24].
Techniques to generate polarization entangled photons in
AlGaAs waveguides have been theoretically developed
[25–27] as well as experimentally demonstrated [22,28,29].

In this work, we propose and analyze a technique that
utilizes phase matching in Bragg reflection waveguides to
produce hyperentangled photons. Paired photons are generated
concomitantly utilizing two type-II SPDC processes: the first
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SPDC process generates a photon in a TE Bragg reflection
guided (Bragg) mode and one in a TM total internal reflection
(TIR) guided mode, while the second SPDC process generates
a photon in a TM Bragg mode and one in a TE TIR
mode. The novelty in this scenario consists in achieving
modal entanglement via spatial modes with different guiding
mechanisms, which can be tailored by waveguide structure
engineering with much greater flexibility compared to spatial
modes with the same guiding mechanism but of different
orders used in previous studies. By spectrally separating the
two photons of a pair, photons hyperentangled in modal and
polarization DOFs can be produced. Such a technique provides
a viable route for electrically pumped on-chip generation and
manipulation of hyperentangled photons.

II. OBTAINING HYPERENTANGLEMENT IN BRAGG
REFLECTION WAVEGUIDES

BRWs are a class of one-dimensional photonic band-gap
structures that use Bragg reflections from periodic stacks of
layers to provide optical confinement of light [30]. The modal
dispersion properties of Bragg modes are distinct from those
of TIR modes, and can be tuned to a large extent by modifying
the layer structure. BRWs can also be designed such that they
simultaneously support both Bragg modes and TIR modes.
Thanks to this controllable modal dispersion, BRWs have
gained much interest as waveguide SPDC photon sources. De-
signs have considered achieving phase matching by pumping
the Bragg mode and generating photons in TIR modes [31], as
well as employing QPM such that one of the photons in a pair
is generated in the Bragg mode, while its twin is generated in
the TIR mode. In this second configuration the large tunability
of the Bragg mode can be used to generate quantum separable
states as a resource for pure heralded single photons [32].

In each of these PM schemes, it is generally advantageous
to use a type-II SPDC process so that the paired photons
can be conveniently separated according to their polarization,
rather than according to their mode or energy. For example,
BRWs can be designed to generate paired photons in a TE
polarized Bragg mode and a TM polarized TIR mode. In
such a case, however, there coexists another type-II process
which generates paired photons in a TM Bragg mode and
a TE TIR mode. Although the two processes usually have
slightly different PM wavelengths, photon pairs can still be
simultaneously generated from the second process and thus
pollute the desired photon pairs from the first process. This
issue is especially critical when the waveguide is pumped by
ultrashort pulses with a spectral bandwidth larger than the
difference between the PM wavelengths of both processes,
which is usually a few nanometers. Therefore, BRWs of
this category should be designed to have a significant PM
wavelength difference between the two type-II processes.

On the other hand, it is possible to design a BRW for
which the two processes have identical PM wavelengths, and
paired photons with similar spectra are generated via the two
processes with nearly equal probabilities. These photons are
hyperentangled in frequency, mode, and polarization.

Achieving hyperentanglement in this fashion has several
advantages over techniques that use higher-order spatial
modes in ferroelectric waveguides [9,10]. First, it allows for

monolithic integration. Second, the mature epitaxial growth
and nanofabrication techniques available for AlGaAs allow
accurate modeling of the designed devices, whereas ferro-
electric waveguides, usually fabricated by ion exchange and
having diffused index profiles, cannot provide the fabrication
tolerances required by concurrent PM. Moreover, birefringent
ferroelectric materials cause significant phase distinguishabil-
ity in any type-II process, thus reducing the measured visibility
in Hong-Ou-Mandel–type experiments unless off-chip phase
compensation is carried out. In AlGaAs BRWs, however,
the modal birefringences can be engineered at will and may
be designed to be small enough such that a high visibility
can be obtained with practical spectral filtering rather than
phase compensation, as will be demonstrated and discussed
further below.

III. WAVEGUIDE STRUCTURES FOR
HYPERENTANGLEMENT

To better illustrate the hyperentanglement generation tech-
nique introduced in the previous section, we give an illustrative
example. Instead of using QPM [32], we choose MPM with
the pump being in a higher-order spatial mode. This is because
QPM in AlGaAs waveguides is challenging: it is difficult to
periodically modulate the material, and doing so leads to
increased losses. MPM, on the other hand, can be simply
achieved lithographically in ridge waveguides.

For example, a BRW is designed to PM a pump beam
in the TE40 mode at around 775 nm. In SPDC process 1,
paired photons are generated in a TE [horizontal (H )] Bragg
mode (B) (signal photon, denoted HB) and a TM [vertical
(V )] TIR mode (T ) (idler photon, denoted V T ). In SPDC
process 2, paired photons are generated in a TM Bragg mode
(signal photon, denoted V B) and a TE TIR mode (idler photon,
denoted HT ). Along the epitaxial (y) direction, the waveguide
has a 1061-nm-thick high-index core of Al0.2Ga0.8As above a
Bragg mirror consisting of six pairs of 742 nm Al0.65Ga0.35

As/301 nm Al0.2Ga0.8As. Above the core, there is a 300 nm
layer of Al0.4Ga0.6As used to increase the modal overlaps of
both processes. On top of the structure is a layer of 2.21 μm
low-index cladding made of Al0.8Ga0.2As.

The thickness of the core layer is determined by the
waveguide dispersion relation required for the HB mode, ob-
tained from the transfer matrix method, while the thicknesses
of the layers making up the Bragg mirror are determined
by quarter-wave conditions which place the HB mode in
the center of the photonic band gap. The design equations
can be found in Abolghasem et al. [33]. Schematics of the
epitaxial structure and the refractive index profile are shown
in Figs. 1(a) and 1(b), respectively. In such a structure, HB and
V B modes are confined by Bragg reflections from the lower
side of the core, and TIRs from the upper side. Meanwhile,
the structure simultaneously supports HT and V T modes at
both down-converted and pump wavelengths. A single-sided
BRW [33], rather than a conventional symmetrical BRW, is
used to decrease the etch depth needed to provide sufficient
lateral modal confinement and to ease fabrication challenges.

The PM condition requires the effective indices of the
pump mode (p), and down-converted modes (α) and (β) to
satisfy 2neff,p(ωp) = neff,α(ωp/2) + neff,β(ωp/2). This is why
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FIG. 1. (Color online) (a) Epitaxial structure of the waveguide,
with layer thicknesses t and aluminum concentrations x; (b) vertical
refractive index profile at 775 nm; (c)–(e) modal intensity profiles for
the pump TE40 mode, down-converted TE Bragg mode, and TE TIR
mode, respectively. The TM Bragg and TM TIR modes have similar
profiles and are not shown here.

we choose the pump mode to be TE40, and use a deep etched
waveguide with an etch depth of ∼7 μm. The modal intensity
profiles are shown in Figs. 1(c)–1(e). As the ridge width
decreases, the effective index of the pump mode decreases
much faster than those of the generated photon modes. As
can be seen from Fig. 2(a), when the ridge width W ≈ 1 μm,
the PM condition can be roughly satisfied for both processes.
However, according to Fig. 2(b), the ridge widths required for
the two processes are slightly different, thus a fixed ridge width
will lead to different PM wavelengths for the two processes.

To align the two PM wavelengths, the modal birefringences
should satisfy neff,HB(ωp/2) − neff,V B(ωp/2) = neff,HT (ωp/2) −
neff,V T (ωp/2). An earlier study [34] has shown that the
birefringence of BRWs can be tuned by changing the core
thickness or the thicknesses of the high-index and low-index
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FIG. 2. (Color online) (a) Dependence of effective index of each
mode on the ridge width; (b) the same as (a) but zoomed in around
the cross points; (c) difference of PM wavelengths of the two SPDC
processes as a function of the core thickness.

layers in the Bragg mirror. Here we change the core thickness
and find the corresponding PM wavelengths. The dependence
of the PM wavelength difference �λPM = λPM2 − λPM1 on the
core thickness is shown in Fig. 2(b), for a ridge width W =
1.08 μm. When tc = 1289 nm, concurrent PM is achieved at
1550.7 nm. Therefore, the structure designed here supports two
type-II SPDC processes at the same PM wavelength, allowing
generation of hyperentangled photons.

IV. PERFORMANCE ANALYSIS

In this section, we investigate the properties of the
paired photons generated in the waveguide structure designed
above. Following the backward Heisenberg picture approach
of [35,36], under the undepleted pump approximation and with
a low probability of pair production, the quantum state of the
Hilbert space involving signal and idler photons can be written
as |�gen〉 ≈ |vac〉 + ν|II 〉, where

|II 〉 = 1√
2

∫
dω1dω2

∑
α,β

φαβ(ω1,ω2)a†
α(ω1)a†

β(ω2)|vac〉

(1)
is the normalized two-photon state. The biphoton wave
function (BWF) φαβ(ω1,ω2) is

φαβ(ω1,ω2) = Fαβ(ω1,ω2)φP (ω1 + ω2), (2)

where

Fαβ(ω1,ω2) = iL

√
dkα(ω1)

dω1

√
dkβ(ω2)

dω2

×
(√

dkp(ω)

dω

)
ω=ω1+ω2

√
ω1ω2(χ2)2|μ|2

8πε0|ν|2n6

×
√

�(ω1 + ω2)

A[kα(ω1),kβ(ω2),kp(ω1 + ω2)]

× sinc

(
�kαβ(ω1,ω2)L

2

)
.

Here the Greek subscripts α, β label the generated photon
modes (HB, V B, HT , V T ); |μ|2 is the average number
of photons in the pump pulse; φP (ω) is the pump pulse
amplitude; L is the length of the waveguide; n and χ2
are typical values of the refractive index and the second-
order optical nonlinearity, respectively, introduced solely for
convenience and do not affect the efficiency calculation [35].
The function �kαβ = kα(ω1) + kβ(ω2) − kp(ω1 + ω2) is the
phase-matching function, and

A[kα(ω1),kβ(ω2),kp(ω1 + ω2)]

=
∣∣∣∣
∫

dx dy
n3χ

ijk

2 (x,y)

χ2

×
[
di

kα(ω1)(x,y)
]∗[

d
j

kβ (ω2)(x,y)
]∗

dk
kp(ω1+ω2)(x,y)

ε
3/2
0 n2(x,y; ω1)n2(x,y; ω2)n2(x,y; ω1 + ω2)

∣∣∣∣
−2

is an effective area; di
kα (ω)(x,y) is the ith component of the

displacement field for mode α at frequency ω and n(x,y; ω) is
the material refractive index at frequency ω, both at waveguide
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cross-sectional position (x,y), and we have chosen the mode
amplitudes such that we can take the phase associated with the
effective area to be zero [35].

Normalization of the quantum state |II 〉 requires∫
dω1dω2

∑
α,β |φαβ(ω1,ω2)|2 = 1, which determines |ν|2.

From the form of |�gen〉 we see that |ν|2 can be thought of
as the average number of generated photon pairs per pump
pulse. Note that the BWF is symmetric under exchange of
both mode indices and frequencies φαβ(ω1,ω2) = φβα(ω2,ω1)
but it does not necessarily possess any additional symmetry,
i.e., φαβ(ω1,ω2) �= φβα(ω1,ω2) and φαβ (ω1,ω2) �= φαβ(ω2,ω1).

In deriving Eq. (1), we have assumed that the only nonlin-
earity present is the one that results in photon pair generation
and extends from −L/2 to L/2 in a channel structure that is
otherwise linear. This simplifies the calculation, but neglects
any coupling losses and facet reflections that would have
to be included in a more realistic analysis. Here φP (ω) is
taken to identify the pump pulse at t = 0, with the pulse
usually considered to be at the center of the nonlinear region.
However, irrespective of the position of the pump pulse at
t = 0, φαβ(ω1,ω2) specified by Eq. (2) describes the state at
t = 0. If φαβ(ω1,ω2) is allowed to propagate far into the future
according to the linear dynamics only, it will evolve into the
actual BWF far in the future. In the terminology of scattering
theory, φαβ(ω1,ω2) describes an asymptotic-out state. If we
move the origin of coordinates to the output facet, and choose
instead to specify the pump pulse at a time T > 0 before the
time we specify the asymptotic-out state for the generated
photons, we have

αβ(ω1,ω2) = ei[kα (ω1)+kβ (ω2)−kp(ω1+ω2)]L/2e−i(ω1+ω2)T

×Fαβ(ω1,ω2)P (ω1 + ω2),

where P (ω) ≡ φP (ω) exp[ikp(ω)L/2 + iωT ] now charac-
terizes the pump pulse with respect to the new origin and at a
time T > 0 before the asymptotic-out BWF αβ(ω1,ω2), also
specified with respect to the new origin. If we choose to specify
αβ(ω1,ω2) to be at the new origin (the output facet) at t = 0
and wish to specify the pump pulse at the input facet, then T

should be the transit time of the pump pulse in the nonlinear
region.

The state given by αβ(ω1,ω2) is hyperentangled in fre-
quency, polarization, and spatial mode. Since the photons are
copropagating along the waveguide, paired photons need to be
spatially separated if they are to be detected individually. One
method is to use a 50:50 beamsplitter to separate the photons
nondeterministically. However, only half of the photons can
be used this way, as half of the time both photons will exit
the same port instead of different ports. Alternatively, paired
photons can be separated deterministically using one of the
DOFs. For example, using a polarizing beamsplitter to separate
the photons according to their polarizations, a spectral-modal
hyperentangled state of the form [9]

|IIs-m〉 = 1√
2

∫
dω1dω2HB,V T (ω1,ω2)|HBω1,V T ω2〉

+V T,HB(ω1,ω2)|HBω2,V T ω1〉
+HT,V B(ω1,ω2)|HT ω1,V Bω2〉
+V B,HT (ω1,ω2)|HT ω2,V Bω1〉

can be produced, where

|αω1,βω2〉 = ā†
α(ω1)ā†

β(ω2)|vac〉,
ā
†
α(β)(ω) = a

†
α(β)(ω)e−ikα(β)(ω)L/2,

with the overbars denoting that we have changed our origin of
coordinates from that used in Eq. (1), as described above. If
the paired photons were separated according to spatial modes
instead, a spectral-polarization hyperentangled state

|IIs-p〉 = 1√
2

∫
dω1dω2HBV T (ω1,ω2)|HBω1,V T ω2〉

+V T HB(ω1,ω2)|HBω2,V T ω1〉
+HT V B(ω1,ω2)|V Bω2,HT ω1〉
+V BHT (ω1,ω2)|V Bω1,HT ω2〉

could be generated.
Here we specifically analyze the generation of modal-

polarization hyperentangled photons using a dichroic mirror
or integrated dichroic splitter. The quantum state after passing
an ideal dichroic mirror is given by

|IIm-p〉 	
∫ ω0

0
dωi

∫ ∞

ω0

dωsHBV T (ωs,ωi)|HBωs,V T ωi〉

+V T HB(ωs,ωi)|V T ωs,HBωi〉
+HT V B(ωs,ωi)|HT ωs,V Bωi〉
+V BHT (ωs,ωi)|V Bωs,HT ωi〉, (3)

where ω0 = ωp/2 is the splitting frequency. We have chosen to
relabel the frequency variables as ωs and ωi , for the high- and
low-energy photons (signal and idler photons), respectively,
and we have neglected corrections arising because paired
photons cannot be perfectly separated by the dichroic mirror
for a generating pump pulse of finite bandwidth.

With the photons separated as in Eq. (3), we consider
experiments sensitive only to the mode or polarization of the
photons, and not their frequency. It can be shown (see the
Appendix) that for this class of experiments, the quantum
state in the polarization and spatial mode sub-space can be
described by a density matrix, which in the basis {|HB,V T 〉,
|HT,V B〉, |V B,HT 〉, |V T,HB〉} can be written as

ρm-p =

⎛
⎜⎜⎜⎝

σ υ γ δ

υ∗ ε ζ η

γ ∗ ζ ∗ θ κ

δ∗ η∗ κ∗ λ

⎞
⎟⎟⎟⎠, (4)

where

σ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωs |HBV T (ωs,ωi)|2,

υ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωsHBV T (ωs,ωi)
∗
HT V B(ωs,ωi),

γ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωsHBV T (ωs,ωi)
∗
V BHT (ωs,ωi),

δ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωsHBV T (ωs,ωi)
∗
V T HB(ωs,ωi),
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TABLE I. Dispersion parameters of the down-converted modes
in the design example.

HB V T HT V B

v (μm/ps) 84.9 86.5 85.8 86.0
D (102 ps/nm/km) −8.31 −7.81 −5.98 −11.4

ε ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωs |HT V B(ωs,ωi)|2,

ζ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωsHT V B(ωs,ωi)
∗
V BHT (ωs,ωi),

η ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωsHT V B(ωs,ωi)
∗
V T HB(ωs,ωi),

θ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωs |V BHT (ωs,ωi)|2,

κ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωsV BHT (ωs,ωi)
∗
V T HB(ωs,ωi),

λ ≡
∫ ω0

0
dωi

∫ ∞

ω0

dωs |V T HB(ωs,ωi)|2, (5)

and σ + ε + θ + λ = 1.
For convenience, we expand the dispersion relation of

each mode kq(ω) (q = α,β) about the splitting frequency
ω0, which is chosen as the degenerate PM frequency of
the down-converted modes, yielding kq(ω) = kq(ω0) + (ω −
ω0)/vq − λ2

q/(4πc)Dq(ω − ω0)2, where vq designates the
group velocity and Dq is the group velocity dispersion (GVD).
These coefficients can be numerically calculated for our
waveguide design, and their values are summarized in Table I.
Additionally, we consider a narrow-band pump at twice the
splitting frequency, i.e., |P (ω)|2 ≈ δ(ω − 2ω0). In such a
case, the pump pulse spectrum stays unchanged after propagat-
ing through the waveguide, and the phase term −(ωs + ωi)T
in αβ(ωs,ωi) is a constant. For a broadband pump pulse,
however, its spectrum can be broadened and distorted by GVD
and self-phase modulation, and the frequency-dependent phase
in the BWF cannot be neglected [37]. Integrating over ωi , we
plot the spectral intensities |αβ(ωs,ωi)|2 and the associated
phases, relative to the degenerate wavelength, of each of the
four pieces of the BWF as functions of ωs in Figs. 3(a)
and 3(b), respectively, for a 2-mm-long waveguide. The
distinct bandwidths are caused by the different group-velocity
mismatch (GVM), |1/vα − 1/vβ |, values for each term, while
the asymmetric behavior of the spectra is due both to nonzero
GVMs and significant GVDs.

The differences in both the amplitude and phase of the
four spectra can reveal which-process information, leading
to a reduction in the visibility of a Hong-Ou-Mandel–type
experiment. However, note that the spectra are nearly identical
very close to ω0. Thus we consider the effect of bandpass
filters with a bandwidth B placed in two frequency bands,
centered around ω0 − � and ω0 + �, respectively, for re-
moving the spectral distinguishability between the different
terms in Eq. (3). Ideal rectangular-shaped filters restrict
the bandwidth to [ω0 − � − B/2,ω0 − � + B/2] for the
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FIG. 3. (Color online) (a) Spectral intensities of the four terms
in Eq. (3) and (b) the corresponding relative phases as functions of
signal wavelengths using cw pump, i.e., |φ(ω)|2 = δ(ω − 2ω0).

low-frequency photon, ωi , and [ω0 + � − B/2,ω0 + � +
B/2] for the high-frequency photon, ωs . For filter bandwidths
of 2 nm, 5 nm, and 10 nm, we plot the real and imaginary parts
of the density matrix of the design example in Figs. 4(a)–4(c).

To characterize the degree of entanglement describing the
generated state [Eq. (3)] for a given filter bandwidth, we
calculate the maximum fidelity of the state with all maximally
entangled states, or the fully entangled fraction (FEF) [38],
which is given by

F = max
ψ,ϕ

〈�ideal|ρm-p|�ideal〉, (6)

where |�ideal〉 is the idealized maximally entangled polariza-
tion and mode hyperentangled state, which is given by

|�ideal〉 = 1
2 (|H,V 〉 + eiϕ|V,H 〉) ⊗ (|B,T 〉 + eiψ |T ,B〉).

(7)

In Eq. (6), the maximization is performed over all values of
ψ and ϕ. In the case of F = 1, the generated state [Eq. (3)] is
maximally entangled in polarization and spatial mode DOFs
and behaves the same as the idealized state [Eq. (7)] with
certain phase angles ψ and ϕ in any polarization and mode
measurement [39].

The dependence of the FEF on the filter bandwidth is shown
in Fig. 5. The corresponding FEFs for each filter bandwidth in
Fig. 4 are calculated to be 0.99, 0.97, and 0.89, respectively. As
expected, the FEF increases as the filter bandwidth decreases,
indicating that the output state, Eq. (3), behaves more and
more like the idealized state, Eq. (7), when subjected to
measurements of polarization and mode. As a result, a high
FEF can be obtained solely by bandpass filtering at the sacrifice
of available photon pairs.

We emphasize that off-chip phase compensation is not
required, contrary to other typical type-II processes in PPKTP
and PPLN waveguides. This is because the GVM between
paired photons in this platform is much lower than those
obtained with birefringent materials, leading to much wider
spectra and lower temporal walk off. Note that the spectrally
narrower process 1 has a FWHM of ∼30 nm, which is one order
of magnitude larger than typical type-II SPDC bandwidths of
PPKTP and PPLN waveguides.
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FIG. 4. (Color online) Real (left) and imaginary (right) parts of
the filtered and normalized density matrices corresponding to Eq. (4)
for a filter bandwidth of 2 nm, 5 nm, and 10 nm, respectively.

As an alternate strategy to filtering, the SPDC bandwidths
could be increased by grading the modal indices along the
propagation direction, for instance, by tapering the waveguide,
in an approach similar to chirping the poling period in
QPM [40]. However, if such a structure were used the
which-process information from the phases of the pieces of the
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FIG. 5. (Color online) Dependences of the FEF and the numbers
of available photon pairs per pump photon via the two processes on
the filter bandwidth.

BWF, such as in Fig. 3(b), could not be eliminated even if the
spectral amplitudes had perfect overlap, due to the increased
bandwidths. Therefore, the degree of hyperentanglement is
not improved in a larger bandwidth unless off-chip phase
compensations can be made simultaneously for the two type-II
processes, which is not practical since each process has a
different modal birefringence.

Finally, we calculate the generation rates of the two SPDC
processes in a 2-mm-long waveguide; we find 1.9 × 10−9

and 8.3 × 10−9 pairs per pump photon for process 1 and
process 2, respectively, over the whole spectral bandwidth, or
3.4 × 103 and 2.7 × 103 pairs/(s mW GHz) at the degenerate
PM wavelength. The dependence of the available photon pairs
per pump photon on the filter bandwidth are also shown in
Fig. 5. With a filter bandwidth of 5 nm, the number of available
photon pairs per pump photon are around 1.0 × 10−9 for both
processes. These values are two orders of magnitude lower
than a previously designed BRW [31] but are still comparable
to those of bulk crystal SPDC sources.

The reason for the reduced efficiency is the poor modal
overlaps, due to the use of the TE40 mode for the pump, as
required by MPM. In principle, the modal overlaps and the
efficiencies can be enhanced by a few orders of magnitude by
using the fundamental mode as the pump, along with QPM
instead of MPM, as in other studies [32]. In such a structure,
concurrent PM can still be achieved by the same method
described above. However, QPM in AlGaAs waveguides is
far more challenging in terms of fabrication, and current
techniques have not generated devices with low losses and high
efficiencies compared to unpatterned waveguides [15]. On the
other hand, we note the slightly unequal efficiencies degrade
the degree of entanglement even with a very narrow filtering
bandwidth. This problem could be addressed by modifying the
epitaxial structure of the waveguide to try to achieve the same
efficiency for the two processes [26].

V. CONCLUSION

We have presented a strategy for producing hyperentangled
photons in semiconductor AlGaAs ridge waveguides. With
the pump in the TE40 mode of a BRW, MPM can be
achieved lithographically in deep etched ridge waveguides.
Paired photons can be produced via two concurrent type-II
SPDC processes. The two processes are phase matched at
the same operating wavelength by choosing an appropriate
waveguide core thickness. We specifically investigated the
modal-polarization hyperentangled quantum state generated,
using an ideal dichroic mirror to separate the paired photons,
and calculated the density operator as well as the fully
entangled fraction (FEF) as a measure of the degree of
entanglement.

The calculations show that a high degree of hyperentan-
glement can be achieved with bandpass filtering of a few
nanometers without off-chip phase compensation. It is worth
noting that the modal entanglement achieved in our platform is
provided by spatial modes with different guiding mechanisms,
rather than the same kind of modes with different orders. Such
a unique feature, which opens a way to generate hyperentangle-
ment making use of the spatial DOF, might well provide extra
control over the properties of the hyperentangled photons.
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Since our strategy utilizes a III-V semiconductor platform,
more advanced devices incorporating other functionalities can
be envisioned, such as integrating diode lasers and passive
structures such as dichroic splitters and bandpass filters.
Therefore, this platform offers a path to realize an electrically
pumped hyperentangled photon source.
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APPENDIX

In this Appendix, we show that the result of a general
(rank-1) polarization and mode measurement on the output
state [Eq. (3)] is equivalent to a polarization and mode
measurement on the density operator ρs-m [Eq. (4)] that exists
only in a polarization and mode subspace.

Consider the most general (rank-1) polarization and mode
measurement that can be made on Eq. (3):

M = Tr(Pρ), (A1)

where ρ = |IIm-p〉〈II m-p| is the density operator and P =
|ψ〉〈ψ | is the projection operator associated with the

measurement, with

|ψ〉 =
∫ ω0

0
dωi

∫ ∞

ω0

dωs[Aa
†
HB(ωs) + Ba

†
HT (ωs)

+Ca
†
V B(ωs) + Da

†
V T (ωs)][Ea

†
HB(ωi)

+Fa
†
HT (ωi) + Ga

†
V B(ωi) + Ha

†
V T (ωi)]|vac〉. (A2)

Here the complex coefficients satisfy the normaliza-
tion condition |A|2 + |B|2 + |C|2 + |D|2 = |E|2 + |F |2 +
|G|2 + |H |2 = 1. Similarly, the corresponding measurement
made on ρm-p is given by

Mm-p = Tr(Pm-pρm-p), (A3)

where Pm-p = |ψ ′〉〈ψ ′|, and |ψ ′〉 is given by

|ψ ′〉 = (Aa
†
HB + Ba

†
HT + Ca

†
V B + Da

†
V,T )

× (Ea
†
HB + Fa

†
HT + Ga

†
V B + Ha

†
V T )|vac〉. (A4)

With the parameters defined in Eq. (5), using Eqs. (A1)–(A4)
and Eq. (3), we can prove M = Mm-p, i.e., the two states have
the same measurement outcome in any polarization and mode
measurement.
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[13] M. Karpiński, C. Radzewicz, and K. Banaszek, Opt. Lett. 37,

878 (2012).
[14] S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, J. Opt. A: Pure

Appl. Opt. 6, 569 (2004).
[15] A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J.

Han, B. M. Holmes, D. C. Hutchings, U. Younis, and S. J.
Wagner, Laser Photon. Rev. 5, 272 (2011).

[16] S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, Appl. Phys.
Lett. 66, 3410 (1995).

[17] J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, Jpn. J.
Appl. Phys. 48, 04C110 (2009).

[18] S. J. Wagner, B. M. Holmes, U. Younis, I. Sigal, A. S. Helmy,
J. S. Aitchison, and D. C. Hutchings, IEEE J. Quantum Electron.
47, 834 (2011).

[19] T. W. Kim, T. Matsushita, and T. Kondo, Appl. Phys. Express 4,
082201 (2011).

[20] M. Savanier, A. Andronico, A. Lemaı̂tre, E. Galopin, C.
Manquest, I. Favero, S. Ducci, and G. Leo, Opt. Lett. 36, 2955
(2011).

[21] D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S.
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