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Abstract: We numerically investigate self-defocusing solitons in a lithium
niobate (LN) waveguide designed to have a large refractive index (RI)
change. The waveguide evokes strong waveguide dispersion and all-normal
dispersion is found in the entire guiding band spanning the near-IR and
the beginning of the mid-IR. Meanwhile, a self-defocusing nonlinearity is
invoked by the cascaded (phase-mismatched) second-harmonic generation
under a quasi-phase-matching pitch. Combining this with the all-normal
dispersion, mid-IR solitons can form and the waveguide presents the
first all-nonlinear and solitonic device where no linear dispersion (i.e.
non-solitonic) regimes exist within the guiding band. Soliton compressions
at 2 µm and 3µm are investigated, with nano-joule single cycle pulse for-
mations and highly coherent octave-spanning supercontinuum generations.
With an alternative design on the waveguide dispersion, the soliton spectral
tunneling effect is also investigated, with which few-cycle pico-joule pulses
at 2µm are formed by a near-IR pump.

© 2014 Optical Society of America

OCIS codes: (230.7370) Waveguides; (320.5520) Pulse compression; (320.6629) Supercon-
tinuum generation; (320.7110) Ultrafast nonlinear optics.
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1. Introduction

Quadratic nonlinear materials were used for the first nonlinear optics experiment known as the
second harmonic generation (SHG) [1]. Besides frequency conversion achieved under phase-
matching conditions, quadratic nonlinear crystals such as barium borate (BBO) and lithium
niobate (LN) are attractive when operated far from phase matching for self-defocusing soliton
compressions [2–4]. It is based on the cascaded (strongly phase-mismatched) quadratic non-
linearity, such as SHG, which effectively acts like a cubic Kerr nonlinearity [5–8] that can
be tuned in sign and magnitude through the phase-mismatch parameter. In particular a self-
defocusing nonlinearity is of great interests as solitons can form with normal dispersion [2].
As the self-defocusing nonlinearity governs the pulse nonlinear dynamics there are no self-
focusing problems, and therefore strong nonlinear interactions occur without any pulse energy
limit, leading to the generation of ultra-high intensity and few-cycle soliton pulses.

LN cut for noncritical SHG, where the pump and its second harmonic (SH) have parallel
polarizations, turns out to inherently produce an overall self-defocusing cascading nonlinearity
over a wide wavelength span in the near- and mid-IR region. This was used for soliton self-
compression and supercontinuum generation in a bulk LN crystal [4], but is equally promising
to exploit cascading with noncritical SHG in an LN waveguide. In such waveguides spatial
diffraction is suppressed, and the strong confinement implies that high-repetition rate low-
energy femtosecond pump pulses can be used. LN waveguides are very mature technologically,
and have been widely used for frequency conversion in integrated waveguide optics and optical
communications [9], as well as for cascading [10, 11] However, they are usually fabricated by
means of annealed proton exchange (APE) or titanium (Ti) in-diffusion [12, 13], which only
provides a small refractive index (RI) change (∆n < 0.1) between the core and the substrate, re-
sulting in a very limited guidance range in the mid-IR. Although the core size can be designed
large to extend the cutoff wavelength, see e.g. [14], the penalty is a weak waveguide confine-
ment leading to very high pulse energy threshold for soliton formation. The small RI change
also restricts the waveguide mode to follow the material dispersion trend. Self-defocusing soli-
ton self-compressions as well as soliton-induced supercontinuum generations (SCGs) have
been investigated and demonstrated in LN waveguides with small RI change [14–17], but the
pump wavelength is limited to be below the zero dispersion wavelength (ZDW), which in LN
is around 2µm.

Extending the operation range of cascaded quadratic nonlinear waveguides beyond 2µm
would be meaningful for a variety of applications such as spectroscopy and biological imaging.
One way around this is to use other novel quadratic nonlinear materials that naturally support
self-defocusing soliton compressions in the near- and mid-IR [18], but waveguide formation
has not been studied in most of them. We therefore propose here a new LN waveguide design
aiming to increase the RI change enough to substantially extend the normal dispersion regime
so mid-IR self-defocusing soliton formation is possible. We achieve this by a standard ridge
waveguide design, similar to our recent publication [14]. In that paper the ridge waveguide
achieved confinement by being bonded to a lower-index material lithium tantalate (LT). The
design allowed for extremely broadband guidance basically throughout the entire LN trans-
mission range, and self-defocusing solitons could form without using quasi-phase matching
(QPM) which the standard buried-waveguide designs in otherwise relied on [15–17]. How-
ever, since the RI change between LT and LN is small, the waveguide dispersion remained too
weak to alter the material dispersion. Here we investigate a design using a substrate material
with a substantially lower RI than LN. With this design an all-normal dispersion profile can be
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Fig. 1. (a) waveguide structure and mode field distributions of eigen-modes, at different
wavelengths; (b) mode effective RIs; Waveguide has wd= 4 µm, dp= 2 µm.

achieved as a result of the strong waveguide dispersion due to the large RI change. The self-
defocusing soliton dynamics with such a dispersion profile is therefore purely nonlinear. As a
consequence, linear interactions such as dispersive wave (DW) generations are not occurring,
which in otherwise are always accompanied with soliton formation [19], and are understood as
leaky radiations from the soliton pulse. Moreover the large RI between core and substrate al-
lows for much tighter confinement compared to previous studies, implying that sub-nano-joule
(sub-nJ) femtosecond pump pulses can lead to soliton formation. This is interesting as it allows
for using much lower average power femtosecond pump sources. To our knowledge such an
“all-nonlinear and solitonic” waveguide or fiber device has previously never been proposed or
investigated. Such a self-defocusing soliton self-compression and subsequent supercontiuum
generation does, however, require imposing a moderate QPM pitch to overcome the competing
self-focusing Kerr nonlinearity, in contrast to the LN/LT design in [14].

Our design relies on a material bonding technology that allows to fabricate LN waveguides
with a large RI change. With surface ion implantation and wafer bonding, LN with sub-micron
size scale has been proved to be bonded either to a crystal [20] or to a glass substrate [21],
which actually opens the access to a variety of materials in both crystal and glass groups that
can be used to fabricate a quadratic waveguide. Therefore, by choosing a substrate with much
lower RI than the core, the LN waveguide can not only guide a wave in the near- and mid-IR,
but also provide normal dispersion to support the self-defocusing soliton compression.

In this paper, we investigate the mode profiles and dispersion landscape of such an LN waveg-
uide design with a large RI change. We then numerically investigate the self-defocusing soliton
formation in the near- and mid-IR beyond the material ZDW, under the waveguide-induced
all-normal dispersion and the cascading dominated self-defocusing nonlinearity. We also inves-
tigate a design where a small anomalous dispersion region is sandwiched between two normal
dispersion regions, and show few-cycle DW formation in that region seeded by a near-IR soli-
ton.

2. Waveguide structure and dispersion properties

The waveguide structure is shown in Fig. 1(a). There are varieties of candidates for the substrate
material which ought to have a much lower RI than LN and good transparency in the near- and
mid-IR, e.g. the potassium titanyl phosphate (KTP), the rubidium titanyl phosphate (RTP), the
lithium iodate (LI), etc. in the group of crystals, or the fused silica, the fused germania, the
ZBLAN, etc. in the group of glasses [22]. Here, a glass with broadband infrared transmission,
specifically the Schott IRG-2 germanate glass (transparency range 0.36∼ 4.6µm), is chosen
as the waveguide substrate, see [22] for material details. The LN core layer is assumed to be
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Fig. 2. dispersion tailored by tuning the core size; (a) TM00 mode effective RI profiles and
(b, c) GVD profiles with different core sizes.

bonded on the substrate and then the whole structure can be diced to have a standard ridge pro-
file. The RI change in such a waveguide is as large as∆n ≈ 0.3. Aiming at mid-IR pulse opera-
tions and making use of the strong waveguide dispersion, the waveguide size is designed to be
around sub-wavelength. Eigenmodes, including both the mode propagation constants and trans-
verse distributions, are calculated by usingComsol Multiphiscs. Extraordinary modes (with the
polarization direction along the opticc-axis, marked as TM modes) at different wavelengths
are shown in Fig. 1(a), while mode effective RIs are shown in Fig. 1(b). The guidance cutoff
wavelength of such a waveguide can be easily extended to the mid-IR due the large RI change.
Since the mode RIs are going down from the core RI to the substrate RI towards longer wave-
lengths, the large RI change implies a large SHG phase mismatch parameter, explaining why
QPM is needed to ensure the strong cascading. Basically, waveguide dispersion always has
an opposite trend to the material one, and with strong waveguide dispersion, the waveguide
mode shows a typical “U”-shape GVD trend and is enabled to have normal dispersion at long
wavelengths. Similar trends can also be found in step-indexed photonic crystals fibers (PCFs),
which also have a large RI change [23]. Moreover, by tuning the core size (width and depth),
the mode effective RI will be shifted (Fig. 2(a)) and the mode GVD profile is consequently tai-
lored. When tuning the core width but fixing the height, the mode GVD profile is tuned mainly
in the amplitude (see Fig. 2(b)) while the “U”-shape is almost preserved, with the bottom fixed
at around 1.58µm which is co-determined by the material GVD of both the core and the sub-
strate. When enlarging the core size and keeping the aspect ratio, the GVD profile is tuned in
both the amplitude and the trend (see Fig. 2(c)) as the waveguide confinement is further en-
hanced and the waveguide-induced normal dispersion is shifted towards longer wavelengths. It
is also noticed that, to some extent, an all-normal dispersion profile can be achieved while the
cutoff wavelength remains over 3µm.

On the other hand, the transmission loss is always concerned when taking about a waveguide.
Generally, the transmission loss mainly includes: 1) the insertion loss when light is coupled into
and out from the waveguide (e.g. light reflection on interfaces, the mode field mismatch, etc.);
2) the material loss; and 3) the waveguide loss due to the uncertainty of the structure (e.g. the
core is non-uniform along the propagation axis). Besides the material and waveguide losses,
the common feeling that a small dimension waveguide is ”lossy” is mainly due to the intoler-
able insertion loss. With a sub-wavelength structure, the waveguide eigenmodes, no matter the
fundamental mode or high-order modes, turn to have strong evanescent waves and therefore the
mode transverse distribution is seriously mismatched to a normal incident laser beam that has
a Gaussian distribution. But the insertion loss only occurs at the frontend of the waveguide and
will not impact the whole pulse propagation dynamics. In the following text, the value of the
pump pulse energy or the pulse peak power that we will mention actually refers to the effective
pulse energy that is launched into the waveguide, with the insertion loss already been elimi-
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nated. The material loss can be ignored due to the good transparency of the material within
the guidance band. Also, the waveguide loss is ignorable as the wafer bonding and the dicing
technologies are supposed to give high certainty of the structure.

3. Nonlinear induced polarization and modal nonlinear susceptibilities

Nonlinearities in the LN waveguide include both quadratic and cubic processes, and the corre-

sponding nonlinear induced polarizations,P
(2)
j andP

(3)
j , are written as [24]:

P
(2)
j (ω) = ε0 ∑

α1α2

Θ̄(2)
j;α1α2

F [Aα1Aα2] (1)

P
(3)
j (ω) = ε0 ∑

α1α2α3

Θ̄(3)
j;α1α2α3

F [(1− fR)Aα1Aα2Aα3 + fRAα1F
−1[h̃RF [Aα2Aα3]]] (2)

where j andα1,2,3 are mode marks among all TM modes.F indicates the Fourier trans-
form. Aj is the electric field amplitude reflecting the propagation dynamics of a waveguide
mode. With the transverse distributionBj , the mode electric field is defined (in frequency do-
main) as:Ẽ(x,y,z,ω) = Ã(z,ω)B̃(x,y,ω). fR indicates the material Raman fraction andh̃R is

the Raman response spectrum.Θ̄(2)
j;α1α2

andΘ̄(3)
j;α1α2α3

are calledmodal nonlinear susceptibil-

ities which include both the material nonlinear susceptibilities,χ̄ (2) and χ̄ (3), and the con-

tributions of the mode overlap integral,θ (2)
j;α1α2

andθ (3)
j;α1α2α3

[24], i.e.: Θ̄(2)
j;α1α2

= χ̄ (2)θ (2)
j;α1α2

,

Θ̄(3)
j;α1α2α3

= χ̄ (3)θ (3)
j;α1α2α3

, where

θ (2)
j;α1α2

(ω1+ω2) =

∫∫

core
dxdyB̃∗

j (x,y,ω1+ω2)B̃α1(x,y,ω1)B̃α2(x,y,ω2) (3)

θ (3)
j;α1α2α3

(∑n ωn) =

∫∫

core
dxdyB̃∗

j (x,y,∑n ωn)B̃α1(x,y,ω1)B̃α2(x,y,ω2)B̃α3(x,y,ω3) (4)

Mode overlap integrals̄Θ(2)
j;TM00TM00

(2ω) andΘ̄(3)
TM00;TM00α2α2

(ω) are calculated in Figs. 3(a)
and 3(b), which correspond to the SHG process and the Kerr self-/cross-phase modulation

(SPM/XPM) effects, respectively. The material susceptibilities areχ̄ (2)
e;ee(d33) andχ̄ (3)

e;eee(c33) of
the LN, since modes are extraordinary waves. It is noticed that quadratic and cubic processes
within the fundamental TM00 mode always have the highest integral value, namely the highest
susceptibility, compared to processes among different modes in which the mode orthogonality
leads to the decrease of the integral value. Moreover,towards longer wavelengths, the integral
value is also decreased due to the reduction of the waveguide confinement.

4. Cascaded quadratic nonlinearity and overall self-defocusing nonlinearity

In strongly phase-mismatched SHG (between TM00-modes of the FW and SH), cascaded
quadratic nonlinearities are produced and can be quantitatively estimated as nonlinear fac-

tors [25]:γcasc,j =
ω
c ñ2,casc,j · (θ

(2)
j;TM00TM00

)2, where ˜n2,casc,j ∝ −(χ̄ (2)
e;ee)

2/∆kj is the cascaded non-
linear RI,∆kj = kj(2ω)−2kTM00(ω) is the phase mismatch parameter andkj is the mode prop-
agation constant. The negative sign indicates a self-defocusing nonlinearity under the positive

∆kj . γcasc,TM00 contributes most to the cascaded quadratic nonlinearity, sinceθ (2)
TM00;TM00TM00

is the largest among other SHGs. Analogous, SPM contributes most to the Kerr nonlinearity,

which is.γKerr,TM00 = (1− fR)
ω
c ñ2,Kerr ·θ

(3)
TM00;TM00TM00TM00

, where ˜n2,Kerr ∝ χ̄ (3)
e;eeeis the cubic

nonlinear RI.
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Fig. 3. (a) mode overlap integrals in SHG processes; (b) mode overlap integrals in self/cross
phase modulations; (c) phase mismatch limits for overall self-defocusing nonlinearity and
for clean soliton compressions; (d) nonlinear factors of both the cascaded quadratic nonlin-
earity and the Kerr nonlinearity. Waveguide core width is 4µm and the height is 2µm.

Moreover, tuning the phase mismatch by QPM, the cascaded quadratic nonlinearity can be
further enhanced. The goal is to reduce the phase mismatch to increase ˜n2,casc,j , but keep the
effective phase mismatch∆keff,TM00 = ∆kTM00−

2π
Λ (Λ is the QPM pitch size) nonzero and pos-

itive to ensure a self-defocusing cascading nonlinearity. A critical phase mismatch∆kc is there-
fore defined with whichγcasc,TM00 + γKerr,TM00 = 0. ∆keff,TM00 has to be below such a limit so
that an overall self-defocusing nonlinearity can be produced. On the other hand, there also
exists a lower limit,∆ksr, which marks the threshold of a resonant/non-resonant cascading re-
sponse [26]. The phase mismatch should stay above the threshold so that the cascading response
is ultra-fast and non-resonant, and the soliton compression is clean and with high-quality.

Figure 3(c) shows both∆kc and∆ksr. With a QPM pitchΛ = 8.5 µm, the phase mismatch
is tuned to lie between the two limits. Correspondingly,γcasc,TM00 andγKerr,TM00 are shown in
Fig. 3(d). An overall self-defocusing nonlinearity over a wide wavelength span 1.3∼ 3.2 µm is
produced, with|γcasc,TM00|> γKerr,TM00. The phase-mismatch parameters of cascaded quadratic
nonlinearities of higher-order modes,γcasc,j , are also tuned by QPM and may even find phase
matching at short wavelengths, which will be discussed later in the paper. In the near- and mid-
IR, these higher-order mode nonlinear factors are actually effectively self-focusing because
the chosen QPM pitch makes their respective phase-mismatch parameters negative, but their
contributions (strength) turns out to be quite weak compared to either|γcasc,TM00| or γKerr,TM00.
Therefore, within the compression window illustrated in Fig. 3(d) and recalling the normal
dispersion provided in the waveguide, soliton formation in near- and mid-IR, especially beyond
2 µm, is accessible.

The dominating nonlinearity associated with soliton formation can therefore be attributed
to the competition between self-defocusing cascading and self-focusing Kerr nonlinear-
ities in the fundamental TM00 mode, represented by the effective nonlinear parameter
γeff = γcasc,TM00+ γKerr,TM00. From this parameter we can calculate the effective nonlinear
length asLN,eff = (Pγeff)

−1, whereP is the pulse peak power. The associated characteris-

tic dispersion length is thereforeLD = T 2
0 /|k

(2)
TM00

|, whereT0 is the pulse duration and the

GVD is given byk(2)TM00
≡ d2kTM00/dω2. Therefore, the effective soliton order is estimated

asNeff =
√

LD/LN,eff.

5. Few-cycle self-defocusing soliton compressions beyond 2 µmum

The numerical simulations we now show use the nonlinear wave equation in frequency do-
main (NWEF), which is a general tool to simulate pulse propagation dynamics in a nonlinear
medium. It directly deals with the pulse electric field instead of the envelope and automatically
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Fig. 4. numerical simulation of self-defocusing soliton compression at 2µm in the
LN waveguide; wd= 4 µm, dp= 2 µm, Λ = 8.5 µm, γcasc,TM00 =−0.169 m−1W−1,

γKerr,TM00 = 0.097 m−1W−1, k(2)TM00
= 0.151 fs2/µm; pump pulse has FWHM = 100 fs,

energy 0.6 nJ, soliton order isNeff ≈ 3; modes taken into account are TM00, TM20, TM40,
TM60 and TM01; (a) spectra of the input pulse (TM00 mode), the compressed pulse (TM00
mode) and the output pulse (all modes); The spectrum is scaled in pulse spectrum density
(PSD) which has the unit of dBm/nm; (b) pulse spectral evolution (TM00 mode) with the
first compression stage marked by the dash line; (c) TM00 mode electric field amplitude
at the first compression stage; (d) pulse temporal evolution (TM00 mode); (e) pulse spec-
trogram evolution; (f) high-order mode SH radiations corresponding to phase matching
positions.

includes all types of nonlinear interactions to the order included in the nonlinear polarization
expansion [27]. In the LN waveguide with multiple modes, a group of NWEFs is used, each
of them corresponds to a single mode and governs the electric field amplitudeÃj , while the
transverse components̃Bj are degenerated through integrals [24]. The equation for each mode
is written as:

∂ Ãj

∂ z
+αÃj + ikj(ω)Ãj =−i

ω2µ0

2kj(ω)
(P

(2)
j (ω)+P

(3)
j (ω)) (5)

whereα indicates the material and the waveguide losses.
First, we show the self-defocusing soliton compression at 2µm, see Fig. 4. The waveguide

has wd= 4 µm, dp= 2 µm and provides all-normal dispersion within the guiding band. The
QPM pitch is chosen toΛ = 8.5 µm as to ensure a an effective defocusing nonlinearity. The
pump pulse, in the TM00 mode, has a full width at half maximum (FWHM) of 100 fs, similar to
the thulium-fiber-based laser system used in [15]. The pulse peak power is 6 kW and therefore
the pulse energy is around 0.6 nJ.α is set to zero.leading to an effective soliton orderNeff ≈ 3.
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Launched into the waveguide, the pulse spectrum is SPM broadened governed by the overall
self-defocusing nonlinearity while a weak SH around 1µm is accompanied due to the phase
mismatched SHG process, see Figs. 4(a) and 4(b). The third harmonic and even higher order
harmonics are also observed through both quadratic and cubic wave mixing processes. These
harmonics look exactly like copies of the fundamental wave (FW) (in the frequency domain)
but they are much weaker because they are heavily phase mismatched. Therefore they will not
impact the compression of the FW. Combined with the normal dispersion, the self-defocusing
phase shift can be well compensated and the pulse, in time domain, is strongly compressed
through the soliton self-compression effect to almost single-cycle, see Figs. 4(c) and 4(d).

We note that LN has a strong Raman fraction (fR ≈ 50%, cf. also discussion in [28]) which
not only causes pulse spectral red-shift, known as soliton self-frequency shift (SSFS) effects,
but also gives rise to modulation instabilities impacting both the amplitude and the phase of
the pulse spectrum [29]. The latter will further cause the pulse splitting, known as the Raman
fission effects, if the soliton order is larger than unity. In Fig. 4(d), the Raman fission is observed
after the first compression stage (marked with the white-dashed line). The soliton pulse is also
red-shifted which is not obvious from the spectral figure but clues are found from the slight
change in the temporal delay Fig. 4(d), as the red-shifted spectrum will have an increased group
velocity (GV) when combined with the normal dispersion. Such a slight spectral red-shifting is
actually from the competition between the Raman SSFS and cascading-induced self-steepening
effects which cause spectral blue-shift due to the negative GV mismatch between the FW and
the SH [27].

For a deeper understanding of such a soliton compression process, the pulse spectrogram
evolution, with slices at different propagation distances, is shown in Fig. 4(e). The evolution
starts with the domination of the nonlinearity which stretches the pulse spectrum while main-
taining the temporal shape, resulting in a tilt on the spectrogram pattern, namely inducing the
nonlinear phase shift. The slope of the tilt (dω

dτ =C) reflects the pulse linear chirp (factorC)
induced by the SPM. The normal dispersion also stretches the pulse but only on the temporal
shape and then the tilt of the pattern is further adjusted with the nonlinear phase shift com-

pensated. The tilt adjustment isdτ
dω =−k(2)TM00

· z (z is the propagation distance). The soliton
compression is actually accomplished when the tilt of the pattern is turned from the initial hori-
zonal state to the vertical state, while the compressed pulse will enter a relaxation stage upon
further propagation as the tilt is overturned from the maximum compression vertical position.
Typically a breather-kind of dynamics will then be observed with the soliton compressing and
relaxing periodically and slowly entering into a steady state. The Raman fission is also clearly
observed with mainly three fractions formed in the spectrogram pattern.

Moreover, while most energy remains in the TM00 mode, sharp-peak radiations are observed
in high-order modes (Fig. 4(a)), which exactly correspond to the phase matching SHGs with
SHs among high-order modes, see Fig. 4(f). The phase-matching condition scaled in RI is:

nSH,j(λSH) = nFW,TM00(2λSH)+∆nQPM(λSH) (6)

where∆nQPM = λSH
Λ and λSH is the SH wavelength. However, due to their small modal nonlin-

ear susceptibilities these radiations are weak in a similar way as the higher harmonics within
the TM00 mode described above, and they will therefore not impact the soliton compression
process either.

The scenario of self-defocusing soliton compression also works at other wavelengths, e.g.
at 1.41µm shown in Fig. 5, at 1.58µm shown in Fig. 6 and at 3µm shown in Fig. 7, in
which the soliton pulse can always be compressed to few-cycle and even single cycle. The
waveguide for the 3µm compression has a bigger size, wd= 5 µm, dp= 2.5 µm and the
cutoff wavelength is extended to over 4µm. From these simulations we conclude that when
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Fig. 5. numerical simulation of self-defocusing soliton compression at 1.41µm in the LN
waveguide; waveguide has the same structure as Fig. 4; pump pulse has FWHM = 50 fs,
energy 0.2 nJ, soliton order isNeff ≈ 1.5; (a) TM00 mode spectra of the input pulse, the
compressed pulse and the output pulse; (b) pulse spectral evolution (TM00 mode) with the
first compression stage marked by the dash line; (c) TM00 mode electric field amplitude at
the first compression stage; (d) pulse temporal evolution; insert: pulse spectrogram at the
first compression stage.

Fig. 6. numerical simulation of self-defocusing soliton compression at 1.58µm in the LN
waveguide; waveguide has the same structure as Fig. 4; pump pulse has FWHM = 50 fs,
energy 0.5 nJ, soliton order isNeff ≈ 4; (a) TM00 mode spectra of the input pulse, the
compressed pulse and the output pulse; (b) pulse spectral evolution (TM00 mode) with the
first compression stage marked by the dash line; (c) TM00 mode electric field amplitude at
the first compression stage; (d) pulse temporal evolution; insert: pulse spectrogram at the
first compression stage.

having a small soliton order 1< Neff < 2, the compressed soliton has a quite clean temporal
shape as well as a clean pulse spectrogram pattern, due to the suppression of Raman fission
effects. When the soliton orderNeff > 2, the compressed pulse will have a complex figure in
both the pulse shape and the spectrogram pattern. The few-cycle soliton compression also leads
to supercontinuum generation, which can easily span over an octave in the spectrum in the
near- and mid-IR (at the -20 dB level). Although the pump pulse has a sub-nJ energy, the pulse
spectrum density is still high, which is a consequence of the strong confinement provided by
this waveguide design.
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Fig. 7. numerical simulation of self-defocusing soliton compression at 3µm in the
LN waveguide; wd= 5 µm, dp= 2.5 µm, Λ = 10 µm, γcasc,TM00 =−0.063 m−1W−1,

γKerr,TM00 = 0.030 m−1W−1, k(2)TM00
= 0.531 fs2/µm; pump pulse has FWHM = 100 fs,

energy 1.2 nJ, soliton order isNeff ≈ 1.5; (a) TM00 mode spectra of the input pulse, the
compressed pulse and the output pulse; (b) pulse spectral evolution (TM00 mode) with the
first compression stage marked by the dash line; (c) TM00 mode electric field amplitude
at the first compression stage; (d) pulse temporal evolution (TM00 mode); insert: pulse
spectrogram at the first compression stage.

If there are material and waveguide losses (additional to the insertion loss), e.g.α = 0.69/cm
for -3 dB/cm loss, soliton compressions as well as SCGs will be impacted. Since the soliton
order is gradually decreased during the propagation, the anticipated pulse spectral broadening
will shrink, which implies a degraded soliton compression.

Let us now investigate the spectral coherence of these solitonpulses. The pump pulse is
assumed to contain aone-photon-per-mode (OPPM) noise figure (hω

∆ω eiφrand, whereh is the
Planck constant,ω is the frequency,∆ω is the frequency resolution of the simulation window
andφrand is a random phase between 0∼ 2π) [30].

The first order spectral coherence ˜g(1)12 is then calculated from several simulation shots, i.e.:

g̃(1)12 (ω) =

∣

∣

〈

Ã∗
s (ω)Ãl(ω)

〉
∣

∣

√

〈

∣

∣Ãs(ω)
∣

∣

2
〉〈

∣

∣Ãl(ω)
∣

∣

2
〉

, s 6= l (7)

wheres and l marks the simulation shot. The angle brackets indicate averaging over noise
realizations.

The coherence of the output pulse spectrum in both the 2-µm and 3-µm compressions are
shown in Fig. 8. The pulse spectrum in the near- and mid-IR is demonstrated to be highly coher-

ent and the ˜g(1)12 value is almost unity since the noise figure at lower frequency is weaker, while
for shorter wavelengths where harmonics are generated, the coherence of the pulse spectrum is
slightly reduced.

Such a high coherence is physically attributed to the low soliton order of the femtosecond
pump that the noise-sensitive soliton fission regime and the pulse modulation instability (MI)
are suppressed, compared to typical SCGs in PCFs which usually use picosecond pumps around
the ZDW, with the soliton order over 100, so that strong soliton fission and MI is induced and
the spectral coherence will be decreased [30]. Similar spectral high coherence is also observed
in an all-nonlinear but non-solitary SCG process in [23] which is operated in the PCF designed
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Fig. 8. coherence spectra for the output pulse spectrum in both the (a) 2-µm and (b) 3-µm
compressions.

to have all-normal dispersion and is dominated by the SPM from the traditional self-focusing
Kerr nonlinearity.

6. DW generation and soliton spectral tunneling

It is well-known that a soliton will radiate DWs when the dispersive phase (spectral propagation
constant profile) is perturbed with high-order dispersion (third-order dispersion, fourth-order
dispersion, etc.). In the present case that the soliton exists in the normal dispersion regime,
the necessary condition for the DW generation is “the presence of an anomalous dispersion
region”. More precisely, according to the DW phase matching condition, DWs are predicted
to be generated exactly in the anomalous dispersion region(s) if the major perturbation comes
from the third-order dispersion. However, if presence of fourth-order dispersion, DWs can be
generated either in anomalous or normal dispersion regions. The latter is actually revealed to be
the soliton spectral tunneling (SST) effect in which the DW can actually form another soliton
state, and an opposite dispersion region is considered as a necessary barrier [31].

Therefore, with an all-normal dispersion profile in the LN waveguide, DWs are suppressed
for sure, see Fig. 5 and Fig. 6. The waveguide for the 3µm compression actually has two
ZDWs (1.51µm and 2.30µm), indicating an anomalous dispersion region sandwiched by two
normal dispersion regions. However, DWs are still suppressed since the pumping wavelength is
far away from the ZDWs and the DW phase-matching condition is not satisfied. Thus, without
such linear radiations, the soliton dynamics is purely nonlinear.

On the other hand, when pumping close to one of the two ZDWs, DW generations are ex-
pected. Moreover, with the soliton spectral shifting and compression/relaxation breathing, the
DW radiations can also form a few-cycle pulse [32].

We show a 2.2-µm pulse generation by means of such a breathing DW generation, see
Fig. 9. The waveguide again has wd= 5 µm and dp= 2.5 µm. The QPM pitch is chosen to
Λ = 9.8 µm to give an effective defocusing nonlinearity. The pump wavelength is chosen to
1.35µm, which has phase matching to a DW at around 2.2µm. The pump pulse has a FWHM
of 25 fs so that an ultra-broadband spectrum is provided with large sideband energy at the DW
position. The pulse energy is 0.1 nJ and the soliton order isNeff ≈ 1. The pulse spectrogram evo-
lution is also investigated to help understanding the whole process, see Fig. 9(a) When launched
into the waveguide, the soliton at 1.35µm starts to transfer energy to the DW, and the soliton
itself is spectrally blue shifted mainly due to a recoil effect [33, 34] (The cascading-induced
blue shift and the Raman SSFS are almost balanced with each other). The soliton blue shift
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Fig. 9. broadband DW generation at 2.2µm in the LN waveguide when pump-
ing at 1.35µm; wd= 5 µm, dp= 2.5 µm, Λ = 9.8 µm, γcasc,TM00 =−0.217 m−1W−1,

γKerr,TM00 = 0.152 m−1W−1, k(2)TM00
= 0.049 fs2/µm; pump pulse has FWHM = 25 fs, en-

ergy 0.1 nJ, soliton order isNeff ≈ 1; (a) pulse spectrogram evolution with slices at dif-
ferent propagation distance; (b) spectral evolution (TM00 mode); dash-dot lines mark the
two ZDWs; (d) temporal evolution (TM00 mode); insert: DW pulse spectrum and temporal
shape.

is reflected by the temporal delay shown in Fig. 9(c). Meanwhile, the soliton is further com-
pressed and more energy is transferred out to the DW, with a red-shifted DW position due to the
phase-matching condition to the blue shifted soliton, see Fig. 9(b). However, with energy con-
tinuously transferred out, the soliton is weakened with the soliton order going below the unity.
Then, the soliton will self-adapt to maintain a soliton state by narrowing its pulse spectrum and
broadening the temporal shape. A breath is therefore established, with the compression-induced
spectral broadening and self-adaptive spectral narrowing, leaving a clean “DW pulse” pattern
at 2.2µm in the spectrogram. By applying a long-pass filter the DW-part of the spectrum is
then filtered out so it can be analyzed in detail. It spans 2.0∼ 2.6 µm (at -10 dB level) and the
pulse duration is estimated to be around 3.5-optical cycles (FWHM = 27 fs), see the insert in
Fig. 9. The conversion efficiency is 6% leading to a pulse energy of 6 pJ.

It is noted that such a DW pulse is actually located in the anomalous GVD region and there-
fore it could not form a soliton. However, since the GVD in this regime is very weak, the
temporal pulse shape will be almost unaffected even over a long propagation distance while
spectral phase is accumulated by the self-defocusing nonlinearity.

The SST effect is also investigated in the same waveguide, with a more precise designing on
the phase matching. The pump wavelength is set to be at 1.31µm and the DW is therefore to be
generated at 2.6µm where the dispersion is also normal; thus, the DW can form a soliton state.
We here keep the name “dispersive wave”, as the phase-matching condition is found by inter-
secting the near-IR “parent” soliton dispersion curve, which is inherently dispersionless, with
a dispersion curve that reflects the mode dispersion. Whether the formed DW is then energetic
enough to form a soliton state that does not disperse, and thereby will not be a dispersive wave
per se any more, is another matter. Moreover, both the parent soliton and the DW also have the
same GV, as the GV-matching condition is satisfied, under which the energy transferred from
the parent soliton to the DW will also be transferred back, reflecting a so-called soliton cou-
pling effect [35]. Figure 10(a) shows how the soliton coupling evolves. Both the parent soliton
and the DW spectra are periodically changed during the evolution, with the energy coupling in
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Fig. 10. soliton spectral tunneling effect with the pump at 1.31µm and the DW pulse
generated at 2.6µm which is also solitonary; wd= 5 µm, dp= 2.5 µm, Λ = 9.8 µm,

γcasc,TM00 =−0.204 m−1W−1, γKerr,TM00 = 0.159 m−1W−1, k(2)TM00
= 0.063 fs2/µm;

pump pulse has FWHM = 25 fs, energy 0.175 nJ, soliton order isNeff ≈ 1; (a) pulse
spectrogram evolution with slices at different propagation distance; dash-dot lines mark
the two ZDWs; (b) spectral evolution (TM00 mode); (d) temporal evolution (TM00 mode).

between (Fig. 10(b)). When having two solitons in the spectrogram, the temporal shape shows
a interferometric signal (Fig. 10(c)).

Compared to the SST effect, the 2.2-µm DW pulse generated in Fig. 9 cannot couple back
to the near-IR soliton exactly because it is not GV-matched to the parent soliton, and it will
therefore travel away from the parent soliton (this is quite unique to self-defocusing DW gen-
erations, see also the discussion in [36]). Through SST, the parent soliton energy may be fully
coupled to the DW pulse, provided that a spectral red-shift occurs, such as Raman SSFS [31].
However, with the cascading process, Raman SSFS is in most cases counterbalanced by cascad-
ing induced self-steepening effects, and the spectrum shows blue-shift dominated by the recoil
effect, which unfortunately reduces the coupling efficiency. On the other hand, both cases are
demonstrated to have also a high spectral coherence.

7. Conclusion

As a conclusion, in this paper we proposed an LN waveguide design with a large refractive
index (RI) change, a design intended to extend self-defocusing soliton formation further into
the mid-IR. The large RI change is suggested to come from bonding an LN wafer containing a
ridge waveguide on top of a glass substrate with broadband IR transmission and substantially
lower RI than LN, here chosen to be the Schott glass IRG-2. Self-defocusing solitons require
normal dispersion and an effective self-defocusing nonlinearity, here originating from cascaded
SHG, to form. Compared to bulk LN or traditional low-RI LN waveguide designs, in which the
dispersion trend limits the compression to be below the zero-dispersion wavelength (ZDW) at
around 2µm, the proposed design significantly extends the soliton regime of LN waveguides
into the mid-IR. This occurs due to the strong waveguide dispersion that can significantly alter
and even counterbalance the material dispersion. Thus, the normal dispersion regime can be
extended well beyond the material ZDW. It is even possible to create an all-normal dispersion
profile (within the waveguide cutoff frequencies) by properly tuning the waveguide core size.
Such an all-nonlinear and solionic waveguide or fiber design has to our knowledge not been
investigated before. The large RI change also has the benefit of supporting broadband guidance
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well into the mid-IR, and at the same time keep the waveguide core size small (in contrast
to a broadband low-RI design [14]). The large confinement from the small core leads to a very
low-energy soliton threshold, implying that the pump source can operate at much lower average
powers or higher repetition rates than traditional LN waveguide designs. Moreover, an effective
self-defocusing nonlinearity can be found over a broadband range in near and mid-IR, where
the cascaded SHG self-defocusing nonlinearity counterbalances the material Kerr nonlinearity.
In order to achieve this a moderate QPM pitch on the order of 10µm has to be used.

Formation and dynamics of self-defocusing solitons at 2µm, 3 µm and other wavelengths
were numerically investigated, in which single-cycle pulses can be generated through the soli-
ton self-compression effect, followed by octave-spanning supercontinuum generation in sub-
cm length waveguides. Using a 100 fs pump pulse and keeping a low soliton order, the pulse
spectrum was demonstrated to be highly coherent. We attribute this to the purely nonlinear
soliton dynamics and the suppression of the soliton fission and the modulation instability. For
designs where the dispersion profile does have ZDWs, an anomalous-dispersion region could
be found sandwiched between two normal-dispersion regimes. In this scenario DW generation
as well as the soliton self-tunneling (SST) effect were investigated. The DWs could manifest as
few-cycle pulses under a breathing regime induced by the spectral soliton shift and compres-
sion/relaxation processes of the parent soliton. With the SST effect, a group-velocity match-
ing condition enables the energy coupling between the DW and the parent soliton, and in this
case the wavelength of the DW phase-matching point pulse is actually located in the long-
wavelength normal dispersion region beyond the anomalous dispersion regime, and therefore
may form a soliton state.

Executing the proposed design should not pose too many obstacles, and it therefore has a
number of exciting advantages over traditional designs, both from a nonlinear science viewpoint
and from an application viewpoint. Such waveguides could lead to more effective ways of
generating few-cycle pulses and highly coherent supercontinua with low-energy femtosecond
pulses in near and mid-IR.
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