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I. Introduction 
Local brownouts are a nuisance and have driven consumers to take greater 

responsibility for their electricity supply – particularly industries and communities with 

a critical need for reliable and safe power. By deploying a Microgrid on their own site, 

the consumers could benefit from having this interoperable grid solution with respect 

to improved energy efficiency, system reliability and power quality. When the on-site 

generation is from renewables, external incentives and system sustainability could 

make the Microgrid solution even more attractive.  

 

One of the representative industrial Microgrid solutions, as depicted in Figure 1, is a 

steel mill-centered industrial Microgrid that is currently under construction in Laiyuan 

county of China. Historically, the 42MW load mixture of the steel factory includes 

inductive motors, electric furnaces and air-blowers and is supplied by the external 

grid through a 110KV distribution feeder together with a small factory-owned gas 

turbine. Due to its weak connection to the external grid, the voltage profile at the 

factory side can often drop below the desired voltage level (i.e., 10.5KV) by more 

than 5%. To improve the customer’s voltage quality and to meet a projected load 

increase, the steel mill-centered industrial Microgrid solution is deployed to address 

these challenges by severing part of the factory’s load. Meanwhile, under the support 

of the Chinese and Danish government jointly developed Renewable Energy 

Development (RED) programme, some advanced features for wind/PV/Storage 

constituted hybrid industrial Microgrid applications are being developed and to be 

demonstrated [1]. 

 

In this study, an optimal dispatch solution for a 1MW/5MWh lithium-ion battery 

system is developed and analyzed for its application in this industrial Microgrid. The 

hourly dispatch strategy takes into account the energy forecast of renewables and 

targets on achieving two objectives: 1) reducing the amount of energy exported to the 



 

external grid and 2) performing energy arbitrage. The 2x1MVar SVGs are not 

included in this literature, as they are mainly deployed for voltage regulation in real-

time operation; while both industrial load and renewable productions are considered 

un-dispatchable in this literature. 

   
Figure 1. System configuration of the RED industrial Microgrid  

 

II. Forecasting energy exchange 
As part of this Microgrid solution, a commercial forecasting machine is applied to it. 

Such system takes 5 minute online measurement from wind farm, PV farm and load 

terminals as input and forecasts the hourly energy production of renewables and load 

with a forecasting horizon of up to 24 hours.  As one major objective of the battery 

dispatch is to reduce the energy export, the forecasts over individual resources are 

aggregated to represent the energy exchange between the Microgrid and the 

external grid.  

 

By using the historical data collected in May 2013, an accuracy analysis is performed 

for the forecasting machine as in Figure 2. Although there is an abnormal error 

variation for the 16-hour ahead forecast, the general conclusion can be found that 

forecast accuracy decreases as time horizon for forecasts increases.   Further, the 

value of MFE is mostly greater than 0, implying the model tends to slightly under-

forecast the energy export.   



 
 

Figure 2. Accuracy analysis of the energy export forecast 

 

III. The time-of-use electricity tariff in China 
Electricity prices in Laiyuan currently follow a time-of-use (TOU) policy as depicted in 

Table 1. For an electrical storage application, the TOU policy offers it a unique 

opportunity to perform energy arbitrage for achieving better economy. Compared to 

other arbitrage-based storage applications in Europe and U.S., the non-existence of 

deregulated electricity market in China further reduces the risk caused by price 

forecast errors as the TOU tariff typically remains the same for long. 
 

Table 1: Electricity tariff in Laiyuan, China 

Time 

Peak Shoulder Flat Valley 

20:00 – 22:00
10:00 – 12:00

15:00 – 17:00

8:00 – 10:00 

12:00 – 15:00 

17:00 – 20:00 

22:00 – 24:00 

24:00 – 8:00 

TOU tariff  

(RMB/MWh) 
753.4 726.7 510.6 316.4 

 

IV. Dispatch strategy formulation 
The optimal dispatch strategy for the battery storage can be formulated as a typical  

periods oriented optimization problem with multiple objectives as (1), wherein λ is the 

weighting factor between the two cost parts, i.e.,  and  representing the 

cost for battery’s energy arbitrage and the cost for energy exchanged with the 

external grid respectively.  
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Mean Forecast Error (MFE)
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The set of constraints for such a problem is formulated as (2) which includes the 

equations for cost, energy balance and power limits of the battery in each time slot  . 

∆ ∙ ∙ 	∆ ∙ ∙ ∙
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 (2)

Decision variables ∆  and ∆  represent the energy charged into and 

discharged from the battery in each time interval respectively, which are limited by 

the maximum charging power , 	and discharging power ,  as well as the 

corresponding efficiency  and . Meanwhile, two binary variables ,  are 

introduced to indicate the corresponding charging/discharging status. The operational 

boundary of the battery’s state of charge (SOC) is described by  and .  The 

intermediate variable  represents the battery’s energy status at the end of time 

interval , while ∆  indicates the amount of energy exchanged between the 

Microgrid and the external grid. As for the price indicators,  represents the TOU 

tariff, while  ′  represents the implicit penalty for energy export, which is a given 

positive value when ∆  is greater than 0 and equals to zero in other cases.   

 

When assigning ∆  with the forecasted energy exchange values, such formulation 

will derive a series of dispatch signals for the battery system over the upcoming  

intervals. Since the forecast is an iterative process with improved accuracy as time 

horizon decreases, only the 1st of the  dispatch signals is set as the real dispatch 

signal of the battery system for the nearest future time slot (i.e., 1).  After the hour 

of operation, the measured renewable production, industrial load and the dispatched 

energy from the battery for that hour are utilized for calculating the real cost value. 

 

V. Case study with simulation results 
By using the data collected in May 2013, two simulation-based case studies are 

carried out to compare the economic performance of the battery system under 

different conditions. In all cases,  and  are both set to 90%. Further, λ is set to 1 

and ′  is set to 10000 RMB to mimic a heavy penalty on any energy export. 

 



 
 

Case 1.  Perfect forest vs. Imperfect forecast 

In this case, the operational range of battery’s SOC is set as 10% - 90%. When 

varying the length of forecast horizon (i.e., ) considered in the dispatch program, 

the real monthly costs for both arbitrage and export under perfect forecast and 

imperfect forecast conditions respectively are depicted as in Figure 3. The prefect 

forecast assumes 100% forecast accuracy while the imperfect forecast is generated 

by the earlier mentioned forecasting machine. 

Figure 3. Cost comparison between the dispatch program’s performance under both 

perfect and imperfect forecast with a varying forecast horizon  

 

As found in this comparison, the best arbitrage performance can be reached without 

having to consider an entire 24-hour forecasting horizon. Further, since the 

forecasting machine tends to under-estimate the amount of energy export, the 

battery system could therefore realize more arbitrage profit than the case under 

perfect forecast. On the contrary, this special characteristic of the forecasting 

machine results in almost 5% more exchange cost for all different forecast horizons 

considered. For the case of dispatch using imperfect forecast, the minimum dispatch 

cost expressed in (1) is found when the length of forecast horizon considered in the 

dispatch program is 16.  

 

Case 2.  Large operational SOC range vs. Small operational SOC range   

In this case, the length of forecast horizon considered in the dispatcher is set to 16. 

Instead of using the SOC range 10% - 90%, a manufacturer recommended SOC 

range 20% - 80% is selected for comparison. For the two cases, the battery’s 

lifecycle consumption during the simulated period is estimated by using the rainflow 

algorithm described in [2]. The estimated partial lifecycle consumption as in Figure 4, 

is further converted into the temporal life consumption in percentage of its total life 
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when a typical lifecycle vs. DOD curve from [3] is used. As the result Table 2 shows, 

in the simulated context, the dispatch program with a larger SOC range leads to a 

better solution.  

Figure 4. Estimated partial lifecycle consumption under different SOC ranges 

 

Table 2: Summery of simulation results for case 2 

  Arbitrage profit (RMB) Total cost (RMB) Life consumption (%) 
SOC 20% - 80%  3.55x104  4.52x106  1.38 
SOC 10% - 90%  3.91x104  4.49x106  1.35 
 

VI. Conclusion 
The paper has described a multi-objective oriented battery dispatch solution that is 

developed based on a practical industrial Microgrid application with high renewable 

production. By deploying the optimal dispatch solution, both objectives, i.e., energy 

arbitrage and exported energy reduction can be achieved. Two important design 

aspects of the dispatch solution, i.e., forecast and operational range of battery’s SOC 

are analysed based on simulated case studies. The described dispatch solution can 

be easily extended to include other dispatchable resources into the formulation.   
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Battery life consumption when SOC range is set as 20%-80%
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Battery life consumption when SOC range is set as 10%-90%


