
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Analysis of Cavity Pressure and Warpage of Polyoxymethylene Thin Walled Injection
Molded Parts: Experiments and Simulations

Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

Published in:
A I P Conference Proceedings Series

Link to article, DOI:
10.1063/1.4918481

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Guerrier, P., Tosello, G., & Hattel, J. H. (2014). Analysis of Cavity Pressure and Warpage of Polyoxymethylene
Thin Walled Injection Molded Parts: Experiments and Simulations. A I P Conference Proceedings Series, 1664,
[110006]. DOI: 10.1063/1.4918481

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/20608551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4918481
http://orbit.dtu.dk/en/publications/analysis-of-cavity-pressure-and-warpage-of-polyoxymethylene-thin-walled-injection-molded-parts-experiments-and-simulations(038f8e0e-6eaa-4f4f-8667-c7fee32a5020).html


Analysis of Cavity Pressure and Warpage of 
Polyoxymethylene Thin Walled Injection Molded Parts: 

Experiments and Simulations 

P. Guerrier, G. Tosello, J. H. Hattel 

Department of Mechanical Engineering (MEK), Technical University of Denmark (DTU), 
DTU Building 425-427A, Produktionstorvet, DK-2800 Kgs. Lyngby, Denmark 

Abstract. Process analysis and simulations on molding experiments of 3D thin shell parts have been conducted. 
Moldings were carried out with polyoxymethylene (POM). The moldings were performed with cavity pressure sensors in 
order to compare experimental process results with simulations. The warpage was characterized by measuring distances 
using a tactile coordinate measuring machine (CMM). Molding simulations have been executed taking into account 
actual processing conditions. Various aspects have been considered in the simulation: machine barrel geometry, injection 
speed profiles, cavity injection pressure, melt and mold temperatures, material rheological and pvT characterization. 
Factors investigated for comparisons were: injection pressure profile, short shots length, flow pattern, and warpage. A 
reliable molding experimental database was obtained, accurate simulations were conducted and a number of conclusions 
concerning improvements to simulation accuracy are presented regarding: pvT data, mesh, short shots, cavity pressure for 
process control validation as well as molding machine geometry modelling. Eventually, a methodology for improved 
molding simulations of cavity injection pressure, filling pattern and warpage was established. 

Keywords: Thin-wall injection molding, process simulation, warpage, optimization. 
PACS: 44.05.+e, 47.11.Df, 89.20.Bb  

INTRODUCTION 

The mechanical components which are part of a hearing aid are typically made of thermoplastics and are used to 
encase the electronics and the rest of the mechanical parts. These components are also referred to as the shell parts. 
They are characterized by having a relative complex geometry, being thin walled, having long flow lengths, having 
low tolerances, consisting of small details, and having large requirements to the surface finish. To aid with reducing 
the cost and time in connection with the development of new hearing aids simulation software can be used. 
Currently available software can simulate the molding and cooling processes, and hereafter warpage. However, there 
have been difficulties with predicting the correct values of warpage on the shell parts. It is therefore the objective of 
this work to analyze and simulate the warpage of thin walled shell parts with the Moldex3D eDesign software and 
potentially improve the predicted values of warpage. A simplified shell part cavity, resembling a hearing aid shell, 
has been manufactured including pressure and temperature sensors in the injection molding tool. A semi-crystalline 
polymer, namely polyoxymethylene (POM), was employed. The produced simple shell parts have been compared 
with simulations conducted with the same process parameters, to validate the software. The warpage has been 
measured with a tactile coordinate measuring machine (CMM) on the injection molded parts. 

The physical behavior behind warpage of polymer injection molded parts is determined by the stiffness of the 
component and the level of differential shrinkage. There can be several reasons for differential shrinkage: different 
wall thicknesses throughout the part, non-uniform mold temperatures, orientation effects (e.g. orientation of polymer 
chains is different along and across the flow direction), and dissimilar volumetric shrinkage (e.g. due to variation in 
packing pressure) [1]. To further elaborate on the simulation part of injection molding it is generally accepted that 
all input data are important, i.e. uncertainties in material data, process settings, and boundary conditions will 
generate simulation results not reflecting the actual problem [2]. The focus in this work has been to reflect the 
importance of using: the complete geometry of the molding system (including mold, cooling channels, and even 
machine barrel), an accurate mesh, using material data for the actual used material as well as pressure-dependent 
viscosity (which has an effect in the packing phase). 

As far as the material data are concerned, it can prove to be difficult to obtain data representing the material 
characteristics for defined injection molding conditions. Particularly, pvT data for semi-crystalline materials have 
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been shown by Zuidema et al. and Gao et al. [3, 4] to be dependent on the cooling rate at which they have been 
characterized. They showed that at very low cooling rate (0.017°C/s) it matched data from the available database, 
but at higher cooling rate (40°C/s), the crystallization transition is shifted to lower temperature. Carrubba et al. [5] 
have also showed that pvT models are only fitting at low cooling rates. Several studies [6, 7] conclude that packing 
pressure is one of the clearly dominant factors which influence the cavity condition and product quality. Packing 
pressure is dominant, and in addition, if the effect of pressure on the melt viscosity is considered, the deviation 
between the predicted and the experimental pressure evolution is substantially reduced [8, 9]. The general trend 
from current literature on validation of warpage prediction shows limitations [10-12]. This is due to the fact that 
simplified two-dimensional geometries have been commonly investigated instead of more complex three-
dimensional geometries. Deviations of predicted warpage encountered in previous works have been in the order of 
0.2-0.4 mm, whereas this work aims at reaching deviations of 0.02 mm. 

EXPERIMENTS 

Part geometry 

A tool with a thin-wall shell part cavity has been manufactured, with three integrated pressure sensors. Many of 
the hearing aid shells resemble the design seen in figure 1. The test part is designed similar to a typical hearing aid 
shell, but without all the internal micro features in order to simplify the molding process and its numerical 
calculation. The overall geometry of the part can be seen in figure 1(b), also with the inclusion of the pressure sensor 
locations, denoted P1, P2, and P3. The typical wall thickness of the part is 0.8 mm. 

(a)

 

(b)

 

(c)

 

FIGURE 1. (a) Cross section of the part geometry. (b) Geometrical dimensions and sensor locations (P1, P2, and P3). (c) The 
injection molded hearing aid shell part. Material: polyoxymethylene Ticona Hostaform C 13021. 

Validation and quality factors 

To compare simulations and experiments, validation and quality factors were defined. The validation factors 
considered were the short shot pattern which gives a visual representation of the flow and the pressure which gives 
direct comparison between experiments and simulations. The quality factors are defined as three lateral 
measurements L1, L2, L3 and a height measurement H (see figure 2). The validation factors were used to first 
validate the simulation implementation and the quality factors were used to compare measured and simulated 
warpage. 

 
FIGURE 2. Lateral (L1, L2, L3) and height (H) measurements to quantify the warpage of the part. 
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The molding machine used for the experiments was an Arburg All Arounder 270A 350-70 Alldrive with an 18 

mm plasticizing screw. The process parameters used were: injection speed = 25 mm/s, melt temperature = 220°C, 
mold temperature = 90°C, packing pressure = 75 MPa, packing time = 2 s, and cooling time = 6 s. The pressure 
curves obtained from the three pressure sensors are shown in figure 3. A pressure curve with a smooth transition to 
the packing phase was used, to avoid instability in the switchover pressure (see figure 3). 
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FIGURE 3. Experimental pressures from the pressure sensors in the mold. Sensors positions: P1 = before the gate, P2 = in the 

part, P3 = in an overflow at the end of the part. Average experimental standard deviation of pressure curves = 1.2 bar. 

Warpage measurements 

The warpage was measured using a coordinate measuring machine with a contact probe. The part was mounted 
on the 3D printed fixture seen in figure 4(a). This was done to avoid part deflection during the measuring procedure, 
as the fixture was made with a conformal shape. Also, the part is resting in the fixture with no actual clamping force 
applied. 
The distances L1, L2, L3 and the height H (see figure 2) were measured. Measurements are presented as the 
measured value subtracted by the value from the CAD file of the mold, i.e. negative values indicate that the part is 
bending inwards. The uncertainty from the measuring procedure was found to be in the range of ±3 µm. 
Measurements were made after 24 hours, 48 hours, and 7 days to check whether the part warped any further due to 
residual stresses or viscoelastic effects. This was not the case as indicated in figure 4(b), due to average values lying 
within standard deviations. Measurement repeatability (i.e. standard deviation) of 2-10 µm was in general achieved 
for a single part. The standard deviation was higher (from 10 µm up to 100 µm) when including the repeatability of 
the molding process, i.e. measuring 10 different parts from the same production batch. 

 
(a) 

-0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00

H

L1

L2

L3

Deviation [mm]

POM Geo. a: Measurements

7d

48h

24h

 
(b) 

FIGURE 4. (a) Part mounted in the fixture ready for warpage measurements. (b) Average of measurement results on 10 different 
parts at 24h, 48h, and 7 days after production. Errors bars indicate experimental standard deviation. 

SIMULATIONS 

To increase the accuracy of the simulations with respect to the experiments in terms of the pressure curves the 
following was considered: actual injection speed profile from the machine, actual packing pressure profile from 
machine, melt and mold temperature from machine and sensors respectively as well as material data for POM 
obtained from the manufacturer. Taking the mentioned aspects into consideration together with geometrical 
boundaries such as the cavity, mold, cooling channels, and machine barrel (see figure 5) improve the agreement 
between simulation and experiments [13]. The use of the actual machine geometry allows including the pressure 
drop through the geometry and the compressibility of the melt through the whole injection system as in the actual 
injection molding process. 
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(a)

 

(b)

 
FIGURE 5. (a) Geometry imported into the simulation software, with sensor locations marked with arrows. (b) Simulation 

system including cavity, mold block, cooling channels and machine barrel. Total number of elements in the model: 3.5 million. 
 

In order to further increase the simulation accuracy, different parameters were investigated. These include 
sensitivity of heat transfer coefficient (HTC) between part and mold, melt temperature, flow rate in cooling 
channels, mesh level, viscoelasticity, and pressure-dependent viscosity. The simulations showed very limited 
sensitivity of the injection pressure with respect to all parameters except from pressure-dependent viscosity and the 
HTC. The viscosity model used in Moldex3D eDesign R10 is the Cross-WLF which has the option to include the 
D3 coefficient, which is typically set to 0, and is controlling how much the viscosity depends on the pressure. The 
coefficient has been estimated using the procedure presented in [14], using the relation between the compressibility 
of the melt and its thermal expansion (from pvT data) and temperature-dependence on viscosity. Pressure-dependent 
viscosity is expected to have an effect during filling, but particularly on the packing pressure. The simulated 
pressure curves show high agreement with experiments after applying the pressure dependency on the viscosity. A 
short shot comparison can be seen in figure 6, which also shows good agreement between experiments and 
prediction of the flow. Figure 7 shows the pressure curves for all sensors and machine pressure for both the 
simulation and experiment. 

 
Experiments Simulation Experiments Simulation 

 
Inj. time = 0.237 s 

 

 
Inj. time = 0.334 s  

 
Inj. time = 0.312 s  

 
Inj. time = 0.379 s     = 5 mm 

 

FIGURE 6. Flow front pattern validation: intermediate steps of the filling simulation at four different filling times. 

(a)  (b)  
FIGURE 7. (a) Simulation results (including HTC and pressure dependent viscosity). (b) Experiments. 

P0 denotes the machine injection pressure. 
 

The simulated warpage was measured following the same procedure as in the experimental measurement. The 
comparison is shown in figure 8 for the simulation with the pressure dependent viscosity and an optimized heat 
transfer coefficient of 3000 W/(m2K) during filling and 1500 W/(m2K) during packing. The agreement resulted to be 
satisfactory for L1, L2 and L3. However there is still some mismatch between the experimental and simulated height 
H which should be further investigated. 
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FIGURE 8. Comparison of experimental and simulated warpage results. ‘Actual’ refers to the experimental measured warpage. 
‘Ref.’ refers to the warpage result in the reference simulation and the ‘Ct 3000/1500’ refers to the simulated warpage including 

both pressure dependent viscosity and optimized values of HTC. 

CONCLUSION 

Experimental injection molding and simulation of three-dimensional thin walled shell parts were performed in 
this work. Experimental results created a reference for the comparison with the simulation of the process induced 
warpage. The injection molding process was simulated in satisfactory agreement with respect to the experiments. 
Optimized simulation results were mainly obtained after utilizing pressure dependent viscosity, including the 
machine barrel geometry, and optimized HTC values. The established simulation provided improved warpage 
calculations results as compared to the reference simulation. 
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