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Abstract

The focus of this thesis is developing and implementing techniques for performing

experimental bifurcation analysis on nonlinear mechanical systems. The research

centers around the newly developed control-based continuation method, which allows

to systematically track branches of stable and unstable equilibria under variation of

parameters. As a test case we demonstrate that it is possible to track the complete

frequency response, including the unstable branches, for a harmonically forced

impact oscillator with hardening spring nonlinearity, controlled by electromagnetic

actuators. The method requires the constitution of a non-invasive and locally

stabilizing control scheme, which must be tuned without a-priori study of a model.

We propose a sequence of experiments that allows to choose optimal control-gains,

filter parameters and settings for a continuation method. This experimental tuning

procedure is applied to our test rig, resulting in a reliable non-invasive, locally

stabilizing control. The use of stabilizing control makes it difficult to determine

the stability of the underlying uncontrolled equilibrium. Based on the idea of

momentarily modifying or disabling the control and study the resulting behavior,

we propose and test three different methods for assessing stability of equilibrium

states during experimental continuation. We show that it is possible to determine

the stability without allowing unbounded divergence, and that it is under certain

circumstances possible to quantify instability in terms of finite-time Lyapunov

exponents. A software toolbox for the Matlab continuation platform COCO has

been developed and will be made freely available. This toolbox implements functions

necessary for interfacing a numerical continuation code with a real experiment, as

well as provide means for simulating control-based continuation experiments. Finally,

the feasibility of implementing the method for rotating machinery is discussed.
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Resumé

Fokus i denne afhandling er p̊a udvikling og implementering af teknikker til at udføre

eksperimentel bifurkations analyse p̊a ikke-lineære mekaniske systemer. Forskningen

tager udgangspunkt i den ny-udviklede ’control-based continuation’ metode, som

gør det muligt at systematisk følge grene af stabile og ustabile dynamiske ligevægts

tilstande under variation af parametre. For at teste metoden viser vi at det er

muligt at måle det komplette frekevensrespons, inklusiv den ustabile del, for en

ikke-linær mekanisk oscillator som er p̊avirket af en ekstern harmonisk kraft, og

reguleret med elektromagnetiske aktuatorer. Metoden kræver en ikke-invasiv og

lokalt stabiliserende regulering, som er nødt til at blive justeret uden brug af

en model af systemet. Vi introducerer en serie af eksperimenter, som gør det

muligt at vælge optimale parametre for regulatoren og continuation-algoritmen.

Dette testes p̊a vores forsøgsopstilling, resulterende i en p̊alidelig ikke-invasiv

og lokalt stabiliserende regulering. Anvendelsen af reguleringen gør det svært at

afgøre stabiliteten af underliggende dynamiske ligevægtstilstand. Baseret p̊a en

grundlæggende ide om momentant at slukke eller modificere regulatoren og observere

systemets respons, introducerer vi tre forskellige metoder til at afgøre stabiliteten af

dynamiske ligevægtsstililnger, som kan benyttes under continuation. Vi viser at det

er muligt at bestemme stabiliteten uden at tillade systemet at divergerer ubegrænset,

samt at det under visse omstændigheder er muligt at kvantificere ustabiliteten i

form af finite-time Lyapunov eksponenter. En software værktøjskasse til Matlab

continuation platformen COCO er blevet udviklet, og vil blive gjort frit tilgængelig.

Denne værktøjskasse implementerer de funktioner som er nødvendige for at kunne

benytte en numerisk contination algoritme i et fysisk eksperiment, samt giver

mulighed for at simulere control-based continuation eksperimenter. Afslutningsvis

bliver muligheden for at anvende metoden til roterende maskineri diskuteret.
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1 Introduction

Experimental investigations of nonlinear mechanical vibrations are interesting and

relevant both from an academic and practical engineering perspective. Real systems

are inherently nonlinear, but nevertheless we often attempt to describe them using

linear models. This is because the linear theory is well established and relatively

straightforward. Similarly, many of the well established experimental methods

use estimation and identification techniques that are based on the assumption

that the system under test is linear or close to linear. Applying such techniques

to strongly nonlinear systems can lead to wrong measurements and hence wrong

model-assumptions, poor designs and failure of mechanical components.

Nonlinear dynamical systems are difficult to deal with experimentally due to the

fact that they might have multiple coexisting stable and unstable equilibrium states,

super/sub harmonic resonances, quasi-periodic and chaotic behaviour. Furthermore,

nonlinear systems can undergo bifurcations, where a small change of a system

parameter cause a sudden qualitative change of the response. Figure 1.1a shows

examples of a theoretical frequency response for a linear and a nonlinear harmonically

forced oscillator. The linear response is characterised by only having one possible

equilibrium state for each forcing frequency, while the nonlinear response has a

region in which multiple stable and unstable equilibrium states coexist. Bifurcations

occur at two points along the curve, namely where the stability changes. At these

points a small change of the forcing frequency will qualitatively change the response

of the system, as the system will not settle on an unstable equilibrium in absence

of control.

Despite not being directly observable in experiments, unstable equilibrium states

hold important information about the dynamics of a system. As illustrated in
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Chapter 1. Introduction

Figure 1.1b, the unstable equilibria act as seperatrices between the stable attractors,

dividing the phase plane into bassins of attraction. With information about the

unstable states, one can predict which steady state the system progresses towards

given a set of initial conditions. Furthermore, branches of stable equilibria might

be connected through the unstable equilibria branches, which means that following

an unstable branch can help in uncovering a more complete bifurcation diagram.

Lastly, if stabilized by control, the unstable equilibria might hold useful dynamical

proporties.

This underlines the usefulness and need for a method that can perform systematic

experimental bifurcation analysis, by tracking both stable and unstable time periodic

equilibrium states of nonlinear mechanical systems under variation of parameters.

The aim and contribution of this thesis is to show how this can be achieved using

the control-based continuation method. As a test case for the method and its

implementation, non-trivial responses of a harmonically forced impact oscillator

are investigated. Special focus is put on developing and implementing methods

for determining stability during continuation and tuning a non-invasive control

necessary for applying the method.

1.1 Experiments in nonlinear dynamics

Figure 1.1a and b underlines the complication of dealing with strongly nonlinear

dynamical systems: There might be multiple possible equilibrium states coexisting

for a certain set of parameters and a perturbation can cause the system to diverge

from one equilibrium state and settle onto another. Therefore, classical experimental

techniques, such as experimental modal analysis, where the system is excited by an

impulse or broadband noise signal while the response is recorded, does not ensure

that the correct state is measured. The conventional experimental method used

with strongly nonlinear systems is a parameter sweep, where a parameter, e.g. the

forcing frequency, is ramped smoothly up and down while the response is recorded.

If the perturbations are sufficiently small compared to the separation of coexisting

equilibrium states, it is possible to trace a path or branch of equilibrium states as

it is done in Figure 1.1c (marked by + and ◦). By varying the parameter smoothly,

the system stays on the equilibrium path on which it is initiated until that path

seize to exist, at which point the system jumps and settles onto another nearby

stable equilibrium state. This means that multiple coexisting equilibrium paths can

be measured by careful initialisation and sweeping in different directions, as it is

done in Figure 1.1c. Unfortunately, the method is not very robust with respect to

perturbations and does not provide any information about the unstable equilibrium

states.
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Experimental techniques for stabilizing unstable periodic orbits (UPOs) in chaotic

systems, such as Delayed Feedback Control [8] and OGY-control [9], are emerging

(see [10] for an overview). They enable unstable periodic orbits to be stabilized, but

does generally not work at saddle-node bifurcations, which makes them unfit for

bifurcation analysis [11]. For nonlinear mechanical systems with periodic or quasi-

periodic behaviour, the parameter-sweep remains the most widely used experimental

method. The control-based continuation method requires the constitution of a non-

invasive real-time control and the use of a predictor-corrector type path following

algorithm. In turn the method can provide information about how both stable and

unstable equilibrium states change when system parameters are varied. Furthermore,

the stability can be determined, and in some cases the instability can be quantified

in terms of finite-time Lyapunov exponents [P4]. The metod works for linear,

weakly nonlinear and strongly nonlinear systems and can handle multiple coexisting

equilibrium states, quasi-periodic behavior and the occurrence of bifurcations. An

example of applying the method to an experiment is presented in Figure 1.1c.

Note that in addition to the information obtained by the parameter sweep, using

control-based continuation it is possible to track around the two fold-points and

obtain also the unstable part of the response diagram along with the information

about its stability.

1.2 Literature review

The subject of control-based continuation is young and only few key articles exist,

with even fewer examples of the method tested on real experiments. The method is

essentially based on numerical continuation and extended time-delayed feedback.

Numerical continuation employs a path-following algorithm to investigate sets of

equations describing dynamical systems and makes it possible to trace stable and

unstable solution branches as well as detect and continue bifurcations in multiple

parameters. For a thorough description of numerical continuation we refer the

reader to [12, 13]. Extended time-delayed feedback is a control technique that

enables stabilization of unstable periodic orbits without the use of a model. The

technique was introduced in [8] and [10] gives an overview of the development of

this method.

Sieber and Krauskopf 2008 [11] were the first authors to present the control-based

continuation method. They test the method using a simulation of a dry-friction

oscillator experiment, and demonstrate that the method makes it possible to perform

continuation of periodic orbits with only the output of a simulation or experiment

available.

4



1.2. Literature review

Sieber and Krauskopf 2007 [14] explain how the control-based continuation method

can be used as a framework for hybrid testing. Hybrid testing (also referred to

as real-time dynamic sub structured testing) is an experimental technique that

couples physical experiments and computer simulations in real-time. A complex

structure is split into components for which a reliable model is available and the

mechanical part that needs to be tested, e.g. a finite element model of an aircraft

and a physical landing gear. Loads and displacements are transferred between

the simulation and the experiment using actuators and sensors, making it possible

to test the mechanical part as if it was part of the full (simulated) structure. A

fundamental problem of this technique is delays in the coupling between simulation

and experiment. In [14] the authors show how this problem can be overcome

by using control-based continuation and a uni-directional coupling between the

simulation and experiment. In conclusion they simulate an experimental nonlinear

pendulum connected to a mass-spring-damper model, and show that it is possible

to perform bifurcation analysis of the combined system using the method.

Sieber et al. 2008 [15] report on the first application of control-based continuation

in an experiment. Periodic orbits consisting of stable and unstable rotations of a

vertically forced pendulum were tracked, and it was shown how it is possible to

track through a fold bifurcation, at which the stability changes. The non-invasive

control is obtained by overlaying the control force onto the harmonic forcing, and

the control signal is constituted by using a modification of the time-delayed feedback

scheme [8]. In Krauskopf et al. 2011 [16] the authors present more technical details

and the complete set of results of the experiments from [15]. Furthermore, the paper

presents a model-based analysis of the convergence of the control-based continuation

over a large parameter range.

Barton and Burrow 2011 [17] successfully apply the method to track experimental

bifurcation diagrams for a nonlinear energy harvester. Barton et al. 2012 [18] follow

in the lines of [17] by tracking bifurcation diagrams for two different nonlinear

energy harvesters and comparing with theoretical results. Both [17] and [18] report

that their choice of globally stabilizing control gains failed to stabilise the system

at an upper fold point of the bifurcation diagram.

Barton and Sieber 2013 [19] present a simplification of the control-based continu-

ation scheme which is possible whenever feedback control is obtained by varying

the bifurcation parameter, e.g. when super-imposing the control-signal onto the

harmonic forcing signal. The simplification reduces the correction step to a simple

fixed-point iteration and gives rise to a substantial speed-up of the experiment-time,

but only works for a limited type of dynamical systems.

5



Chapter 1. Introduction

1.3 Contribution of this work

Building on the findings of the above papers, the original contributions of this work

can be outlined as following: In [P2] we present a formalisation and alternative

description of the control-based continuation method minded specifically at the

mechanical engineering community. We present the first implementation of the

robust non-invasive control using projection onto multiple Fourier modes in an

experiment, as it was originally suggested in [11]. In the previous works, the control

was established by using a modification of the extended time-delayed feedback

combined with the first Fourier mode of the reference-signal. In our work however,

the higher order Fourier modes are important, because the system we investigate

has impacts which excites higher-order modes. Furthermore, we implement and

test the experimental evaluation of the Jacobian using both finite differences and

Broyden updates.

We split the harmonic forcing and the control using electromagnetic actuators

instead of superimposing the control signal on the harmonic forcing. This is

important for many types of machinery, where control cannot be obtained through

the system parameters, e.g. nonlinear rotors. In [P1, P2] we present and implement

a systematic method for tuning a non-invasive control constituted by nonlinear

actuators. We find that for our test rig it is possible, by careful investigation and

choice, to find sets of control gains that can stabilise all equilibrium states along

the full bifurcation diagram, overcoming the types of problems reported in [17, 18].

In [P3, P4] we present and implement methods for detecting stability and in

some cases estimating finite-time Lyapunov exponents without allowing unbounded

divergence from equilibrium states. Determining changes in stability is a mean

to detect bifurcation points and necessary if one wishes to trace out stability

boundaries.

Finally, a software toolbox for enabling control-based continuation in experiments

using an existing continuation algorithm has been developed. This also includes

functionality to run simulated experiments both synchronously and asynchronously.

1.4 Structure of this thesis

At The Technical University of Denmark there are two accepted ways to write a PhD

thesis. One is a self contained thesis in which the author presents all the work done

throughout the PhD-study. The other option is to publish scientific papers about

the research during the PhD-study, and then summarise the contributions of these

6



1.4. Structure of this thesis

papers in the thesis. This is an article based thesis, which means that its main part

is the appended journal and conference articles. The remaining thesis summarises

and extends on the findings of these articles, but also reports on additional research

that did not make it into the papers. The reader is encouraged to read the appended

papers before reading this thesis.

Articles [P1, P2] focus on tuning a non-invasive control and their main contributions

are summarised in Chapter 4. Articles [P3, P4] focus on methods for determining

and quantifying stability during control-based continuation and are summarised

in Chapter 5. Publication [P5] is an extended abstract submitted for the Euro-

pean Nonlinear Dynamics (ENOC) conference 2014. It gives an overview of the

current state of our research and is meant to promote the method and the devel-

oped Continex-toolbox. Finally, publications [P6, P7] are co-authored extended

abstracts already presented or to be presented at ENOC. They treat the details of

implementing the control-based continuation method.

Chapter 3 gives a detailed supplementary description of the experimental test rig,

equipment and implementation and is written for anyone who wants to continue

work on the test rig, or is interested in setting up a similar experiment. Chapter 6

focus on simulating experiments using the developed Continex-toolbox and use this

to investigating and discuss the feasibility of applying the control-based continuation

method in the field of rotor dynamics. Chapter 7 concludes on the presented work

and discusses future aspects of the method and problems to be tackled.
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2 Method background

Control-based continuation can be thought of as a guided experiment where one

investigates how a dynamical system responds to changes in parameters, such as

the frequency or amplitude of an external forcing. Starting at a stable equilibrium

state of an uncontrolled experiment, a path-following algorithm makes a prediction

of a new equilibrium state for a new set of system parameters. This predicted

state might not be natural for the dynamical system nor stable, but can be realised

by an active control. A correction algorithm then seeks to modify this prediction

such that it again matches with an actual equilibrium state of the uncontrolled

experiment. It is important that the active control is non-invasive, by which we

mean a control that vanishes whenever the state of the system is an equilibrium

of the underlying uncontrolled system. Iterating a series of such prediction and

correction steps while constantly applying a stabilizing control allows to trace a

so-called path of equilibrium states irrespective of their stability.

Let us illustrate the basic principle with a simplified example: Figure 2.1 shows

a ball in a topological landscape of peaks and valleys, representing respectively

stable and unstable equilibria for the ball. We wish to roll the ball along the center

ridge using a simple control based continuation-algorithm: Move the ball a small

distance in the direction tangential to the center ridge (prediction) followed an

orthogonal correction step onto the nearest equilibrium position. Since several

stable and unstable steady states coexist, the prediction step-length must be small

enough not to move the ball onto one of the other equilibria. In case this happens,

the continuation algorithm might follow the equilibrium path on which the new

equilibrium resides. The control is necessary for realising the state requested by the

prediction and the stable state created by the control might be thought of as artificial

as the system would never settle there in the absence of control. Furthermore, a

9
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Non-invasivecontrol

Corrected State

Predicted State

Figure 2.1: Simplified illustrative example: Non-invasive control and control-based
continuation for a ball in a landscape of peaks and valleys. The branch of unstable
equilibria created by the center ridge is followed as μ is varied. When the correction
step converges to an equilibrium state for the uncontrolled system, the control force
vanishes.

non-invasive control-scheme will make the control effort vanish once the ball is

exactly on an equilibrium state for the uncontrolled system. This means that the

control is only enabled when the ball starts to roll off the ridge. This keeps the ball

on the ridge without altering the equilibrium states.

To employ the method in an actual experiment presents a number of challenges:

Many dynamical systems of interest will have time periodic equilibrium states, i.e.

the steady state vibration approached when transients due to initial conditions has

decayed, rather than static equilibrium states as in the ball-example. Therefore we

sample several periods of experimental data and compute the Fourier-transform

of the equilibrium-state. Similarly, the predicted state is formulated in terms of

its Fourier coefficients and a reference trajectory is generated by inverse Fourier-

transformation. A zero-problem is formulated as:

F (c, μ;N) := FQ

(
Zuc

(μ,N,F−1
∞ (c))

)− c = 0, (2.1)

where Zuc
is the measurement of the controlled experiment (after transients have

settled), N is a number of sampled points, μ is parameters, Q is the number of

modes used in the Fourier transformation F and c is the predicted state expressed

in terms of its Fourier modes. The continuation algorithm makes a predicted step

in parameters μ based on an experimentally estimated Jacobian, and a corrector

algorithm (typically a Newton-method) seeks to corrects the predicted state c until

10



the prediction and measurement match, taking into account that the transient

behavior must be given time to settle before each new measurement.

Creating and tuning a non-invasive control also presents challenges: To avoid that

the controller affects the measured dynamics, the control-actuators must not add

any inertia, stiffness, damping or extra degrees of freedom to the system when

the control signal tends to zero. This makes many types of control-actuators

unfit for non-invasive control. As the control-based continuation method is mostly

relevant for nonlinear systems for which we do not want to make any prior model-

assumptions, tuning the control must be a completely experimental procedure.

In many cases, such as with electromagnetic actuators, the control-force also has

a nonlinear dependency on system parameters, further complicating the tuning

procedure. A non-invasive control can be constituted as a PD control, G, with

appropriately chosen gains Kp and Kd. The control signal uc(t) is thus expressed as

uc(t) = G(x(t), z(t)) := Kp(x(t)− z(t)) +Kd(ẋ(t)− ż(t)), (2.2)

where z(t) is the measurement of the state of the controlled system at time t, (˙)

denotes differentiation w.r.t. time and x(t) = F−1
∞ (c) is the reference trajectory

produced by the continuation. When x(t)− z(t) ≈ 0 and ẋ(t)− ż(t) ≈ 0 the control

tends to zero, meaning that one does in fact measure the local dynamics of the

underlying uncontrolled system when the correction converges.

A number of precautions must be taken when applying a numerical continuation

algorithm to an experiment. Measured states are subject to noise contamination,

which makes statistical weighting and interpolation of the equilibrium-path necessary.

The correction algorithm however ensures the measured equilibrium states to

be correct to the tolerance of the convergence criteria, which can typically be

chosen to be of the same order as the measurement noise. Furthermore, the

experimental evaluation of a Jacobian is slow because the transient settling time

for each parameter-perturbation might be long. This problem is addressed by using

mainly Broyden-updates [20] and only few complete measurements of a Jacobian.

Publication [P2] contains a detailed description of the control-based continuation

method and how to implement it in our experimental test rig using the computational

continuation core COCO [21, 22, 23]. The developed COCO software toolbox

Continex (Continuation in experiments) will be made freely available online (as

a part of COCO [21]) together with examples of a simulated experiment in the

near future, in the hope that the method will become widely used in the field of

experimental nonlinear dynamics.
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3 Experimental Setup

The experimental test rig used to implement and test experimental bifurcation

analysis using the control-based continuation method is depicted in Figures 3.1

and 3.2. It comprises a harmonically forced impact oscillator with a hardening

nonlinearity controlled by electromagnetic actuators. This type of control actuators

is chosen because they do not add any damping, stiffness or inertia to the system

when the control is inactive, making them able to fulfil the requirement of non-

invasiveness. Additionally, they function as a prototype for electromagnetic bearings

and similar, making the method readily available for rotor systems. The impactor

system is relative simple, but it has a strongly nonlinear dynamic behavior. It

serves as a good test case for the method as it represents a class of systems that are

difficult to deal with experimentally as well as theoretically, i.e. impacting systems.

Furthermore, it mimics dynamic behavior that occurs in many real applications.

A thorough description of the test rig and implementation of control-based continu-

ation is presented in publication P2. The following sections provide supplementary

details that could be of interest to anyone who continues work on the test rig, or

attempt setting up a similar experiment. Table 3.1 presents a complete list of the

experimental equipment used.
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3
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1

5

7

4
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Figure 3.1: The experimental test rig: A platform (1) with flexible legs (2) allowing
only in-plane translation. An electromagnetic shaker (3) that can exert a harmonic
force on the platform. A flexible impactor with a tip mass (4) moves along with
the platform. Vibration amplitudes of the impactor exceeding the gap-size between
the mechanical stops (5) causes an impact and a stiffening of the spring (hardening
nonlinearity). Displacement of the platform and impactor are measured by laser
displacement sensors (6). A control force can be exerted directly on the impactor
mass by electromagnetic actuators (7).
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Figure 3.2: Sketch of the harmonically forced impact
oscillator. The harmonic force from the electromagnetic
shaker is ideally Fs = A cosΩt, but as we will show the
dynamics of the shaker and the impactor are coupled
to create a two degree of freedom system. The control
force from the electromagnetic actuators Fm = f(u(t) is
a nonlinear function of the control-signal u(t) generated
in the real-time application. The relative displacement
of the impactor is calculated as the difference between
the the displacement of the impactor and platform z =
zi − zp.

Item Model Description

Electromagnetic shaker B&K 4809 Open loop shaker used to produce a harmonic excitation of
the base structure.

Shaker power amplifier B&K 2712 Power supply and amplifier for the shaker.

2 × Position sensors Omron ZX-LD40 Laser positions sensors with a range of ±10 mm.

Analog lowpass filter Wavetek/Rockland 752A Two channel analog tuneable lowpass filter used for filtering
position sensor signals before AD-conversion.

Magnet power supply Danica TPS21 2 channel 30V DC power supply unit for the electromagnetic
actuators.

2 × Control signal amplifier Two simple transistor circuit to regulate the voltage sent to
the electro magnets (see section 3.1.3).

2 × Electro magnets Magnet-Schultz GMH030 Two DC holding magnets.

Controller board dSpace DS1104 Board used for data-acquisition, generation for the forcing
signal and the real-time control.

Computer Dell Optiplex 960 A standard PC running Matlab, Simulink and dSpace Con-
trol Desk.

Table 3.1: List of experimental equipment.
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3.1 Hardware

3.1.1 Impactor and platform

The impactor, mechanical stops and control actuators are mounted on the platform,

which is connected to the electromagnetic shaker through a stinger. The platform

has four flexible legs that are designed to only allows in-plane translation by having

a much larger stiffness in torsion and out-of-plane bending. Vertical displacement

and rotation of the platform are also negligible due to the small displacements

created by the shaker.

The impactor is depicted in Figure 3.3 and consists of a clamped beam with a

concatenated mass, which moves together with the platform. When the amplitude

of the impactor exceeds the gap-size between the mechanical stops (cf. Figure 3.3a)

it starts to impact and bend around the stop, effectively changing its boundary

conditions and characteristic length. As a result the spring stiffness suddenly

increases, creating a hardening nonlinearity. The stops are angled to ensure that

only one part of the beam impacts. The gap-size and angle can be adjusted, but it is

difficult to get it to be exactly symmetrical. This asymmetry can create additional

nonlinear phenomena by changing the type of bifurcations observed.

3.1.2 Electromagnetic shaker

The electromagnetic shaker used for creating the harmonic excitation is not feedback

controlled. This adds to the complexity of the system, since its dynamics are coupled

with the impactor and platform effectively adding an extra degree of freedom. The

shaker produces a harmonic force, but not with constant amplitude. Figure 3.4

presents frequency responses for the impactor and base structure obtained by

sweeping the forcing frequency up and down while recording the responses. Note

that at the primary resonance of the impactor, the platform and impactor are in

anti-resonance, causing the amplitude of the platform to become small. To keep the

forcing amplitude constant over the whole sweep would require control of the shaker.

The design of such a control using adaptive filtering together with a simple model

for a similar shaker is proposed in [24], but it requires knowledge about physical

parameters that the company producing the shaker would not provide. Fortunately,

the added complexity is not problematic for the experimental investigations. In fact

it creates a scaling of the impactor amplitudes which shows to be advantageous for

the measurement equipment: The large amplitudes at the impactor resonance are

attenuated making better use of the measurement range of the laser displacement

sensors. It turns out to only be a problem when comparing with model-investigations
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1

2

(a) Impactor front close-up

3

4

(b) Impactor side view

Figure 3.3: The harmonically forced impact oscillator viewed from (a) the front and
(b) the side. (1) Impactor beam has one end clamped and one end free. (2) Gap
between mechanical stops. (3) Impactor-beam is flexible in the forcing direction,
but much stiffer out of plane and in vertical direction. (4) Impactor steel mass with
much higher weight than the impactor beam.

or if one wish to add the control-signal to the harmonic shaker signal, as it was

done in [15, 16, 17, 18, 19].

3.1.3 Electromagnetic actuators

The electromagnetic actuators are shown in Figure 3.5. They are placed in a pair

on each side of the impactor mass. This is necessary because each magnet can only

exert a pulling force on the impactor steel mass. The control-signal is split in the

real-time application so that positive values of the signal is sent to one actuator and

negative values are sent to another, making it possible to change the direction of

the force that is exerted on the impactor mass. For each magnet a simple circuit is

used to amplify the control signal from the dSpace boards maximal possible output
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Figure 3.4: Displacement of the base produced by the shaker for two different fixed
amplitudes of the shaker signal. The lower set of curves (A=0.15) has been scaled
down by a factor of 75% to make the figure less cluttered. The upwards sweep
is denoted by the black curves (—) and the downwards by gray (—). For the
overlaid frequency response curves of the impactor (+) marks the upwards while
(o) marks the downwards sweep. Taken from [P2]

of 10V (DC) to the maximal permitted supply voltage of 24V (DC). One such

circuit is illustrated in Figure 3.6. By varying the size of the control-signal it is

possible to smoothly vary the magnitude of the exerted force.

The force generated by each electromagnetic actuator depends nonlinearly on the

control voltage and the air gap between the impactor mass and the active magnet.

Figure 3.7 presents an experimental characterisation of these relationships. The

measurements were made using a single magnet and the impactor mass, and do not

include the restoring force from the flexible beam. Furthermore, each measurement

was made by supplying a constant voltage to the electromagnet, meaning that the

results do not take the electromagnet and amplifiers dynamical proporties into

account. The generated force is observed to be proportional to the square of the

control signal voltage and inversely proportional to the cube of the air gap, which

agrees well with theory. In addition, the electromagnets have been measured to

have a real pole at 31 Hz causing a reduction of the generated force for higher

frequencies. During operation the air gap is often quite large causing smaller forces

with a close to linear dependency on voltage and air gap. Note that only small

control forces are necessary for stabilizing the dynamical equilibrium states of the

system.
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1
2

34

Figure 3.5: Close-up of the electromagnetic actuators: (1) and (2) electromagnets
mounted on each side of the impactor mass; (3) and (4) spring, screw and wing nut
assembly allowing to vary distance between actuator and the impactor mass.
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Figure 3.6: Diagram for one of the two electromagnetic actuators. (a) Power Supply
Unit (PSU) supplying a constant voltage of 24V (DC). (b) A very simple amplifier
circuit consisting of a resistor, a transistor and a diode amplifying a control-signal
for the electromagnet. (c) An electromagnet generating a pulling force on impactor
steel mass.
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Figure 3.7: Experimentally measured (static) pulling-force produced by one of
the electromagnets as a function of (constant) supply-voltage and the air gap
between magnet and impactor mass. The thick black line ( ) is a second order
approximation to the experimental data and the dashed line (- - -) is a third order
approximation.
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3.2. Implementation

3.2 Implementation

The implementation of control-based continuation to the test rig is done using a

dSpace DS1104 real-time control board and a computer running Matlab, Simulink

and dSpace Control Desk. Figure 3.8 gives an overview of the real-time application

which is programmed in Simulink and then compiled and uploaded to run on the

DSpace board. The real-time application on the board and the continuation code on

the computer runs asynchronously, and only communicates to change parameters,

set a new reference trajectory, read Fourier coefficients of the current state etc.

Fourier transformation and inverse transformation is done in real-time on the board.

This is not necessary for continuation, but it makes it easy monitor the settling

of transient behavior and reduces the amount of data that is transferred between

the computer and the dSpace board. How to compute the Fourier-modes online is

explained in [P2].

3.2.1 Real-time control and harmonic forcing

The control signal is generated in real-time on the board using a PD-controller

according to Equation (2.2). The control target in Figure 3.8 is the state predicted

by the continuation algorithm expressed in terms of its Fourier modes. A reference

trajectory in constructed from this by inverse Fourier transform. The measured

state and the reference trajectory are fed into the Simulink Proportional Derivative

(PD) control block, which constructs and outputs the control signal. A suitable

control requires tuning of the proportional and derivative gain Kp and Kd as

well as a coefficient for a lowpass filter implemented in the derivative term of the

PD-controller. Chapter 4 explains how to tune these parameters when both the
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Figure 3.8: Simplified Simulink model and its interaction with the continuation
code and experiment. Taken from [P2].
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Figure 3.9: Illustration of phase jumps when changing excitation frequency. Time-
series of a 1 Hz (+) and 1.01 Hz sine-wave (o) slowly drifting in and out of phase:
A small change in frequency can result in the non-smooth signal ( ) being sent to
the shaker. Taken from [P2].

experiment and actuators has nonlinear unknown dynamics. The output of the PD

controller is sent to the actuator conditioner block which splits the signal and sends

positive values to one electromagnetic actuator and negative to the other.

It is important that the forcing parameters (amplitude and frequency) can be

changed by the continuation code. This is done by constructing the harmonic signal

sent to the shaker in the real-time application, cf. sine generator in Fig. 3.8. The

shaker signal must change smoothly in response to a change in forcing parameters

in order to avoid unwanted perturbations of the system. Changing the amplitude is

not problematic if done in small steps, but even a very small change in frequency can

give rise to a large unwanted perturbation of the system. This is because two sine-

waves with very close frequencies will slowly drift in and out of phase as experiment

time elapses. Sending the signal depicted in Fig. 3.9 to the shaker would cause a

perturbation that could result in the system settling onto a different steady state.

This can be avoided by using a scaled time defined by τ̇ = ω(t) ⇒ τ =
∫ t

0
ω(s)ds to

calculate the harmonic forcing signal, since the integration will smoothen out any

discontinuous changes to the frequency ω.

3.2.2 The Continex toolbox

Continuation is applied to the controlled experiment using the Matlab pseudo arc-

length continuation-platform COCO [22]. A toolbox named Continex (Continuation

in experiments) has been specifically developed to handle the communication

between COCO and the real-time application running on the DSpace board. It

constructs and experimentally evaluates a zero-problem (2.1) and its Jacobian as

well as applying statistical and interpolation methods to minimize the influence of

measurement noise. It consists of the real-time application shown in Figure 3.8 and

a set of functions which makes it possible for the continuation algorithm to evaluate

the experiment as if it was a set of differential equations. The real-time application
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constructs the forcing signal, the non-invasive locally stabilizing control signal and

performs Fourier transform and its inverse. Using the developed set of function it is

possible to change many parameters during run-time. Continex also implements the

stability tests as well as features for automating experiments, managing and plotting

recorded data, resuming previous continuation-runs etc. Continex is included as a

toolbox in the COCO continuation platform, which is freely available from [21].

3.3 Frequency and amplitude responses

Figure 3.10 presents parameter sweeps for the impact oscillator performed with

the electromagnetic shaker. Note that the dynamics of the impactor, platform

and shaker is coupled, and the response of full system is measured as the relative

displacement of the impactor. Figure 3.10a presents series of frequency responses

obtained by sweeping the forcing frequency while keeping the amplitude constant.

In Figure 3.10b the forcing amplitude is swept while keeping fixed values of the

frequency. For small non-impacting response amplitudes, the response is linear,

while for increasing (impacting) responses, a large hysteresis loop develops.

3.4 Further remarks

In conclusion the constructed test rig serves as a good test case for the method. It

has a strongly non-linear response well within the measurement range of the sensors.

The setup is simple but it reproduces dynamics found in real life applications. The

actuators have a complicated non-linear dependence on system parameters that vary,

but in turn they allow to add a non-invasive control to many types of complicated

systems, such as rotating machinery. In [P2] frequency sweeps similar to those in

Figure 3.10a are performed using the control-actuators to confirm that the actuators

are able to provide sufficient control-energy for the intended application.
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(a) Frequency response of the mechanical system obtained by sweeping
the frequency of the external forcing for fixed values of shaker signal
amplitude.
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(b) Amplitude response of the mechanical system obtained by sweeping
the amplitude of the shaker signal for fixed values of the forcing frequency.

Figure 3.10: Results of frequency and amplitude sweeps performed on the experi-
mental test rig (Fig. 3.1). The response amplitude is given as the Euclidean norm
of the Fourier-coefficients ||c||. Taken from [P2].
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4 Control tuning

Constituting a stabilizing and non-invasive control is a prerequisite for control-

based continuation. Such a control can be realised using a PD-controller (2.2)

with properly chosen gains and filtering. Selection of proper gains and filtering is

referred to as control tuning and is normally done using mathematical models of

the system and actuators. However, since the control-based continuation method

intends to investigate properties of dynamical systems without models, this approach

cannot be used. Purely experimental methods for tuning PD-controllers, such as

Ziegler-Nichols methods [25] or the Good Gain method [26], exist but cannot be

used since we wish to stabilize periodic orbits rather than static equilibrium states.

Furthermore, we wish to control a strongly nonlinear mechanical system with

unknown dynamics using nonlinear actuators. This causes hysteresis in the control,

making it impossible to use gradient based adaptive control methods.

In Publications [P1] and [P2] we propose a sequence of experiments that allows to

choose optimal control gains, filter parameters and settings for a continuation method

without a-priori study of a model. The gains are adjusted to constitute a control that

is effective in stabilizing the states predicted by the continuation and minimizing

effects of disturbances. Additionally, the control must become non-invasive whenever

the predicted state matches an equilibrium-state of the underlying uncontrolled

system. This constitutes two competing targets and the goal of the tuning process

is to find a suitable compromise between control effectiveness/aggressiveness and

non-invasiveness. The tuning method is developed and tested for the harmonically

forced impact oscillator, but the experimental procedure can be generalized and

used with other similar setups. Furthermore, the actuators serve as a prototype

for electromagnetic bearings and similar actuators which can be used with rotating

machinery.
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4.1 Non-invasive, locally stabilizing control

Consider a sampled measurement of an uncontrolled experiment Y running over

time t and depending on a parameter μ. This can be expressed as

Y (μ,N) = {y0, . . . , yN−1}, (4.1)

where N denotes the number of sampled points. For control-based continuation, we

construct a suitable controlled experiment of which a measurement is denoted

Zuc
(μ,N, x) = {z0, . . . , zN−1}. (4.2)

Here uc = uc(t) denotes a control signal, and x = x(t) is the reference trajectory

provided by the continuation algorithm. In order to apply a continuation algorithm

to the experiment, the controller and the controlled experiment must satisfy a

number of conditions:

1. The controlled experiment must be consistent, that is, for zero control Z0 ≡ Y

holds and the controlled experiment Zuc converges uniformly to the un-

controlled experiment as uc → 0.

2. The control must be locally stabilizing, meaning that any equilibrium state

of Y (stable or unstable) must become an asymptotically stable equilibrium

state of Zuc
.

3. The control must be non-invasive, that is, the control-signal uc must vanish

whenever the requested state x is a equilibrium state of the uncontrolled

experiment.

Condition 1 requires the control actuator not to alter the dynamics of the system

when the control signal is zero. Actuators such as servo-motors and hydraulic

actuators add inertia, stiffness and damping to the system, and hence are likely to

violate this requirement. A workaround is to add the control force to the external

excitation force, as done in for example [15]. Condition 2 makes it possible to

observe unstable equilibrium states and distinguish coexisting steady states as long

as they are sufficiently well separated in phase-space compared to the accuracy of

measurements and control. Condition 3 is satisfied if the control signal is bounded

by the difference between the reference trajectory and the measurement of the

controlled experiment:

||uc|| ≤ δ||x− z||, (4.3)

where z = z(t) is the measurement of the controlled experiment taken at time

t. The inequality (4.3) can be satisfied by many types of controllers. For our
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implementation we chose a PD-controller because of its simple implementation and

in general good performance. The control strategy described by Equation (2.2) is

implemented in the model using the standard Simulink PD-block. As shown in

Figure 3.8 the controller is designed to minimize the difference between reference

trajectory x(t), set in the code as the inverse Fourier transform of the control target

c, and the current measured trajectory z(t). In addition to the proportional and

derivative gains (Kp,Kd), a low-pass filter must be applied in the differential term

of the controller to avoid amplification of high-frequency noise. This is necessary

to ensure that the control signal (2.2) to satisfies (4.3). This filter must balance

the two competing targets of removing high-frequency noise while not making the

control too slow. The output of the controller is scaled by an overall gain, CFGain,

which can also be varied.

4.2 Experimental control tuning

4.2.1 The initial idea

Two simple experiments are developed to determine the influence of different control

gains on effectiveness and non-invasiveness of the control:

1. Measure the response of a stable (impacting) equilibrium state for the un-

controlled system, and set this as reference trajectory for the control while

retaining the forcing parameters. For a properly tuned non-invasive control-

scheme this produces a vanishing control signal, although in an experiment

we must expect a smal residual control signal due to noise in measurements

and control. This experiment is performed for different sets of control gains,

and the resulting control signal is used as a measure for the non-invasiveness

of the control.

2. Set the reference trajectory to zero, corresponding to the static equilibrium

state of the impactor, while applying a harmonic perturbation using the shaker.

Varying the control gains while recording the response of the impactor gives

an inverse measure of the effectiveness of the control.

Figure 4.1 shows a number of such parameter sweeps in the control gains. The top

row illustrates the level of invasiveness (experiment 1) of the control and the bottom

row the effectiveness (experiment 2). For both invasiveness and effectiveness, high

and low plateaus are observed depending on the overall gain G1. A good set of gains

1Except for a scaling factor, G is equivalent to the CFGain.
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Chapter 4. Control tuning

Figure 4.1: Experimentally obtained parameter sweeps of gains for the PD-Controller
for different overall gains G applied to the controller output. Kp denotes proportional
gain andKd denotes differential gain. The top row illustrates the level of invasiveness
of the control while the bottom row illustrates the effectiveness (inverse proportional
to the control error). × denotes the chosen gain combination for continuation.
Taken from [P1].

constitute an appropriate compromise between non-invasiveness and effectiveness,

which means that one should aim at a low plateau for both conditions.

Subsequent analysis of continuation runs using the gains obtained using this tuning

procedure led to some important conclusions: Firstly, in both experiments, hysteresis

is observed in the control and in order to have a conservative estimate, the maximum

value was plotted. It was found that seemingly appropriate sets of gains in some cases

could give rise to bi-stable control or control which was not robust to perturbations.

As a solution to this problem an in-phase perturbation is included in the sweep-

procedure, as will be described in the next section. A second important conclusion

was that the problem of tuning the control proved to be more complex than first

presumed: Sets of gains that could successfully stabilize the stable equilibrium

states sometimes would fail when tracking the unstable part of the bifurcation

diagram. Furthermore, the stabilization of the unstable equilibrium states showed a

strong dependency on the filter coefficient determining the pole location, and hence

the cut-off frequency, of the low-pass filter in the derivative term of the controller.

Finally, internal scaling-gains were introduced in the real-time model in order to get

a proper balance between the measured trajectory and parameters in the residuum

used to determine convergence of the correction-algorithm. This makes it impossible

to quantitatively compare Figure 4.1 with the following results.
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Figure 4.2: Time series for the impactor mass during one measurement cycle for the
experiment of stabilizing the static equilibrium. (1) No harmonic forcing is applied,
(2) Harmonic forcing is applied and transients are allowed to settle, (3) Stabilizing
control is enabled and the system is allowed to settle, (4) Extra wait-time to allow
for a possible instability of the control to grow, (5) An in-phase perturbation is
added to shaker and control-signal to test the controls’ robustness against large
perturbations, and transients are allowed to settle, (6) The response is measured
and Fourier-transformed. Taken from [P2].

4.2.2 Timed perturbation

A timed in-phase perturbation is introduced during control gain sweeps to ensure

that the control is robust with respect to perturbations and that it is not bi-stable.

This is necessary since the continuation will frequently change parameters and

the reference trajectory, which can cause large perturbations to the system. The

perturbation signal is constructed from a sine-wave multiplied with an envelope

function, ensuring that the signal sent to the shaker is continuous. After changing

control parameters, the perturbation-signal is applied to the control and forcing

signal in order to verify that the control is stabilizing, even under large perturbations.

The proces of measuring a set of control gains effectiveness including an in-phase

perturbation is shown in Figure 4.2.

4.2.3 Stabilizing the static equilibrium state

Using the timed perturbation and internal scalings we repeat Experiment 2. The

reference trajectory is set to x(t) = 0 and a harmonic forcing with amplitude

Ashaker = 0.5 and frequency ω = 7.75 Hz is applied. The control parameters are

varied and we use the resulting amplitude of the impactor as a measure of control

effectiveness. Figure 4.3 shows the result of three such investigations for different

values of the overall scaling gain CFGain. Note that the results are much simpler

in comparison with what was found in Figure 4.1, supporting the observation that

seemingly stabilizing control gains would sometimes lead to bi-stable or a non-robust

control. The results in Figure 4.3 suggest a more effective control for increasing
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Chapter 4. Control tuning

Figure 4.3: Stabilization of the static equilibrium state of the impactor as the
control-gains Kp and Kd are varied for different but fixed values of the scaling gain
CFGain and a fixed filter coefficient PDFC = 180. The gray scale indicates the
amplitude of the response, where a darker shade corresponds to smaller amplitude
and, hence, to more effective control. We observe an improvement of the control for
increasing Kd, but also an onset of inefficient control indicated by the light-gray
area appearing at the top-right corner of the diagram for increasing overall gain.
Taken from [P2].

derivative gains Kd while for increasing values of the overall gain CFGain, a region

of inefficient control appears in the top-right corner. Somewhat counter-intuitive is

the observation that negative proportional gain Kp seems to improve the control. In

conclusion, these results suggest to use a pair of gains that is close to the boundary

of effective control as the control strength increases with increasing gains.

4.2.4 Stabilizing a stable impacting equilibrium state

We repeat Experiment 1 using the modified real-time model and the timed per-

turbation. The forcing parameters are chosen to be the same as in the previous

experiment, and these parameters ensure that the impact oscillator has a unique im-

pacting equilibrium state. This equilibrium state is particularly interesting because

it has a strongly nonlinear response. The reference trajectory is set to the measured

trajectory and the difference between reference trajectory and observed response is

used as a measure for the controls ability to non-invasively stabilize the equilibrium

state. Figure 4.4 shows the result for the corresponding values of the overall scaling

gain CFGain. Again we observe a simpler result than what was found in Figure 4.1.

A strip of control gains resulting in non-invasive control, bounded from below and

above is observed. Figure 4.3 and 4.4 indicate that, for CFGain = 0.6 a good choice

of gains is Kp ≈ 2 and Kd ∈ [0.5, 0.75], resulting in stabilizing and non-invasive

control. Subsequent continuation runs showed that these gains made it possible
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Figure 4.4: Stabilization of an impacting stable equilibrium state as the control
gains Kp and Kd are varied for different but fixed values of the scaling-gain CFGain
and a fixed filter coefficient PDFC = 180. The gray scale indicates the deviation of
the measured response from the reference trajectory, which is generated from the
Fourier-coefficients of the stable equilibrium state. Darker shade corresponds to
smaller deviation and, hence, to less invasive control. We observe that proportional
control increases invasiveness as the region of low invasiveness is further away from
the line Kd = 0 as stronger proportional control is applied. A good choice is Kp ≈ 2.
We also observe high invasiveness for control gains that led to inefficient control in
the previous experiment; cf. Fig. 4.3. Taken from [P2].

to apply control-based continuation to the test rig, but that the continuation ran

quite unreliably and often would fail while tracking along the branch of unstable

equilibrium states.

4.2.5 Stabilizing an unstable impacting equilibrium state

Experiment 2 is now modified to stabilize an unstable impacting equilibrium state.

The state is obtained by a successful continuation run, and using the corrector

algorithm it is possible to resume and correct the state before each set of gains is

tested. This ensures that any effects of drift due to changes in the environment are

minimized. During experiments it was noted that the cut-off frequency of the lowpass

filter implemented in the derivative term of the PD-controller had a significant impact

on the control performance. Therefore, for this experiment we fix the overall gain

at CFGain = 0.65, restrict the control gains to the strip (Kp,Kd) ∈ [1, 3]× [0, 1.5]

and sweep for different but fixed values of the filter-coefficient PDFC. The results

are presented in Figure 4.5. We observe the emergence of a strip of efficient and

non-invasive control around Kd = 0.5 as well as a dramatic improvement for PDFC

up to 150, with seemingly little improvement for larger values. The proportional

gain Kp is seen to have very little influence on the control for PDFC > 140.
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Figure 4.5: Stabilization of an impacting unstable equilibrium state as the control-
gainsKp andKd are varied for different but fixed values of the filter coefficient PDFC
and a fixed scaling-gain CFGain = 0.65. The grayscale indicates the deviation of
the measured response from the reference trajectory, which is set to the Fourier-
coefficients of an unstable equilibrium state. Darker shade corresponds to smaller
deviation and, hence, to both, more effective and less invasive control. We observe
the emergence of a strip of effective control parameters around Kd = 0.5. Taken
from [P2].
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4.3. Continuation results

4.2.6 Optimizing performance of Newton’s method

In addition to examine how different sets of control parameters are able to non-

invasively and effectively stabilize stable and unstable equilibrium states, an inter-

esting question to consider is: How do they influence the performance of the Newton

corrector-algorithm? For some sets of parameters giving stable and efficient control,

the Newton-method would converge very slowly or even fail to converge. This

usually happened while tracking a branch of unstable equilibria or while tracking

around a fold point. Furthermore, the use of complete recomputations of the Jaco-

bian in addition to Broyden-updates seemed to improve the convergence, at the cost

of increased experiment time. A reasons for this might be the noise contamination

of the measurements resulting in Broyden updates that are sometimes not accurate

enough to ensure convergence. As in the previous experiments, the proportional

gain Kp had little influence on the convergence of the Newtons-method.

An experiment is set up in which an unstable equilibrium state is restored and the

number of iterations necessary for convergence of the Newtons-method is measured

as a function of the derivative gainKd and filter coefficient PDFC. The experiment is

performed using Broyden-updates only as well as full recomputations of the Jacobian

every 45 steps. The result is presented in Figure 4.6 and it is interesting to note

that a frequent recomputation of the Jacobian seems to stabilize the convergence of

Newtons method for a larger set of gains, at the expense of experiment time. Equally

interesting is that, for the case of Broyden updates only, there exist a triangular

island of low iteration numbers and short convergence time for PDCF = [109; 236]

and Kd = [0.2; 0.3], where the correction succeeds reliably. In conclusion, the choice

of parameters should depend on how one computes the Jacobian matrix. For testing

the method a frequent re-computation makes it easier to tune a proper control, while

an substantial speed up of the overall runtime is possible by carefully selecting gains

and parameters that allow for the use of Broyden updates only. For our subsequent

continuation runs we used Kp = 2,Kd = 0.35,PDFC = 180 and CFGain = 0.65,

which is noted to work well in both cases.

4.3 Continuation results

To verify the result of the tuning process, we apply control-based continuation to

the test rig with the obtained control parameters. The results are presented in

Figure 4.7. It is noted that there is good agreement between results obtained with

the parameter sweep and continuation (cf. Figure 4.7a), and that the continuation

is able to reliably reproduce the results (cf. Figure 4.7b). The continuation also

performs well in following the unstable part of the diagram and tracking around the
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(a) Broyden updates only.
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(b) Finite difference updates every 45 steps.

Figure 4.6: Number of corrector-iterations required for one correction-step to
converge depending on control parameters Kd and PDFC. In panel (a) only Broyden
updates are used to calculate the Jacobian whereas in panel (b) the Jacobian is re-
computed initially and every NJac = 45 steps using finite difference approximations.
The integers indicate the number of iterations necessary for convergence, and are
shaded according to computation time with black corresponding to low computation
time and grey high. Note that computation time and number of iterations do
not correlate, as re-computing the Jacobian using finite differences is expensive.
Also a minimum of 5 steps are used in order to provide statistical evidence that
the correction did not satisfy the convergence criteria by chance. Non-converging
parameter sets are removed leaving empty spaces. The sweeps were made using a
fixed proportional gain of Kp = 2 and CFGain = 0.650. Taken from [P2].
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4.4. Further remarks

two fold points. The upper fold point (cf. Figure 4.7d) of the bifurcation diagram

presents a challenge for the algorithm, since the quasi-periodic vibrations exist in

this region. Nevertheless, the continuation produces robust and consistent results.

The small hysteresis bubble observed in Figure 4.7c often causes the continuation to

terminate, since the braches at this point cannot be distinguished due to insufficient

measurement and actuation precision.

4.4 Further remarks

The results of the tuning method presented here are specific for our test rig and

actuators, but the experiments and many of the conclusions can be generalized.

The sequence of experiments presented throughout Section 4.2 can be applied to

other experiments and the important parameters are expected to be the same. An

important aspect is that with this specially designed test rig is possible to make the

control unstable without causing damage to the system, which cannot always be

expected. In case the control cannot be made unstable, the sweep method can be

modified to trace out the stability boundary without making the control unstable.

The control sweeps presented here has been performed with a high resolution for

presentation purposes and amounts to approximately one month of consecutive

experiments, but an estimate of good control parameters can be obtained with

coarser sweeps and a more restricted sweep range.
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(a) Continuation run
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(b) Multiple continuation runs
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(c) Zoom 1
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(d) Zoom 2

Figure 4.7: Frequency responses for the impact oscillator obtained by control-based
continuation. Panel (a) compares the result of the continuation method with
those of a parameter-sweep. Panel (b) shows several consecutive continuation-runs
overlaid, and confirms that the method provides consistent results. Panel (c) shows
the occurrence of a small hysteresis bubble. Continuation runs often terminate at
this point because the accuracy of measurements and actuation is insufficient to
distinguish the coexisting states. Panel (d) shows a zoom of the upper part of the
frequency-response, and confirms that the continuation method is able to track
around the fold point. Taken from [P2].
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5 Determining Stability

The control-based continuation method utilizes a non-invasive stabilizing control

which locally turns both stable and unstable equilibrium states into asymptotically

stable ones. This in turn makes it difficult to determine if an equilibrium state of

the underlying uncontrolled system is stable or unstable. The information about

the systems’ stability is important for tracing out stability boundaries, detecting

bifurcations and predicting the transient behavior. Three different methods for

determining the stability of an equilibrium during control-based continuation are

presented in Publication [P3] and [P4]. In [P3] the basic concepts are introduced

along with divergence tests from stable and unstable equilibrium states. The

methods are implemented and tested in [P4] and make it possible to produce

bifurcation diagrams with indication of stability, like the one show in Figure 1.1c.

The methods for determining stability are developed, based on the principal idea

of modifying momentarily turning off the control while observing the resulting

behavior. Each of the methods has its advantages and drawbacks and they are

useful in different situations. Two of the methods allows to determine stability

without generating unbounded divergence from an equilibrium state. In some cases

it is possible to quantify the level of instability in terms of the finite-time Lyapunov

exponent (FTLE).

5.1 Disabling control at an equilibrium state

In the following we investigate what happens if the the control is disabled at a

stabilized equilibrium state. Figure 5.1 presents a frequency response with three

different coexisting dynamical equilibrium states (1)-(3) marked at the same forcing

frequency. Figure 5.2a shows time series at a stable equilibrium state (1). After
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Chapter 5. Determining Stability

some time the control is turned off and, as expected the state does not diverge. This

verifies that the state is a stable equilibrium state of the underlying uncontrolled

system, and that the control is non-invasive. Note that, since the continuation

algorithm accepts a state as an equilibrium to a certain tolerance, there will always

be some small residual drift upon disabling the control. We define an equilibrium

state as stable, in the classical Lyapunov sense, if the periodic orbits stay close in

phase space. If they however diverge, we define the equilibrium as unstable and the

rate with which they separate is used as a quantitative measure of the instability.

Figure 5.2b shows time series with the system initiated on the unstable equilibrium

(2). The control is turned off, and the system diverges until it finally settles on a

higher amplitude stable equilibrium (1). The divergence of the measured state from

the reference (target) state is noted to occur mainly in the phase. In Figure 5.2c the

system is again initiated on the unstable state (2). After the control is disabled, the

state diverges and settles onto the lower amplitude equilibrium (3). The divergence

is here predominantly in the amplitude. Finally, the control is re-enabled and the

unstable equilibrium state is restored. Note that if the noise in the system is very

low, it might be necessary to introduce a perturbation to initiate the divergence,

but in our case this is not necessary.
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Figure 5.1: Experimentally obtained frequency response for the harmonically forced
impact oscillator showing multiple coexisting equilibrium states: (1) High ampli-
tude stable equilibrium state, (2) unstable equilibrium, (3) low amplitude stable
equilibrium. Taken from [P3].
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Figure 5.2: Time series for disabling the control at a stable and an unstable equilib-
rium state. (a) High amplitude stable equilibrium state, (b) unstable equilibrium
to high amplitude stable equilibrium, (c) Unstable equilibrium to low amplitude
stable equilibrium. Taken from [P3]. 39
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Figure 5.3: Bifurcation diagram with a continuous measure of stability plotted in
grayscale (interpolated in between measurement points): Dark tones denote a small
stability estimator and hence a stable state. Lighter tones denote a large stability
estimator and hence an unstable state. All measurement points are marked with (·)
and consecutively number labeled (shown for every fifth point). These labels will
be used to identify different equilibrium states and will be referred to with # and
label number throughout the this chapter. Taken from [P4].

5.2 Methods for determining stability

The following will present three methods for determining stability: Free-flight

stability check, deadband control and deadband limited free-flight. The methods are

developed for use during control-based continuation. The control-based continuation

method tracks bifurcation diagrams, as the one in Figure 5.3, by repeating a series

of prediction and correction steps. When the correction algorithm converges, the

state is accepted as a equilibrium state of the underlying uncontrolled system. The

bifurcation diagram in Figure 5.3 consists of a number of such accepted states,

and at each such state we wish to test, determine and in some cases quantify the

stability during continuation.

Note that in this Chapter we will use a different nomenclature for the measured

state and reference or target trajectory. This is to make it consistent with the

nomenclature used in Publication [P4]. The measured state is now denoted x (in

the previous this was z) and the reference trajectory is denoted y (in the previous

this was x).
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Figure 5.4: Stability indicator ε for the bifurcation diagram in Figure 5.3. Numbers
on the x-axis correspond to label numbers along the bifurcation branch. The chosen
threshold, which indicates the limit of instability εt = 0.05, is marked by (- - -).
Taken from [P4].

5.2.1 Free-flight stability check

The free-flight stability check is based on the same experiment as the initial tests

presented in Figure 5.2: Turn off control and observe if the current state x diverges

from the reference state y, implying that the equilibrium state is unstable. As it

was noted the divergence can be in both amplitude and phase, and it is therefore

helpful to study the difference x− y rather than x. We define a normalized root

mean square error by

ε =
RMS(x− y)

1 + RMS(y)
(5.1)

where RMS denotes the root mean square value of a sampled signal defined as

RMS(x) =

√
1

n
(x21 + x22 + · · ·+ x2n). (5.2)

This seems to provide a robust measure of instability, but it does not provide

a quantitative measure of the instability. Since ε is a continuous measure, it is

necessary to chose a threshold for instability. Figure 5.4 shows the estimator for

each point of the bifurcation diagram in Figure 5.3 along with the chosen threshold

for instability. The onset of instability occurs in good agreement with theory and

parameter sweeps. Furthermore, the estimator shows a considerable difference

between stable and unstable equilibria, meaning that the coexisting equilibria are

sufficiently separated in phase space, compared to the measurement and control

accuracy. Note that the control must be able to restore the equilibrium state in

order to resume continuation after a stability test. This generally requires more

control power than necessary for continuation and cannot always be expected. It

also requires that the divergence does not alter the equilibrium state.

The initial part of the divergence from an unstable equilibrium state is noted to be
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Figure 5.5: Retrieving stability information for an unstable state (#16) by using
a linear fit to the logarithm of the peaks. (a) Smoothened difference x − y with
detected peaks (using the Matlab functions: Smooth (moving average filter from the
Curve Fitting Toolbox) with a 20 points window and Findpeaks (Signal Processing
Toolbox)). (b) Logarithmic plot of the detected peaks (◦) along with linear fit (—)
in the time-interval t ∈ [0.4; 1.2]. Taken from [P4].

close to exponential. This means that it is possible to estimate the rate of divergence

by doing a linear fit to the logarithm of the peaks, as shown in Figure 5.5. The

slope of this fit will yield the finite-time Lyapunov exponent (FLTE) λ.

5.2.2 Stability check using deadband control

We introduce a deadband Π in the non-invasive control signal (2.2). Using our

current nomenclature the control signal becomes

u(t) =

{
0 for ||PD(x(t)− y(t))|| ≤ Π

PD(x(t)− y(t)) for ||PD(x(t)− y(t))|| > Π.
(5.3)

In effect the control is only enabled when the deadband is exceeded. A properly

adjusted deadband allows the stability to be determined without letting the system

diverge unbounded: Upon enabling the deadband in the control, an unstable state

42



5.2. Methods for determining stability

will start to diverge until the deadband is exceeded, while a stable equilibrium will

not be affected. The stability is determined by noting if the control is enabled or not.

If the deadband is kept narrow in order to allow minimal divergence, the number of

control-bursts can be used as a measure of stability, distinguishing between a few

peaks due to noise and repeated enabling of the control due to instability.

The results of a stability test using deadband control is shown in Figure 5.6. Note

that here a wide deadband has been used for visualization purposes. In conclusion

the method allows for performing stability tests during continuation, without

allowing the system to diverge. It is not possible to properly quantify the instability,

although the number of control bursts might be proportional to the finite-time

Lyapunov exponent λ. Note that the time window for the stability test must be

sufficient to allow for divergence to develop at any of the unstable equilibrium states

along the equilibrium branch.

5.2.3 Deadband limited free-flight

The deadband limited free flight stability check attempts to combine the two

previous methods, in order to estimate finite-time Lyapunov exponents without

allowing the system unbounded divergence. This is done by adjusting the deadband

such that it allows some divergence, essentially capturing the initial (exponential)

part. The control is modified such that whenever the deadband is exceeded, the

control is kept active for enough time to completely restore the equilibrium state.

At unstable equilibrium states this results in a series of divergence measurements.

Our observations suggest that the estimated Lyapunov exponent is not dependent

on which side of the equilibrium-branch the state diverges to, as long as we only

study the local behavior. For each stability check (at every point of the bifurcation

curve) the following steps of postprocessing are performed:

1. Center the data set x− y by subtracting its mean value.

2. Smoothen the time series using a moving average / lowpass filter. In Matlab

this can be done by using the function ’smooth’ (Curve Fitting Toolbox).

3. Detect peaks of the absolute value of the smoothened signal to get both positive

and negative peaks. It can be helpful to use a peak detection algorithm that

can discard values smaller than a certain tolerance and require the peaks to

be separated by a certain time span. In Matlab this can be done using the

function ’findpeaks’ (Signal Processing Toolbox).

4. Divide the data set into separate segments of free flight. This can be done by
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Figure 5.6: Time series for deadband control stability tests at (a) a stable state
(#5) and (b) an unstable state (#10). Deadband limits (- - -) are shown together
with controller output in the third panel and the deadbanded control signal which
is sent to the actuators is shown in the fourth panel. Note that the control is only
active for the unstable state (b) and that it only allows a limited divergence. Taken
from [P4].
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checking the control signal, as this is zero when the system is in free flight, cf.

Figure 5.7.

5. Evaluate the Cooks’ distance [27] for each segment and use this information

to remove statistical outliers from the data sets.

6. Perform linear interpolation on each set of peak data and average the slopes

to get the finite-time Lyapunov exponent λ.

Figure 5.7 shows an example of the method successfully applied at an unstable

equilibrium state. The postprocessing is automated and implemented in the stability

test functions, which are a part of the Continex-toolbox.
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Figure 5.7: Deadband-limited free flight stability check at an unstable state (#16).
Removed outliers are marked by (×) in fit. Average Lyapunov exponent: λ =
3.65± 0.58. Taken from [P4].
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5.3 Results

In the following we present results of applying the stability tests during continuation.

The complete set of results can be found in [P4].

5.3.1 Continuation with stability information

A continuation run with a continuous measure of instability, estimated using the

free-flight method, is shown in Figure 5.3. In contrast Figure 1.1c shows a frequency

response with a distilled binary measure of stability. Both results are noted to

be in good agreement with theory and parameter sweeps. Figure 5.8 shows the

stability estimators for five consecutive continuation runs using the free-flight and

the deadband limited free-flight method. Since the continuation uses an adaptive

step-length, the number of points used in each continuation run varies. To allow for

comparison, the curves are normalized with respect to the total arclength of the

corresponding branch. The two methods estimate the onset of instability at the

same place, but only the deadband limited free-flight gives quantitative information

about the stability. The stability is noted to change smoothly when continuing

across a fold point, which can also be seen in Figure 5.9. This agrees with the

observation that divergence is slow near the fold points.
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Figure 5.8: Stability estimator (normalized with respect to arclength of the branch
in the bifurcation diagram) of multiple continuation runs. Chosen stability threshold
εt = 0.05 is marked by (- - -). Top panel shows the normalized root mean square
error ε for a free-flight test. Bottom panel shows the averaged Lyapunov exponent
estimated by the deadband-limited free flight method. [P4].
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Figure 5.9: Continuation around a fold point. Five overlaid bifurcation diagrams
for forcing strength A = 0.5 with stability estimator plotted in grayscale (dark for
small values, light for larger values). Taken from [P4].

5.3.2 Special case: Stability at an isola

Figure 5.10 presents an experimentally found isola, by which we mean a family

of stable and unstable equilibrium branches that are detached from the primary

resonance peak. This isola is created by a 1:3 subharmonic resonance, at which

the impactor is forced at approximately three times its fundamental resonance

frequency, but the response is approximately at its fundamental resonance frequency.

The isola serves as a good test case for both the continuation and stability check:

It is difficult to initialize and perform parameter sweeps in this region since several

branches of stable as well as unstable equilibria coexist and are connected through

the unstable equilibrium branches. Using the control-based continuation method it

is possible to follow the unstable equilibrium states and obtain a more complete

bifurcation diagram. Performing stability checks during continuation is in this

case only possible using the deadband control method. If the system is allowed to

diverge, the control is not able to restore the equilibrium state and continuation

cannot be resumed. The deadband had to be adjusted to only allow divergence just

above the noise level. Hence, a few control bursts were allowed at stable equilibrium

states due to noise. Unstable equilibrium states were characterized by a factor of

100 or more control bursts than at the stable states.
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Figure 5.10: Family of isolated equilibrium branches (isola). Top panel shows the
primary resonance (Fig. 5.1) at 7-10 Hz and the isola around 25-26 Hz. The bottom
panel shows the isola composed of the stable and unstable equilibrium branches
of a 1:3 subharmonic resonance found by a parameter sweep and two consecutive
continuation-runs, using different settings for tolerances and step size. The sweep is
denoted by (+) for increasing and (◦) for decreasing frequency. Stability information
is assessed using deadband control and the number of control bursts are used as a
continuos measure of stability. Taken from [P4].
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5.4 Further remarks

All three suggested methods have been successfully applied to determine stability

during experimental continuation, and each of the methods is shown to be suitable

in different situations. The free-flight method and deadband control are robust and

easy to implement. In contrast the deadband limited free-flight method is more

advanced and puts more requirements on the experiment, but in turn provides

statistically weighted Lyapunov-exponents for the unstable equilibria. All three

methods requires the tolerance with which the corrector accepts a state x as an

equilibrium state to be sufficiently strict, while otherwise the residual drift upon

disabling control will be mistaken for instability. Quantifying the instability in terms

of its finite-time Lyapunov exponent, requires the divergence to be well behaved:

Divergence has to occur over several periods, and the coexisting equilibria cannot

lie too close in phase space. Note that it is at this point only possible to quantify

instability. Quantifying stability using a method similar to the free-flight stability

test would require the equilibrium to be perturbed. In our test rig, however, the

damping is high, such that for stable equilibria states, the transients are damped

out within few oscillations. Increasing the magnitude of the perturbation effectively

changes the response due to the nonlinear nature of the impact oscillator. This

problem might be addressed by using a fitting method that makes use of the full

set of acquired data as opposed to only fitting the peaks.
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6 Simulating control-based

continuation experiments
Simulating control-based continuation experiments has two purposes. Firstly, it is a

quick, cheap and safe way to test experiment designs, actuators and tune the control

prior to entering the laboratory. Secondly, the provided framework for simulating

experiments mirrors the set of functions for performing control-based continuation in

experiments. This means that with the Continex-toolbox and COCO continuation

core [21] at hand, it will be possible to run simulated experiments out of the box.

This is helpful for gaining insight in how the code works and how to connect it to

an experiment with sensors and actuators. Our hope is that downloading a code

that runs out of the box encourages people to setup a control-based continuation

experiment, and in that way helps to spread and develop the method. For testing

the implementation, we simulate an externally forced Duffing oscillator. Finally a

control-based continuation experiment of a controlled nonlinear Jeffcott rotor is

simulated to investigate and discuss the feasibility of applying the control-based

continuation method to rotating machinery.

6.1 Simulation strategies

Figure 6.1 presents different strategies for exchanging the experiment with a simula-

tion. The experiment and continuation runs asynchronously with control and forcing

being generated by the Continex real-time model, cf. Figure 3.8. The continuation

algorithm (COCO) interacts with the experiment through Continex, by changing

parameters, the reference trajectory and reading out the Fourier-modes of the

response. Figure 6.1 indicates three different ways to substitute the experiment by a

simulation. The first and simplest option is to use Matlab’s ODE solver to integrate

a set of differential equations describing the dynamics of a system and appending
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Figure 6.1: Different ways of simulating control-based continuation experiments.
(a) Interaction of a control-based continuation experiment. (b) Different way of
substituting the experiment with a simulation: 1) Using a Matlab ODE solver. 2)
Interacting synchronously with a Simulink model. 3) Interacting Asynchronously
with a Simulink model.

them with a non-invasive control signal. This option makes it possible to set up

simulated control-based continuation experiments without using Simulink, but is

also the option that has the least similarity with a real experiment. The second

option is to run the Continex Simulink model (sketched in Figure 6.2) synchronously

with the continuation-code. The Continex Simulink model is similar to the real-time

model (cf. Figure 3.8), but it runs entirely in Simulink and hence does not require a

real-time control board. It uses a discrete solver with a fixed step-size, which gives

signals similar to what a sampled experiment produces. In addition, it includes a

model of the experiment and actuators. The last option is running the Continex

Simulink model and continuation code asynchronously. This is similar to running

a control-based continuation experiment, but requires the Simulink model to be

continuously running and hence requires more computational power. An advantage

of using the Continex Simulink model is that it is easy to log and view all internal

signals in the model, which is helpful when choosing suitable parameters for the

continuation or tuning the control.

6.1.1 Matlab ODE-solver

Denoting the output state of a simulated experiment r and a reference trajectory

set by the continuation algorithm s, a non-invasive PD-control can be constituted
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Figure 6.2: Sketch of the Continex Simulink model for simulating control-based
continuation experiments.

as

u = KpP +KdD, (6.1)

where the proportional and derivative term can be estimated as

P = r − s (6.2)

D =
1

w
[P − δ], (6.3)

with

δ̇ =
1

w
[P − δ] (Δt < w 	 1). (6.4)

Here Δt is the integration step size (which may vary) and w is a real constant.

The derivative is approximated using equation (6.3) and (6.4). The control-signal

(6.1) is calculated for each integration step and added to the equations of motion.

Equation (6.4) is added to the system of equations and integrated along with the

rest of the equations. This trick was provided in a set of unpublished notes by Jan

Sieber.

For each iteration step, the continuation algorithm sets parameters μ and a control

target c, which is inverse Fourier transformed to obtain the reference trajectory

s(t). The equations of motion with added control are simulated until transients

have settled. Then exactly one forcing period of steady state behavior is simulated

and Fourier-transformed after which the residuum F(r)− c is returned.
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6.1.2 Simulink synchronous

The code listing 6.1 shows how to synchronously evaluate the Simulink model

(cf. Figure 6.2). The function sets the control-target and parameter and then calls

a function run_sim, which runs the simulation and handles saving/resuming of the

simulation state, such that each new simulation continues from the last state of the

previous simulation. At this point the function waits for the Simulink model to

simulate for the specified time wait_tm and then returns the logged signals, which

are written when the Simulink model terminates. Finally get_res calculates and

returns the residuum as the difference between the final value of the Fourier-modes

and the control target c.

function [ data , y ] = eva lua t e s im sync ( data , c , p )

s e t c t r l t a r g e t ( c ) ;

s e t p a r s (p ) ;

[ data ] = run sim ( data , data . wait tm ( ) ) ;

y = data . g e t r e s ( ) ;

end

Code 6.1: Synchronous evaluation of the Continex Simulink model.

6.1.3 Simulink asynchronous

The Continex Simulink model (Figure 6.2) is started and is running continuously

and asynchronous to the continuation code, similar to what would be the case for an

experiment. The code listing 6.2 shows how to evaluate the simulated experiment.

In comparison to the synchronous evaluation an explicit pause command is used for

allowing transients to settle after the parameters p and control target c has been

set. Since the Simulink model does not run in real time, the wait time parameter

wait_tm depends on the transient time, integration step-size and processor speed,

and must be estimated. The function get_data forces Simulink to write the logged

signals to the disk, after which the residuum can be calculated and returned.
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function [ data , y ] = eva lua t e s im async ( data , c , p )

s e t c t r l t a r g e t ( c ) ;

s e t p a r s (p ) ;

pause ( data . wait tm ( ) ) ;

data . ge t data ;

y = data . g e t r e s ( ) ;

end

Code 6.2: Asynchronous evaluation of the Continex Simulink model.

6.2 Simulation results for a Duffing oscillator

In the following we test the implementation of the methods by simulating an

externally excited Duffing oscillator

r̈ + 2βω0ṙ + ω2
0r + γr3 = q sin 2πft, (6.5)

where β is the damping ratio, ω0 is the undamped linear natural frequency of the

system, γ is the coefficient of a cubic nonlinearity, and q and f the amplitude and

frequency (in Hz) of an external harmonic excitation. This is a generic case treated

extensively in literature, see for example [28, 29]. Figure 6.3 presents simulation

results using Continex with both the ODE-solver and the Simulink model. The

results are for both cases compared with results from parameter sweeps, and are

noted to be in perfect agreement.

6.3 Applying control-based continuation in

rotating machinery

In the following we discuss the feasibility of applying the control-based continuation

method to rotating machinery. The method would allow to perform experimental

bifurcation analysis: Investigate how the response depends (nonlinearly) on variable

bearing parameters, obtain frequency responses for nonlinear rotor systems, trace out

stability boundaries, study the onset of instability and much more. Nonlinearities

may be introduced into rotating machinery in many ways, e.g. through foil bearings,

oil-film bearings, clearances in roller bearings, impacts and rubbing. Nonlinear

phenomena such as sub/super harmonic resonances, hysteresis, impacts and chaotic

behaviour are encountered in real machinery. A review of practical observations of

nonlinear phenomena in rotor dynamics can be found in [30].
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(a) Simulation using Continex and Matlab ODE45.
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(b) Simulation using Continex and Simulink synchronously.

Figure 6.3: Simulated results for the duffing oscillator with parameters: q = 5, β =
0.05, ω0 = 2π, γ = 25. Parameter sweep is denoted by (+) for increasing frequency
and (o) for decreasing and control-based continuation result is denoted by (—).
Control gains was for both cases chosen to Kp = Kd = −1. Stability check is
omitted.
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6.3. Applying control-based continuation in rotating machinery

The electromagnetic actuators used in our test rig (cf. Figure 3.1) serves as a

prototype for electromagnet bearings and other nonlinear actuators with no direct

contact. This type of actuators are important for rotating machinery, as they can

exert a force directly on the rotor while it is operating. Note that control-based

continuation does not require large amounts of control energy and that it is not

necessary to know the dynamics of the actuator. The use of smart machine elements

such as electromagnetic bearings is becoming more common in applications, making

the control-based continuation method readily available as a software extension.

This will allow in-situ bifurcation analysis and dynamical tests, and since the method

uses a stabilizing control it might be possible to overcome instabilities as well as

operate in regions where multiple stable and unstable states exist. Additionally,

the methods for determining stability makes it possible to safely map out stability

boundaries of the uncontrolled system. Finally, the method makes it possible to

perform hybrid-tests to investigate how a rotor-system will behave as a part of a

simulated structure or during faults, e.g. with an unbalanced impeller.

6.3.1 Simulations for a nonlinear Jeffcott rotor

To investigate the feasibility of applying control-based continuation we construct

a simulated experiment. We simulate a simple model of a two degree of freedom

Jeffcott rotor with a symmetric cubic nonlinear restoring force presented in [31].

The equations of motion for this model are

mẍ+ dẋ+ kx+ β(x2 + y2)x = medω
2cosωt

mÿ + dẏ + ky + β(x2 + y2)y = medω
2sinωt−mg, (6.6)

where m denotes the mass of the rotor disc which is displaced from the geometric

center by the eccentricity ed, d is the damping coefficient, k is the linear stiffness, β

is a coefficient of the nonlinearity which for example can account for an aerodynamic

coupling, ω is the rotational speed and g is the gravitational acceleration. For

simplifying the simulations, we set the gravity to zero g = 0, making the model

symmetric corresponding to a vertical rotor. The gravitational acceleration g can

later be varied to investigate how the asymmetry affects the continuation and

the bifurcation diagram. Since the x and y-directions are coupled, it might be

possible to affect both directions applying control in only one of the directions. This

allows to perform bifurcation analysis in each direction independently. It is possible

to constitute a control in both directions and perform continuation in multiple

parameters, but for simplicity we restrict ourself to the simple single-input-single-

output (SISO) case. We add the non-invasive PD-control signal to the x-direction

direction and perform a simulated control-based continuation experiment in that
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Figure 6.4: Continex Simulation of the nonlinear Jeffcott rotor. Model parameters:
m = 0.7, k = 1000, d = 0.7, β = 20, ed = 1.2, g = 0. Control-gains: Kp =
−12.5,Kd = 125.

direction using the synchronous Continex model. Adding the control signal directly

to the equations of motion simplifies the problem by assuming an ideal control

actuator, but this is sufficient for proof of concept.

The result of a parameter-sweep and a continuation in the x-direction (starting at

6.3 Hz) are shown in Figure 6.4. The results of parameter sweep and continuation

are in good agreement and the control is able to non-invasively stabilize most of the

unstable equilibria along the response curve, making it possible for the continuation

to track it. The continuation is observed to fail along the unstable equilibrium

branch, because the controller at this point fails to stabilize the equilibrium states.

In order to overcome this limitation, and compute the full frequency-response, one

must perform a tuning of the control and continuation parameters as explained in

Chapter 4. Nevertheless, the results are sufficient to indicate both the feasibility and

usefulness of applying control-based continuation to a rotor dynamic experiment.
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7 Conclusion

7.1 Summary and discussion

The work comprising this thesis is focused on implementing and developing tech-

niques for performing experimental bifurcation analysis of nonlinear dynamical

systems. The work has been centered around the newly developed control-based

continuation method, and we show how to apply this method to track stable and

unstable frequency response curves for a harmonically forced impact oscillator. An

effort has been made to make the method available to the mechanical engineering

community. Publication [P2] provides a thorough description of the method along

with details on how to implement it. Moreover, a software toolbox, by the name

Continex, which implements control-based continuation for experiments has been

developed. This will be made freely available together with the Matlab continuation-

platform COCO from [21]. It will also include examples of simulated control-based

continuation experiments that only requires Matlab/Simulink to run.

A prerequisite for applying control-based continuation in an experiment is the

constitution of a non-invasive and locally stabilizing control. Since the purpose of

control-based continuation is to investigate nonlinear systems for which no good

model exist, a method for tuning the control must be purely experimental. We

propose a series of experiments that allow to tune a non-invasive control without a-

priori study of a model. These experiments are carried out for the impact oscillator

with electromagnetic actuators, resulting in a set of optimal control gains and

parameters for the continuation method. Using these, we show that it is possible to

reliably retrieve complete frequency responses including the unstable part. Some

important conclusions are: It is necessary to investigate how well the control

performs at an unstable equilibrium state. Secondly, the filtering of high-frequency
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noise in the differential term of a PD-controller has a large influence on the control.

Furthermore, the choice of parameters in combination with the use of Broyden

updates or finite differences, for calculating the Jacobian, has an impact on how

well the correction step of the continuation performs.

It is possible to assess stability of equilibrium states during control-based continua-

tion by modifying or momentarily turning off the control. Three different methods

for determining the stability have been proposed and successfully applied to de-

termine stability during experimental continuation. Each method has advantages

and drawbacks and they are suitable in different situations. The free flight stability

check is robust and easy to implement, but requires the divergence to be completely

reversible by the control. The deadband control method allows to check stability

while only allowing minimal divergence, but it does not provide information about

the rate of divergence. Finally the deadband-limited free flight method can provide

an estimate of the finite-time Lyapunov exponent, while only allowing a limited

divergence. In turn the method puts more requirements on the experiment, is more

difficult to implement and has more parameters that needs to be tuned.

In conclusion we have shown how it is possible to reliably produce (and reproduce)

complete frequency response diagrams with indication of stability. Frequency

responses for both the primary resonance and a 1:3 subharmonic resonance have

been tracked for the impact oscillator. The time necessary for tracking a frequency

response for our test rig is approximately one hour and of the same order as a

parameter sweep with fine resolution. One reason for this is that the addition of

control causes a shorter transient period. Furthermore, the results from experimental

continuation are statistically weighted and ensured to be correct to the order of the

convergence criteria of the corrector algorithm.

The framework for performing simulated control-based continuation experiments

has been developed and will be included with Continex. The simulations use either

Matlab’s ODE-solver or a Simulink model similar to the one used when applying the

method to experiments. This allows to test experiment designs, actuators and tune

the control before going to the laboratory. Most importantly running a simulated

experiment gives valuable insight in how the method and Continex works, which will

hopefully help to make the method more widely used in the field of experimental

mechanics.
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7.2 Future work

The control-based continuation method is in its infancy, but with that being said,

the method has shown to work well and reliable for suitable experiments. There is

still much work in making the method reliable for a broader range of experiments

as well as making it more robust and user-friendly.

Two concepts from numerical continuation, namely bifurcation detection and branch

switching, still needs to be implemented. By applying so-called test-functions, it is

possible to detect bifurcation points and determine the type of bifurcation. Knowing

the type of bifurcation, it is possible to automatically continue the equilibrium

paths branching out from the bifurcation point. Constructing such test functions

relies on the ability to determine stability during continuation.

The proposed method for experimentally tuning the control may be further developed

to construct an auto-tuning control. For simpler types of actuators it might also be

possible to apply an adaptive control. For experiments that cannot be allowed to

be run close to their stability boundary, it might be possible to modify the tuning

method to accomodate it. One simple idea could be to monitor the divergence while

testing sets of control-gains and parameters, and as soon as the divergence exceeds

a certain level the control parameters are substituted with ones that are guaranteed

to stabilize the equilibrium state.

Another point of improvement could be to extend the quantification of stability

in terms of finite-time Lyapunov exponents to stable equilibrium states. This

could be done by applying a perturbation and measuring how fast transients settle.

Unfortunately, for most stable equilibrium states in our test rig, the transients settle

within few oscillations, not giving enough data for our estimation method. This

problem might be overcome by implementing a fitting method that makes better

use of the recorded data.

There are many application for the control-based method, but one particularly

interesting is in rotating machinery. In this area nonlinear phenomena are frequently

encountered and for rotors with smart machine elements, such as electromagnetic

bearings, the necessary hardware for sensing and actuation is already present.

Section 6.3 discuss and investigate the feasibility of applying the method to rotor

dynamic experiments, but the task of testing this in a real experiment remains.

Finally, an interesting perspective of the method is that it might help overcome delay

induced instability when performing hybrid testing, as reported in [14]. Hybrid

testing is an interesting technique which combines real time experiments with

computer simulations. The method has big potential and many applications, so a
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natural next step in the research would be to put the method proposed in [14] to

test in a real experiment.
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P1 Publication 1

The following paper [P1] was submitted to and presented on the 7th European

Nonlinear Oscillations Conferences (ENOC) in Rome, Italy 2011. It presents the

framework for making continuation possible in our experiment, and reports on

the early stages of the work in developing a systematic and purely experimental

method for tuning a non-invasive locally stabilizing control scheme, necessary for

control-based continuation.
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Summary. We present a software toolbox that allows to apply continuation methods directly to a controlled lab experiment. This

toolbox enables us to systematically explore how stable and unstable steady state periodic vibrations depend on parameters. The

toolbox is implemented partly in MATLAB and partly on a dSPACE realtime controller board. Its functionality is tested on a driven

mechanical oscillator with a strong impact nonlinearity, controlled with electromagnetic actuators. We show how to tune a controller

so that the steady state dynamics of the controlled experiment matches that of the corresponding un-controlled experiment.

Introduction

Being able to observe stable as well as unstable steady state responses directly in experiments has many interesting per-

spectives. It allows to perform bifurcation analysis in experiments for which no good model exist - or helps to validate and

improve existing models by comparing them with experimental data for both stable and unstable dynamics. Furthermore,

stable branches in bifurcation diagrams might be connected via unstable branches, thus following an unstable branches

might reveal otherwise overlooked dynamics, and in the case of multi-stability, conventional parameter sweeps might not

detect all stable states.

The recently developed method of control-based continuation makes such investigations of both unstable and stable states

possible. The method was first introduced in [1] and its application was further developed in [2, 3, 4]. It allows for a direct

systematic exploration of the dependency of a physical system on parameters, including tracking unstable vibrations not

otherwise observable in the lab. The prerequisites for this method are measurement of the modes of interest (observability)

and the possibility to control the system via actuators (controllability). This makes the method immediately applicable to

actively controlled machinery, such as rotors supported in active lubricated bearings [5], since all the necessary hardware

for sensing, actuation and control is already present.

The focus of our work is the development of a software toolbox that implements experimental bifurcation analysis using

an already existing continuation package COCO [6]. The mechanical system that is used for testing the implementation

is a driven nonlinear flexible pendulum with hardening spring-stiffness and impact. The test rig design was chosen to

be simple but still have sufficiently rich nonlinear dynamic behavior. Since the system shows multi-stability and has

a hard impact it is a good example for the usefulness of the method, as these effects are hard to deal with, both for

theoretical and experimental approaches. The type of actuators and sensors were chosen because they can be used with

rotating machinery, which facilitates the intended transition into more advanced test rigs in the field of rotor dynamics,

investigating bearing properties for advanced hybrid bearings.

Methods

Theoretical Background
Continuation packages employ a path-following algorithm to systematically trace curves of steady state dynamic re-

sponses under variation of parameters. These curves can then be collected to produce a bifurcation diagram. Typically,

path-following methods implement a predictor-corrector scheme. Starting from an initially known dynamical state, the

predictor makes a small step in the tangent direction of the response curve. In the correction step the predicted point is

used as an initial guess for a nonlinear solver, which is applied perpendicular to the tangent direction and corrects the state

back to the curve. In order to apply a continuation package a user must provide some function that implicitly defines the

dynamical response of interest, which is straightforward if a model is known.

The method of control-based continuation seeks to apply the continuation technique to a suitably controlled real experi-

ment, making it possible to directly trace out bifurcation diagrams for physical systems. The key idea is to locally stabilize

the dynamical equilibrium states of the system without perturbing them. This makes it possible to trace unstable response

curves, as well as preventing the system from jumping between stable states in case of multi-stability. In order to use

already existing continuation packages, it is necessary to formulate a function, a so called zero problem, that enables the

continuation algorithm to evaluate and change the controlled experiment. This function must take a control target defining

the control force exerted to the experiment as an input argument. Applying the nonlinear solver to the zero problem,

convergence must imply that the system is at a un-controlled dynamical equilibrium. This requires the control to be

non-invasive, which means that a control force will only be exerted when the system is not at a dynamical equilibrium.

This implies that the steady state dynamics of the controlled experiment is identical to the steady state dynamics of the

uncontrolled experiment. This idea was first introduced in [7] and later applied to continuation in [1, 2]. This paper will

describe how to formulate a zero problem, enabling COCO [6] to perform control-based continuation in experiments.
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Particular focus will be on the implementation and tuning of the locally stabilizing non-invasive control scheme.

To make the above conditions more precise, we consider an experiment as a process that runs over time t and depends on

a number of parameters μ, and taking a single measurement can be thought of as a function evaluation y(μ, t). Since we

are interested in periodic states we need to sample the experiment over an interval of time covering at least one period.

We represent one such sample as a finite sequence of the form

Y (μ,N) = {y0, . . . , yN−1}, (1)

where N denotes the number of sampled points. The measurements are taken with a constant sampling interval h, that

is, that the k-th measurement is yk = y(t0 + kh), where t0 denotes the starting time of the measurement. Similarly, we

denote a sample of a controlled experiment as

Z(μ,N, u) = {z0, . . . , zN−1}, (2)

where u is a control force applied to the experiment. The control scheme must be chosen to satisfies the following

conditions:

1. For zero control the controlled experiment must be identical to the original experiment: Z(μ,N, 0) ≡ Y (μ,N).

2. The control scheme must be locally stabilizing, that is, any equilibrium state y of Y must become an asymptotically

stable equilibrium state of Z. In other words, if a controlled experiment Z is initialized close to a equilibrium state

of Y , then the state z must converge to the state y over time.

3. The control must be non-invasive, that is, the control force must satisfy the inequality ||u|| ≤ δ||y − z||.
All these conditions can be satisfied using a PD-Controller G with appropriately chosen gains. Let us express the control

signal as

u(t) = G(x(t)) := PD(x(t)− z(t)) (3)

where x(t) is a predefined control target set by the continuation algorithm, and z(t) is the measurement of the controlled

experiment Z taken at time t. Furthermore, we denote a discrete Fourier transform of a sample by

c = F(Y (μ,N)). (4)

Note that the Fourier transform F and the number of samplesN must be chosen such that (4) is independent of the starting

time of the measurement frame t0. Using the above definitions we can now construct a function

F (c, μ;N) := F{Z[μ,N,G(F−1(c))]} − c, (5)

which can be passed as a zero problem to a standard continuation package. Our control scheme is non-invasive, because

(under simplifying assumptions on smoothness and noise)

||u|| = ||PD(x− z)|| ≤ δ||x− z|| ≤ δκ||F(x)−F(z)|| = δκ||F (c, μ;N)|| (6)

holds, which implies that the control force vanishes whenever the difference between control target x and measurement

z is zero. In the implementation we use ||F (c, μ;N)|| < TOL as a criteria for convergence, and typically TOL can be

chosen at the order of the measurement error.

Experimental Setup and Implementation
Figures 1a and 1b show the experimental test rig, which consists of a mechanical system, sensors, actuators and a data

acquisition- and control system. The mechanical system comprises a clamped flexible pendulum (1) which, when vi-

brating with large enough amplitudes, impacts a mechanical stop (2) causing an increase of stiffness. This nonlinearity

causes a change of natural frequency with oscillation amplitude, and the appearance of a hysteresis loop when varying the

frequency of the external excitation (figure 1c). The pendulum is mounted on a platform (3), which can be moved in the

horizontal plane by means of an electromagnetic shaker (4). The displacement of the platform and the displacement of

the pendulum is measured using two laser displacement sensors (5). An electromagnetic actuator (6) is mounted on each

side of the pendulum mass. Using an amplifier and a power supply, the strength and direction of the magnetic field can be

varied using a control signal. Data acquisition and control is realized using a computer equipped with a dSPACE DS1104

board and MATLAB/Simulink.

Figure 2 shows how the communication between different parts of the software is implemented. The tasks that have to

be executed in real time run on the dSPACE board, while the continuation core algorithm runs asynchronously on the

computer. The real time application generates the excitation signal that is sent to the shaker and constructs the control

signal based on the difference between the control target and the measured relative displacement. The control is imple-

mented using a standard MATLAB/Simulink PD-controller block. Communication between the computer and the board
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Figure 1: a) Main elements and input/output of the mechanical system. b) Experimental test rig. c) Frequency response

found by frequency-sweep, keeping constant amplitude of the shaker voltage signal.

is achieved by reading and writing coefficients of Fourier modes using the MLIB/MTRACE MATLAB interface libraries

provided by dSPACE. On the dSPACE card Simulink blocks are implemented in order to both compose and decompose

periodic signals from and to their approximated Fourier coefficients in real time. The computer also runs dSPACE Con-

trolDesk, which is used to monitor different parameters during the experiments.

An important task is the tuning of the gains for the PD-controller. Conventionally the tuning process is performed using

a model of the physical system to be controlled. However, since the method presented intends to investigate properties of

dynamical systems without models, inherently this approach cannot be used in our experiment. The gains are experimen-

tally adjusted to constitute a control that meets a number of criteria: Firstly the control should never destabilize or disturb

the equilibrium states. Secondly the control should be aggressive, meaning that it should have short reaction time and

exerting large forces when the state deviates from the control target. This constitutes two competing targets and therefore

the goal of the tuning process is to find a suitable compromise between control aggressiveness and non-invasiveness.

Figure 3 shows a number of parameter sweeps made on the control gains. The top row illustrates the level of invasiveness

of the control. The results were obtained by measuring a stable steady state response to a certain excitation frequency

and then setting this response as control target, while keeping the external excitation and varying the control gains. The

plots show the resulting control signal, which for complete non-invasiveness should be zero (as is the case for zero control

gains). The bottom row presents a measure for the aggressiveness of the control. A zero control target was chosen in

order to keep the pendulum at the down-hanging static equilibrium while disturbing it with a harmonic excitation from the

shaker and varying the control gains. The plots show the resulting control error simply being the amplitude of vibration

for the pendulum. This can be thought of as the inverse of the aggressiveness. For both cases hysteresis was observed

depending on the sweep direction and so, in order to have a conservative estimate, the maximum value is plotted. For both

the invasiveness and aggressiveness, high and low plateaus are observed depending on the overall gain G. When choosing

an appropriate set of gains one should aim at a low plateau for both conditions.

It is important that the continuation core algorithm can change the frequency of external excitation without causing the

DS1104 Controller board running the 
compiled Matlab/Simulink model
- PD-Control (non-invasive)
- Signal for vibration-shaker
- Data Acquisition
- Digital filtering
- Fourier Transformation

REAL TIME TASKS

Control signal
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A sin(Ωt)

Figure 2: Overview of the communication between different parts of the hardware and software.
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Figure 3: Experimentally obtained parameter sweeps of gains for the PD-Controller for different overall gains G applied

to the controller output. Kp denotes proportional gain and Kd denotes differential gain. The top row illustrates the level

of invasiveness of the control while the bottom row illustrates the aggressiveness. × denotes the chosen gain combination

for the continuation.

phase of the excitation signal to shift abruptly. Such a jump in the phase might cause unwanted perturbations of the me-

chanical system. Let us illustrate this: Figure 4a (top) shows an abrupt jump in phase due to two signals with very close

frequencies slowly drifting in and out of phase as the experiment time elapses. The phase jump is avoided using a scaled

time defined by the differential equation τ̇ = ω(t) ⇒ τ =
∫ t

0
ω(s)ds, which is in general not equal to ωt. Even when

the frequency is changed discontinuously, the resulting excitation will change continuously, which implies that a phase

jump is avoided. The result of implementing the scaled time is shown in Figure 4a (bottom) and the implementation in

Simulink is illustrated in Figure 4b.

We use a Fourier transformation applied with a shifted and averaged window function to decompose the buffered measured

response into n Fourier modes. Starting from the kth sample, the window ξ(tk, w, t) of the width w holds one forcing

period, that is,. ξ(tk, w, t) = 1 inside and zero elsewhere. A full sampling interval [0, N ] of N points can hold M =
N − floor(1/ω) such windows. The number of points in the buffer and the sampling frequency are limited by the

available processing power of the dSPACE card, and thus the frequency range that is possible to measure has an upper and

a lower bound. These bounds are determined by the number of points stored in the buffer and the sampling rate, because

at least one whole period must fit in the buffer (w ≤ N) and high frequency oscillations must be sampled with a sufficient

number of measurements in order to avoid aliasing. The Fourier coefficients are computed as

cn =

∫ t0+hN

t0

ψ(t)y(t)ϕn(t)dt, where ψ(t) =
1

M

M−1∑
k=0

ξ(tk, k, t) (7)

(a)

ω

2π

ω

(b)

Figure 4: Example of the phase jump problem and the implemented solution. (a) Shows the effect of incrementing the

frequency of excitation by 1% for the system without scaled time (top) and with scaled time (bottom). (b) Shows the

Simulink block used for implementing the scaled time.
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Figure 5: Simulink implementation of Fourier transform with a shifted averaged window.

where ϕn(t) denotes the nth Fourier base functions that is projected onto and h is the sampling interval. The Fourier

transform is implemented using the block shown in figure 5. Note that the averaged window can be calculated a priory
and loaded as a matrix into the model.

Results

Figures 6 illustrates the frequency and amplitude responses of the testrig. Figure 6a shows the result of a series of pa-

rameter sweeps for the amplitude of the signal sent to the shaker. As expected the response amplitude (calculated as the

euclidian norm of the Fourier coefficients) is seen to jump abruptly at the point where the pendulum starts impacting the

stops. The amplitude at which the jump occurs is seen to change with the excitation frequency. Finally, for increasing

excitation frequencies, hysteresis is seen depending on the sweep direction. Figure 6 shows the result of corresponding

series of frequency sweeps. A similar hysteresis behavior is observed for increasing amplitudes, the lowest amplitude

essentially represents a linear system, since the amplitude of the pendulum is never sufficient to hit the stops. Note that

the sweeps only find stable responses and will not necessarily find all stable responses in case of multiple stability.

Figure 7 shows the frequency response found by a continuation run plotted on top of the corresponding frequency sweep.

It should be noted that there is very good agreement between the results obtained by the two methods and that the

continuation is able to track the unstable part of the response curve connecting the two stable parts. At high amplitudes

(> 1.8) the influence of higher order bending modes seems to become important and quasi periodic dynamics is observed,

giving rise to a number of smaller hysteresis loops along the curve. This serves as a good example for the usefulness of the

method, as these phenomena would probably not have been captured studying a simple two degree of freedom piecewise

linear model of the system. When the system is on a equilibrium state only small amounts of control force are exerted

and we also observe that the control is normally seen not to have any low frequency content. Since the method stabilizes

unstable states we have no other ways to determine the stability of a current state, than turning off the control and observe

if the system diverges from the dynamical state. However, this might both cause damage to the experimental testrig and

the available control energy might not be sufficient to return to the branch and resume the continuation run. This presents

a problem to be tackled in our future work.

Discussion

A suitably simple controlled experiment with sufficiently rich nonlinear dynamics was set up. A toolbox for using an

existing continuation software to track stable and unstable branches of bifurcation diagrams directly in an experiment was
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Figure 6: Experimental steady state response amplitudes recorded by parameter sweeps made by keeping one parameter

fixed in steps. a) Amplitude sweep for fixed steps in frequency. b) Frequency sweep for fixed steps in amplitude.
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Figure 7: Bifurcation diagram (frequency response) for the driven pendulum observed experimentally by control-based

continuation. The whole diagram was traced in one continuous run. The sweep was made for a excitation signal with

amplitude, A = 0.4.

successfully developed and tested. In order to make the controlled experiment match the steady state dynamics of the

corresponding un-controlled experiment, a method for tuning locally stabilizing non-invasive control was presented.

Perspectives to be tackled in future work includes; determination of stability, development of auto- or systematic tun-

ing of control-parameters while avoiding unstable control, adaptive control during continuation runs, determination of

bifurcation-points and branch switching at such point. Finally we aim at applying the method in the field of rotor dy-

namics, in order to explore vibrations dependency on properties of active and hybrid bearings, such as active and passive

magnetic bearings, actively lubricated bearings and gas foil bearings.
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P2 Publication 2

The following paper [P2] was published in Journal of Sound and Vibration, Volume

332, Issue 22 on October 28, 2013. It extends the work started in the previous

paper by proposing and testing a sequence of experiments for tuning a non-invasive

control-scheme that does not require a-prior study of a model. It also contains a de-

tailed description of the control-based continuation method and its implementation,

specifically minded for the mechanical engineering community.
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a b s t r a c t

We investigate a non-invasive, locally stabilizing control scheme necessary for an experi-
mental bifurcation analysis. Our test-rig comprises a harmonically forced impact oscillator
with hardening spring nonlinearity controlled by electromagnetic actuators, and serves as a
prototype for electromagnetic bearings and other machinery with build-in actuators. We
propose a sequence of experiments that allows one to choose optimal control-gains, filter
parameters and settings for a continuation method without a priori study of a model.
Depending on the algorithm for estimating the Jacobian required by Newton's method we
find two almost disjoint sets of suitable control parameters. Control-based continuation
succeeds reliably in producing the full bifurcation diagram including both stable and unstable
equilibrium states for an appropriately tuned controller.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Experimental bifurcation analysis is possible directly in experiments using the control-based continuation method, but it
requires an appropriate feedback control. We study a non-invasive, locally stabilizing proportional-derivative (PD) control
scheme, where the control force is generated through nonlinear electromagnetic actuators. Our test-rig comprises an
actively controlled impact oscillator, which serves as a prototype for smart machinery with build in sensor and actuation
systems. We propose a sequence of experiments that allows one to choose optimal control-gains, filter parameters
and settings for a continuation method used for experimental bifurcation analysis of the impact oscillator. A particular
requirement of this tuning process is that it does not rely on the availability of a model for the actuators and test-specimen
under investigation. Depending on settings for the continuation method, we find two sets of optimal control parameters for
which bifurcation analysis employing control-based continuation reliably succeeds in producing the full bifurcation diagram
including both stable and unstable equilibrium states.

The method of control-based continuation provides means to explore nonlinear features in experiments, which are
not observable with traditional methods like sweeps. An example is coexisting stable and unstable steady-state periodic
vibration of a nonlinear oscillator. Comparing the theoretical frequency response of a linear system with an example
nonlinear counterpart (Fig. 1a), the response-curve of the nonlinear system bends over to one side, creating a range of
frequencies in which two stable and one unstable steady state coexist. Depending on the separation of the response-curves,
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it might not be possible to initialize the system at a certain desired steady state, nor ensure that the system stays on a
certain state. Control-based continuation overcomes these problems by applying a stabilizing feedback-control.

Parameter sweeping is the conventional method for experimental investigation of nonlinear mechanical systems. In
a parameter sweep, the system is initialized on a desired steady state and a parameter (e.g. the frequency or amplitude of
external excitation) is swept up and downwhile recording the response. The curve marked by + and ○ in Fig. 1b is the result
of such a sweep. If the steps in the sweep parameter are sufficiently small compared with the phase-space separation of the
response curves, the system stays on the response curve on which it is initialized as long as there are no bifurcations.
Sweeping the parameter both up and down can reveal hysteresis, as is shown in Fig. 1b. However, the method does not
allow one to follow unstable periodic motion, which could provide valuable information about the size of the basin of
attraction of the stable equilibrium states.

Control-based continuation was developed in [1] and has been successfully applied to experiments in [2–5]. The method
consists of applying to the experiment a non-invasive and locally stabilizing control together with a path-following algorithm. By
this we mean a control that modifies the stability of the systemwithout altering the steady states. The contribution of this paper
is an experimental and systematic method to tune such a control for a test-rig with unknown dynamics. Fig. 1b compares the
parameter-sweep method and control-based continuation. The two methods give similar results for the stable branches, but the
continuation method is able to track around the two fold-points and trace out the branch of unstable periodic motion, as it is
stabilized by the control.

2. Methods

Experimental bifurcation analysis using control-based continuation can be thought of as a guided experiment. Starting
with an equilibrium state of an uncontrolled experiment, a path-following algorithm produces a prediction of a new
equilibrium state for a new set of system parameters. A correction algorithm then seeks to modify this prediction such that
it again matches with an actual equilibrium state of the uncontrolled experiment. Iterating a series of such prediction and
correction steps while constantly applying a stabilizing control allows one to trace a so-called path of states irrespective of
their stability.

Let us illustrate the basic principle with a simple example: Fig. 2 shows a ball in a landscape with peaks and valleys,
representing respectively unstable and stable equilibria for the ball. The task is to roll the ball along the center ridge using a
simple algorithm: roll the ball a small distance in the direction tangential to the center ridge (prediction) followed by rolling
to the nearest equilibrium position (correction). Since several stable and unstable steady states coexist, the prediction step-
length must be small enough not to move the ball onto one of the other equilibria. In case if this happens, the continuation
algorithm might follow the equilibrium branch on which the new equilibrium resides. The control is necessary for realizing
the state requested by the prediction. The stable state created by the control might be thought of as artificial as the system
would never settle there in the absence of control. Furthermore, a non-invasive control-scheme will make the control effort
vanish once the ball is exactly on an equilibrium-state for the uncontrolled system. This means that the control is only
enabled when the ball starts to roll off the ridge. This keeps the ball on the ridge without altering the steady-state dynamics
of the system.

To apply control-based continuation to a test-specimen the experiment must be set up such that a pseudo arc-length
continuation algorithm implemented e.g. in COCO [6] or AUTO [7] can be applied to it. This requires the formulation and
experimental evaluation of a so-called zero-problem and its Jacobian. Furthermore, applying pseudo arc-length continuation
to an experiment requires the use of statistical methods since experimentally obtained data are subject to noise and
measurement uncertainties. Finally, a non-invasive and locally stabilizing control must be realized. Sections 4.1–4.3 review
the fundamentals of pseudo arc-length continuation and how to apply it to experiments.

Fig. 1. Panel (a) compares a theoretical linear and nonlinear frequency–response curves with stable (—) and unstable (- - -) steady states. (b) shows how a
frequency response can be obtained experimentally by upwards (+) and downwards (○) frequency sweep or by control-based continuation (—).
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2.1. Path following and pseudo arc-length continuation

Consider the system of nonlinear equations, which we will refer to as a zero problem

Fðx; μÞ ¼ 0; F : Rn � R-Rn; (1)

where x represents an equilibrium state to be determined and μ is a design parameter. If the function F satisfies the
conditions of the implicit function theorem, there exists a function xðμÞ of solutions in some neighborhood of a known initial
solution of (1). In other words, for a given design parameter μ it is possible to compute the corresponding state x.

The idea of pseudo arc-length continuation [8,9] is to consider the equivalent geometrical problem of computing a curve
or path uðsÞ≔ðxðsÞ; μðsÞÞ, with uðsÞ∈Rn � R, where s refers to a parametrization of this curve, such that

FðuðsÞÞ ¼ FðxðsÞ; μðsÞÞ ¼ 0 (2)

holds for all s. The algorithm is initialized with some known state uð0Þ ¼ ~u ¼ ð ~x ; ~μÞ and proceeds by predicting a new point
u0 ¼ ~u þ ht along the tangent vector t, which will be close to this curve for small enough step sizes h; see Fig. 3a. In the
subsequent correction step a root finding algorithm solves for the point u at the intersection of the solution path and the
plane through u0 and normal to t, which amounts to supplementing (2) with the so-called pseudo arc-length constraint

ð ~x′ÞTðx− ~xÞ þ ~μ′ðμ− ~μÞ ¼ h (3)

where a prime denotes differentiation with respect to s. This is equivalent to solving Eqs. (2) and (3) simultaneously as

HðuÞ ¼ FðuÞ
ð ~u′ÞTðu− ~uÞ−h

� �
¼ 0; (4)

where h denotes the (adaptive) step length in s used by a continuation algorithm.

State x

Parameter μP
ot

en
tia

l U
(x

,μ
)

Correction

PredictionTraced curve

Unstable equilibria
 to follow

Non-invasivecontrol

Corrected State

Predicted State

Fig. 2. General illustrative example: non-invasive control and control-based continuation for a ball in a landscape of peaks and valleys. The branch of
unstable equilibria created by the center ridge is followed as μ is varied. When the correction step converges to an equilibrium state for the un-controlled
system, the control force vanishes.

Fig. 3. Basic components of experimental continuation. (a) Pseudo arc-length continuation: from an initial point ~u a prediction step of length h is done in a
tangent direction t. The predicted point u0 is then corrected to the point u, using Newton's method in a direction perpendicular to the tangent, after
which the whole procedure is repeated. (b) Approximation of noise contaminated measurements. The actual path is shown as ( ), but due to noise
contamination of the measurements (○) a third-order polynomial fit ( ) is used.
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A typical implementation uses Newton's method for correcting the predicted solution u0 to the corrected solution u. The
sequence of Newton steps is given by

uiþ1 ¼ ui−JðuiÞ−1HðuiÞ; i¼ 1;2;…; (5)

where J is the Jacobian

J¼Hu ¼
Fu
~u′

� �
¼ Fx Fμ

ð ~x′ÞT ~μ′

" #
(6)

and Fu, Fx and Fμ denote the partial derivatives with respect to u, x and μ, respectively. After successful correction this
process repeats with a new prediction step along the new tangent direction t. For the k-th iteration we have the update
formula

JðukÞ � t¼
0
1

� �
(7)

for the new tangent vector.
As this brief review illustrates, for applying a path-following algorithm we at least need to construct a system of

nonlinear equations F, the solutions of which represent the state of an experiment, and possibly their derivatives with
respect to the state vector and the design parameters. The derivatives with respect to arc-length can be computed from this
data using (7). A more detailed explanation of the pseudo arc-length continuation can be found for example in [10].

2.2. Approximation of noisy paths

While it is possible to apply pseudo arc-length continuation to a set of equations defining a smooth path, dealing with
experimentally obtained data presents difficulties, as the data will be subject to noise and measurement uncertainties.
Therefore, it is necessary to use statistical methods to ensure that the correct path is followed. Here, we sample several
points and use least-squares approximation as illustrated in Fig. 3b, where pseudo arc-length continuation of a smooth path
is compared with a least-squares approximation of a path defined by noise contaminated sampled points. In the present
implementation we fit a user-defined number of sample points to a third-order polynomial, in our experiment observations
suggest that 15–20 points are sufficient. Another difference to standard pseudo arc-length continuation as described in
the previous section is that instead of solving Eq. (7) to obtain an updated tangent, we use the tangent of the approximation
polynomial at the end point of the path. A trade-off of this modification is that measuring a larger number of points per
continuation step will give (statistically) more accurate results, while the time for obtaining a bifurcation diagram increases.
It is important to highlight that the time for data acquisition is the dominant contribution to the overall run time.

2.3. Control based continuation

Consider an experiment Y running over time t and depending on a parameter μ. Making a single measurement can be
thought of as evaluating a function yðμ; tÞ. Since we are interested in time periodic equilibrium states,1 several periods of
experimental data need to be sampled. We represent one such measurement as a finite sequence of the form

Yðμ;NÞ ¼ fy0;…; yN−1g; (8)

where N denotes the number of sampled points taken with a constant sampling increment. For experimental continuation,
we construct a suitably controlled experiment

Zuc ðμ;N; xÞ ¼ fz0;…; zN−1g; (9)

where uc ¼ ucðtÞ denotes a control signal, and x¼x(t) is a reference trajectory provided by the continuation algorithm; see
Fig. 5. The controller and the controlled experiment must satisfy a number of conditions:

1. The controlled experiment must be consistent, that is, for zero control Z0≡Y holds and the controlled experiment Zuc

converges uniformly to the un-controlled experiment as uc-0.
2. The control must be locally stabilizing, meaning that any equilibrium state of Y (stable or unstable) must become an

asymptotically stable equilibrium state of Zuc .
3. The control must be non-invasive, that is, the control-signal uc must vanish whenever the requested state x is a

equilibrium state of the un-controlled experiment.

The first condition requires the control actuator not to alter the dynamics of the system when the control signal is zero.
Many actuators, e.g. servo-motors and hydraulic actuators, add inertia, stiffness and damping to the system and, hence, are

1 By this we mean the so-called ω�limit set, i.e. the state approached when transients due to initial conditions has decayed (in mathematical models
corresponding to particular solution of the differential equation of motion). For periodic/quasi-periodic motions in particular, the stationary state can be
characterized simply by the stationary value of amplitude(s) and phase(s).
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likely to violate this requirement. Another workaround is to add the control force to the external excitation force as in [2].
The second requirement makes it possible to observe unstable equilibrium states and distinguish coexisting steady states
as long as they are sufficiently separated in phase-space compared to the accuracy of measurements and control. The third
condition is satisfied by controllers that generate a control signal that is bounded by the difference between the reference
trajectory and the measurement of the controlled experiment

∥uc∥≤δ∥x−z∥; (10)

which corresponds to Lipschitz continuity with appropriately chosen norms. Linear control, for example, PD control, will
satisfy this requirement.

A control-scheme for experimental continuation should satisfy all the above conditions and seek to minimize the
difference between the requested reference trajectory and the current state of the system. We accomplish this by using a PD
control, G, with appropriately chosen gains Kp and Kd. The control signal uc(t) is thus expressed as

ucðtÞ ¼ GðxðtÞ; zðtÞÞ≔KpðxðtÞ−zðtÞÞ þ Kdð _xðtÞ−_zðtÞÞ; (11)

where z(t) is the measurement of the controlled experiment taken at time t. For the control signal (11) to satisfy (10) a low-
pass filter must be applied in order to ensure that the time-derivative _zðtÞ of the measurements is well-behaved. This filter
must balance the two competing targets of removing high-frequency noise while not making the control too slow.

Denoting the discrete Fourier transform of a sequence by FQ , where Q is the number of Fourier-modes that is projected
onto, the Fourier-projection of the reference trajectory is given by

c¼FQ ðxÞ: (12)

Using this, it is possible to formulate a zero-problem

Fðc; μ;NÞ≔FQ ðZuc ðμ;N;F−1
∞ ðcÞÞÞ−c¼ 0; (13)

which compares the Fourier coefficients of a settled response Zuc (discarding transients) with those of the reference
trajectory c. The correction-step of the continuation algorithm seeks to minimize the difference between reference
trajectory and current response by changing the reference-trajectory and parameters μ. When the difference between the
Fourier coefficients of the reference trajectory and those of the measured response, and the change in parameters μ−μ0
between two iterations are below a certain tolerance, we assume that the correction has converged and that the reference
trajectory is an approximation of a periodic equilibrium state of the un-controlled system. Typically the tolerance for this
convergence criterion can be chosen to be of the same order as the noise-level. Appendix A presents a sketch of a proof that
these convergence criteria implies vanishing control as long as a sufficient number of modes Q are used in the Fourier
transform.

2.4. Experimental evaluation of the Jacobian

The correction step relies on the (experimental) evaluation of the Jacobian defined in (6). One can approximate the upper
part using either Broyden's method [11] or a finite difference formula, while the lower part is explicitly available in the
continuation code. Broyden's update for the Jacobian2 of the i-th (correction) iteration is

Ji ¼ Ji−1 þ
ΔFi−Ji−1Δui

∥Δui∥2
ΔuT

n: (14)

Broyden's update requires only one measurement and is therefore very efficient. Due to noise in the measurements,
Broyden's updates are sometimes not accurate enough to ensure convergence. Therefore, we recompute a finite difference
approximation of the Jacobian from time to time, which requires at least 2Q+2 measurements. In the experiment this is
implemented by perturbing the different input parameters and variables one by one and recording the response, where the
size of the perturbation is chosen to be greater than 10 times the noise level.

3. Experimental setup

3.1. Hardware

The experimental test-rig is depicted in Fig. 4; it comprises a flexible beam with a concentrated tip mass, which can be
harmonically forced transversally by means of an electromagnetic shaker (B&K type 4809). When the vibration-amplitude
of the beam exceeds a certain value, it starts to impact the mechanical stops, which causes a sudden increase in stiffness,
effectively creating a hardening nonlinearity. The shaker is not feedback controlled, which means that the amplitude of the
exerted displacement varies nonlinearly with the forcing frequency due to back-coupling of vibrations from the impactor to

2 Even though the Jacobian J is not a square matrix (u has more elements than F), Broyden's update can still be computed since the dimensions of the
last term in (14) are ðð½m� 1�−½m� n�½n� 1�Þ=½1� 1�Þ½1� n� ¼ ½m� 1�½1� n� ¼ ½m� n�.
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the shaker. In consequence, we measure the coupled response of the shaker, platform and impactor as a function of the
signal being sent to the shaker. Similar mechanical systems have been studied in [12–14].

A control-force can be exerted directly on the tip mass by means of two electromagnetic actuators. The displacements of
the platform and the tip mass of the impactor are measured by two OmronZX-LD40 laser displacement sensors. Data
acquisition and the generation of the shaker- and control-signal are performed by a computer running Matlab, Simulink and
DSpace Control Desk. The electromagnetic actuators are suitable for realizing non-invasive control since they do not add
damping or inertia to the impactor itself as they have no direct mechanical contact with the tip mass. Due to the use of a
steel tip mass it is only possible to exert pulling forces with our electromagnetic actuators. Therefore, the direction of the
control force is varied by sending the signal through an amplifier to either one of the two electromagnets, depending on the
polarity of the control-signal. It is important to note that the control-force depends nonlinearly on both the control-signal
and the distance to the mass. As a consequence, the control might exhibit hysteresis and multi-stability for certain control-
parameter.

3.2. Simulink implementation

Fig. 5 shows a simplified sketch of the experimental setup and the real-time application, which is programmed in
Simulink and then compiled and uploaded to run on the DSpace board. The computer which is executing the continuation
algorithm runs asynchronously to the experiment, and communication occurs only to change forcing parameters (amplitude
and frequency), set a new reference trajectory and read Fourier coefficients of the current state. Since several parameters
in the real-time application and continuation code can be modified at run time, it is possible to sweep control and filter
parameters, as well as adjust parameters in the continuation code, such as continuation step-size and settings for the
correction.

Fig. 4. Experimental test rig: (1) DSpace DS1104 board for data-acquisition and real-time control, (2) amplifier and power-supply for shaker, (3) power
supply for electromagnets, (4) amplifier for electromagnets, (5) analog signal-filters and conditioners, (6) computer running DSpace control-desk, Matlab
and Matlab/Simulink, (7) electromagnetic shaker, (8) flexible supporting legs, allowing movement only in one horizontal direction, (9) platform,
(10) flexible beam, (11) adjustable mechanical stops, (12) beam tip mass, (13) electromagnetic actuators, (14) laser displacement sensors. (a) Overview of
the experimental test rig. (b) Impactor front view. (c) Impactor side view.
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Several re-scalings of signals are applied inside the real-time application (Fig. 5) to make the measured signals be of
the same order as the parameters. This is necessary in order to make their relative errors comparable when checking for
convergence of the correction-algorithm as described in Section 2.3. The applied rescaling in turn makes the control-gains
and filter-coefficients dimensionless.

3.2.1. PD controller
The control strategy described by (11) is implemented in the model using the standard Simulink PD-block. As shown in

Fig. 5 the controller is designed to eliminate the difference between reference trajectory x(t), set in the code as the inverse
Fourier transform of the control target c, and the current measured trajectory z(t). In addition to the proportional and
derivative gains (Kp,Kd), a low-pass filter is used in the differential term of the controller to avoid amplification of high-
frequency noise. The pole location and, hence, the cut-off frequency of the filter is controlled by the parameter PDFC.3 The
output of the PD-block is scaled by an overall gain, CFGain, which can also be varied.

3.2.2. Smooth parameter ramping
It is important that the forcing signal sent to the shaker changes smoothly in time when the forcing parameters are

updated, so that unwanted perturbations are avoided. When using the standard sine-block in Simulink to create the shaker
signal, a change in the excitation frequency can cause a phase jump, as illustrated in Fig. 6. This is because two sine-waves
with very close frequencies will slowly drift in and out of phase as experiment time elapses. Sending the signal depicted
in Fig. 6 to the shaker would cause a perturbation that could result in the system settling onto a different steady state. The
phase-jump can be avoided by using a scaled time defined by _τ ¼ ωðtÞ⇒τ¼ R t

0 ωðsÞ ds, since the integration will smoothen
out any discontinuous changes to the frequency ω.

3.2.3. Timed perturbation
The real-time application (Fig. 5) also includes a ‘Timed Perturbation’ block, which is used to create a perturbation with

the shaker and magnets. Fig. 7 shows the perturbation signal, which is constructed from a sine-wave at the resonant-
frequency of 7.5 Hz multiplied with an envelope function. The multiplicative envelope ensures that the signal sent to
the shaker is continuous. The timed perturbation is used during control-gain sweeps as the control (due to the nonlinear
actuators) is observed to be multi-stable for certain choices of control-parameters. After changing control-parameters, the
perturbation-signal is applied to the control and forcing signal in order to verify that the control is in fact stabilizing, even
under large perturbations.

3.2.4. Fourier transformation
We communicate dynamical states between the continuation code and the real-time application by passing Fourier

coefficients. The transform c of a signal y(t) consisting of N sampled points recorded with the interval h computed as

cn ¼
Z τ0þhN

τ0

yðτÞφnðτÞψðτÞ dτ; n¼ 0;…;2Q : (15)

Here

φnðτÞ ¼
1; n¼ 0;
2 sin ðnτÞ; 1≤n≤Q ;

2 cos ððn−Q ÞτÞ; Q þ 1≤n≤2Q ;

8><
>: (16)
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Controller

Sine Generator
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Timed 
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Actuator 

Shaker Amplifier

cond.

Filters / Signal 
Cond.

Computer w. Matlab

Fig. 5. Simplified Simulink model and its interaction with the continuation code and experiment.

3 PDFC corresponds to the parameter N in the standard Matlab/Simulink PD-control block (w. forward Euler and discrete time integration).
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is the n-th Fourier base-function that is projected onto, Q is the number of Fourier-modes used in the projection and ψðtÞ is a
weight function, which is calculated as the shifted average

ψðtÞ ¼ 1
M

∑
M−1

k ¼ 0
ξðtk; k; tÞ; (17)

where

ξðtk;w; tÞ≔
1 for tk≤t≤tkþw;

0 else;

(
(18)

is a window function of width w. The window ½tk; tkþw� holds one forcing period and is necessary since the transform (15)
assumes y(t) to be periodic. The full sample interval [0,N] holds M¼N−roundðωs=ωÞ windows, where ωs denotes the
sampling frequency. The frequency range that can be represented by the Fourier-transform is limited by upper and lower
bounds. The lower limit is determined by the width of the window function, since at least one whole period must fit in
the buffer ðw≤NÞ. The upper bound is determined by Q and the sampling-frequency of the real-time application, as high
frequency oscillations must be sampled with at least two points per period to avoid aliasing (the Nyquist–Shannon sampling
theorem). In our experiments we used Q¼5 modes.

3.3. Continex toolbox

Continuation is applied to the controlled experiment using the Matlab continuation-platform COCO [6]. A toolbox named
Continex (Continuation in experiments) has been specifically developed to handle the communication between COCO
and the real-time application running on the DSpace board. It also implements the experimental evaluation of the Jacobian
using either finite differences or Broyden's updates (cf. Section 2.4) as well as the polynomial approximation of noise
contaminated measured data (cf. Section 2.2). The continuation code uses Broyden's updates by default, but it is possible to
force a full recomputation of the Jacobian using finite differences every NJac step through the NJac-parameter. The toolbox
utilizes Matlab/MLib functions included in the software for the DSpace board, and implements features for automating
experiments, managing and plotting recorded data, resuming previous continuation-runs, etc. Continex is publicly available
via Sourceforge [15].

3.4. Experimental modal analysis of the impact oscillator

An overview of the dynamical response of the mechanical system to different types of harmonic excitation is given in
Fig. 8 in the form of waterfall diagrams. Panels (a) and (c) show a set of frequency–response curves obtained by sweeping
the frequency of the shaker signal up and down. In (a) we observe larger hysteresis loops for increasing amplitude of the
shaker signal. We also observe smaller hysteresis loops for driving frequencies of ω≈7:5 Hz and ω≈11 Hz indicated by the
small steps on the upper branches of the response curves, which are due to subharmonic resonances and the nonlinear

Fig. 6. Illustration of phase jumps when changing excitation frequency. Time-series of a 1 Hz (+) and 1.01 Hz sine-wave (○) slowly drifting in and out of
phase: a small change in frequency can result in the non-smooth signal (—) being sent to the shaker.

Fig. 7. Perturbation signal, which can be added to shaker and control signal. The perturbation is constructed of a sine-wave of 7.5 Hz multiplied by an (half-
sine) envelope function.
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coupling between shaker and impactor. For our subsequent tests we chose to use the forcing frequency as the bifurcation
parameter for a fixed forcing amplitude Ashaker ¼ 0:5, since for this amplitude our oscillator shows a large hysteresis loop
with moderate response amplitudes well within the measurement range of the laser sensors. We also observe evidence for
detached responses similar to observations made in [16,17].

Fig. 8c compares the displacement of the base-structure (for different amplitudes of the shaker signal) with the
corresponding response curve for the impactor. Note that a different scale is used for the left and right y-axis and that
the lower set of curves ðAshaker ¼ 0:15Þ has been reduced by 75 percent in order not to clutter the plot. Comparison of
the two curves gives an indication of the coupling between shaker, base structure and impactor. For larger amplitudes of
the shaker signal ðAshaker ¼ 0:5Þ the base-structure displays a hysteresis behavior in the range ω≈½8;10� Hz reflecting the
behavior of the impactor. Around the impactors primary linear resonance frequency ω≈7:5 Hz, a considerable attenuation of
the amplitude of the base-structure is seen. At this frequency, the impactor is seen to act almost as a tuned mass damper. For
our studies this is not a problem as the mechanical system serves well as a test case for control-based continuation as well
as a prototype of systems with build in actuators. In fact it creates a favorable amplitude-attenuation around resonance,
making it possible to make better use of the measurement-range of the displacement-sensors.

For comparison, in a second sweep we also produced the set of amplitude response curves shown in Fig. 8b, where
we sweep the amplitude of the shaker signal up and down. Although the hysteresis loops are significantly larger when
sweeping the amplitude instead of the frequency, the amplitude is less suitable as a bifurcation parameter, because we find
that some response amplitudes exceed the measurement range of our sensors (not shown in the figure). As a third sweep
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Fig. 8. Results of different parameter sweeps performed on the experimental test rig (Fig. 4). Panels (a) and (b) show series of frequency and amplitude
responses for the coupled system consisting of impactor, base-structure and shaker. The response amplitude is given as the Euclidean norm of the Fourier-
coefficients ∥c∥. Panel (c) presents the displacement of the base produced by the shaker for two different fixed amplitudes of the shaker signal. The lower set
of curves (A¼0.15) has been scaled down by a factor of 75 percent to make the figure less cluttered. The upwards sweep is denoted by the black curves ( )
and the downwards by gray ( ). For the overlaid frequency response curves + marks the upwards while ○ marks the downwards sweep. Panel (d)
presents series of frequency sweeps obtained by using the electromagnetic actuators as source of excitation. Each of the sweeps took 30 h to complete and
has a resolution of 200�50 measurement points, with the highest resolution being in the swept parameter.
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we produced a set of frequency response curves using the electromagnetic actuators as the source of excitation (d). There
are three important differences to the previous tests. Firstly, since the input/output relation is different, we do not expect the
exact same response as in panel (8a). The second important observation is that although the signal sent to the magnet driver
is sinusoidal, the actual forcing is not due to cut-off of the voltage at 26 V. Therefore, for increasing driving amplitudes the
signal starts containing higher harmonics and will eventually turn into a rectangular wave resulting in bang-bang drive.
Finally, for driving amplitudes Amagnets40:7 and larger driving frequencies we observe the effect of the nonlinearity of the
actuation system. There is a sharp increase in amplitude and the mass starts impacting the magnets. As a result we restrict
the amplitude of the driving signal to the range of safe (impact free with respect to the magnets) operation.

4. Control tuning

We propose and test a method for tuning the control parameters, which consists of a systematic sequence of experiments
that neither requires a model nor any other prior knowledge about the object under test. We arrived at the proposed tuning
procedure in a trial-and-error process that included many failing continuation runs with a subsequent investigation of the
reason of failure and a revision of the tuning process that we will outline below along with the experiments.

4.1. Stabilizing the static equilibrium state

The most simple experiment to gain insight into the performance of our control system is to stabilize the static
equilibrium position under the influence of a harmonic excitation exerted by the shaker under variation of the control gains.
To this end, we set the reference trajectory to x(t)¼0 and apply a harmonic forcing with amplitude Ashaker ¼ 0:5 and
frequency ω¼ 7:75 Hz. One can then vary the various control parameters and use the resulting amplitude of the impactor as
a measure of the control power.

Since we intend to use the control scheme for control based continuation, this basic set-up is not sufficient. During the
prediction–correction cycle a path following method will frequently change the system's parameters and the reference
trajectory. This amounts to applying perturbations to the system and an obvious requirement for a non-invasive, locally
stabilizing control scheme is robustness with respect to such perturbations that may not be small. Therefore, we augment
this experiment with the application of a large perturbation (created by the timed perturbation block) during a test of a set
of control gains. For each pair (Kp, Kd) we applied a perturbation with a duration of 0.5 s, let the system settle and extract the
amplitude of the response from a 5 s measurement frame. Fig. 9 shows the displacement of the impactor mass for one such
measurement cycle with stabilizing control. For sets of gains resulting in unstable control, the response often leads to the
impactor mass hitting and sticking to the electromagnets, resulting in a square-wave-like response with a large amplitude.

Fig. 10 shows the result of three such investigations for different values of the overall scaling gain CFGain. As expected, the
control becomes more effective for larger control gains. Less expected, but resulting from the nonlinearity of the actuation system is
the region of inefficient control appearing in the top-right corner of the graphics. Also somewhat counter-intuitive is the
observation that negative proportional gain seems to improve the control. In conclusion, these results suggest to use a pair of gains
that is close to the boundary of effective control as the control strength increases with increasing gains.

4.2. Stabilizing a stable impacting equilibrium state

The previous experiment provides quantitative information about the ability of our control system to stabilize a target
state. Different from the situation in continuation, the target state was not close to any equilibrium position, hence, the
results do not provide information about whether the control scheme is invasive or not. In order to obtain information about
the latter requirement, we perform a modified experiment where we set the target state to an actual equilibrium response
of the impactor and repeat the previous experiment with this target reference trajectory.

Fig. 9. Time series for the impactor mass during one measurement cycle for the experiment of stabilizing the static equilibrium. (1) No harmonic forcing is
applied, (2) harmonic forcing (Ashaker¼0.5 and ω¼ 7:75 Hz) is applied and transients are allowed to die out, (3) control is enabled with parameters Kd¼0.5,
Kp¼5, CFGain¼0.750 (stabilizing control) and the system is allowed to settle, (4) extra wait-time to allow for a possible instability of the control to grow,
(5) an in-phase perturbation is added to shaker and control-signal to test the controls' robustness against large perturbations, and transients are allowed to
die out, and (6) the response is measured and Fourier-transformed.
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To this end, we again excite the impactor with a harmonic forcing with amplitude Ashaker ¼ 0:5 and frequency
ω¼ 7:75 Hz. These parameters are chosen such that the impactor has a unique impacting equilibrium state; see Fig. 8.
We chose to perform this test with an impacting state, because we are interested in the behavior of the control system
applied to a nonlinear response. To initialize the reference trajectory we record the equilibrium state and compute its
Fourier transform. As before, for each pair of control gains we apply a perturbation and extract the amplitude of the
difference between the reference trajectory and the observed response. If this difference is large, we have to assume that the
control scheme perturbs the experiment as the control is not even able to leave a known equilibrium state unchanged.
Ideally, we are able to identify control gains for which we have effective control as indicated in the previous experiment as
well as vanishing perturbation of an equilibrium state.

Fig. 11 shows the result for the same values of the overall scaling gain CFGain as in the previous experiment. We observe
a strip of control gains that result in non-invasive control, which is bounded from below and above. The results indicate that,
for CFGain¼0.6, a good choice of gains is Kp≈2 and Kd∈½0:5;0:75�, resulting in stabilizing and non-invasive control. Indeed,
using these settings it is possible to apply control based continuation to our test rig with some success: In a sequence of
continuation runs we were able to obtain a bifurcation diagram including unstable equilibrium states. However, the
continuation using these gains turned out to be quite unreliable, repeating the same experiment several times would often
result in unsuccessful runs. As a first conclusion, we obtained useful gains, but further refinement was necessary.

4.3. Stabilizing an unstable impacting equilibrium state

The previous tuning experiments resulted in a choice of control gains that enabled control based continuation for our test
rig, although with varying success. To improve the performance further, we investigate the dependence of the properties of
the control system on the filtering implemented in Matlab's PD block. The pole location and, hence, the cut-off frequency of
the filter is controlled by the parameter PDFC. For this investigation we fix CFGain¼0.65 and restrict the control gains to the

Fig. 11. Stabilization of an impacting stable equilibrium state as the control gains Kp and Kd are varied for different but fixed values of the scaling-gain
CFGain and a fixed filter coefficient PDFC¼180. The gray scale indicates the deviation of the measured response from the reference trajectory, which is
generated from the Fourier-coefficients of the stable equilibrium state. Darker shade corresponds to smaller deviation and, hence, to less invasive control.
We observe that proportional control increases invasiveness as the region of low invasiveness is further away from the line Kd¼0 as stronger proportional
control is applied. A good choice is Kp≈2. We also observe high invasiveness for control gains that led to inefficient control in the previous experiment; cf.
Fig. 10. The set of sweeps is recorded with the same resolution as the previous experiment and took roughly the same time to run.

Fig. 10. Stabilization of the static equilibrium state of the impactor as the control-gains Kp and Kd are varied for different but fixed values of the scaling gain
CFGain and a fixed filter coefficient PDFC¼180. The gray scale indicates the amplitude of the response, where a darker shade corresponds to smaller
amplitude and, hence, to more effective control. We observe an improvement of the control for increasing Kd, but also an onset of inefficient control
indicated by the light-gray area appearing at the top-right corner of the diagram for increasing overall gain. Each set of sweeps has a resolution of [75�75]
measurement-points with each point measured twice (the worst case value is used) and took around 50 h to complete.
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strip ðKp;KdÞ∈½1;3� � ½0;1:5�. To initialize the reference trajectory we use the Fourier-coefficients of an unstable equilibrium
state obtained in a successful continuation run. Since ambient conditions, like temperature, change over the course of these
experiments, such previously obtained solutions are only approximations and not precise enough to guarantee consistent
results. To ensure that the tests for all control gains are executed under the same conditions, we run Newton's method in
regular intervals to adapt the reference trajectory to changes in the environment. Otherwise, the experiment is identical to
the previous one, in particular, the criterion for the quality of the control.

Fig. 12 presents sweeps of control gains conducted for different values of the filter-coefficient PDFC, while stabilizing
a resumed unstable (stabilized) naturally occurring equilibrium state. We observe the emergence of a strip of efficient
and non-invasive control around Kd¼0.5 as well as a dramatic improvement for PDFC up to 150, with seemingly little
improvement for larger values. The proportional gain Kp is seen to have very little influence for PDFC4140. This test did not
lead to much improvement for the continuation, because our previous value of PDFC¼180 was already good.

During the tests with the filter-coefficient, we observed that with higher values of PDFC the time for the transient
behavior of the impactor becomes shorter, meaning that the time Newton's method would have to wait for transients to
settle might be shorter for higher PDFC gains. Putting this hypothesis to test, it turned out that the choice of parameters for
the control had a significant impact on how fast and consistent Newton's method would converge.

4.4. Optimizing performance of Newton's method

In the previous experiments we investigated how the control-parameters influence the controls' ability to locally
stabilize the system in a non-invasive way. Using these results it was possible to obtain effective control, but it turned out to
be important also to investigate how the control parameters influenced the convergence of Newton's method used in the
correction-step. For some sets of parameters that gave very stable and efficient control, Newton's method would converge
very slowly or even fail to converge. Recomputing the Jacobian every NJac iteration steps, rather than relying completely on
Broyden's updates would improve the convergence, at the cost of increased experiment time. A reason for this might be the
noise contamination of the measurements resulting in Broyden's updates that are sometimes not accurate enough to ensure
convergence.

Fig. 12. Stabilization of an impacting unstable equilibrium state as the control-gains Kp and Kd are varied for different but fixed values of the filter
coefficient PDFC and a fixed scaling-gain CFGain¼0.65. The gray scale indicates the deviation of the measured response from the reference trajectory,
which is set to the Fourier-coefficients of an unstable equilibrium state. Darker shade corresponds to smaller deviation and, hence, to both more effective
and less invasive control. We observe the emergence of a strip of effective control parameters around Kd¼0.5. Each panel has a resolution of
½Kp : 15� Kd : 45� with each point measured twice (worst case value used) and took around 15 h to complete.
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Failure of Newton's method to converge usually happens while tracking a branch of unstable equilibria or while tracking
around a fold point. In contrast, when correcting to a properly separated stable equilibrium-state, its attracting nature helps
to stabilize the convergence of Newton steps. Thus, an experiment to investigate Newton's method dependence on control-
parameters and recomputation of the Jacobian must seek to stabilize an otherwise unstable equilibrium state. Similar to the
previous experiment, we find the convergence of Newton's method not to be sensitive to changes in proportional gain
Kp, but very sensitive to the derivative gain Kd and the filter coefficient PDFC.

Fig. 13 presents the result of a series of convergence tests depending on the control-parameters and the number (NJac) of
steps between each full finite difference re-computation of the Jacobian. Similar to the experiment in Fig. 12 we resume an
unstable equilibrium-state obtained from a previous continuation run, and then test how well Newton's method converges
depending on control-parameters. Fig. 13a shows the results of this test with Broyden's updates only. There is a triangular
island of low iteration numbers and short convergence time for PDCF¼[109;236] and Kd¼[0.2;0.3]), where the correc
tion succeeds reliably. Furthermore, as shown in Fig. 13b, more frequent re-computation of the Jacobian stabilizes the
convergence for a larger range of the control-parameters at the expense of longer experiment times, as Broyden's update is
much faster than a full Jacobian re-computation. The set of gains for which Broyden only is very effective is observed to be
almost disjoint from the set of gains for which finite difference approximations are effective. In conclusion, this explains
our previous observation of unreliability in Newton's method when using only Broyden's updates, a small Kd is optimal here,
while a larger Kd is optimal when using both finite difference approximation and Broyden's updates. For our subsequent
continuation runs we used Kp¼2, Kd¼0.35, PDFC¼180 and CFGain¼0.65.

5. Continuation results

Fig. 14a presents a comparison of experimental frequency–response curves found by a conventional parameter-sweep
and by control-based continuation using the control-parameters obtained in the previous section. The results of the two
methods are seen to be in good agreement, while in addition to finding the stable branches the continuation method is able
to track around the two fold-points and trace out also the unstable part of the response-curve. Fig. 14b presents a number
of consecutive continuation-runs, which verifies that the continuation does in fact run very consistently when using the
control-parameters obtained by the presented tuning method. Fig. 14c and d shows zooms of Fig. 14b. Panel (c) shows a
small bubble of hysteresis around ω¼ 7:7 Hz. This is not an artifact of the continuation-algorithm, but actual measurable
dynamical behavior. Currently all continuation-runs terminate at this point. The method terminates because the stable
states coexisting at this point lie closer together in phase-space than is possible to distinguish by both measurement and
the control. Panel (d) shows the continuation tracing the upper fold point. At this point it is harder for the continuation
algorithm to approximate the data, as the curvature is increasing drastically. Furthermore, during experiments, we observe
that quasi-periodic vibrations seem to exist in the high-amplitude range. To properly distinguish these from normal periodic

Fig. 13. The number of corrector-iterations required for one correction-step to converge depending on control parameters Kd and PDFC. In panel (a) only
Broyden's updates are used to calculate the Jacobian whereas in panel (b) the Jacobian is re-computed initially and every NJac¼45 steps using finite
difference approximations. The integers indicate the number of iterations necessary for convergence, and are shaded according to computation time with
black corresponding to low computation time and gray high. Note that computation time and number of iterations do not correlate, as re-computing the
Jacobian using finite differences is expensive. Also a minimum of five steps are used in order to provide statistical evidence that the correction did
not satisfy the convergence criteria by chance. Non-converging parameter sets are removed leaving empty spaces. The sweeps were made using a fixed
proportional gain of Kp¼2 and CFGain¼0.650. Each sweep is done twice and the worst case value is used for both calculation time and number of
iterations. Each panel took approximately 20 h to obtain.
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steady states require longer measurements to be used in the Fourier-transform. Nevertheless, the continuation algorithm
seems to be quite robust and perform very consistently.

6. Conclusions

Our experiments show that it is possible to construct a non-invasive and locally stabilizing control using electromagnetic
actuators despite the resulting nonlinearity of the actuation force. As a consequence, it becomes feasible to conduct
experimental bifurcation analysis for certain types of smart machinery using control-based continuation. The sequence
of experiments proposed here shows how to tune a controller without a model for control or actuators, which is important
if one wishes to apply the method to test-subjects for which no sufficiently good models are available. An interesting
observation is that more frequent recomputation of the Jacobian using finite difference approximations seems to improve
convergence of the Newton corrector for a large range of control parameters.

The experimental tuning process as presented here required about one month of consecutive experiments. However,
since we used a high resolution over the full range of gains for producing the graphics, there are opportunities to shorten the
required time dramatically. For example, in our study we observe the control to be most sensitive to changes in the
derivative gain Kd and the filter coefficient PDFC. A significant speed up will, therefore, already result from restricting
a detailed study to the most influential parameters, which may be identified rather quickly in simple experiments.
Furthermore, using coarser grained parameter sweeps seems to be sufficient in many cases and allows one to reduce the
required time even further. Another idea to improve the performance of the tuning process is to locate only the boundary of
stability in Figs. 9 and 11. This would either speed up the tests, or allow the inclusion of an additional parameter in the
tuning process without loss of performance.

Fig. 14. Frequency responses for the impact oscillator obtained by control-based continuation. Panel (a) compares the result of the continuation method
with those of a parameter-sweep (explained in Section 3.4), showing (for the stable branches) good agreement between the two methods. Panel (b) shows
several consecutive continuation-runs overlaid, and confirms that the method provides consistent results. Panel (c) shows the occurrence of a small
hysteresis bubble. Currently all continuation runs terminate at this point, since the accuracy of measurements and actuation is not sufficient to distinguish
the coexisting states at this point. Panel (d) shows a zoom of the upper part of the frequency–response, and confirms that the continuation method is able
to track around the upper (as well as the lower) fold point. A full frequency response, as the one shown in panel (a), is a combination of two separate runs
started on each side of the point where the method terminates and takes a total of approximately 8 h to complete.
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Further problems we plan to address are monitoring of stability of steady-state responses, studies of a test rig with three
degrees of freedom, and applications to rotating machinery with foil-bearings, mounted on rotors with actively controllable
bearings. First experiments testing the feasibility of monitoring stability of steady-state responses by disabling the controller
in different ways for short periods of time have been presented in [18]. We aim at refining these ideas such that robust and
reliable stability tests become available in the near future.

The Continex toolbox we developed to interface experiments with the existing Matlab continuation-platform COCO [6] is
publicly available via Sourceforge [15].
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Appendix A. Non-invasiveness of the control-scheme

That the convergence criterion for the correction-step indeed implies a vanishing control signal follows from non-
invasiveness, which holds for the linear PD scheme, since

∥uc∥∞ ¼ ∥Gðx−zÞ∥∞ ¼ ∥Kpðx−zÞ þ Kdð _x−_zÞ∥∞;
≤Kp∥x−z∥∞ þ Kd∥ _x−_z∥∞;

≤maxfKp;Kdgð∥x−z∥∞ þ ∥ð _x−_zÞ∥∞Þ;
≤δ∥x−z∥1; (A.1)

which in turn implies that the control signal is bounded by the residual

∥uc∥¼ ∥Gðx−zÞ∥≤δ∥x−z∥;
≤δκ∥F∞ðxÞ−F∞ðzÞ∥;

≤δκð∥Fðc; μ;NÞ∥þ RQþ1Þ; (A.2)

where RQþ1 is the residual term that arises because the Fourier-transform uses a finite number of modes for the projection.
This underlines the necessity for using a sufficient number of modes in order for the Fourier-transform to represent the
dynamics of the system within measurement accuracy. In our experiments we found that Q¼5 is more than sufficient.
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ABSTRACT
The newly developed control-based continuation technique

has made it possible to perform experimental bifurcation anal-
ysis, e.g. to track stable as well as unstable branches of fre-
quency responses directly in experiments. The method bypasses
mathematical models, and systematically explores how vibration
characteristics of dynamical systems change under variation of
parameters. The method employs a control scheme to modify the
response stability. While this facilitates exploration of the unsta-
ble branches of a bifurcation diagram, it unfortunately makes it
impossible to distinguish previously stable and unstable equilib-
rium states. We present the ongoing work of developing and ap-
plying the control-based continuation method to an experimen-
tal mechanical test-rig, consisting of a harmonically forced non-
linear impact oscillator controlled by electromagnetic actuators.
Furthermore we propose and test ideas on how to determine the
stability of equilibria states during continuation.

INTRODUCTION
Experimental investigations of nonlinear mechanical sys-

tems present many difficulties. While it is straightforward to

extract frequency and amplitude responses of linear systems in

an experiment, this is no longer true for nonlinear systems. The

co-existence of multiple dynamically stable equilibria separated

by unstable ones cause problems since the experiment can jump

∗Address all correspondence to this author.

between equilibrium states. To illustrate this, we consider the

classical example of a frequency response for a system with a

softening or hardening nonlinearity (cf. Fig. 1). Comparing with

its linear equivalent, the nonlinear system will have its resonance

peak bent over to one side, creating a frequency region in which

two stable and one unstable dynamic equilibrium co-exist.

The conventional way of investigating such nonlinear sys-

tems experimentally is by parameter sweeps, where a parameter

(in this case the frequency of external excitation) is swept up and

down, and the stationary response is recorded. Figure 2 shows an

example of an experimental parameter sweep for the mechanical

system investigated in this paper. Since the equilibria associated

with the stable branches of the bifurcation diagram are (locally)

asymptotically stable, the system will continue along the branch

on which it is initiated as the sweep parameter is varied. In Fig. 2

this property is exploited in order to reveal both stable branches,

as the upwards sweep is initiated on the upper branch, and the

downwards sweep on the lower.

It is evident that this method only works under certain con-

ditions, which cannot always be expected to hold. First of all,

it must be possible to initialize the system on the desired equi-

librium state, which might not be possible in regions with mul-

tiple co-existing stable equilibrium states. Secondly the system

must not accidentally jump between different stable equilibrium

states, which puts requirements on both the external excitation

and the dynamics of the system. The perturbations introduced

by the external excitation and noise should be small enough not

1 Copyright c© 2012 by ASME
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to cause an accidental jump between equilibrium states, which

again requires the equilibrium states to be sufficiently separated

in phase-space. Comparing Figs. 1 and 2 illustrates another im-

portant point; the parameter-sweep only detects stable equilib-

rium states. This is because the unstable equilibria act as sep-

arators between the stable ones, and the system will always di-

verge from unstable equilibria. Nevertheless, the unstable equi-

librium states influence the transient behavior of the system and,

therefore, hold important information for fitting a correct model.

Furthermore, seemingly unconnected branches of stable steady

state dynamics in the bifurcation diagram might be connected

through branches of unstable equilibrium states. Thus follow-

ing these unstable equilibrium states can be a key for obtaining a

more complete picture of the dynamics. Finally, because unsta-

ble equilibrium states cannot be observed in experiments, they

are sometimes considered as hypothetical artifacts, while our re-

sults support the point of view that they are not.
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(THEORETICAL) FREQUENCY RESPONSE.

Control-based continuation provides a more systematic ap-

proach to investigate the nonlinear dependency of vibration char-

acteristics on system parameters directly in an experiment. Most

importantly, it provides a mean to follow and measure branches

of unstable dynamics. The method was first introduced in [1]

and developed further in [2–7]. The fundamental idea is to ap-

ply a control force to the system under investigation and then use

a predictor-corrector path-following algorithm to systematically

trace out branches of a bifurcation diagram. The controller lo-

cally stabilizes the state requested by the prediction-step and will

in turn stabilize otherwise unstable steady states. It is essential

that the control scheme is non-invasive, meaning that the steady

state dynamics of the controlled and the un-controlled system
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are identical. While the modification of the systems’ stability fa-

cilitates exploration of the unstable branches of the bifurcation

diagram, it makes it impossible to differentiate easily between

previously (un-controlled) stable and unstable equilibria.

We present the ongoing work of improving the method of

control-based continuation and apply it to an experimental me-

chanical test-rig, consisting of a harmonically forced nonlinear

impact oscillator controlled by electromagnetic actuators. Re-

sults from the experimental bifurcation analysis are presented

and discussed in the light of evaluating the method. Furthermore

we propose new ideas on how to determine the stability of bifur-

cation branches during continuation. These are based on momen-

tarily switching off or scaling the control, while monitoring the

resulting behavior of the uncontrolled system. The implementa-

tion and experimental tests of these ideas have not been carried

out at the time of writing. More resent results will be presented

at the conference.

METHOD
Control Based Continuation

The fundamental idea of the method of control-based contin-

uation is to construct a suitably controlled experiment and apply

a continuation algorithm to it. By suitably controlled experiment

we mean that the controller should only facilitate the measure-

ment of steady state dynamics, not alter the equilibrium states

from those of the corresponding un-controlled experiment.

Continuation algorithms employ a predictor-corrector path-

following algorithm to systematically trace curves of steady state

dynamic responses under variation of parameters. In an experi-

ment, a prediction step in a tangent direction of the parametrized

2 Copyright c© 2012 by ASME
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curve can be understood as requesting the experiment to go to a

specific equilibrium state. This state might not be a natural state,

by which we mean an equilibrium state that exists for both the

controlled and un-controlled experiment, but rather an artificial

state, that can be stabilized by the control. The correction step

then applies an iterative nonlinear (Newton-like) solver in order

to correct the predicted state, until the system reaches a natural

state that we are interested in measuring. As will be explained in

the following, the method implies constraints on the control and

requires the formulation of a zero-problem, which can be used

with continuation algoritms such as COCO [8, 9] or AUTO [10].

We consider an experiment to be a process that runs over

time t and depends on parameters μ . Making a single measure-

ment can be thought of as a function evaluation y(μ, t). If we

are interested in measuring periodic states we need to sample

the experiment over a time interval covering several periods. We

represent one such measurement as a finite sequence of the form

Y (μ,N) = {y0, . . . ,yN−1}, (1)

where N denotes the number of sampled points. The measure-

ments are taken with a constant sampling interval h, meaning

that the k-th measurement is yk = y(t0 + kh), where t0 denotes

the starting time of the measurement. Similarly, we denote a

measurement of a corresponding controlled experiment as

Zu(μ,N,x) = {z0, . . . ,zN−1}, (2)

where u = u(t) denotes the control signal and x = x(t) is the ref-

erence trajectory requested by the continuation algorithm. The

controller and the controlled experiment must satisfy a number

of conditions:

1. The controlled experiment must be consistent. That is, for

zero control the controlled experiment must be identical to

the original experiment: Z0 ≡ Y , and the controlled exper-

iment Zu must converge smoothly and continuously to the

un-controlled experiment Y when the control u → 0.

2. The control scheme must be locally stabilizing, i.e. any

equilibrium state of Y (stable or unstable) must become an

asymptotically stable equilibrium state of Zu.

3. The control must be non-invasive, meaning that the con-

trol signal should be bounded by the difference between the

requested reference trajectory and the measurement of the

controlled experiment: ||u|| ≤ δ ||x− z|| (Lipschitz continu-

ity with appropriately chosen norms). This implies that the

control-signal u will vanish whenever the requested state x
is a natural state for the system.

The first point implies some intuitive but quite important restric-

tions on the control actuator. When the control signal is zero,

the controller should not alter the dynamics of the system. Many

actuators, e.g. servo-motors and hydraulic actuators, add addi-

tional inertia, stiffness and damping to the system, effectively

changing the un-controlled experiment. This is the motivation

for choosing electromagnetic actuators for the setup investigated

in this paper. There is no direct contact between the actuator and

the mechanical system and residual magnetization is found to be

small. Another workaround is simply adding the control force to

the external excitation force as in previous studies [3].

The second point makes it possible to follow unstable equi-

librium states as well as dealing with multiple co-existing steady

states, as long as these are sufficiently separated in phase-space

compared to the quality of measurements and control.

The control-scheme should satisfy all the conditions above,

and seek to minimize the difference x(t)− z(t). This can be ob-

tained by using a PD-Controller, G, with appropriately chosen

gains GP and GD. The control signal can be expressed as

u(t) = G(x(t)) := PD(x(t),z(t)), (3)

= GP(x(t)− z(t))+GD(ẋ(t)− ż(t)) (4)

where x(t) is a reference trajectory set by the continuation al-

gorithm, and z(t) is the measurement of the controlled experi-

ment taken at time t. This control scheme satisfies the inequal-

ity ||u||0 ≤ δ ||x− z||1, where ||u||0 := sup |u(t)|, t ∈ D ⊆ R, de-

notes the supremum norm and ||u||1 := ||u||0+ ||u′||0 denotes the

C1 norm. The utilization of the C1 norm on the right-hand side

implies a need for smoothing noise contaminated measurements

using signal filtering, which must balance the two competing tar-

gets of not amplifying high frequency noise while not making

the control too slow.

We denote a discrete Fourier transform of a sequence by FQ,

where Q is the number of Fourier-modes that is projected onto.

With this notation, the Fourier-projection of the reference trajec-

tory is given by

c = FQ(x). (5)

Now a zero-problem can be formulated as

F(c,μ;N) := FQ{Zu(μ,N,F−1
Q (c))}− c, (6)

which will set a reference trajectory and parameters, wait for

transients to die out and compute Fourier transform of the re-

sponse. Then the Fourier coefficients of the obtained response

are compared with those of the target trajectory. We assume that

the reference trajectory is an approximation of a natural response

when its Fourier coefficients are identical to those of the mea-

sured response. Our control is non-invasive since the PD control
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scheme is linear and

||u||= ||PD(x− z)|| ≤ δ ||x− z|| (7)

≤ δκ||F∞(x)−F∞(z)|| (8)

≤ δκ(||F(c,μ;N)||+RQ+1), (9)

where RQ+1 denotes residual terms that arises because a finite

number of Fourier-modes is used in the projection. This means

that it is important to include sufficiently many terms in the

Fourier-projection to correctly represent the dynamics of the sys-

tem. In our experiments we have used Q = 5.

As a criteria for convergence, we use ||F(c,μ;N)|| < TOL,

where TOL is typically of the order of the measurement error. In

other words; if the control signal is sufficiently small, the mea-

surement is accepted as a natural state. This indirect measure for

convergence is necessary, since it is not possible to measure the

un-controlled experiment for comparison.

Note that the zero-problem F can be evaluated asyn-

chronously to the experiment, meaning that the experiment and

control can run in real-time, while the continuation algorithm can

run separately on a computer.

Determining Stability
Since control-based continuation locally turns both stable

and unstable equilibrium states into asymptotically stable ones,

it is no longer possible to determine stability using traditional

methods of dynamical systems theory. The key idea for enabling

measurements of stability is to modify the control signal for a

certain amount of time and study the resulting behavior of the

system. Three approaches that seem feasible are:

1. Turning off the control and monitor if the system diverges.

If we sample a Poincaré-map it should become possible

to quantify the stability using classic Lyapunov stability

criteria, for example, the rate of divergence (Lyapunov-

exponent). Sampling multiple Poincaré-sections should al-

low for obtaining statistically reliable estimates.

2. Turning off the control inside a trust region in phase-space

and monitor if the system diverges. The control should be

turned back on as soon as the system exits the trust-region.

This region could, for example, be defined by comparing

the current state with the reference trajectory. We assume

unstable behavior if the system leaves the trust region.

3. Applying a nonlinear scaling function, usc to the control-

signal; cf. Fig 3. Stability might be determined applying sta-

tistical analysis on a sampled orbit, assuming that the non-

linear scaling results in different distributions of points for

stable and unstable equilibrium states.

Which strategy can be used during continuation depends on

two properties: how quickly the system diverges from an unsta-

(x− z)(x− z)

FIGURE 3. STRATEGIES FOR SCALING OF THE CONTROL.

ble state, and if the state can be restored by the control-system.

The latter might not be possible if divergence causes damage to

the system, or if the control-energy is insufficient to restore the

state of the system once diverged. Strategy 1 requires the sys-

tem to either diverge slowly over several periods and any natural

state to be restorable by the control system. Strategies 2 and 3

implement precautions to prevent catastrophic divergence, which

means that the controller does not have to be able to restore the

system after divergence. On the other hand, strategy 1 provides a

quantitative characterization of stability, while the other two only

indicate if an equilibrium state is stable or not. Note also, that

due to the fact that we can observe divergence only over a finite

amount of time, equilibrium states with strong transient growth

of perturbations will be classified as unstable.

EXPERIMENTAL SETUP AND IMPLEMENTATION
The experimental test rig is shown in Fig. 4. It comprises

an impact-oscillator with a hardening nonlinearity, controlled by

electromagnetic actuators. The impactor is a flexible pendulum

(1) which, when vibrating with large enough amplitudes, im-

pacts a mechanical stop (2) causing a steep increase in stiffness.

The pendulum is mounted on a base (3), that can be moved in

the horizontal plane by means of an electromagnetic shaker (4).

The horizontal displacement of the platform and the pendulum is

measured using two laser displacement sensors (5). An electro-

magnetic actuator (6) is mounted on both sides of the pendulum

mass. The resulting magnetic field in the gap can be varied us-

ing an amplified control signal. Data acquisition and real-time

control is realized using a computer equipped with a dSPACE

DS1104 board and MATLAB/Simulink.

Figure 2 presents a frequency response obtained by a

frequency-sweep. It is seen that the backbone of the frequency

response is bent, creating a region, where multiple steady states

co-exist. This is recognized as a typical feature of systems

with a hardening nonlinearity. Note that the shaker does not

have a feedback control, meaning that the dynamics of the

base-structure affects the displacement produced by the shaker.
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FIGURE 4. THE EXPERIMENTAL TEST RIG. (1) FLEXIBLE

PENDULUM, (2) MECHANICAL STOPS, (3) BASE STRUCTURE,

(4) ELECTROMAGNETIC SHAKER, (5) LASER DISPLACEMENT

SENSORS, (6) ELECTROMAGNETIC ACTUATORS.

For our experiments, this is not a problem; the test-rig can still

be used for proof of concept, and it introduces a scaling, which

lowers the forcing amplitude around the resonance. This means

that we can use more force overall, making better use of the

resolution of the sensors. A similar experimental test rig was

investigated in [11, 12] showing many of the same dynamical

features.

Figure 5 illustrates the communication between software

and hardware. Tasks that have to be executed in real time run

on the dSPACE board, while the continuation core algorithm and

plot routines run asynchronously on the computer. The real time

application generates the excitation signal that is sent to the elec-

tromagnetic shaker and constructs the control signal based on

the difference between the reference trajectory and the measured

relative displacement. The control-scheme is implemented using

a standard MATLAB/Simulink PD-controller block. Communi-

cation between the computer and the board is performed by us-

ing the MLIB/MTRACE MATLAB interface libraries provided

by dSPACE. Simulink-blocks for composing and decomposing

periodic signals from and to their approximated Fourier coeffi-

cients in real time are implemented on the dSPACE board. The

computer also runs dSPACE ControlDesk, which is used to mon-

itor various parameters during the experiments.

The PD-controller was tuned using a brute-force sweep

method. Different sets of gains was tested in terms of stability

and non-invasiveness of the control, in order to find an optimal

combination af gains. Details can be found in [7].

RESULTS
Continuation

Figure 6 shows frequency responses for the experimen-

tal test-rig obtained by both control-based continuation and

frequency-sweep. Note that the curve obtained by continuation

matches the result found by the frequency sweep, but also cap-

tures a branch of unstable steady states. The traced curve is seen

to be irregular for high amplitudes. To some extend, this is an

artifact of the interpolation algorithm used by the continuation
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FIGURE 6. FREQUENCY RESPONSE OBTAINED BY

CONTROL-BASED CONTINUATION AND PARAMETER SWEEP
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DS1104 Controller board running the 
compiled Matlab/Simulink model
- PD-Control (non-invasive)
- Signal for vibration-shaker
- Data Acquisition
- Digital filtering
- Fourier Transformation

REAL TIME TASKS

Control signal

Measured displacement in time

Shaker signal

Control Target 
(Fourier projection)

PD-Controller gains

Shaker excitation 
parameters

Measured vibration
(Fourier projection)

Monitored Parameters

PC Running Matlab and 
dSpace ControlDesk
- Experiment monitoring 
- Continuation Core algorithm 
- Output bifurcation diagram

ASYNCHRONOUS TASKS

A sin(Ωt)

FIGURE 5. OVERVIEW OF THE COMMUNICATION BETWEEN HARDWARE AND SOFTWARE.

code (which we are working on improving), but also due to com-

plicated dynamical features such as small hysteresis loops along

the tracked curve.

Preliminary Tests for Stability Determination
Figure 7 shows another frequency response for the test-

rig. Three different co-existing dynamical equilibria states are

marked at a forcing frequency of 9 Hz: (1) Upper stable steady

state, (2) Unstable steady state, (3) Lower stable steady state.

Next we show how the system behaves when the control is turned

off. This gives an indication of the usefulness of the different

strategies proposed for determining stability. The tests relies on

a newly implemented option to resume and correct a state from a

previous continuation.
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FIGURE 7. MULTIPLE CO-EXISTING STATES. (1) UPPER STA-

BLE, (2) UNSTABLE, (3) LOWER STABLE.

Figure 8 shows a measured time-series with the system ini-

tiated on the unstable state (2) (cf. Fig. 7). After some time,

the control is turned off, and the system diverges until it finally

settles on the lower stable state (3). The target trajectory shown

in the plot is the reference that the continuation requests from the

control, when this is turned on. After the system has settled on

the lower stable state (3), the control is turned back on, and the

unstable state (2) is resumed.

Figure 9 shows a test similar to the previous. The system is

initiated on the unstable state (2) and the control is turned off.

In this case the system diverges until it settles onto the upper

equilibrium (1), which is seen to have a slightly higher amplitude

and is phase-shifted in comparison with the unstable state (2),

and hence the target trajectory.

Figure 10 shows a test where the system is initiated on the

upper stable state (1), and the control is switched off. As should

be expected, the system does not diverge. Note that the con-

trol signal has approximately the same amplitude in all the three

cases (Figs. 8 - 10), and that the stable state is maintained with-

out any perturbation, when turning off the control (Fig. 10). This

indicates that once the target trajectory is converged to a natural

state for the system, the control power exerted is of noise level

and our control is practically non-invasive.

DISCUSSION
The presented experimental results of applying control-

based continuation (Figs. 6 and 7), show that the method works

well to obtain bifurcation diagrams directly from an experiment.

It can produce results similar to those of the parameter-sweeps

and mathematical models. In addition to parameter-sweeps, the

method is able to continue past folds and measure branches of

unstable steady state dynamics. The refinement of details along

the tracked curve is limited only by the quality of the measure-
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FIGURE 9. TIME SERIES: UNSTABLE STATE TO UPPER STABLE STATE.

ments and the control. In turn, forcing the continuation algorithm

to use larger prediction-steps, it is to a certain extend possible to

disregard small-scale dynamical features. For each step the con-

tinuation algorithm takes along the curve, it measures and inter-

polates many points. The interpolation-algorithm occasionally

gives rise to undesirable artifacts. We are currently improving

this.

The preliminary tests in Figs. 8, 9 and 10, show promising

results for successful implementation of the different strategies

for checking stability. The system diverges slowly from unstable

equilibrium states, and can be resumed from any state, mean-

ing that any of the proposed strategies for determining stability

should be successful in future work. The stability check could be

implemented for every step the continuation accepts as a natural

state. Furthermore, the event-handling build into COCO [8, 9]

should be able to locate the bifurcation point where stability

changes. The aim is to produce experimental results resembling

the theoretical curve of Fig. 1. That is, frequency response and

similar bifurcation diagrams, with indication of stability along

the traced branches.
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Abstract

We propose and investigate three different methods for assessing stability of dynamical equilibrium states during

experimental bifurcation analysis, using a control-based continuation method. The idea is to modify or turn off

the control at an equilibrium state and study the resulting behavior. As a proof of concept the three methods are

successfully implemented and tested for a harmonically forced impact oscillator with a hardening spring nonlinearity,

and controlled by electromagnetic actuators. We show that under certain conditions it is possible to quantify the

instability in terms of finite-time Lyapunov exponents. As a special case we study an isolated branch in the bifurcation

diagram brought into existence by a 1:3 subharmonic resonance. On this isola it is only possible to determine stability

using one of the three methods, which is due to the fact that only this method guarantees that the equilibrium state can

be restored after measuring stability.

Keywords: Control-based Continuation, Experimental Bifurcation Analysis, Impact Oscillator, Electromagnetic

Actuators, Determining Stability, Finite-Time Lyapunov Exponent (FTLE)

1. Introduction

We propose and test different strategies for experimentally determining the stability of dynamical equilibrium

states (here periodic orbits with stationary amplitude) that can be applied when conducting experimental bifurcation

analysis using a control-based continuation method. Control-based continuation [1, 2, 3, 4, 5, 6] is a technique that

allows path following of stable as well as unstable dynamical equilibrium states under variation of system parameters,

i.e. it enables investigations of the type shown in Figure 1. The method utilizes a non-invasive stabilizing control,

which locally turns both stable and unstable equilibrium states into asymptotically stable ones. A consequence of

adding control is that investigating the Jacobian or fitting a simple model to judge the stability of the system will yield

information about the artificially stabilized system rather than the underlying uncontrolled system.

Following Lyapunov’s idea of defining stability, we show how it is possible to assess the stability by modifying or

turning off the control signal for a certain amount of time, and study the resulting behavior of the system. As a result

it is possible to experimentally obtain bifurcation diagrams with indication of the stability of individual branches

as well as locating the bifurcation points where the stability changes, cf. Figure 1. Under certain conditions it is

possible to quantify the rate of divergence from an unstable state in terms of the finite-time Lyapunov exponent

(FTLE). Depending on the type of system, it may be unacceptable to allow unbounded divergence from an unstable

equilibrium: The divergence must not alter the system and the control must be able to restore the equilibrium state

after the stability check. We show how it is possible to assess the stability of an equilibrium state while only allowing

a limited divergence. Details on the experimental test rig (cf. Figure 2) and the implementation of the control-based

continuation method are given in [6], while here we propose and test new methods for determining stability.
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Figure 1: Experimental frequency response of a harmonically forced nonlinear impact oscillator obtained by parameter

sweep and control-based continuation. Response from traditional frequency sweeps is denoted by (+) for increasing

and (◦) for decreasing frequency. Response obtained by control-based continuation is denoted by (—) for stable part

and (– – –) for unstable part.

2. Experimental Setup

The experimental test rig is shown in Figure 2; it comprises a harmonically forced impact oscillator with electro-

magnetic actuators. The impactor is a flexible beam with a tip mounted mass. The beam will impact the mechanical

stops when the vibration amplitude exceeds the gap size. This impact causes an increased stiffness which results

in highly nonlinear responses for certain ranges of forcing parameters, see Figure 1. Note that the electromagnetic

shaker is not feedback controlled, causing a cross coupling between dynamics of the impactor and the shaker. Elec-

tromagnetic actuators mounted on each side of the impactor mass are used to generate a non-invasive control force

u necessary for the control-based continuation. The direction of the generated force is dependent on the sign of the

control signal. Two laser sensors are used to measure the relative displacement of the impactor mass, which is used

for characterizing the current state of the experiment x. Note that several internal scalings are used in the continuation

code, which means that the presented measured quantities are non-dimensionalized. The response amplitude of the

impactor is measured using the norm:

||c|| :=
√√√

2Q∑
i=0

c2
i , (1)

where the ci are the Fourier components and Q denotes the number of Fourier modes used, in our experiment usually

Q = 5. All results and plots presented throughout the paper are experimental measurements made using the test rig.

3. Suggestion of three methods for assessing stability in experiments

Control-based continuation employs a path following algorithm that tracks branches of stable and unstable equi-

librium states under the variation of system parameters. It works by iterating a series of prediction and correction

steps: First a prediction step is made in the tangent direction of the equilibrium branch, and then this prediction is

corrected orthogonally back onto the branch using a root finding algorithm [7]. Since we are continuing dynamical

equilibrium states, the predicted and current state are expressed in terms of a predicted reference trajectory y(t) de-

fined by the discrete points y j = y(t j), t j = t0 + jΔt, j = 0, 1, . . . , n and a measured state x(t) defined by the sampled

2
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Figure 2: The experimental test rig: A harmonically forced impact oscillator with electromagnetic actuators. (a) Front

view of the full test rig. (b) Impactor side view. The test rig consists of (1) a platform with flexible legs, which

allows movement only in the direction of forcing; (2) an electromagnetic shaker to apply a harmonic excitation to the

platform; (3) flexible beam with tip mass; (4) adjustable mechanical stops, which will cause impacts and increased

stiffness when the vibration amplitude of the beam exceeds the gap size; (5) electromagnetic actuators which can exert

a control force directly on the tip mass; (6) laser displacement sensors. Further details can be found in [6].
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points x j = x(t j), where Δt = 1/ fs is the sampling interval and fs the sampling frequency. The predicted state y(t) is

artificially created and stabilized by a non-invasive proportional derivative (PD) control:

u(t) = PD(x(t) − y(t)) := Kp(x(t) − y(t)) + Kd(ẋ(t) − ẏ(t)), (2)

where Kp and Kd denote proportional and derivative gain, respectively.

The corrector keeps changing the reference state y until the predicted and measured state are close to identical

x − y ≈ 0, at which point the periodic contribution from control effectively vanishes (u ≈ 0). The measured state x
is accepted as a stable or unstable equilibrium state of the underlying uncontrolled system, and the control is only

activated if the measured state x diverges from the reference state y. A bifurcation diagram (cf. Figure 3) consists of a

number of such successful continuation steps. At each accepted state we wish to determine and possibly quantify the

stability.

To determine stability information, we implement and test three simple ideas based on modifying or turning off the

control, while observing the resulting behavior of the system. In theory nothing happens when turning off the control

at a stable state, as long as turning off the control does not cause a perturbation to the system. Due to the fact that

an experiment will have noise in both measurements and control, the continuation algorithm accepts a measured state

x as an equilibrium state of the underlying uncontrolled system within some tolerance. Therefore, one must expect

a small residual drift when turning off the control at a stable state. The stability tests presented here all require the

tolerance with which the corrector accepts a state x as an equilibrium state to be sufficiently strict.

When turning off the control at an unstable equilibrium state, the current state x starts to diverge from the refer-

ence state y, cf. Figure 4. Branches of unstable equilibrium states act as seperatrices in the bifurcation diagram, so

depending on the initial conditions given when turning off the control, the state will diverge and settle onto another

stable state; in our system either a higher or a lower amplitude stable equilibrium state, cf. Figure 3. If the noise in

the experiment is very low, it might be necessary to introduce a small in-phase perturbation in order to facilitate the

divergence, but in our case the imperfections in the experiment make this unnecessary. In [6] it is explained how to

implement such an in-phase perturbation and an in depth investigation of the effects of turning off the control at stable

and unstable states is presented in [8].

Stability might also be assessed by locally identifying a linear model using grey- or black-box modelling on either

the open- or closed-loop system; see [9, 10, 11] for reviews of these methods. The control-based continuation method

is tailored towards experimental investigations of strongly non-linear dynamical systems, in some cases with unknown

actuator dynamics, for which one might not want or might not be able to make model assumptions. Therefore, we

restrict our attention here to methods that rely on observations only and, hence, allow for unconditional assessment of

(in)stability.

3.1. Method 1: Free flight stability check
The first method is based on a simple heuristic idea: Turn off the control actuators and observe if the current state

x diverges from the reference state y, implying that the equilibrium state is unstable. Figure 5 presents time series

from such an experiment starting from different equilibrium states. A conclusion to draw from these time series is that

it can be helpful to study the divergence of the difference x − y rather than x. A state can diverge from an equilibrium

both in amplitude and phase and the latter is more pronounced in the difference x− y (compare Figure 5b and 5c). We

define a normalized root mean square error

ε =
RMS(x − y)

1 + RMS(y)
(3)

where RMS denotes the root mean square value of a sampled signal defined as

RMS(x) =

√
1

n

(
x2

1
+ x2

2
+ · · · + x2

n

)
. (4)

The error ε provides a combined measure of how fast and far a state x diverges from a reference state y upon disabling

control, and it seems to be a robust measure of instability. A large error ε means that the state x has diverged from

the reference state y, and we consider it to be unstable. Since ε is a continuous measure (it can assume any real
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Figure 3: Bifurcation diagram with a continuous measure of stability plotted in grayscale (interpolated in between

measurement points): Dark tones denote a small stability estimator and hence a stable state. Lighter tones denote a

large stability estimator and hence an unstable state. All measurement points are marked with (·) and consecutively

number labeled (shown for every fifth point). These labels will be used to identify different equilibrium states and will

be referred to with # and label number throughout the paper.

−2 −1 0 1 2

−2

−1

0

1

2

x(t)

x(
t−

τ
)

(a)

−2 −1 0 1 2

−2

−1

0

1

2

x(t)

x(
t−

τ
)

(b)

Figure 4: Reconstructed phase plane orbits using the current state x(t) and a delayed coordinate x(t − τ), showing

two examples of divergence from unstable equilibrium states. (a) System is initialized on the stabilized equilibrium

state marked by #10 in Figure 3 corresponding to the initial orbit ( ). Once the control is disabled, the measured

state x starts to diverge from this equilibrium state and settles onto the upper branch, at slightly larger amplitude. (b)

Control is disabled from state #16 which results in x diverging and settling onto the lower branch, at a much smaller

amplitude.
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Figure 5: Time series for free flight stability tests. Left column: Time series of x (—) and y (—). Right column:

Difference between current state and reference state (x − y). (a) Starting at a stable state (#5). (b) Divergence from

unstable (#16) and settling onto lower amplitude stable state, the divergence predominantly changes the amplitude. (c)

Divergence from unstable (#10) onto higher amplitude stable state, the divergence changes both phase and amplitude.

(d) Stability test at a state very close to the upper fold point (#24), divergence is weakly exponential since the state is

close to marginally stable. Note the different scales of the vertical axis in the right column.

number ≥ 0) it is required to select a threshold for instability. If the error exceeds this threshold, the equilibrium state

is considered unstable and vice versa. Figure 6 shows the error ε for each point of the bifurcation diagram in Figure 3

along with the chosen threshold for stability. The grayscale used in Figure 3 reflects the value of ε and is interpolated

between each measured point along the curve. It appears that the estimator predicts a region of instability that is in

good agreement with theory.

There are some precautions to take when using the free flight stability test: Some systems can be allowed to have

unbounded divergence, while others cannot. In order to resume the continuation after a stability check, the control

must be able to restore the system to the reference state. This requires the divergence not to damage or alter the

system, and requires more available control energy than is necessary for the continuation itself. Furthermore, stable

and unstable states may lie close in phase space, and depending on precision of the test equipment it may be hard to

distill a binary measure of stability, as the indicator for stability in some cases approaches the threshold for instability

smoothly (cf. Figure 6).

Interpreting the time series for x or the difference x − y (cf. Figure 5) is straightforward for some states but less

obvious for others. Signals may look qualitatively different, depending on their location in the bifurcation diagram.

Nevertheless the divergence seems to be close to exponential for most unstable states, which means that a one degree
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Figure 6: Stability indicator ε for the bifurcation diagram in Figure 3. Numbers on the x-axis correspond to label

numbers along the bifurcation branch. The chosen threshold, which indicates the limit of instability εt = 0.05, is

marked by (- - -).

of freedom linear harmonic oscillator solution of the form: x − y = Aeλt cos(ωt + φ) + d (with variable phase φ,
variable amplitude A and DC-offset d) can be fitted. The finite-time Lyapunov exponent λ will give information about

how fast the system diverges. A more simple strategy is to do a linear fit to the logarithm of the peaks (cf. Figure 7),

which compares to looking at a Poincaré section. The slope of the linear fit will also yield the finite-time Lyapunov

exponent λ.
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Figure 7: Retrieving stability information for an unstable state (#16) by using a linear fit to the logarithm of the peaks.

(a) Smoothened difference x− y with detected peaks (using the Matlab functions: Smooth (moving average filter from

the Curve Fitting Toolbox) with a 20 points window and Findpeaks (Signal Processing Toolbox)). (b) Logarithmic

plot of the detected peaks (◦) along with linear fit (—) in the time-interval t ∈ [0.4; 1.2].
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3.2. Method 2: Stability check using deadband control

We introduce a deadband Π in the non-invasive control signal (2)

u(t) =

⎧⎪⎪⎨⎪⎪⎩0 for ||PD(x(t) − y(t))|| ≤ Π
PD(x(t) − y(t)) for ||PD(x(t) − y(t))|| > Π. (5)

Now nonzero control will only be enabled when the requested control signal exceeds the deadband. Proper choice

of this deadband will cause the control to enable only if the state x diverges from the reference state y. Stability is

determined by noting if the control was enabled. The number of control bursts might also be used as a semi-continuous

measure of stability for more noisy systems. Figure 8 shows time series for a deadband stability check for a stable and

an unstable state. Note that the control is only enabled for the unstable state, and that the state x is not allowed to have

unbounded divergence. The width of the deadband can be selected to be of the same order of magnitude as the noise

in the control signal, but in Figure 8 it has been kept relatively wide for visualization purposes. For the deadband

stability check to work, the deadband must be correctly adjusted (considering noise, closeness of nearby states and

the controls’ ability to restore the system) and the time window for the stability check must be long enough for the

system to diverge noticeably at all unstable states.
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Figure 8: Time series for deadband control stability tests at (a) a stable state (#5) and (b) an unstable state (#10).

Deadband limits (- - -) are shown together with controller output in the third panel and the deadbanded control signal

which is sent to the actuators is shown in the fourth panel. Note that the control is only active for the unstable state

(b) and that it manages to reduce the divergence amplitude of the system comparing with Figure 5c.
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3.3. Method 3: Deadband-limited free flight

This method combines the advantages of Method 1 and 2 in order to measure finite-time Lyapunov exponents λ
without allowing unbounded divergence. The trade-off is that the method requires conditions which cannot always be

expected from an experiment: The measurements have to be relatively clean, and the divergence has to be approxi-

mately exponential. Furthermore, the measured states must be allowed to diverge inside the deadband, which requires

the divergence to be completely reversible by the control. In other words, the divergence must not alter the system

and the control must be able to restore the equilibrium state after measuring stability.

We modify the deadband control such that whenever the deadband is exceeded (||PD(x(t)− y(t))|| > Π) the control

signal u(t) is held active for a certain time interval T ∈ [tenable; tenable+hold]. Consequently, the system is restored to the

reference state meaning that x − y ≈ 0. The result is a sequence with several periods of free flight limited to diverge

only inside the deadband as it is shown in Figure 9. For a sufficiently narrow deadband the divergence will only

include the local (linearized) behavior and not allow the system to settle onto a different stable equilibrium state. Our

observations suggest that the estimated Lyapunov exponent is not dependent on which side of the branch of unstable

equilibria the state diverges to, as long as we only study the local behavior. For each stability check (at every point of

the bifurcation curve) the following postprocessing is performed:

1. Center the data set x − y by subtracting its mean value.

2. Smoothen the time series using a moving average / lowpass filter. In Matlab this can be done by using the

function ’Smooth’ (Curve Fitting Toolbox).

3. Detect peaks of the absolute value of the smoothened signal to get both positive and negative peaks. It can be

helpful to use a peak detection algorithm that can discard values smaller than a certain tolerance and require the

peaks to be separated by a certain time span. In Matlab this can be done using the function ’Findpeaks’ (Signal

Processing Toolbox).

4. Divide the data set into separate segments of free flight. This can be done by checking the control signal, as this

is zero when the system is in free flight, cf. Figure 9.

5. Evaluate the Cooks’ distance [12] for each segment and use this information to remove statistical outliers from

the data sets.

6. Perform linear interpolation on each set of peak data and average the slopes to get the finite-time Lyapunov

exponent λ.

Near the fold points of the frequency response we experience a slow divergence (Figure 5d) but the exponential fit still

seems to be robust, cf. Figure 10. Note also that the method only estimates the divergence rates for unstable states.

For stable states the stability is not quantified and the value is set to zero for plotting purposes. For noisy experiments

or experiments with low sampling rate, it can be helpful to consider intersections with a hyper plane in the phase space

(e.g. zero velocity crossings) rather than detecting peaks of a time series, as the intersection can be located by linear

interpolation [13].

4. Results

The following will present the results of applying the three suggested methods for determining stability during

continuation using the test rig presented in Figure 2.

4.1. Continuation results

Figure 11 presents five consecutive continuation runs overlaid along with stability information obtained by the

three different stability test methods. Note that Method 1 and 2 give very similar results, while Method 3 estimates

the fold point amplitudes a bit higher and with less deviation than the other methods.
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Figure 9: Deadband-limited free flight stability check at an unstable state (#16). Removed outliers are marked by (×)

in fit. Average Lyapunov exponent: λ = 3.65 ± 0.58.
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Figure 10: Deadband-limited free flight stability check near the upper fold point (#24). Average Lyapunov exponent:

λ = 0.76. Note the slow divergence compared to the one in Figure 9.

10

111



7 7.5 8 8.5 9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Forcing Frequency [Hz]

R
es

po
ns

e 
A

m
pl

itu
de

 N
or

m
 ||

c|
|

(a)

7 7.5 8 8.5 9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Forcing Frequency [Hz]

R
es

po
ns

e 
A

m
pl

itu
de

 N
or

m
 ||

c|
|

(b)

7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Forcing Frequency [Hz]

R
es

po
ns

e 
A

m
pl

itu
de

 N
or

m
 ||

c|
|

(c)

Figure 11: Five overlaid bifurcation diagrams for forcing strength A = 0.5 with stability estimator plotted in grayscale

(dark for small values, light for larger values). Stability information retrieved using (a) the free flight method (Method

1), (b) the deadband control method (Method 2) and (c) the deadband-limited free flight method with Lyapunov

exponent estimation (Method 3). Note that the grayscale has been scaled nonlinearly to visualize the change of

stability at the fold points rather than the variation of the estimator along the unstable part of the branch.
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Figure 12: Stability estimator (normalized with respect to arclength of the branch in the bifurcation diagram) of

multiple continuation runs. Chosen stability threshold εt = 0.05 is marked by (- - -). Top panel shows the normalized

root mean square error ε for a free flight test (Method 1). Bottom panel shows the averaged Lyapunov exponent

estimated by the deadband-limited free flight method (Method 3).

4.2. Stability near the fold points

Figure 12 shows the stability estimators for the five bifurcation diagrams depicted in Figure 11, calculated using

methods 1 and 3. They are normalized with respect to the total arclength of the corresponding branch, e.g. applying

this normalization to Figure 6 the first and last point would get values zero and one respectively. This is necessary

since we use an adaptive continuation step length, causing the number of points along each branch to vary. The two

methods are seen to give qualitatively similar results, but the free flight test (cf. Figure 12(a)) shows a large jump

in estimator at the lower fold point and a smooth transition across the stability limit at the upper fold point. We

ascribe this to the fact that the normalized root mean square error ε is a combined measure of how fast and far a state

diverges, rather than an explicit divergence rate such as the finite-time Lyapunov exponent. At the lower fold point,

the system diverges and settles onto a stable state quite far from the unstable state, whereas close to the upper fold

the bifurcation branches lie very close (cf. Figure 13) causing a short divergence before settling onto a nearby stable

state. In comparison, the divergence rate λ in Figure 12(b) changes smoothly with respect to the arclength at both fold

points. Note that Method 3 detects the onset of instability by the control signal exceeding the deadband which means

that an equilibrium state is considered unstable when λ > 0. Figure 13 shows a zoom of the upper fold point with

stability information obtained using Method 3. It is interesting to note how the rate of divergence decreases smoothly

when tracking around the fold point, meaning that the stability changes smoothly along the equilibrium branch.

4.3. Stability at a family of isolated equilibrium branches (isola)

Figure 14 presents the experimental finding of an isola, by which we mean a family of stable and unstable equi-

librium branches that are detached from the primary resonance curve in the bifurcation diagram. This isola is created

by a 1:3 subharmonic resonance, at which the impactor is forced at approximately three times its fundamental reso-

nance frequency, but the response is approximately at its fundamental resonance frequency. The isola was found by

parameter sweep and two consecutive continuation-runs. Its existence was suggested by simulation of a single-degree-

of-freedom model of our test rig [14] and was initially found by systematic parameter sweeps. Several branches of

stable as well as unstable equilibria seem to coexist in that parameter region and continuing of the unstable branches is

a mean for mapping out a more complete picture of the possible dynamical responses. Near 26.6-26.8 Hz the branches

cease to exist due to a shift in the phase between impactor and platform, i.e. the impactor and platform starts to vibrate

in-phase, which causes the relative amplitude between impactor and mechanical stops to be insufficient for impact,

which in turn effectively changes the response of the system. At this point, the sweep settles onto the non-impacting

stable low-amplitude response, while the continuation reports non-convergence of the corrector and terminates. Our
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Figure 13: Zoom of the upper fold point in Figure 11(c).

observations indicate that the co-existing stable and unstable responses along the isola are so close to each other that

it is very difficult to distinguish these in the experiment. Therefore, a more refined and systematic investigation of this

isola seems to require an increased precision of measurements and actuation, as well as an implementation of means

for systematic branch switching at bifurcation points.

For the case of the isola, it was only possible to successfully apply the deadband control stability test (Method

2), as it would otherwise not be possible for the control to restore the equilibrium states after stability check. The

deadband had to be adjusted to only allow divergence just above the noise level (5 times tighter than the deadband in

Figure 8). Due to noise, the control signal would exceed the deadband a few times at the stable states, causing a few

control bursts, while unstable states were characterised by an effectively active control (an approximate factor of 100

more control bursts).

5. Conclusions

The experiments presented show that it is possible to assess stability during control-based continuation of bifur-

cation branches by momentarily modifying or turning off the control. Three different methods have been proposed:

1) Free flight stability check, 2) stability check using deadband control, and 3) deadband-limited free flight. All

three methods have been successfully applied to determine stability during experimental continuation, and each of the

methods is shown to be suitable in different situations:

The free flight stability test (Method 1) is robust and easy to implement but requires the divergence to be com-

pletely reversible by the control. The estimated normalized RMS error between reference and measured state is shown

to give a good indication of the stability but does not provide direct information about the rate of divergence. Similarly,

the deadband stability check (Method 2) does not provide information about the rate of divergence, but on the other

hand has the advantage to be employable while only allowing minimal divergence. The isola presented in Section 4.3

is a good example of the usefulness of Method 2, since its ability to limit the divergence to a pre-defined maximum

makes it the only of the three methods which allows stability assessment in this situation.

Finally the deadband-limited free flight method (Method 3) is able to provide an estimate of the rate of divergence

while allowing only a limited divergence. In turn the method puts more requirements on the experiment, is more

difficult to implement and has more parameters that need to be adjusted. The stability estimator is observed to approach
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Figure 14: Isola composed of the stable and unstable equilibrium branches of a 1:3 subharmonic resonance found

by a parameter sweep and two consecutive continuation-runs, using different settings for tolerances and step size.

The sweep is denoted by (+) for increasing and (◦) for decreasing frequency. Stability information is assessed using

Method 2.

the stability threshold smoothly at bifurcation points regardless of the stability test method. In other words, continuing

a branch of equilibria, the stability is noted to change smoothly, e.g. from unstable to stable, especially at the upper

fold point. A quantitative measure of stability is determined only at unstable states; to extend the capability to stable

states, one could introduce an in-phase perturbation and measure the (exponential) decay of transients. Unfortunately,

for the system that we investigate this is difficult because the transients are damped out within few oscillations at

stable equilibrium states away from the fold points. To get just a few points for estimation the perturbation has to be

so strong it effectively changes the response of the system. This could possibly be improved using a fitting method

which fits the whole data set rather than just the peaks.

The isola presented in Figure 14 serves as a good example of the usefulness of control-based continuation method

with additional stability investigations. It shows how the method can be used to obtain a more complete picture of the

bifurcation diagram in regions where multiple stable and unstable equilibrium states coexist. Furthermore, it is seen

that continuing branches of unstable equilibria can be the key in discovering seemingly unconnected stable equilibrium

branches. It also points out room for improvement, by underlining the need for a method to switch between multiple

branches at bifurcation points. Other possibilities for future research include fitting the time series obtained during

free flight to a single-degree-of-freedom harmonic oscillator to get statistically more accurate estimates of the finite-

time Lyapunov exponents. It might also be possible to determine the stability directly from the control signal. In our

experiments the control signal appears to be uncorrelated noise once the correction step has converged, regardless of

the stability of the equilibrium state. Perhaps superimposing the control with a noise signal or even introducing a

locally destabilizing control can help to develop maybe a faster method to determine stability and to obtain further

insights.
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Summary. We show how to implement control-based continuation in an nonlinear experiment using existing and freely available soft-

ware. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically

forced impact oscillator.

Introduction

We show how to perform experimental bifurcation analysis for nonlinear dynamical systems using control based contin-

uation, in particular tracking complete frequency response curves including their unstable parts. Nonlinear dynamical

systems are difficult deal with experimentally because of their ability to have multiple coexisting stable and unstable

equilibrium states, super/sub harmonic resonances, quasi-periodic and chaotic behaviour. Many of the well established

experimental methods use estimation and identification techniques that are based on the assumption that the system under

test is linear or close to linear. Applying such techniques to strongly nonlinear systems can lead to wrong measurements

and hence wrong model-assumptions, poor designs and failure of mechanical components. Experimental techniques for

stabilizing unstable periodic orbits (UPOs) in chaotic systems, such as Delayed Feedback Control and OGY-control,

are emerging (see [1] for an overview). For nonlinear mechanical systems with periodic or quasi-periodic behaviour,

the parameter-sweep remains the only widely used counter-part to linear methods such as experimental modal analy-

sis. Unfortunately, this method does not provide any information about unstable equilibrium states and can only handle

co-existence of equilibrium states to a certain degree. The newly developed control-based continuation requires the con-

stitution of a non-invasive real-time control and the use of a predictor-corrector type path following algorithm, but in turn

the method can provide information about how both stable and unstable equilibrium states change when system parame-

ters are varied. Furthermore, the stability can be determined and in some cases the instability can be quantified in terms of

Finite Time Lyapunov Exponents [2]. The metod works for linear, weakly nonlinear and strongly nonlinear systems and

can handle multiple co-existing equilibrium states, quasi-periodic behaviour and the occurrence of bifurcations. In the

following we give an overview of how one can apply this method in experiments using freely available existing software.

Experimental test-rig

The experimental test-rig is shown in Figure 1a and b. It comprises a harmonically forced impact oscillator controlled by

electromagnetic actuators. The harmonic excitation Fs is created by a electromagnetic shaker attached to the base and a

control force Fm can be exerted directly on the impactor mass using the electromagnetic actuators. Data acquisition and

the generation of control and forcing signals are done using a dSpace real-time control board.
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Figure 1: The experimental test-rig and results obtained by different experimental methods. (a) Illustration of the harmonically forced
impact oscillator controlled by electromagnetic actuators. (b) Close-up picture of the impactor system: (1) Flexible impactor with tip
mass; (2) mechanical stops causing impact and a hardening spring nonlinearity when vibration amplitudes exceeds the gap-size; (3)
electromagnetic actuators used to create a non-invasive control force; (4) laser displacement sensors. (c) Comparison of an experimental
frequency response obtained by frequency sweep and control-based continuation. Sweep is denoted by (+) for increasing frequency
and (o) for decreasing. Continuation is denoted by (—) for stable and (- - -) for unstable equilibrium branch.
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Implementing control-based continuation in an experiment

Control-based continuation was introduced in [3] and has been applied to different experiments in [4, 5, 6, 7, 8]. It employs

a path following algorithm to track response curves, while the equilibrium states are stabilized by an non-invasive control.

Some pre-requisites are necessary for control-based continuation: 1) It must be possible to vary the parameters of interest

(i.e. forcing frequency and amplitude) smoothly. 2) A zero-problem and an appropriate interface must be set up, so that

the continuation algorithm can evaluate the experiment. For time periodic equilibrium-states, such a zero-problem can be

formulated as:

F (c, μ;N) := FQ

(
Y (μ,N,F−1

∞ (c))
)− c = 0, (1)

where Y is the measurement of the controlled experiment, N is a number of sampled points, μ are parameters, Q is the

number of modes used in the Fourier transformation and c is the predicted state expressed in terms of its Fourier modes.

The continuation algorithm makes a predicted step in paramteres μ based on an experimentally estimated Jacobian, and

a corrector algorithm (typically a Newton-method) corrects the predicted state c until the prediction and measurement

match. 3) A non-invasive control must be realised. By non-invasive control we mean a control that is only active when

the system is away from an equilibrium state of the underlying un-controlled system. This also means that if the control-

actuators are not already a part of the system, they must not add any inertia, stiffness, damping or extra degrees of freedom.

In some cases the control can be overlaid external excitation. A non-invasive control can be constituted as a PD control,

G, with appropriately chosen gains Kp and Kd. The control signal uc(t) is thus expressed as

uc(t) = G(x(t), y(t)) := Kp(x(t)− y(t)) +Kd(ẋ(t)− ẏ(t)), (2)

where y(t) is the measurement of the state of the controlled system at time t and x(t) = F−1
∞ (c) is the reference trajectory

produced by the continuation. When the correction converges x(t)− y(t) ≈ 0 and uc → 0, meaning that one does in fact

measure the local dynamics of the underlying un-controlled system. As presented in [8], the control gains Kp and Kd can

be experimentally tuned by a performing a series of sweeps determining their ability to non-invasively stabilize stable and

unstable periodic equilibrium states under influence of external perturbations. A Matlab/Simulink software toolbox by the

name Continex (Continuation in experiments), which generates the non-invasive control signal, creates and evaluates a

zero-problem and handles communication between an experiment and a numerical continuation code, has been developed

and is freely available together with the continuation code COCO [9].

Conclusions

Figure 1c shows a frequency response obtained using both conventional parameter sweep and the control-based continu-

ation method. The method is seen to be able to handle multiple co-existing equilibrium states, trace both the stable and

unstable equilibrium states and determine their stability. The time needed for obtaining the experimental results is of the

same order as the time needed for a parameter-sweep. Several measurements are made and statistically weighted for each

accepted point along the response curve, and since the continuation algorithm only accepts a state as an equilibrium when

the residuum (1) is sufficiently small, the quality of the measured data is ensured. A non-invasive control is necessary for

the method to work, but in some cases the control force can be overlaid on the external excitation. Furthermore, many

advanced electro-mechanical components, such as rotors supported by electromagnetic bearings, already include the nec-

essary hardware. Control-based continuation is still under development, but it can be considered a suitable alternative

to conventional parameter-sweeps. It will work in many situations where the parameter-sweep fails and it can provide

valuable information about the unstable equilibrium states. The Matlab/Simulink Continex software toolbox which can

be downloaded from [9] includes simulated examples that will run out of the box and makes it easy to set up experiments

with control-based continuation.
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Summary. Control based continuation is a method that allows tracking of stable and unstable responses in experiments. We report on
a development of a Matlab toolbox that implements this idea and allows for continuation guided experiments as well as simulations.
This development is based on the recently released package COCO. As a forward-looking note we will illustrate how COCO’s support
for the task embedding paradigm together with our toolbox enables advanced applications such as dynamic sub-structuring.

Continuation Guided Experiments

Experiments, simulation and continuation are three established methods for response analysis of physical systems or mod-
els thereof, which we collectively refer to as dynamical systems (DSs). All three approaches can be used for producing a
bifurcation diagram of a specific DS. However, each approach has distinctive advantages and disadvantages. While per-
forming experiments is usually time- and resource intensive, it has the advantage that one investigates the actual system,
which eliminates the possibility of modelling errors. Performing simulations on a computer implementation of a model
of a DS, on the other hand, is considerably cheaper and it is much easier to change model parameters than in experiments.
However, simulations of sophisticated models typically require substantial computational power. Furthermore, both meth-
ods share the drawback that they can only track stable responses, a restriction that is overcome by using continuation. The
idea of continuation is to employ a path-following algorithm for specific types of states of a DS, for example, equilibrium
states and periodic responses, and to monitor their stability, which allows to reproduce the global behaviour of a DS.
While continuation can track stable as well as unstable responses, its application is most effective on carefully derived
reduced models of relatively small dimension. A novel approach to overcome individual limitations of these methods is
control based continuation, which aims at combining these methods in such a way that individual drawbacks are removed.

Control Based Continuation

The fundamental idea of control based continuation is to apply a control scheme that becomes non-invasive whenever
the DS is in a natural state, which may be stable or unstable. The idea of non-invasive control was first introduced by
Pyragas [1] and is today referred to as Pyragas control. Sieber et al. [2] and Barton et al. [3] later developed a non-invasive
control for scheme continuation. To exemplify the principle, consider the Duffing oscillator with hardening spring

ẍ+ λẋ+ αx+ εx3 = A cos(2πωt) + δu(t), (1)

where λ, α > 0, ε > 0, A and ω are model parameters, u is an as yet unspecified control force and δ ∈ {0, 1} determines
whether or not the control force is applied to (1). The bifurcation diagram of (1) for δ = 0 is shown in Fig. 1(a). We clearly
observe a hysteresis behaviour, which is a typical phenomenon of non-linear DSs. In experiments or with simulation we
can only observe the stable responses, but not the unstable ones. However, as evidenced with this simple example, the
unstable responses form an important part of the bifurcation diagram, which can only be revealed using continuation.
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Figure 1: (a) Bifurcation diagram of the periodic responses of the Duffing oscillator (1) for A = 1, λ = 1/5, α = 1, ε = 1 and δ = 0.
Responses found in a forward sweep are marked with ‘+’ and with a backward sweep are marked with ‘◦’. The continuous curve was
obtained using continuation guided simulation, which is able to trace the unstable part of the branch of responses. (b) Experimental
set-up of an oscillator with hardening spring. The two-degree of freedom system consists of a shaker attached to a base structure,
which in turn holds the pendulum. (c) The pendulum is a mass-spring-damper system, where the stiffening of the spring is caused by
a mechanical stop. We use laser sensors to measure the position of the base structure and the pendulum mass. The feedback control is
applied through two electromagnetic actuators mounted on opposite sides of the mass.
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If one wants to observe the unstable responses in an experiment or a simulation, one needs to stabilise the unstable
responses without actually affecting these responses, that is, the stabilisation must be non-invasive. In order to achieve this,
we apply a control force that is proportional to the difference of the system’s response and a target response. Obviously,
if the target response is equal to a natural response, our control force will vanish, which means that our control is non-
invasive. For our Duffing oscillator (1) we can achieve this with the proportional-derivative (PD) control scheme defined
by

P = x− y(t),
D = (P − σ)/h,
u = K1P +K2D,
σ̇ = D,

⎫⎪⎪⎬
⎪⎪⎭ (2)

where P is the proportional, D the differential component of the control force u, h is a scaling factor larger than the
sampling time of the state x and much smaller than the period of the response x(t), K1 < 0 and K2 < 0 are the gains of
the PD controller, and y(t) is the as yet unknown control target. Evidently, x(t)− y(t) ≡ 0 =⇒ u(t) ≡ 0.
Eqns. (1)-(2) form a system of ordinary differential equations (ODEs) for which the control target y(t) can be considered
as an external input. To transform this ODE into a continuation problem, we need to formulate a zero problem of the form
F (z, μ) = 0, where z is some representation of the control target and μ the vector of model parameters. One possibility
is to set

F (z, μ) := ΠN (P ) = ΠN (xsample(t))− z, t ∈ [0, 1/ω], (3)

where ΠN is the projection onto the firstN Fourier modes and xsample(t) is a large enough sample of the state x over one
period. In this case, we have y = Π−1

N (z) and the vector z ∈ R
2N+1 contains a Fourier transform of the control target y.

Obviously, Eqns. (2)-(3) are also well-defined if xsample(t) is generated by measurements of an experiment, that is, this
procedure applies to simulations as well as experiments. The final step now is to apply a continuation algorithm to the zero
problem (3). In an actual implementation the function F will modify the control target and parameters as specified with
z and μ, wait for some time until transients die out, sample the state x over at least one period and return the difference
of the Fourier transform of this sample and z. Following this strategy we computed the full bifurcation diagram shown in
Fig. 1(a), including the unstable responses.

Matlab Toolbox Implementation with COCO

We chose the continuation core toolbox COCO [4, 5] for implementing a Matlab toolbox for continuation guided simula-
tion and experiments, because it is implemented in Matlab, which allows for easy use of Simulink and DSpace. Further-
more, the design of COCO is such that new continuation problems can be incorporated and the continuation algorithm can
be exchanged by a user without modifying COCO itself. The latter was of particular importance, because one cannot sim-
ply employ traditional methods for problems that use noisy data, we have to use statistical methods instead. In a first step
we implemented a continuation method based on a local least-squares approximation of a path of responses together with
a basic toolbox that enables continuation guided simulation. In a second step we implemented an interface to DSpace and
set-up an experiment with a non-linear mass-spring-damper system for testing the basic method with a real experiment;
see Figs. 1 (b) and (c).
An interesting and advanced application of our toolbox is so-called dynamic sub-structuring, which is enabled by COCO’s
support for task embedding. Dynamic sub-structuring refers to the idea of splitting a large structure into a set of smaller
sub-structures. Each of these sub-structures in now either simulated on a computer, or installed as a physical experiment
in a lab. The connection between the physical and the virtual world is realised with, for example, DSpace controlled
actuators. Task embedding, on the other hand, refers to the idea of splitting up a large continuation problem into a set
of smaller problems, the connections being realised with gluing conditions. It is not hard to imagine that parts of such
a decomposed continuation problem are instances of continuation guided experiments, where the gluing conditions are
realisations of Pyragas control.
Challenges that we intend to tackle in the future are extracting stability information and branch-switching. In our set-up
determining stability of a response is difficult, because the control makes every response locally asymptotically stable.
For computer guided simulations one can, in principle, solve this problem by simultaneously integrating the controlled
ODE together with the variational equation of the uncontrolled ODE, which allows to compute the Floquet multipliers
and to detect bifurcations. However, this is not possible for experiments, where we also face the additional difficulty that
we can only measure a small subset of the state variables.
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Summary. CONTINEX is a MATLAB toolbox for bifurcation analysis based on the development platform COCO (computational con-

tinuation core). CONTINEX is specifically designed for coupling to experimental test specimen via DSPACE, but provides also interfaces

to SIMULINK-, ODE-, and so-called equation-free models. The current version of the interface for experimental set-ups implements an

algorithm for tuning control parameters, a robust noise-tolerant covering algorithm, and functions for monitoring (in)stability. In this

talk we will report on experiments with an impact oscillator with magnetic actuators and algorithmic challenges we were facing during

toolbox development.

Introduction

The goal of this development effort is a robust continuation toolbox that can be coupled to test specimen in a lab and

runs without or with only minimal supervision, thus allowing unattended execution of sequences of continuation runs for

extensive data acquisition. Furthermore, a well equipped toolbox will provide means for monitoring stability properties

along the solution manifold, and for branch-switching at bifurcation points. The current version of the toolbox CONTINEX

implements a fully functional covering algorithm as well as several monitor functions to detect instability of a solution.

Hence, it provides basic means for the location of bifurcation points during continuation. The classification of such points

and methods for branch-switching are subjects of ongoing research.

CONTINEX is based on the computational continuation core COCO, which implements a fully developed continuation

toolbox and allows for easy overloading of specific parts of its continuation algorithms. For our development we only

wish to overload a minimal amount of functionality, necessitated by particularities of continuation in experiments. One

such particularity is the uncertainty of measurements, which implies that a solution manifold can only be defined in terms

of expected values, if at all. Other significant particularities are addressed in the next section.

For developing and testing CONTINEX we set up a simple impact oscillator, which consists of a flexible vertical beam with

a tip mass attached at the lower end. The beam is clamped and horizontally excited with an electromagnetic shaker at the

upper end and impacts mechanical stops if the relative deviation of the tip mass exceeds a certain value. Such an impact

causes an increase of stiffness, resulting in a non-linear mass-spring-damper system with stiffening spring. Although the

oscillator was designed as a one degree of freedom system, the actual set up exhibits phenomena typical for two degree

of freedom systems, that is, vibration suppression and resonances with the shaker.

Our experiment serves as a prototype for rotating machinery, where a periodic excitation is caused by unbalance forces. As

a consequence, a control force cannot be added to the excitation directly. Instead, one typically uses active electromagnetic

bearings (AEBs) that allow the application of forces to the shaft of a rotor. Our electromagnetic actuators mounted to both

sides of the tip mass are a primitive realization of AEBs. While AEBs can apply large attracting and repelling forces over

larger distances, our actuators can only excert attracting forces and have a rather small range of effect of approximately

2mm. Furthermore, the applied force depends non-linearly on the distance between tip mass and magnet, which makes our

actuation system non-linear and state-dependent. An important question of interest was, if, and under which conditions,

such an actuation system is suitable for constructing a non-invasive stabilizing control scheme required for applying

control-based continuation.

Algorithmic challenges

Two obvious problems that need to be addressed by a toolbox for continuation in experiments are measurement noise

and time. In the language of COCO [1], the presence of noise necessitates the implementation of suitable atlas and

curve segment classes, while measurement times of the order of seconds per function evaluation call for update methods

for derivatives instead of the application of finite difference methods used by default. Besides these two fundamental

problems we observed a surprisingly large number of mostly unanticipated algorithmic challenges when coupling our

algorithms to our impact oscillator:

Non-linearity of control system. Although expected, the non-linearity of the control system posed a serious problem,

which was eventually solved by the development of a control tuning algorithm [2].

Resonances. Resonances of the pendulum with the shaker sub-system lead to a quite rich bifurcation structure, for ex-

ample, small hysteresis loops with a size comparable to measurement noise. As consequences, we observed sudden

and localized changes of variance in measurements, large jumps of the continuation method, double covering of the

solution manifold, and failure of the default method of step-size control. Each of these problems was so severe that

only about 10-20% of executed continuation runs were successful until we finally managed to find solutions to all

of these issues.
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Balancing of equations. To address phenomena caused by resonance we use non-linear arc-length conditions. The

residuum of any such condition competes with the allowed residuum in the experiment, because both residues are

combined in the stopping criterion of the corrector. This caused significant convergence problems in the correction

method and was solved by using a pull-back algorithm that ensures zero residuum in the projection condition.

Drift of parameters. The least expected but highly relevant problem is the drift of environmental parameters during

correction. Some parts of the bifurcation diagram of our test rig are so sensitive to changes in environmental

parameters (we suspect temperature) that the solution manifold can slowly drift out of the trust region of our

corrector during correction. When this happens, it is impossible to resume continuation. The solution to this

problem was the implementation of statistical tests in the corrector algorithm, which will detect a likely failure of

the correction step as fast as possible to allow restarting the correction step with changed settings while the drift is

still small.

Once we discovered and addressed all these phenomena, the success rate of CONTINEX on our test rig was increased to

above 95%. In addition, a parameter sweep with comparable accuracy will take approximately the same amount of time

as a continuation run, which implies that continuation with CONTINEX does not only provide more information than, but

is also competitive with the execution time of a sweep.

The toolbox CONTINEX

A generic algorithm for evaluating a zero problem F (x, p) corresponding to an experiment, a simulation, or an equation-

free model, where x represents a target solution and p are the problem parameters, is

1. Set problem parameters to p and reference solution to x.

2. Wait for results.

3. Read frame with data.

4. Compute and return residuum.

Since this algorithm is so general, CONTINEX provides a base class with four abstract methods corresponding to the steps

above as an interface to an experiment or model. A user of CONTINEX is only required to to derive a problem specific

sub-class from this base class and overload the four abstract methods. More specialized base classes with additional

functionality are available for DSPACE, SIMULINK and ODE models. Once this sub-class is implemented, an instance of

it together with initial values for the reference solution and parameters is passed to the toolbox constructor to initiate a

continuation run. The CONTINEX specific atlas, curve segment and corrector algorithms are selected automatically.
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