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Abstract: This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV)
based on analysis of structure of the nonlinear dynamics. Residuals are generated using different
approaches in structural analysis followed by statistical change detection. Hypothesis testing
thresholds are made signal based to cope with non-ideal properties seen in real data. Detection
of both sensor and thruster failures are demonstrated. Isolation is performed using the residual
signature of detected faults and the change detection algorithm is used to assess severity of
faults by estimating their magnitude. Numerical simulations and sea trial data show results
with very favourable balance between detection and false alarm probabilities. c©IFAC 2014.

1. INTRODUCTION

Unmanned Underwater Vehicles (UUVs) are useful and
important tools for accomplishing a great variety of under-
water tasks ranging from scientific investigation of marine
life and environment to underwater archaeology survey,
repair and maintenance of subsea structures. Some of
the main dangers to UUVs are failures of thrusters and
sensors. These can have significant effects on the behaviour
and manoeuvrability of a UUV, possibly proving fatal
in hazardous or difficult to reach locations [Griffiths and
Trembanis, 2007]. It is thus desirable to apply fault di-
agnosis as a first step to accommodating faults. Several
different methods have been applied on UUVs for fault
detection (see also the early survey [Antonelli, 2006]):
observer-based [Alessandri et al., 1999, Ferreira et al.,
2011]; fuzzy logic [Omerdic and Roberts, 2004]; neural
network [Liu et al., 2012] and structural analysis based
methods [Blanke, 2005]. Actuator failures were in specific
focus in [Corradini et al., 2011],and with an observer based
fault tolerant control approach tested in simulation in
[Corradini and Orlando, 2014], but vessel-wide navigation
system diagnosis has not been reported.

This paper employs a structural analysis based design of
a fault diagnosis scheme for the entire sensor and actuator
package of the underwater Remotely Operated Vehicle
(ROV) Minerva, depicted in Fig. 1. Fault isolation prop-
erties are investigated using different methods to obtain
the analytical redundancy relations needed for diagnosis,
and statistical change detection [Blanke et al., 2006] is
demonstrated on both simulated and real data. It is shown
how fault isolation is obtained with prescribed false alarm
and detection probabilities. The paper contributes with a
complete navigation system analysis based on component
behaviours and the tailoring of statistical change detection
methods to obtain excellent diagnostic properties also with

real data, where signal artifacts include outliers and time-
varying coloured noise.

The paper first introduces the specific configuration of
the ROV, it is then detailed how complete analysis of
all analytic redundancy relations are obtained, and how
these are optimised for maximal fault isolability. Change
detection is then considered and the diagnosis scheme is
applied on both simulation and real data.

Fig. 1. ROV Minerva 1 , a SUB-fighter 7500 ROV from
Sperre A/S. Photo: Johanna Järnegren

2. MATHEMATICAL MODEL

The vessel is modelled using the kinematic and dynamics
of a 4 degree of freedom underwater vehicle as described
in Fossen [2002]. It is actuated in surge, sway, heave and

yaw. With vessel’s position and heading η = [x y z ψ]
T

in an inertial frame and the velocities and turn rate
ν = [u v w r]

T
in a body frame, the kinematics are given

in (1),

η̇ = J(η)ν, (1)

1 Courtesy of NTNU (http://www.ntnu.edu/marine/minerva)



where

J(η) =

cosψ − sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1

 .
The vessel is passively stable in roll and pitch so these
motions are disregarded. With νc = [uc, vc, wc, 0] denoting
sea current velocity, assumed to be slowly varying and
irrotational, and the relative velocity defined as νr = ν −
νc the vessel dynamics reads,

MRBν̇ + MAν̇r + CRB(ν)ν + CA(νr)νr
+ D(νr)νr + g(η) = τ + w, (2)

where MRB , MA ∈ R4×4 are the rigid-body and added
mass system inertia matrices respectively, CRB(ν), CA(ν)
∈ R4×4 are the corresponding coriolis-centripetal matrices,
D(ν) ∈ R4×4 is a damping matrix, g(η) ∈ R4 is a vector of
restoring forces, τ ∈ R4 is the vector of forces induced by
vehicle thrusters, and w ∈ R4 is a vector of environmental
disturbances. See [Fossen, 2011] concerning the generic
model (2) and [Kirkeby, 2010] for numerical values for
Minerva.

The ocean current observer described in [Børhaug et al.,
2007] is used in this paper. This is a constant-gain non-
linear observer in the 6 degrees of freedom, however only
the 4 relevant degrees of freedom are utilized in this
project. This was shown to be UGAS to a constant current
[Børhaug et al., 2007].

The available measurements on Minerva are positions
{xm, ym, zm}, heading φm and rates {um, vm, rm}, see
[Kirkeby, 2010] for a sensor suite description.

The vessel has 5 fixed direction thrusters 2 providing the
thrust according to (3),

τ = TKu, (3)

where T ∈ R4×4 is the thruster configuration matrix,
K ∈ R4×4 is a thrust coefficient matrix describing the
thruster characteristics and u ∈ R4 is the control input,
see Fig. 2. T is given in (4)

T =

 c(αp) s(αs) 0 0
s(αp) c(αs) 1 0

0 0 0 2
xps(αp)− ypc(αp) xss(αs)− ysc(αs) xlat 0

 , (4)

where the distances xp, yp, xs, ys and xlat correspond to
the schematic on Fig. 2, c, s are cos() and sin() functions
respectively and αp and αs are the angles of the thrusters
in relation to the xb axis.

The details of control systems for Minerva was presented
in [Dukan et al., 2011, Sørensen et al., 2012]. When the
control objective is dynamic positioning, i.e the goal is to
keep η̃ = ηd − η = 0, where ηd is the desired position,
a non-linear PID controller, was used:

τ con = −JT (η)

Kpη̃ + Kdν + Ki

T∫
0

η̃(t)dt

 (5)

u = K−1T†τ con, (6)

2 The two vertical thrusters are coupled to the same control signal
hence effectively operating as one.
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Fig. 2. Minerva schematic. Blue lines indicate coordinate
axes in the b-frame. Red lines show thruster offsets.

where Kp,Kd,Ki ∈ R4×4 are the controller gains and T†

the Moore-Penrose pseudo inverse of T. The coefficients in
K of the controller in (5) were provided in [Kirkeby, 2010].

3. RESIDUAL GENERATION THROUGH
STRUCTURAL ANALYSIS

Structural analysis [Blanke et al., 2006] and references
herein is a graph-based method where only the structure
of the system is considered and not the specific relation-
ships between variables and parameters. Achieving system
structure includes first to formulate normal behaviours
through constraints between physical variables of the sys-
tem. Constraints can be dynamic, e.g. differential equa-
tions, or they can be algebraic relations between variables.
Constraints can be linear or nonlinear.

Described a structural model as a bi-partite graph where
one set of vertices are the constraints C, the other the vari-
ables Z. Edges in the graph will show which variables are
used by which constraints. The set of variables, denoted Z,
contains both known (i.e. inputs and measurements), de-
noted K, and unknown variables, X . One constraint is used
to solve for one unknown variable. This list is referred to as
a matching. With |X| unknown variables, |X| constraints
are used to solve for unknown variables. Constraints that
are not matched are redundant and express information
that can be used to test the consistency of the system.
The un-matched constraints hence constitute analytical
redundancy relations that are used for fault diagnosis.

With no faults, all un-matched constraints are zero,

ciarr(x, u, y, θ) = 0. (7)

As unknown variables were solved for through a complete
matching, x can be eliminated from (7),

ciarr(u, u̇, ü, . . . , y, ẏ, ÿ, . . . , θ) = 0, (8)

which is a function of only known variables and their
derivatives. All constraints that were used to eliminate
x in ciarr must meet their normal behaviour in order to
have ciarr = 0. If any of the constraints used to calculate
ciarr deviate from normal behaviour, ciarr 6= 0. Structural
analysis hence generates a set of analytical relations,
referred to as residuals,

ri(t) = ciarr(u(t), u̇(t), ü(t), . . . , y(t), ẏ(t), ÿ(t), . . . , θ). (9)

The analytical redundancies in (9) are easily determined
from graph theory results, either in form of finding com-
plete matchings on unknown variables [Blanke et al., 2006]



and references herein, or by finding minimal structurally
over-determined sets [Krysander et al., 2008]. For the
structural analysis described in this paper the SaTool
software was used [Blanke and Lorentzen, 2006], [Wolf and
Blanke, 2014].

Once the analytical form of residuals are determined
according to (9), change detection methods and hypothesis
testing are employed to determine whether the condition
is normal H0 : r(t) = 0 or a fault is present, H1 : r(t) 6=
0. When residuals suffer from random noise w(t), and
if a certain fault manifests itself as a change in mean
of the residual, from 0 to µ1, two hypotheses need be
distinguished,

H0 : r(t) = w(t) (10)

H1 : r(t) = µ1 + w(t),

Residual evaluation and the hypothesis test according to
(10) constitute the on-line part of the diagnosis. Analysis
of structure and calculation of residuals to be used for di-
agnosis are part of supervision and control system design.

3.1 Behavioral model for Minerva ROV

The following constraints describe the Minerva ROV,

• 37 constraints as listed in Table 1.
• 14 known variables K = [ u1, u2, u3, u4, xm, ym, zm,
ψm, um, vm, rm, uc,m, vc,m, wc,m ].
• 30 unknown variables X = [ τ1, τ2, τ3, τ4, X, Y , Z,

N , ẋ, ẏ, ż, ψ̇, u̇, v̇, ẇ, ṙ, x, y, z, u, v, w, ψ, r, uc, vc,
wc, u̇c, v̇c, ẇc ],

where the subscript m on the variables designate mea-
surements, τ1−4 designate the force from the thrusters
(τ4 corresponds to both vertical thruster as they can not
be individually controlled), X,Y, Z,N are the vessel force
and moment in surge, sway heave and yaw respectively.
Velocities with the subscript c describe the ocean current
affecting the vessel.

The Minerva system has 37 constraints and 30 unknown
variables, hence it is over-constrained and 7 redundancy
relations or residuals will be produced by using the ranking
algorithm described in [Blanke et al., 2006]. These are
shown in (11).



r1
r2
r3
r4
r5
r6
r7

←



u1 u2 u3 u4 xm ym zm ψm um vm rm

0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 1 1 1


(11)

In addition to determining the residuals, SaTool can anal-
yse various structural properties of the system and the
residuals. Table 2 shows the structural isolability and de-
tectability for the residuals found. Faults on all actuators
and sensors are structurally detectable, but several are
not structurally isolable. The isolable faults are: the lat-
eral thruster,the position measurements in the horizontal
plane, xm and ym, the heading measurement ψm and the

turn rate measurement rm. While structural isolability is

Table 2. Structural detectability and isolability
of Minerva achieved from a ranking algorithm

a1 a2 a3 a4 m1 m2 m3 m4 m5 m6 m7

d/i d d i d i i d i d d i

not achievable for some of the sensor and thruster failures
using these residuals it is possible to isolate more failures
when extending the isolation strategy. Thruster failures
are only present in r4−7 and can be isolated from each
other by considering the sign of the residuals. The signed
mapping from thruster faults to residuals is,

r4r5r6
r7

←−

u1 u2 u3 u4

0 0 0 1

1 1 0 0

1 −1 1 0

−1 1 1 0

 (12)

Using (12) thruster fault can be isolated through column
matching with the signature observed in the residuals.

Enhanced isolation can also be obtained using an algo-
rithm [Krysander et al., 2008] to find all minimal struc-
turally overdetermined (MSO) subsets of the system. An
MSO set contains only one constraint more than variables
in the subgraph of the system to which the variables and
constraints belong.

The MSO set algorithm and other general matching algo-
rithms can make it possible to obtain enhanced structural
isolability by using a larger set of residuals than the one
obtained from a single matching. This implies added com-
plexity associated with having to calculate a larger number
of residuals in parallel. A selection method for the relevant
MSO sets from a large number of available sets is therefore
of convenience.

The MSO sets for the Minerva system in Table 1 yields 483
MSO sets. It is neither feasible nor necessary to implement
all of these. A desired structural isolability can be obtained
by only a slight increase in number of parallel calculated
residuals. This is shown in Table 3.

Table 3. Structural detectability and isolability
of Minerva achieved from MSO sets

a1 a2 a3 a4 m1 m2 m3 m4 m5 m6 m7

d/i/n i i i d i i d i i i i

An algorithm to select MSO sets to optimise isolabil-
ity while also considering computational complexity was
presented in [Svärd et al., 2011]. Using this approach,
the MSO sets that provide the largest utility to a given
objective is selected in each of several iterations. Eq. (13)
describes a utility function µI(S)

µI(S) =| σI({S}) |, (13)

σI(M) = {I ∈ I : ∃S ∈M, S ∈ I}, (14)

where S is an MSO set, I is an isolation class describing
which MSO set will provide isolability of faults by hy-
pothesis test on the elements of the residual vector. With
I being the set of all isolation classes and M the set of
candidate MSO sets that make up the solution, σI(M),
(14) , describes which isolation classes are covered by the
candidate MSO sets. For a complete solution σI(M) = I.



Table 1. System constraints for ROV Minerva displayed as they are automatically generated by
SaTool. The parameters Di and MA,i indicate damping and added mass terms respectively.

a1 τ1 = gp(u1) m5 um = u
a2 τ2 = gs(u2) m6 vm = v
a3 τ3 = gl(u3) m7 rm = r
a4 τ4 = gv(u4) m8 ûc = uc
d1 ẋ = d

dt
x m9 v̂c = vc

d2 ẏ = d
dt
y m10 ŵc = wc

d3 ż = d
dt
z c1 X = τ1 cos(αp) + τ2 cos(αs)

d4 ψ̇ = d
dt
ψ c2 Y = τ3 + τ1 sin(αp) + τ2 sin(αs)

d5 u̇ = d
dt
u c3 Z = τ4

d6 v̇ = d
dt
v c4 N = τ3 xl − τ1 (yp cos(αp) − xp sin(αp)) − τ2 (ys cos(αs) − xs sin(αs))

d7 ẇ = d
dt
w c5 ψ̇ = r

d8 ṙ = d
dt
r c6 ẋ = u cos(ψ) − v sin(ψ)

d9 u̇c = d
dt
uc c7 ẏ = v cos(ψ) + u sin(ψ)

d10 v̇c = d
dt
vc c8 ż = w

d11 ẇc = d
dt
wc c9 u̇m = X −D1(u− uc) (u− uc) −MA,1 (u̇− u̇c) −MA,26 r

2 +mr v +MA,2 r (v − vc)

m1 xm = x c10 v̇ m = Y −D2(v − vc) (v − vc) − ṙ MA,26 −MA,2 (v̇ − v̇c) −mr u−MA,1 r (u− uc)
m2 ym = y c11 ẇ m = Z −D3(w − wc) (w − wc) −MA,3 (ẇ − ẇc) +W −B
m3 zm = z c12 Iz ṙ = N − ṙ MA,6 −MA,62 (v̇ − v̇c) − r D6(r) + (MA,1 −MA,2) (u− uc) (v − vc) −MA,26 r (u− uc)
m4 ψm = ψ

If more than one MSO set provides the highest utility
the one with the lowest cardinality is selected. Iteration
is continuer until a complete solution has been found or
all MSO sets have been evaluated. The algorithm evaluates
the realizability of residuals using the MSO sets and use
only realizable residuals, see [Svärd et al., 2011]. Using
such selection, desired isolability is obtained with only 6
residuals listed in (15). Faults in velocities um and vm,
that both origin from the Doppler Log are group-wise but
not individually isolable.


r1
r2
r3
r4
r5
r6

←


u1 u2 u3 u4 xm ym zm ψm um vm rm

0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 1 1 1


(15)

It is noted that r1−4 are functionally identical to the
residuals obtained through the ranking algorithm.

While the increased structural isolability is advantageous
it is outweighed for this particular system by the ad-
ditional complexity introduced through generating addi-
tional residuals. Applying the isolability strategy in to
include signatures of faults, Eq. 12, provides the desired
isolability and this approach will be used subsequently.

Due to the fact that the estimate of the ocean current
is based on a dynamical model of the vessel, faults in
the actuators and sensors will compromise the current
estimate. As the current is used in the residuals the ocean
current observer is halted when a fault is detected and
the previous ocean current estimates in the inertial frame
from when the vessel was fault free are used. Under the
assumption of a slowly-varying current this approach is
reasonable. Additionally it is necessary to assume that
no faults occur during the start-up of the UUV until all
sensors and thrusters have been initialized.

4. CHANGE DETECTION

Fault detection is achieved through change detection ap-
plied to residuals. A standard Generalised Likelihood Ra-
tio Test (GLRT) algorithm for Gaussian residuals with
independent discrete-time observations will be used, even
though this assumption will be violated for real data. With
θ being system parameters, θ0 denotes the normal system
(H0) and θ1 the faulty system (H1). The log-likelihood
ratio

s(r) = ln
p(r; θ̂1)

p(r; θ̂0)
, (16)

is used in GLRT algorithm to provide the test statistic,

g(k) = max
k−M+1≤j≤k

max
θ1

k∑
i=j

s(r(i)) (17)

where k is the current time, j is the fault occurrence
time and M is the window size of the algorithm. A fault
is detected when g(k) exceeds a threshold h and the

fault occurrence time k̂0 and fault magnitude µ̂1 can be
computed from,

(k̂0, θ̂1) = arg

{
max
1≤j≤k

max
θ1

Skj (θ1)

}
. (18)

The implementation of (16),(17), and (18) is done here
using the condition that faults are strongly detectable
[Blanke et al., 2006]. This is the case for the additive faults.
For multiplicative faults, i.e. thruster gains, this is the case
when sea current is nonzero or some manoeuvring takes
place.

Theoretical calculation of thresholds h is straightforward
when signals are independent and identically distributed
(IID) and their distributions are Gaussian. When dis-
tributions are non-gaussian, a theoretic threshold may
not be calculable by analytical means. As an alternative,
[Blanke et al., 2012] and [Galeazzi et al., 2012] suggested
that thresholds are estimated from data. The distribu-
tion of g(k) for the healthy system is estimated and h
is determined to give a desired false alarm probability.
This method was further elaborated and applied to an



unmanned aerial vehicle in [Hansen and Blanke, 2014] and
a similar method is used in this paper using sea trial data.

5. SIMULATION RESULTS

The fault diagnosis has been investigated by simulation
of the mathematical model described in Section 2. White
Gaussian noise with zero mean and variance σ2 = 10−6

have been applied to the sensors and the vessel is subject to
a constant ocean current of vc = [−0.2 m

s , 0.2
m
s , 0.2

m
s ]T

in the inertial frame. Two thruster failure cases were
considered:

Complete thruster failure. During station-keeping in the
presence of ocean current the starboard-side horizontal
thruster u2 suddenly experiences a failure reducing its
produced thrust to zero. The residuals are shown on Fig.
3.
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Fig. 3. Residuals during thruster failure. Fault occurs at
time t = 100s. Blue color lines are residuals obtained
using the ranking algorithm, green are MSO sets
residuals. r1−4 are functionally identical for the two
methods.

After the occurrence of the fault at time t = 100s residuals
r5, r6, r7 clearly deviate from zero while r4 is unaffected.
The residuals generated with the MSO set method enable
direct isolation as only one residual is affected by the fault.
The MSO set residuals are obtainable as combinations of
analytical redundancy relations obtained by other match-
ing algorithms but the MSO set algorithm is by far the
faster way to obtain these. Detectability properties are
equivalent for the algorithms, but using a richer set of
residuals, as in the MSO approach, most often enhances
isolability.

As an example, Figure 4 illustrates how, using the GLRT
algorithm, a fault is detected and the fault signature is
used to isolate which thruster has a fault.

Loss of thruster effectiveness. During station-keeping u2
suffers a parametric fault such that obtained thrust is
down to 25% of thrust desired. The resulting residuals are
shown in Fig. 5.

Using the GLRT estimate of the fault magnitude it is
possible to estimate the effectiveness of the thruster after
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Fig. 4. GLRT output during thruster failure. Fault occurs
at time t = 100s. The fault is correctly isolated as u2.
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Fig. 5. Residuals during thruster degradation. Fault occurs
at time t = 100s.

the faults has occurred. The fault magnitude of residuals
r4−7 is an estimate of

µ̂1 = Fexpected − Fobserved, (19)

where Fexpected is the expected induced forces and mo-
ments from the thrusters and Fobserved is the observation
from the measurements. An estimate of the parametric
fault on u2 using (19) is shown in Fig. 6 together with the
GLRT output.

6. SEA TRIAL RESULTS

By courtesy of Zhao Bo from NTNU [Zhao et al., 2012],
[Zhao et al., 2014] recorded data from sea trials have been
made available for analysis. Faults on sensors were induced
and can be used to verify the methods discussed in this
paper. The residuals r1, r2 are shown on Fig. 7 where a
bias on the doppler velocity log has been applied.

To detect the fault an appropriate threshold h is found
using data of fault-free operation. Using the approach of
[Hansen and Blanke, 2014] a Weibull distribution, (20), is
used to fit the test statistics.
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Fig. 6. GLRT output during thruster degradation. Fault
occurs at time t = 100s. An estimate of the thruster
effectiveness is also shown.
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P (x;α, β) = 1− e(x/α)
β

(20)

The scale α and shape β parameters are estimated using
a maximum likelihood method. Fig. 8 shows a probability
plot of the GLRT output and the fitted distribution.

The threshold h for the GLRT is determined from the
estimated weibull distribution based on a false alarm
probability PFA using, (21).

h = α(− ln(PFA))
1
β (21)

Based on the fit shown in Fig. 8 a desired PFA = 0.01% per
hour would result in a threshold of h = 47.3. The chance
to detect a fault PD is more difficult to estimate since the
amount of data H1 data is limited. The approach is the
same as for the no fault case except a generalized extreme
value (GEV) distribution [Coles, 2001] is used to fit the
GLRT as this provides a closer fit. The GEV distribution
has the cumulative distribution function (22)

P (x; k, σ, µ) = e−(1+k(
x−µ
σ ))−1/k

, (22)

where µ, σ, and k are the location, scale and shape
respectively. The corresponding probability plot is shown
on Fig. 9. The fit only roughly describes the distribution
of the test statistic so the chance to detect will be quite
uncertain. Using the fit shown gives PD = 94%.

Fault magnitudes are estimated via the GLRT estimate of
µ̂1. This is in particular relevant for additive faults, such
as DVL bias, because it allows for straightforward fault
compensation. Fig. 10 shows the GLRT decision function
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Fig. 8. Probabillity plot of the GLRT decision function in
the no-fault case.
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Fig. 9. Probabillity plot of the decision function after a
fault has occurred on the doppler log.

and the fault magnitude estimate. While there is a clear
deviation between the estimated fault magnitude and the
actual induced bias the estimate gives a reasonable indi-
cation and could conceivably be used for accommodation
of the fault.

7. CONCLUSIONS

Fault diagnosis for an underwater ROV was considered
in this paper. Diagnosis was performed using structural
analysis for residual generation and the GLRT algorithm
for hypothesis testing. Structural analysis was found con-
venient because tools exist that performs the analysis and
derives the relevant residuals automatically. Both a simple
ranking algorithm and a more sophisticated approach with
selection of MSO sets were investigated and fault isolabil-
ity properties were highlighted. It was demonstrated how
thresholds for the GLRT algorithm could be determined
using data from fault-free operation with the aim of ob-
taining a low probability of false alarms. The diagnosis
algorithms were tested using both numerical simulations
and measurement data from sea trials that both confirmed
the efficacy of the approach.
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Fig. 10. Results of the change detection algorithm used
on residual 1: GLR output g1(k); estimated fault
magnitude µ̂1 and actual bias.
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