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Space-time trajectories of wind power
generation: Parametrized precision matrices
under a Gaussian copula approach

Julija Tastu, Pierre Pinson and Henrik Madsen

Abstract Emphasis is placed on generating space-time trajectories of wind power
generation, consisting of paths sampled from high-dimensional joint predictive den-
sities, describing wind power generation at a number of contiguous locations and
successive lead times. A modelling approach taking advantage of the sparsity of pre-
cision matrices is introduced for the description of the underlying space-time depen-
dence structure. The proposed parametrization of the dependence structure accounts
for important process characteristics such as lead-time-dependent conditional preci-
sions and direction-dependent cross-correlations. Estimation is performed in a max-
imum likelihood framework. Based on a test case application in Denmark, with spa-
tial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence,
for a dimension of n = 645), it is shown that accounting for space-time effects is
crucial for generating skilful trajectories.

1 Introduction

The large-scale integration of wind energy into power systems and electricity mar-
kets induces operational and management challenges owing to the stochastic nature
of the wind itself, with its variability and limited predictability [1]. Forecasting of
wind power generation, at various spatial and temporal scales, is generally seen as a
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crucial input to the decision-making problems involved [23]. An overview of the his-
tory of wind power forecasting, though mainly focused on deterministic approaches,
as well as an extensive review of the state of the art in that field, are given in [10]
and [14], respectively. In parallel, an overview of the current forecasting challenges
can be found in [33].

Owing to the complexity of the various decision-making problems at hand, it
is preferable that the forecasts provide decision-makers not only with an expected
value for future power generation, but also with associated estimates of prediction
uncertainty. This calls for probabilistic, rather than point (in the sense of single-
valued) forecasting [16]. Example applications of probabilistic forecasting include
the design of market offering strategies [6], economic load dispatch and stochastic
unit commitment [7, 32], optimal operation of wind-storage systems [9], contin-
gency reserve quantification [4] and assessment of power systems operating costs
induced by wind energy [30].

Probabilistic forecasts of wind power generation are commonly generated for
each site and lead time of interest, individually. They do not inform about the inter-
dependence structure between potential forecast errors, both in space and in time.
Actually, the idea of addressing each site separately can be motivated by the fact that
the power curves for the conversion of meteorological variables to power are given
by complex non-linear functions of meteorological conditions, number and type
of wind turbines, their layout, topographical characteristics, see [22] for instance.
Wind power dynamics are generally so site-specific that it is hard to issue high-
quality probabilistic forecasts for a large number of sites simultaneously. Similarly,
a common practice is to issue power forecasts in the form of marginal predictive
densities for each lead time individually, rather than addressing the joint multivari-
ate distribution. The resulting set of marginal predictive densities at N sites and K
lead times is a suboptimal input for a substantial share of decision-making problems
related to power systems operations and electricity markets, e.g., due to power flows
on the network or to inter-temporal constraints for conventional power units to be
scheduled. A full picture of the space-time characteristics of the stochastic process
is there necessary.

Having a set of marginal distributions for a number of random variables, their
joint density can be fully characterized using a copula approach. One important
feature of copulas is that they can be used to model dependency between random
variables independently of their marginal distribution functions. This is important
since, as mentioned previously, modelling wind power generation at individual sites
while targeting a specific lead time is already a difficult task. It is thus an advan-
tage to decouple the problem of estimating marginal predictive densities from that
related to the space-time dependence structure. Copulas have been widely used in
many fields for modelling dependencies among sets of random variables, including
a number of problems related to wind power. As an example in [5], predictive den-
sities for wind power generation were built by modelling the relation between wind
speed and related power output using copulas. In [31], copulas were employed to
estimate system net load distribution when accounting for the dependence structure
between wind at different locations, at the level of a country, and its relation to the
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overall electric consumption. In [20], a copula-based approach was similarly pro-
posed for modelling the spatial dependence in wind speed over the whole European
area.

The proposal of issuing trajectories of wind power generation based on predic-
tive marginal densities and a model of their dependence structure was originally
described in [36], where the authors focused on a single wind farm, hence con-
sidering temporal dependencies only. Based on a Gaussian copula assumption, this
temporal dependence was fully specified by an empirical covariance structure to
be tracked adaptively and recursively, as in an exponential smoothing framework.
Time trajectories of wind power production were then issued by sampling from
these multivariate predictive densities. More general parametric and nonparametric
approaches were subsequently described in [34], with the main aim of discussing
verification of time trajectories. Furthermore, Ref. [26] concentrated on wind power
generation at a pair of sites and considered different functional forms of copulas for
their dependence, given the lead time. The present study goes along similar lines,
even though looking here at the full space-time picture: joint predictive densities
of wind power output (and eventually, trajectories) are to be issued based on a set
of marginal predictive densities already available for all sites and lead times. The
problem then boils down to specifying a model for the dependence structure and
to estimating its parameters. Under a Gaussian copula assumption, the modelling
approach we propose takes advantage of the sparsity of precision matrices permit-
ting to describe the underlying space-time process. A suitable parametrization of
the precision matrix is proposed, hence yielding a more tractable approach even in
high dimensions. This proposal goes beyond the conventional assumptions of ho-
mogeneous stationary Gaussian Random fields, since the proposed parametrization
accounts for the boundary points and considers non-constant conditional variances
and direction-dependent conditional correlations.

The paper is structured as following. Sect. 2 introduces the data set used in the
study. The methodology is described in Sect. 3. It consists of some preliminaries
and definitions, a short introduction to copula modelling and explanation on how
precision matrices relate to the Gaussian copula approach. Further, Sect. 4 presents
the proposed parametrization of the dependence structure. The estimation method is
discussed in Sect. 5, while the empirical results are given in Sect. 6. The paper ends
in Sect. 7 with a set of concluding remarks and perspectives regarding future work.

2 Data

The case study is for western Denmark, covering the Jutland peninsula and the is-
land of Funen, with a nominal capacity close to 2.5 GW. This corresponds to ap-
proximately 70% of the entire wind power capacity installed in Denmark at the
time. Even though this nominal capacity regularly evolves due to commissioning
and decommissioning of turbines, as well as maintenance operations, it stayed very
close to this level over the period considered. Besides the significant share of wind
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generation, one of the reasons for concentrating on Denmark relates to its climate
and terrain characteristics. The territory is small enough for the incoming weather
fronts to affect all of its parts. In addition, the terrain is smooth, therefore passing
weather fronts do not meet such big obstacles as mountains when propagating over
the country. These aspects make the test case an ideal candidate for understanding
space-time effects before moving to more complex cases.

The western Denmark area is divided by the system operator, Energinet.dk, into
N = 15 control zones, as depicted in Fig. 1. For all of these areas, power measure-
ments were made available at an hourly resolution. All measurements and related
forecasts were normalized by the nominal capacity of the control area they relate to.
Consequently, they are expressed in percentage of nominal capacity, generally de-
noted by Pn. Point forecasts of wind power generation with an hourly resolution and
lead times up to K = 43 hours were produced with the Wind Power Prediction Tool
(WPPT) [29]. This corresponds to the most important lead times, today, for power
systems operations in an electricity market environment. The update frequency of
the forecasts is hourly. Marginal predictive densities were generated in a nonpara-
metric framework, for all control zones and hourly lead times up to K hours ahead,
based on the adaptive resampling approach described in [35]. It comprises one of
the state-of-the-art approaches to generating nonparametric predictive densities of
wind power generation, in a fashion similar to adaptive quantile regression [37].
These predictive densities are fully characterized by a set of quantile forecasts with
varying nominal levels α , α ∈ {0.05,0.1, · · · ,0.95}. Related predictive cumulative
distribution functions are obtained by linearly interpolating through these sets of
quantile forecasts.

The available data covers a period from 1 January 2006 to 24 October 2007.
For the purpose of the modelling and forecasting study, this dataset was divided
into two subsets. The first one covers a period of 11 months, i.e., from 1 January
2006 to 30 November 2006 (8016 forecast series), to be used for the data analysis,
model building and estimation. The second subset, covering the period between 1
December 2006 and 24 October 2007 (7872 forecast series), is considered as an
evaluation set for the out-of-sample evaluation of the space-time trajectories to be
generated, and for comparison with the alternative approaches considered.

3 Methodology

The objective of the methodology introduced here is to generate joint predictive
densities describing wind power generation at a number of contiguous locations
and for a number of successive lead times, independently from the approach used
to originally generate the individual predictive densities. These marginal densities
are linked together through a (Gaussian) copula function, for which a parametriza-
tion of the precision matrix permits to capture the underlying space-time covariance
structure. Our proposal methodology can hence be seen as a two-stage approach
to the modelling of joint predictive densities, by first obtaining relevant marginal



Space-time trajectories of wind power generation 5

Fig. 1 Geographical locations
of the N = 15 control areas
of Energinet.dk, the system
operator in Denmark, for a
nominal capacity close to 2.5
GW

predictive densities (here, part of the available data described previously), and then
estimating the relevant parameters of the chosen copula. Similar approaches are first
instance considered in econometrics applications [19].

3.1 Preliminaries and definitions

Let us first describe the general setup for this forecasting problem. At every time step
t, one aims at predicting wind power generation for future times t +1, t +2, · · · , t +
K at N contiguous locations. Seeing wind power generation as a stochastic process,
there are in total n = NK random variables of interest, denoted in the following by
Yt,1, Yt,2, · · · , Yt,n, which we aim at jointly describing given the information available
up to time t. For instance here, with 15 zones and 43 lead times, one has n = 645.
The enumeration is such that Yt,1, · · · ,Yt,K represent wind power generation at the
first location for the lead times 1, · · · ,K, then Yt,T+1, · · · ,Yt,2T represent wind power
generation at the second location for lead times 1, · · · ,K, and so on. Uppercase let-
ters are used for random variables, while lowercase letters denote the corresponding
observations. Bold font is used to emphasize vectors and matrices. For example,
yt = [yt,1, yt,2, · · · , yt,n]

> stands for the realization of Yt . This translates to gener-
ally seeing wind power generation as a vector-valued stochastic process, instead of
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a spatio-temporal one. This is more for the sake of employing simpler notations,
even though in the following sections the space-time structure will be accounted
for, by identifying the spatial and temporal neighbourhood of each random variable
composing this vector-valued stochastic process.

The aim of the forecaster is to issue a multivariate predictive distribution Ft , de-
scribing the random vector Yt = [Yt,1, Yt,2, · · · , Yt,n]

>, conditional to the information
available up to time t,

Ft(y1, y2, · · · , yn) = P(Yt,1 ≤ y1, Yt,2 ≤ y2, · · · , Yt,n ≤ yn) . (1)

Proposing a functional form for Ft directly implies a simultaneous description
of both the marginal densities as well as of the space-time interdependence struc-
ture. They should account for the non-Gaussian and bounded nature of wind power
generation, as well as for the complex dynamics of wind power variability. Unfortu-
nately, there is no obvious distribution function which could address these required
aspects altogether. Employing a copula-based approach appears to be an appealing
solution since allowing decomposing the problem of estimating Ft into two parts.

First, marginal predictive densities, Ft,i = P(Yt,i ≤ yi), i = 1,2, · · · ,n, describing
wind power generation at each location and for each lead time individually, can be
obtained. In contrast to joint multivariate predictive densities, for which very limited
literature exist, the case of issuing marginal ones only is increasingly considered, in
both parametric and nonparametric framework. Thus, at this point, the forecaster
clearly should take advantage of the state-of-the-art methods available for proba-
bilistic wind power forecasting, while concentrating on an appropriate description
of the dependence structure.

Subsequently, the marginal predictive densities can be linked together in order
to obtain Ft using a copula function. Mathematically the foundation of copulas is
given by Sklar’s theorem [42], which states that, for any multivariate cumulative
distribution function Ft with marginals Ft,1, Ft,2,...,Ft,n there exists a copula function
C such that

Ft(y1, y2, · · · , yn) =C (Ft,1(y1), Ft,2(y2), · · · , Ft,n(yn)) . (2)

In the case where the joint distribution to be modelled involves continuous random
variables only, as for wind power generation, the copula C is unique.

3.2 Copulas for wind power data

Several functional forms of copulas have been considered for wind power data.
Namely, in Ref. [36] the authors advocate that a Gaussian copula is an adequate
choice when generating joint predictive densities, for a single location and a set of
successive lead times. In parallel in Ref. [26], different copula functions were com-
pared for the modelling of the dependence between wind power generation at two
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sites, for a given lead time. The results showed that a Gumbel copula performed best,
even though Gaussian and Frank copulas could also fit the data fairly adequately.

When moving to higher dimensions, the construction of Archimedean copulas
(e.g., Gumbel) becomes complex. For instance, a traditional approach for construct-
ing the n-variate Gumbel copula requires the nth order derivative of the inverse of
the process generating function. Even considering explicit formulas for those deriva-
tives given in Ref. [21], the complexity remains high compared to a Gaussian copula
approach. Moreover, Ref. [11] showed that in higher dimensions Gaussian copulas
outperformed their Gumbel’s counterparts, certainly also owing to the much larger
potential number of parameters of Gaussian copulas compared to the single param-
eter the Gumbel ones. Note that these works and results should be interpreted with
care as they might depend upon site characteristics, as well as upon the type of
marginal predictive densities employed as input.

These works hint at the fact that a Gaussian copula could be deemed appropriate
for describing spatial and temporal dependencies present in wind power data. How-
ever, these works have not considered spatio-temporal dependencies. Consequently,
in a first step, a preliminary data examination is carried out in order to verify whether
or not employing a Gaussian copula could be consistent with the space-time depen-
dence structure observed.

As an example here, consider Yt,(5×43)+5 and Yt,(4×43)+4 representing wind power
generation at zone 6 and lead time t+5, and wind power generation at zone 5 at lead
time t + 4, respectively. The dependence between the random variables Yt,(5×43)+5
and Yt,(4×43)+4 can be graphically illustrated by focusing on the ranks of the uni-
form variables Ft,(5×43)+5(Yt,(5×43)+5) and Ft,(4×43)+4(Yt,(4×43)+4), for all predictive
densities and corresponding realizations available over the first data subset from 1
January 2006 to 30 November 2006.

The scatterplot of the corresponding ranks characterizes the dependence structure
between Yt,(5×43)+5 and Yt,(4×43)+4, while the overlaying contour plot represents the
so-called empirical copula [13]. This empirical copula is then compared to what
would be the corresponding Gaussian copula, as illustrated in Fig. 2. Both patterns
are very similar, thus indicating that the Gaussian copula could be seen suitable
for describing the spatio-temporal dependence structure. The results obtained while
considering different pairs of variables were all deemed qualitatively similar. Ob-
viously, such a visual comparison does not guarantee that employing a Gaussian
copula is the best choice for modelling the dependence structure, while different
fit evaluation criteria could be used if really aiming to find an optimal copula (as
in [26, 11]). Here it is our choice to focus on Gaussian copulas only, owing to the
resulting opportunities given in terms of dependence structure modelling with pre-
cision matrices only.

3.3 Gaussian Copula

A Gaussian copula is given by
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(a) Observed ranks
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(b) Ranks of a simulated Gaussian process

Fig. 2 Comparison of empirical and Gaussian copula for the dependence between Yt,(5×43)+5
and Yt,(4×43)+4. The left figure shows a scatterplot with contour overlay for the ranks of
Ft,(5×43)+5(yt,(5×43)+5) and Ft,(4×43)+4(yt,(4×43)+4) (empirical copula). In parallel, the right figure
depicts a scatterplot with contour overlay for the simulated bivariate Gaussian process having the
same rank correlation

C (Ft,1(y1), · · · ,Ft,n(yn)) = ΦΣ

(
Φ
−1(Ft,1(y1)), · · · , Φ

−1(Ft,n(yn))
)
, (3)

where Φ−1 denotes the inverse of the standard Gaussian cumulative distribution
function and ΦΣ (.) is the n-variate Gaussian distribution function with zero mean,
unit marginal variances and a correlation matrix Σ . Based on the assumption such
that the marginal predictive densities are probabilistically calibrated, the random
variables defined by Ft,i(Yt,i), i = 1, · · · ,n, are distributed U [0,1]. Following an ar-
gument similar to that of [28], it is consequently assumed that a joint multivariate
predictive density for Yt can be represented by a latent multivariate Gaussian pro-
cess X = [Φ−1(Ft,1(Yt,1)), · · · , Φ−1(Ft,n(Yt,n))]

>,

X∼N (0,Σ) , (4)

with zero mean, unit marginal variances and a correlation matrix Σ . The realiza-
tions xt = [xt,1, · · · ,xt,n]

> of that process are given by transforming the observations
of wind power generation yt,i through the corresponding predictive cumulative dis-
tribution functions and through Φ−1,

xt,i = Φ
−1(Ft,i(yt,i)), i = 1, · · · ,n . (5)

The base assumption about calibration of marginal predictive densities is core to the
methodology subsequently used for modelling the dependence structure. In practice,
it might be very difficult to verify whether these densities are calibrated or not,
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especially for small samples. Lack of calibration would necessarily translate to X
not being multivariate Gaussian.

Note that, in this setup, even though the marginal distributions Ft,i as well as
the joint distributions Ft are time-dependent, the underlying dependence structure is
fully characterized by the time-invariant correlation matrix Σ , hence not requiring a
time index for either X or Σ . Such an assumption may not always hold in practice,
since the dependence between the sites and different lead times might change under
the influence of meteorological conditions, seasonal effects, changes in the terrain
roughness, etc. It is out of scope in this study to address those issues, even though we
discuss in Sect. 7 several possible extensions permitting to better capture such vari-
ations in the spatio-temporal dependence. The most straightforward one would be
to use a sliding-window estimation approach, even though it would clearly increase
computational costs.

3.4 Modelling as a conditional autoregression

Consider a set of available wind power observations for the vector valued process
Yt , t = 1, · · · ,T . This process is transformed so as to obtain the latent multivariate
Gaussian one X, and related observations. Emphasis is placed on the correlation
structure of X. As can be seen from Fig. 3, the sample correlation matrix Σ̂ is dense.
This directly implies that inference with such a matrix has a computational complex-
ity of O(n3). In order to make the proposed methodology applicable for problems
of high dimension, instead of modelling the covariance matrix directly, we focus on
its inverse, the precision matrix, denoted by Q [41].

In contrast, the sample precision matrix (see Fig. 4) is very sparse. This sug-
gests considering Gaussian Markov Random Fields (GMRF), allowing us to benefit
from computationally efficient algorithms derived for inference with sparse matri-
ces. More specifically, by switching from a dense correlation matrix to its sparse
inverse, we reduce the computational complexity from O(n3) to a range from O(n)
to O(n3/2), depending on the process characteristics [41].

While a correlation structure tells of global dependencies between marginal di-
mensions of the vector-valued process, the precision matrix represents conditional
interdependencies. The elements of the precision matrix have the following inter-
pretation. The diagonal elements of Q are the conditional precisions of Xi given
X−i = [X1, X2, · · · , Xi−1, Xi+1, · · · , Xn]

>, while the off-diagonal elements, with a
proper scaling, provide information about the conditional correlations between the
variables. For a zero mean process such as the one we are dealing with, one has

E(Xi|X−i) =−
1

Qii
∑
j 6=i

Qi jX j , (6)

Var(Xi|X−i) = 1/Qii . (7)
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Fig. 3 Sample correlation matrix Σ̂ over the first subset of data

A very important relation is that Qi j = 0 if and only if the elements Xi and X j
are independent, given X−{i, j}. Hence, the non-zero pattern of Q determines the
neighbourhood of conditional dependence between variables. This relationship can
be used to propose a parametrization of the precision matrix. Of course, one still has
to keep in mind that Q is required to be symmetric positive-definite (SPD).

The relationship given by (6) and (7) is sometimes used for an alternative spec-
ification of Gaussian Markov Random Field through the full conditionals. This ap-
proach was pioneered by Besag in [3]: the resulting models are also known as condi-
tional autoregressions, abbreviated as CAR. When specifying GMRF through CAR,
instead of considering the entries of the precision matrix Q, Qi j, directly, focus is
on modelling terms κi = Qii and βi j = Qi j/Qii, i, j = 1, · · · ,n.

From (6) it is seen that the elements βi j are given by the coefficients of the cor-
responding conditional autoregression models, while κi inform on the related vari-
ances. This translates to

Q = κB , (8)

where κ denotes a diagonal matrix of dimension n× n, the diagonal elements of
which are given by κi, i = 1, · · · ,n. B is a coefficient matrix gathering a set of co-
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Fig. 4 Sample precision matrix Q̂ over the first subset of data

efficients βi j, i, j = 1, · · · ,n, to be seen as a standardized precision matrix. Such a
CAR specification is generally easier to interpret and we will use it to propose a
parametrization for Q in this work.

4 Parametrization of the precision matrix Q

As the CAR specification of (6) and (7) allows us to decouple the problem of de-
scribing Q into the matrix of conditional precisions κ and the coefficient matrix B
is presented, their parametrization are presented one after the other below.

4.1 Parametrization of κ

Conventionally, CAR models are given by stationary GMRF. Stationarity implies
rather strong assumptions on both the neighbourhood structure and the elements of
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Q. Firstly, the structure of the neighbourhood does not allow for special arrange-
ments for the boundary points. Secondly, the full conditionals have constant param-
eters not depending on i, i.e., the conditional precisions κi, i = 1, · · · ,n, are assumed
constant. However, our data analysis showed that this assumption was too restric-
tive in the present case. Indeed, having a closer look at the diagonal of the sample
precision matrix Q̂, depicted in Fig. 5, it is clear that its elements are not constant.
Instead, except for the boundary points, they exhibit a trend with conditional preci-
sion increasing with the lead time.
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Fig. 5 Diagonal elements of the sample precision matrix, Q̂. Boundary points given by the con-
ditional precisions for lead times 1 and 43 hours ahead are marked with red and blue circles,
respectively

In addition, the variation patterns for conditional precisions appear similar for all
zones. Only the variation pattern for zone 9 looks different. This result is in line with
a previous analysis in [43] of the spatial and temporal dynamics of wind power gen-
eration for this dataset. On the one hand, that difference might be explained by the
smaller area covered by zone 9 in comparison will all the others (and lower nom-
inal capacity), hence leading to more significant local variations, and then lower
conditional precisions. On the other hand, that zone also exhibits different charac-
teristics since located off the mainland of Jutland, where offshore wind dynamics
can substantially differ from those observed onshore.

If looking at the other zones, the variation patterns observed for the conditional
precisions are rather similar. It was not possible to link the differences between
zones to the explanatory variables available, either measurements or forecasts. In
parallel, even though one might think that the precision pattern could depend on
whether a zone is located in the center of the considered territory or on the bound-
ary, such an assumption was not supported by the data. Furthermore, our analysis
did not support the alternative assumption such that conditional precisions could
depend on the overall level of power variability at that zone. Consequently, our pro-
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posed parametrization for conditional precisions is the same for all zones. Further
investigation might allow to refine this proposal.

As a result, κ is a block diagonal matrix,

κ =


κB 0

κB
. . .

0 κB

 , (9)

where its block element,

κB =


κ1 0

κ2
. . .

0 κK

 , (10)

is a diagonal matrix of dimension K×K, repeating N times.
Focusing on a single block element κB, and in view of our observations related

to Fig. 5, a parametrization for κB ought to consider separately the central lead
times and the temporal boundaries. These temporal boundaries κ1 and κK cannot be
avoided since there cannot be lead times of less than 1 hour ahead and more than K
hours ahead. As a result for these lead times, the conditional models in (6) and (7)
rely on a smaller set of explanatory variables. This in turn leads to lower precision
values.

For lead times between 2 to K−1 hours ahead, an analysis of Fig. 5 suggests that
conditional precisions increase with the lead time, and could be expressed as

κi = ρ
i−2, i = 2, · · · ,K−1 , (11)

with ρ a ratio parameter. This model was found to be more suitable than a simpler
linear one, which, visually based on Fig. 5 could also be seen as a relevant candidate.

As a result, this block element κB is parametrized as

κB =
1

σ2



κ1
1 0

ρ

. . .
0 ρK−2

κK


(12)

meaning that, overall, the diagonal elements of Q can be described with four param-
eters only: the temporal boundaries κ1 and κK , the ratio parameter ρ , and an overall
scaling σ2.
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4.2 Parametrization of the standardized precision matrix B

Our next step is to describe a parametrization for B. This requires an analysis
of the neighbourhood structure of Q by identifying which elements are non-zero.
We first look at the spatial neighbourhood and then at the temporal one, The final
parametrization for B is finally presented.

4.2.1 Spatial neighbourhood

Consider a single zone denoted by A. A careful look at Fig. 4 (while also remember-
ing the spatial distributions of these zones shown in Fig. 1) reveals that information
at zone A only depends on the local information at A and on the four closest neigh-
bouring zones: northern (N), eastern (E), southern (S) and western (W) neighbours
of A. A simplified representation of their spatial neighbourhood effects is given in
Fig. 6.

Fig. 6 Neighbourhood spec-
ification of a single zone.
The focus zone is marked A,
while W, N, E and S denote
its western, northern, east-
ern and southern neighbours,
respectively

In practice, the spatial neighbours are assigned to each of the zones based on
the visual inspection of the spatial distributions of these zones (see Fig. 1), as well
as expert knowledge. For instance, for zone 11, the obvious spatial neighbours are
W=10, E=12 and S=15. The N neighbour is more difficult to define, since a unique
zone is to be picked, while here both zones 6 and 7 could be seen as appropriate. An
analysis of the sample precision matrix allowed to decide on N=6 in view of a more
pronounced dependence.

4.2.2 Temporal neighbourhood

Fig. 4 shows that information observed at zone A at time t is only dependent on a
very small amount of elements at zones A, N, E, S, and W. Since precision matrices
ought to be symmetric, it is sufficient to focus on the dependency between A and
its western and southern neighbours, without direct consideration of the eastern and
northern neighbours. Let us zoom into some relevant blocks of the sample coeffi-
cient matrix B̂, obtained based on our first subset of data, when focusing on zone
6.
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Based on Fig. 7, it appears that the corresponding conditional correlations of
zone A with its northern and the western neighbours differ. Information at zone A
observed at time t is conditionally dependent only on the simultaneous informa-
tion at zone N. Meanwhile, the conditional correlation with zone W is significant at
times t− j, j =−2, · · · ,2. This difference in the dependency patterns can be partly
explained by the fact that in Denmark the prevailing winds are westerly. Thus, fore-
cast errors most often propagate from West to East, as discussed in, e.g., [15]. This
means that usually zones A and N are influenced by the upcoming weather front si-
multaneously, while zone W is exposed to it earlier. Of course, one should also keep
in mind that in our test case distances between zones A and N are in general larger
than those between A and W. That can be another factor influencing the differences.

(a) W (b) A

(c) S

Fig. 7 Zooming on blocks of the standardized sample precision matrix B̂

In general, the results depicted in Fig. 7 show that information corresponding to
lead time k for zone A is dependent on the variables at the neighbouring zones cor-
responding to lead times k− j, where j =−2, · · · ,2. Thus, visually the data suggests
a second order (temporal) process. In this work both the second ( j =−2, · · · ,2) and
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the first order ( j =−1,0,1) models have been considered. Since the corresponding
difference in the performance of the resulting predictive densities was rather mi-
nor, in this study the focus is on the first order model ( j = 1). Extension to higher
order models is rather straight-forward and all the discussed parametrization and
estimation procedures apply.

In this work a directional non-stationary CAR model, abbreviated as DCAR, is
considered. That is, the conditional correlations are made direction-dependent. In
this respect the work is inspired by [24] where the authors consider a directional (in
space) CAR model. We refer the reader to that work for a clear description of the
modelling approach. The current proposal can be viewed as a generalization of the
work presented in [24] since space-time neighbourhoods are considered along with
the non-constant precisions.

When considering DCAR models, directional neighbourhoods should be chosen
carefully so that each of them forms a (directional) clique. Let us consider two
elements from the full random vector X, Xi and X j. Then, given that Xi is a “west-
side” and “one-hour-ago” neighbour of X j, X j should be assigned as the “east-side”
and “one-hour-ahead” neighbour of Xi. This is essential for ensuring the symmetry
of the precision matrix.

4.2.3 Resulting space-time parametrization for B

Our analysis over the first data subset suggested that information for zone A at lead
time k conditionally depends on information from zones N, E, S, and W with lead
times k−1, k, k+1, as well as on the local situation at zone A for lead times k−1
and k+1. In terms of the CAR specification given in (6) this translates to

E
(
Xt,(A−1)K+k|Xt,−{(A−1)K+k}

)
=− ∑

j={−1,1}
a jXt,(A−1)K+(k+ j)

− ∑
j={−1,0,1}

(b jXt,(W−1)K+(k+ j)+b∗jXt,(E−1)K+(k+ j)

+c jXt,(N−1)K+(k+ j)+ c∗jXt,(S−1)K+(k+ j)) .

(13)

In the above, a j, b j, b∗j , c j and c∗j denote the coefficients representing conditional
dependencies on the local (a) information as well as on the information coming
from the west (b), east (b∗), north (c) and south (c∗), respectively. These coefficients
are the building blocks for B.

It was found that a j, b j, b∗j , c j and c∗j do not depend on the considered lead time
k. It can be also seen from Fig. 7 that there is no indication of any increase/decrease
of the coefficient values with the lead time. The only values which differ from the
general picture are those for the temporal boundaries. This effect is already dealt
with when scaling by the corresponding conditional precisions.

In this work it is assumed that the corresponding coefficients are constant for
all zones. Further work could be done in order to explain spatial variations in the
coefficient values. Some restrictions have to be imposed on the parameters in B to
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ensure that the resulting precision matrix Q is SPD. Imposing symmetry reduces
the parameter space significantly, since coefficients a1 can be derived from a−1, b∗j
from b− j and c∗j from c− j, j =−1,0,1. This will be discussed in the following.

For the specific setup of our Danish test case, the resulting standardized precision
matrix is defined as

B =



A S
A E S
W A E S 0

N W A S
N A E S

N W A E S
W A E

N W A E S
W A S

N A E S
N W A E S

N W A E
0 N W A

N A E
N W A



, (14)

where W, N represent the blocks describing the conditional dependencies between
a given zone its Western and Northern neighbours, respectively, while A represent
the local dependencies within zone A itself. Note that indices for the zones were
added in order to better appraise the structure of this matrix.

The A, W and N blocks are parametrized as

A =



1
a−1

κ1
0

a−1 1 ρa−1
. . . . . . . . .

a−1 1 ρa−1

0 ρK−1a−1

κK
1


. (15)

One can note that in the upper diagonal of A instead of writing a1 as suggested by
(13), we directly express a1 in terms of a−1 in order to ensure symmetry of the re-
sulting Q. That is, the upper diagonal of A when multiplied by [κ1, 1, ρ, · · · ρK−2]>

has to be equal to the lower diagonal of A multiplied by [1, ρ, · · · , ρK−2, κK ]
>.

From this one can directly obtain the dependency between the upper and the lower
diagonals of A. Since the elements of κB increase proportionally by ρ for lead times
from 2 to K− 1, then a1 = ρa−1 in the corresponding part. In the similar manner,
the scaling for the boundary points is a function of κ1 and κK .
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W =



b0
b1

κ1
0

b−1 b0 b1
. . . . . . . . .

b−1 b0 b1

0 ρK−1b−1

κK
b0


, (16)

and

N =



c0
c1

κ1
0

c−1 c0 c1
. . . . . . . . .

c−1 c0 c1

0 ρK−1c−1

κK
c0


. (17)

For the last two blocks, they are readily obtained with

E = K−1W>K ,

S = K−1N>K , (18)

to ensure symmetry of Q.
Finally, the precision matrix Q can be fully modelled by a parameter vector θ , as

θ = [κ1, ρ, κK , σ
2, a−1, b0, b−1, b1, c0, c−1, c1]

> . (19)

It will hence be referred to as Q(θ) in the following.

5 Estimation

We explain here how to fit the GMRF defined by Q(θ) to the observations. This task
can be divided into two parts. Firstly, the discrepancy measure between observed
data and the suggested GMRF is to be chosen. Secondly, one has to insure that the
parameter estimates belong to the valid parameter space Θ+, such that the resulting
precision matrix is SPD.

5.1 The valid parameter space

The precision matrix Q was previously described as a function of the parameter
vector θ . Symmetry of Q(θ) is imposed by construction. Hence, we are left with
the issue of the positive definiteness of Q(θ).
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Unfortunately, in general, it is hard to determine the valid parameter space Θ+.
Analytical results are available for precision matrices that are Toeplitz [39]. These
results can be used when working with homogeneous stationary GMRFs, but this is
not the case here. An alternative to consider here is to work with a subset Θ+ given
by the sufficient condition such that Q(θ) is diagonal dominant.

Diagonal dominance is easier to treat analytically. On the downside, this ap-
proach becomes more and more restrictive for an increasing number of parameters.
This issue is discussed in more detail in [39]. For instance, for our particular test
case we could see that the assumption of diagonal dominance was too restrictive.
And, if no such restriction was imposed, the vector of parameters estimated was far
from yielding a diagonal dominant precision matrix.

If the full valid parameter space Θ+ is unknown and its diagonal dominant sub-
set is deemed too restrictive, it is always possible to use a “brute force” approach
(following the terminology of [39]). This entails checking if θ̂ ∈Θ+ by direct ver-
ification of whether the resulting Q(θ̂) is SPD or not. This is most easily done by
trying to compute the Cholesky factorization which will be successful if and only if
Q is positive definite. This is the approach we decided to use here.

However, it is worth mentioning some advantages given by the diagonal dom-
inance approach over the “brute force” method. An important one is that if one
estimates parameters while requiring the diagonal dominance, then one can be sure
that if a new territory is to be included , there is no strict necessity (other than aim-
ing for optimality) to re-estimate the parameters. In other words, one can be sure
that the vector of parameters already available would guarantee a valid covariance
structure for the enlarged lattice. This is not the case if using the “brute force” ap-
proach. If aiming to add another zone, it cannot be guaranteed that the previously
estimated parameters would result in a valid covariance structure, hence requiring
to re-estimate them. Our various experiments showed that such a new set of pa-
rameters would be very close to the previous one. This latter vector of parameters
could therefore be used as initial condition of the optimization routine used for their
re-estimation.

5.2 Choosing an appropriate optimization criterion

When estimating θ from data, a discrepancy measure between the imposed GMRF
and the observations needs to be chosen. Here estimation is carried out in a max-
imum likelihood framework. In [40], the authors argue that maximum likelihood
estimators for GMRF are not robust with respect to model errors and might result
in coefficient estimates which do not describe well the global properties of the data.
The authors propose a new optimization criterion which resolves this difficulty. The
criterion is based on a norm distance between the estimated and the observed corre-
lation structures.

By considering both the norm-based discrepancy optimization and the maximum
likelihood approach, we observed that resulting estimates were very similar. Using
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the maximum likelihood approach was then preferred, following another argument
in [40], such that, if a GMRF describes the data adequately, then the maximum
likelihood-based inference is more efficient.

5.3 Parameter estimation using maximum likelihood

Let us focus on a single time t and recall some of the notations introduced in Sect. 3.
An observation of the latent Gaussian field xt = [xt,1, xt,2, · · · , xt,n]

> is obtained by
transformation of the wind power observations [yt,1, yt,2, · · · , yt,n]

> through the cor-
responding predictive cumulative distribution functions, as in Eq. (5). In the case
where marginal predictive densities are probabilistically calibrated, xt is a realiza-
tion from a multivariate Gaussian distribution with zero mean and correlation matrix
given by Q−1. Consequently the log-likelihood contribution given by xt writes

lt(θ) =−
1
2

(
n ln(2π)− ln |Q(θ)|+xt

>Q(θ)xt

)
. (20)

Given T realizations for the process Xt , the overall likelihood is given by

lT (θ) =
T

∑
t=1

lt(θ) =−
1
2

(
nT ln(2π)−T ln |Q(θ)|+

T

∑
t=1

xt
>Q(θ)xt

)
. (21)

Then, solving
∂ lT (θ)

∂σ2 = 0 with respect to σ2 yields the following profile maxi-

mum likelihood estimator for σ2,

σ̂2 =
∑

T
t=1 x>t Pxt

T n
, (22)

where

P =



κ1

1 0
ρ

. . .
0 ρK−2

κK


(23)

Having the profile likelihood estimate for σ2, Q can be seen as a function of the
reduced parameter vector θ−:

θ
− = [κ1,ρ,κ43,a−1,b0,b−1,b1,c0,c−1,c1]

> . (24)
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And, finally, an estimate for θ− is obtained by a numerical optimization of the like-
lihood function given in (21) with respect to the parameter vector θ−.

The requirement for the resulting Q(θ̂) to be symmetric positive definite is equiv-
alent to requiring all eigenvalues to be positive. Similarly to [40], we approach
the constrained optimization problem as an unconstrained one, adding an infinite
penalty if some of the eigenvalues are negative. This approach works well in prac-
tice. In parallel, Σ(θ̂) = Q−1(θ̂) is required to have a unit diagonal. In practice this
is achieved by the corresponding scaling of Q(θ̂), as also suggested in [39].

6 Results

6.1 Assessing global model fit

Our verification starts with an examination of the global properties of the estimated
dependence structure. This is done in the spirit of [40], i.e., by visually comparing
the estimated covariance structure with the sample one, over the first subset of data
available and used for modelling and model fitting. The estimated correlation ma-
trix is illustrated in Fig. 8, while the sample one was already shown in Fig. 3. The
patterns in these two matrices appear to be very similar.

The motivation for checking the global resemblance between the dependence
structures in addition to the overall likelihood evaluation is given by the following.
When optimizing the likelihood, the optimal fit is given by fitting the covariances
within the neighbourhood exactly, while the remaining ones are determined by the
inversion of the fitted precision matrix [40]. This may result in estimates which,
instead of capturing dependencies between all the variable pairs in some reasonable
way, capture just some of them with a very high precision, while ignoring the others.

6.2 Assessing predictive model performance

We then turn ourselves to evaluating the predictive performance of our approach. In-
deed, so far, all derivations and discussion were for the first subset of data (between
1st January and 30th November 2006). Here, the evaluation uses genuine forecasts
generated for the second subset of data (from 30th November 2006 to 24th October
2007), where the available predictive marginal densities, as well as estimated depen-
dence structure, are used to issue multivariate predictive densities with a dimension
n = 645.

The section starts with a presentation of the benchmark approaches. Further,
scores used for the overall quality assessment are discussed. Finally, the empirical
results are presented.
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Fig. 8 Estimated correlation matrix

6.2.1 Overview of the models considered

The following models are considered in this study:

1. Independent: The corresponding multivariate predictive densities are based on
the assumption that the marginal densities are independent, i.e.,

Ft(y1,y2, · · · ,yn) = Ft,1(y1)Ft,2(y2) · · ·Ft,n(yn) ; (25)

2. First order time-dependence: The corresponding multivariate densities are ob-
tained using a Gaussian copula approach. The covariance matrix accounts only
for the temporal dependencies while completely ignoring the spatial ones. This
is done by constructing the precision matrix Q as described in the above, but
setting ρ = κ1 = κK = 1 and b−1 = b0 = b1 = c−1 = c0 = c1 = 0. That is, the
precision matrix in this case is described by the parameters a1 and σ2 only. This
model does not allow for any special arrangement for the boundary points. The
conditional precisions are assumed to be constant. In other words, this model
corresponds to a conventional stationary GMRF defined by the first order autore-
gressive process in time;
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3. Separable model with first order decays in time and in space allowing for non-
constant conditional precisions: The corresponding multivariate densities are ob-
tained using a Gaussian copula approach. The precision matrix Q is parametrized
as in the above while setting c0 = b0, b1 = b−1 = c1 = c−1 = a1b0. That is, the
precision matrix in this case is described the first order time-dependence (given
by a1) and the first order spatial dependence (given by b0). Additionally, the
model gives more flexibility compared with the conventional separable covari-
ance structures by considering non-constant conditional precisions (modelled by
ρ , κ1 and κK). The model does not account for the directional influence, and that
is why c j is set to be equal to b j with all j =−1, · · · ,1;

4. Sample correlation: The corresponding multivariate predictive densities are ob-
tained using a Gaussian copula approach with the correlation structure given by
the sample correlation matrix;

5. Full model: The first order model which proposed in this study. That is the pre-
cision matrix is described by the full parameter vector θ as given in (19).

6.2.2 Choosing an appropriate scoring rule for the quality evaluation

In order to evaluate and compare the overall quality of multivariate probabilistic
forecasts proper scoring rules are to be employed [8, 17]. An overview of proper
scoring rules used for the multivariate forecast verification is given in [18]. In this
work the Logarithmic score is used as a lead score for evaluating the performance
of the joint predictive densities. The logarithmic scoring rule, s, is defined as

s(p(x),xt) =− ln(p(xt)) (26)

Where p(x) stands for the predictive density, which in our case is given by
N (0,Q(θ̂)

−1
). xt denotes the corresponding observation.

Suppose, the verification set consists of T observations, then the overall empirical
score value, S, is given by the average value of the individual s(p(x),xt),

S(p(x)) =− 1
T

T

∑
t=1

ln(p(xt)) . (27)

In other words, the Logarithmic score value over the evaluation set is given by the
average minus log-likelihood derived from the observations. The score is negatively
orientated: the lower its value is, the better.

There are several reasons for choosing the Logarithmic score as the lead eval-
uation criterion. Firstly, it is consistent with the optimization criterion used when
estimating the model parameters. Secondly, allowing for some affine transforma-
tions, this is the only local proper score (see Theorem 2 in [2]). Locality means that
the score depends on the predictive distribution only through the value which the
predictive density attains at the observation [8]. An important advantage of using
local scores when dealing with multivariate predictive densities comes with the re-
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lated computational benefits. When dealing with local scores, there is no need to
draw random samples from the predictive density in order to make the evaluation.

For instance, an alternative is to use the Energy score (see detailed information
on this in [18]). This score is non-local and is based on the expected Euclidean
distance between forecasts and the related observations. Most often, closed-form
expressions for such expectation are not available. One then needs to employ Monte-
Carlo methods in order to estimate the score value [18]. In high dimensions, Monte-
Carlo techniques result in computational challenges.

A downside of employing local scores is their sensitivity to outliers. For instance,
the Logarithmic score is infinite if the forecast assigns a vanishing probability to the
event which occurs. In practice, when working with real data, such sensitivity might
be a problem.

In this work, we considered both the Energy score and the Logarithmic score for
the final density evaluation. In general the results suggested by the two scores were
consistent and no contradictions were observed. However, we noticed that the En-
ergy score was not very sensitive to the changes in the correlation structure. That is,
the changes in the Energy score when moving from the assumption of independence
between the marginal predictive densities to models accounting for the dependence
structure were rather small (even though they still proved statistically significant
based on Diebold-Mariano test statistics [12]). This is caused by low sensitivity of
the Energy score to changes in the dependence structure as argued in [38]. This is
another reason to focus on the Logarithmic score further in this study.

6.2.3 Empirical results

The results from our evaluation of multivariate predictive densities issued based on
the approaches mentioned in Sect. 6.2.1 are collated in Table 1, while also describing
the complexity of these models in terms of their number of parameters.

Table 1 Quality assessment of the predictive densities in terms of the Logarithmic score (S)

Model Nr. of parameters S
Independent 0 853.14

First order in time 1 409.98
Separable space-time model 6 357.84

Full model 10 318.07
Sample correlation 207690 267.96

One can appreciate the importance of accounting for the dependence structure
from the fact that multivariate predictive densities derived from the independence
assumption are shown to be of lowest quality. The full model proposed in this study
outperforms the other two dependence structures, i.e., both the first-order time-
dependence and the separable space-time model. The statistical significance of the
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improvements was verified using a likelihood-ratio test, similar to that described
in [27]. This confirms that letting the related conditional correlations change de-
pending on the direction as well as allowing for non-separable space-time influence
results in better quality of the multivariate probabilistic forecasts.

Predictive densities defined by the sample correlation matrix provide the best
quality forecasts. This is also expected, since in this study the estimation period
consisted of one year of hourly data. Large amount of data made it possible to esti-
mate the covariance structure, even for such a high dimension. However, the main
interest in the future is to make the covariance structure dependent on meteoro-
logical conditions. In this setup, tracking a sample covariance will become nearly
impossible. Thus, the proposed parametrization is crucial for further development
of the methodology as it significantly reduces the effective problem dimension.

6.3 Scenario generation

As an illustration of probabilistic forecasts obtained with the proposed approach,
Fig. 9 depicts a set of five scenarios describing wind power generation at zones 6
and 7, for lead times between 1 and 43 hours ahead, issued on the 15th of June 2007
at 01:00. The marginal predictive densities originally available are also shown, as
well as the power observations obtained a posteriori.
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Fig. 9 Scenarios describing wind power generation at zones 6 (top) and 7 (bottom) from 1 to 43
hours ahead issued on the 15th of June, 2007, at 01:00. The scenarios shown in the left are those
obtained with our model. Those on the right are obtained under an independence assumption, thus,
not respecting neither temporal nor spatial dependencies
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The scenarios generated using our approach respect dependencies both in time
and in space. Respecting correlations in time ensures that the corresponding scenar-
ios do not evolve as a random walk whose magnitude would be shaped by predic-
tive marginals. For instance, given that a scenario predicts wind power generation at
time t + k to be far from its conditional expectation, then power generation at time
t+k+1 is also expected to deviate substantially from its conditional expectation. As
an example see Scenario 5 for zone 6 for lead times between 22 to 30 hours ahead.
Similarly, respecting spatial dependency between the zones ensures that when large
(resp. small) forecast errors are observed at one zone, the errors at the other zone are
also expected to be large (resp. small). This is also visible from Fig. 9. For example,
in the case of scenario 4, wind power generation deviates a lot from its conditional
expectation in both zones 6 and 7, for lead times between 22 to 30 hours ahead. In
contrast, the corresponding scenarios generated using the independent model do not
respect neither temporal, not spatial dependencies in the data.

7 Concluding remarks and perspectives

The problem of obtaining multivariate predictive densities of wind power genera-
tion was considered, jointly for a number of contiguous spatial areas and lead times,
based on already available marginal predictive densities for each individual zone and
lead time. A Gaussian copula approach was employed to build such multivariate pre-
dictive densities. Our core contribution lies in the proposed parametrization of the
dependence structure. More specifically, instead of modelling the covariance matrix
directly, focus is given to its inverse (precision matrix). This solution brings sub-
stantial practical benefits. For one, the precision matrix is shown to be very sparse.
This permits to place ourselves in GMRF framework, hence resulting in computa-
tional benefits obtained through faster factorization algorithms available for sparse
matrices. Besides, the proposed parametrization allows for more flexibility, since
one may readily obtain nonseparable covariance structures.

The data analysis carried out for the Danish dataset revealed that the empiri-
cal precision matrix shows non-constant conditional precisions (increasing with the
lead time), as well as varying conditional correlations. This hence required to go be-
yond conventional approaches relying on homogeneous stationary Gaussian fields.
We proposed a way to model changes in conditional precisions, also allowing for
conditional correlations to change with the direction. Accounting for such direc-
tional influence is not only necessary when looking at the data, but it is also quite
intuitive, provided that wind power forecast errors propagate in time and in space
under the influence of meteorological conditions. Consequently, the application re-
sults in terms of predictive performance confirmed that the proposed methodol-
ogy and precision matrix parametrization could yield benefits in generating high-
dimensional multivariate predictive densities of wind power generation, illustrated
by lower Logarithmic score values.
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Besides the methodological proposal and application results, a number of rele-
vant challenges and perspectives for future work were identified. Firstly, a direct
extension of the proposed methodology could consist in conditioning the precision
matrix on meteorological conditions. Here, for simplicity, it was considered that the
dependence structure was constant through time, with a stationarity assumption for
the underlying process. In practice, however, such a spatio-temporal dependence
structure may vary substantially. There are many factors which might influence
changes in process dynamics. An obvious one is the influence of the surface and
higher-level wind conditions. The influence of wind direction on the spatio-temporal
dependence structure could be readily modeled with a regime-switching approach,
by allowing the neighbourhood structure to change with wind direction. In other
words, instead of distinguishing between “West-East” and “North-South” neigh-
bourhoods, one could instead consider “Upwind”-“Downwind” and “Concurrent”-
“Concurrent”. Also, it would be interesting to investigate ways to explain the varia-
tions in the conditional precisions among the zones. Possibly some clustering tech-
niques could be employed. In parallel, slow variations in the process dynamics could
be captured by considering adaptive estimation schemes for the precision matrices.

Further, an interesting challenge will be to move from the lattice setup consid-
ered in this study to a fully continuous approach. Following [25], the link between
stochastic partial differential equations and some type of precision matrices could
be used for such a type of problem. By understanding how the elements of the pre-
cision matrix evolve with distance between the zones and prevailing meteorological
conditions, one can get a process description via stochastic partial differential equa-
tions.

On the forecast verification side, a clear challenge relates to the high dimension
of the multivariate predictive densities. Already when working with a dimension
n = 645, we have faced both methodological and computational issues, in view of
the different scoring rules available for multivariate probabilistic forecast verifica-
tion. Even though both Logarithmic and Energy scores can be used for multivariate
probabilistic forecast verification, each of them introduces limitations in the verifi-
cation exercise. On the one hand, the Energy score, being a non-local score, comes
with additional computational costs since its estimation requires Monte Carlo tech-
niques. Furthermore, following [38], this score has low sensitivity to changes in
covariance structure. On the other hand, the Logarithmic score is highly sensitive
to outliers: this may clearly cause difficulties in practical applications, for which
both noisy data and model misspecification may then become problematic. Over-
all, the field of multivariate probabilistic forecast verification needs increased focus
in order to propose theoretically sound and practical ways to thoroughly evaluate
high-dimensional forecasts such space-time trajectories of wind power generation.
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