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Abstract The Weibull distribution is commonly used to describe climatological wind-speed
distributions in the atmospheric boundary layer. While vertical profiles of mean wind speed
in the atmospheric boundary layer have received significant attention, the variation of the
shape of the wind distribution with height is less understood. Previously we derived a proba-
bilistic model based on similarity theory for calculating the effects of stability and planetary
boundary-layer depth upon long-term mean wind profiles. However, some applications (e.g.
wind energy estimation) require the Weibull shape parameter (k), as well as mean wind
speed. Towards the aim of improving predictions of the Weibull-k profile, we develop expres-
sions for the profile of long-term variance of wind speed, including a method extending our
probabilistic wind-profile theory; together these two profiles lead to a profile of Weibull-
shape parameter. Further, an alternate model for the vertical profile of Weibull shape para-
meter is made, improving upon a basis set forth by Wieringa (Boundary-Layer Meteorol,
1989, Vol. 47, 85–110), and connecting with a newly-corrected corollary of the perturbed
geostrophic-drag theory of Troen and Petersen (European Wind Atlas, 1989, Risø National
Laboratory, Roskilde). Comparing the models for Weibull-k profiles, a new interpretation
and explanation is given for the vertical variation of the shape of wind-speed distributions.
Results of the modelling are shown for a number of sites, with a discussion of the mod-
els’ efficacy and applicability. The latter includes a comparative evaluation of Wieringa-type
empirical models and perturbed-geostrophic forms with regard to surface-layer behaviour, as
well as for heights where climatological wind-speed variability is not dominated by surface
effects.
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108 M. Kelly et al.

1 Introduction

To better predict multi-year wind distributions at heights well beyond the atmospheric surface
layer (‘ASL’ hereafter), i.e. above 50–100 m, based on measurements at lower heights, the
extrapolation of measured statistics demands a model for not only the wind profile but also
model(s) for the profile(s) of the long-term wind statistics. Such models have become more
desirable so far as application is concerned; one example is wind resource assessment, driven
by the ever-increasing heights above the Earth’s surface at which turbines are being mounted.
Commercially available lidar devices are able to measure wind statistics at these heights, but
due to the current cost of lidar technology this is generally not feasible; this is particularly true
for observations lasting multiple years, i.e. over time scales needed to reliably characterize
the local wind climate.

Models for the scalar wind profile have existed for decades, most notably the similarity
theory of Monin and Obukhov (1954). However, such profiles incorporating the effects of
atmospheric stability are generally not derived for long-term application. While some power
laws have been employed for both 10-min and long-term use, this has been without any
physical or solid theoretical relation to stability. Kelly and Gryning (2010) developed a
theory for distributions of stability based on surface-layer fluxes, exploiting it to produce
a statistical long-term wind-profile model based on Monin–Obukhov (“M–O”) theory; this
was then generalized (adapted) in order to extend the ‘tall’ profile model of Gryning et al.
(2007) for long-term application. By “long-term,” here we mean decades, applicable e.g.
to the lifetime of a wind turbine (in contrast with typical 10-min average profiles obtained
from measurements, or the time scales of climate models, which can exceed a century or
millennium).

Various models for the vertical profiles of parameters describing wind-speed distributions
(i.e. Weibull parameters) arose in the 1970s; Justus and Mikhail (1976) made a surface-layer fit
to find the behaviour of the wind distribution with height, with Justus et al. (1978) comparing
similarly simple models in the surface layer, and Spera and Richards (1979) developing an
alternative including a dependence upon surface roughness. Mikhail (1985) showed, however,
that these early attempts did not give usable results beyond the the surface layer. Wieringa
(1989) found an empirical relation for the vertical profile of the Weibull shape parameter
for wind distributions, but it lacks any roughness dependence and contains a dimensional
coefficient that varies from site to site in an undetermined manner. In the European Wind
Atlas (Troen and Petersen 1989, denoted ‘EWA’ hereafter), perturbation theory was applied
to the geostrophic drag law, along with M–O similarity in order to extrapolate observed
wind statistics. This gave a coupled formulation for the profiles of Weibull parameters via
extrapolation of both first and second moments of wind speed, as influenced by geostrophic-
scale1 stability perturbations in a climatological mean sense. The EWA perturbation theory
also included an estimate of the height at which the stability-affected wind variability is
minimal, using it to model the height at which the long-term variance of wind speed reaches
its minimum; as shown below, this is equivalent to accounting for the height where the wind
distribution is narrowest.

In this work we derive several formulations for the vertical profile of the Weibull-
shape (k) parameter by developing probabilistic forms for the corresponding profile of long-
term wind-speed variance, via extension and use of the long-term probabilistic wind-profile
model of Kelly and Gryning (2010). We further offer an alternative empirical model for
the profile k(z), generalizing the form of Wieringa (1989) and making it self-consistent,

1 Geostrophic scale refers here to length scales of several tens of km, for non-equatorial and non-polar latitudes.
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Weibull-k Revisited: “Tall” Profiles and Height Variation of Wind Statistics 109

while also adapting it for measurement-based application. This includes correction of the
EWA (Troen and Petersen 1989) estimate of the height of narrowest wind distribution (peak
of k), and its incorporation in the adapted Wieringa-like profile for the Weibull shape para-
meter. We also elucidate some theoretical details and refinement of the EWA methodology
to improve upon Troen and Petersen (1989), as well as subsequent practical and theoretical
implications; the latter includes a new physical, non-empirical interpretation of the shape of
the k-profile as related to boundary-layer depth.

2 Wind Statistics, Theory, and Development

To describe vertical profiles of wind statistics, we consider the vertical wind-speed distrib-
ution. We follow the standard assumption that typically averaged (e.g. 10- to 30-min mean)
observations of wind speed, when collected over the long term (years) from a range of suf-
ficiently narrow wind sectors (typically 30◦ or less) at a given height z above ground level,
can be described by a two-parameter Weibull distribution

p(U ) = k

U

(
U

A

)k

e−(U/A)k (1)

where p(U ) is the probability density function of wind speed U , k is the Weibull-shape
parameter, and A is the so-called scale parameter. Just as the mean wind speed has a profile
U (z), the Weibull parameters can also vary with height; for clarity, in (1) the z-dependence
implicit in U , A, and k has been omitted. For a wind-speed probability distribution of the
Weibull form (Eq. 1), the nth moment of the wind speed is given by

〈
U n(z)

〉 = AnΓ (1 + n/k) (2)

where Γ (x) is the Gamma function, and we use angle-brackets to refer to an average of
observations over one or more years. Thus the long-term mean wind speed is equal to AΓ (1+
1/k); the long-term mean wind-speed profile 〈U (z)〉 depends upon the profile k(z) as well
as A(z).

From (2), one finds that higher moments of U (z) are more sensitive to k(z) than the mean,
with ∂ ln〈U n〉/∂k roughly proportional to n (specifically ∂ ln[〈U n〉]/∂k = −nk−2χ(1+n/k),
where the DiGamma function χ(x)∼1 for real-world values 0.5 < k < 10). For example,
the expected long-term wind-power density has a normalized k-derivative ∂ ln

(〈U 3〉) /∂k
whose magnitude is larger than |∂ ln (〈U 〉) /∂k| over the range of k (0 < k < 5) observed in
the atmospheric boundary layer (ABL).

Figure 1 illustrates the significance of k(z) in application: for a typical contemporary
(megawatt-scale) wind-turbine power curve, we see that a 10 % over-prediction in k can
translate into an error in energy prediction exceeding 5 % for a range of mean wind speeds
�8 m s−1 and smaller k (which tend to happen farther from the ground), and approaching
−10 % for low-wind sites. This result simply follows from numerically integrating the product
of the wind distribution (1) and a power curve.

Thus extrapolation of observed winds to predict the wind distribution (or e.g. wind power)
at some height z above the measurement height requires not only a model for the wind profile
(or A-profile), but also demands a model to obtain k(z)—either directly or via the profile of
a higher-order moment as in (2).

In order to obtain e.g. height-dependent estimates of energy production based on observed
statistics, for a two-parameter statistical description of the wind field one needs to know the
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Fig. 1 Contours of the percentage error in estimated wind-power density (as annual energy production, ‘AEP’)
due to a 10 % over-prediction in k, as a function of actual k and long-term mean wind speed 〈U 〉; case for
typical 1.5 MW turbine power curve shown (General Electric model 1.5xle, see e.g. www.gepower.com or
Mathematica example documentation)

profiles of two moments of the wind speed. Along with the mean wind speed (first moment),
we consider the second moment of wind speed in our statistical profile modelling. We do
this because lower-order statistical moments (relative to higher moments) tend to be less
demanding in terms of the amount of data required (less sensitive to the length of the time
series used), generally less uncertain (e.g. Lenschow et al. 1994), as well as being more
directly relatable to flow dynamics. Further, the use of second and first moments together for
the purpose of vertically extrapolating observed Weibull-k has been established in the EWA,
(Troen and Petersen 1989) methodology, which has successfully been used in practice within
the wind industry for heights up to 80–100 m over the last couple of decades (Mortensen et
al. 2001).

2.1 Relating Profiles of Long-Term Wind Speed, Variance, and Weibull-k Parameter

Continuing to use a two-parameter Weibull distribution (1) for the wind speed at a given
height z, the effects of stability and finite ABL depth (or other influences, if their effects
upon the two moments of U are also parametrized) can be translated into a modification of
A(z) and k(z). We take the long-term second moment of wind speed 〈U 2〉 to be comprised
of independent first- and second-order contributions,

〈
U 2〉 = 〈

U
〉2 + σ 2

U . (3)

Exploiting (2) by taking the ratio of the second moment to the squared first moment of wind
speed and using (3), one obtains〈

U 2
〉

〈U 〉2 = Γ (1 + 2/k)

Γ 2(1 + 1/k)
= 1 + σ 2

U

〈U 〉2 (4)

thus eliminating A. Around k = 1 the ratio of Gamma functions in (4) approaches (1+k−√
π ),

which can be made more useful by noting that between k = 0.5 and 5 (encompassing the
range of k generally observed in the ABL) the ratio is more closely equal to

Γ (1 + 2/k)

Γ 2(1 + 1/k)
� 1 + k−1.87, (5)

i.e. within a fraction of a percent. Together, (4) and (5) imply
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k �
( 〈U 〉
σU

)1.07

(6)

since 2/1.87≈1.07. Given descriptions of the long-term profiles of wind speed 〈U 〉(z) and
variance σ 2

U (z), (4) and (5) also allow solution for k at some height zpred, given an observed
k(zobs),

k(zpred) � k(zobs)

[ 〈U 〉(zpred)/σU (zpred)

〈U 〉(zobs)/σU (zobs)

]1.07

, (7)

assuming observed and predicted wind distributions are both Weibull (probability mass is
conserved).

Wieringa (1989) noted that the shape of k(z) is opposite of the shape of the diurnal-
cycle component of σ 2

U (z), stating that k ≈ 0.94A/(σU )diurnal; this is compatible with Eq.
6 since 〈U 〉 = AΓ (1 + 1/k), or roughly 〈U 〉 ≈ 0.9A for typical k. Justus et al. (1978)
reported a k-relation equivalent to Eq. 5 but with an exponent of 1.086, which we note gives
a systematic over-prediction of k for k < 3, i.e. in most real-world situations. More recently,
Akdağ and Dinler (2009) used a third-moment fit and 〈U 〉3/〈U 3〉 to obtain k, employing an
approximation equivalent to Γ (1 + 3/k)/Γ 3(1 + 1/k) ≈ [3.69/(k − 1)]1/2, which gives
errors of several percent for k > 3 or k < 1.3; as stated above, here we attempt only to model
the long-term mean and variance of wind speed or the k-profile itself.

Since the long-term mean wind speed (without terrain elevation effects) generally
increases monotonically up to at least 200 m with well-behaved (positive) long-term ver-
tical shear d〈U 〉/dz, then for z � 200 m the profile k(z) is typically dictated by the shape
of the long-term variance σ 2

U (z). Aside from the effects of terrain, it is generally found that
the character of the σU profile (e.g. dσU/dz) changes at a height around 100–150 m, which
with U (z) leads to a maximum in k, giving k(z) its characteristic bowed shape (c.f. Wieringa
1989).

2.2 Modelling Profiles of Moments of Wind Speed, Towards k(z)

The following two sub-sections present the profiles of long-term mean wind speed and long-
term wind variance, which are used to give new models for observation-based k(z).

2.2.1 Model for Climatological Wind Profile

As written above, one means of obtaining k(z) involves using the associated mean wind
profile 〈U 〉(z) along with the profile of wind-speed variance. A form for the profile of long-
term dimensionless mean wind speed was derived by Kelly and Gryning (2010), based on
their model for observed stability distributions. This involved statistical adaptation of M–O
theory, and generalization of the ‘tall’ wind profile of Gryning et al. (2007) (which adds
the influence of ABL depth h to M–O theory through a height-varying friction velocity
u∗(z/h) and via the geostrophic wind speed G = U |z=h) to a climatological mean form. For
representative (long-term) values heff and geostrophic wind speed Geff (with z0 being a mean
roughness length, which is implicitly done in common practice), defining 〈U 〉(heff ) = Geff ,
the dimensionless mean wind profile (Kelly and Gryning 2010) is〈

κU

u∗0

〉
= ln

(
z

z0

)
− 〈ψ〉(z, σ±, n±)− z

heff

[〈ψ〉z(z, σ±, n±)−〈ψ〉(z, σ±, n±)
]

+ heff

2	eff
mid

[
1−

(
1− z

heff

)2
]

+ z

heff
(seff −1) (8)
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112 M. Kelly et al.

where u∗0 is the surface-layer friction velocity, κ = 0.4 is the von Karman constant, 〈ψ〉z
is the long-term stability correction averaged up to height z, and seff ≡ κheff 〈u−1

∗0 dG/dz〉
is the mean dimensionless shear across the ABL.2 The stability correction is dependent on
the inverse Obukhov length variability3 (σ±) and fraction of occurrence (n±) for stable (+)
and unstable (−) conditions, respectively, and the coefficient heff/2	eff

mid is equal to the dif-
ference between the dimensionless geostrophic wind κGeff/u∗0 and the profile form (8)
evaluated at z = heff . The long-term dimensionless geostrophic ABL shear is taken to be 1
(seff ≈ κGeff/〈u∗0〉), equivalent to the neglect of the corresponding baroclinic term by
Gryning et al. (2007). With seff = 1, the form (8) basically behaves as a Monin–Obukhov
profile, but “bends back” approaching the top of the ABL; i.e. the quadratic term forces the
wind speed towards G as z →heff . More details can be found in Kelly and Gryning (2010).

Because we later compare with Weibull-k predictions made by the EWA method (Troen
and Petersen 1989), we also include here the effective EWA form for extrapolating measured
mean wind speed, since the EWA does not provide an explicit wind profile. Rather, the EWA
does a stability-induced perturbation of the logarithmic law and takes the ratio of

ln

(
z

z0

) {
1 +

[

u∗
u∗0

]
off

}
+

(
z

zm

) {[

u∗
u∗0

]
rms

ln

(
zm

z0

)
− ψs

(
zm

Loff

)
− ψu

(
zm

L rms

)}
(9)

evaluated at measured and predicted heights, respectively, to be equal to the ratio of mea-
sured and predicted mean wind speed 〈U 〉. This ratio is used, along with a ratio of σU at
predicted/observed heights, within (4) in order to obtain k(z). In the above, L is the Obukhov
length, 
u∗/u∗ is the normalized stability-induced perturbation of friction velocity, and the
subscripts ‘off’ and ‘rms’ denote long-term mean (“offset” as labelled in the EWA4) and
root-mean-square quantities. The height scale zm depends on roughness, and is typically
70–90 m (with larger values over rougher surfaces), and is discussed further below (also
see Appendix); the coefficients [
u∗/u∗0] are of order 0.1, and the stability corrections
follow classic Monin–Obukhov forms for stable (ψs) and unstable (ψu) conditions (Troen
and Petersen 1989). We note that the above ratio is not a true wind profile, but is instead
designed to give optimal 〈U 3(z)〉, by extrapolating measured p(U ) via Weibull-A and k
together through 〈U 〉 and σU .

2.2.2 Models for Climatological σU

Continuing to outline the EWA perturbation forms for later comparison with its k(z) predic-
tion, we note the EWA does not explicitly prescribe a profile σU (z), but exploits Eq. 7 by
calculating stability-induced perturbations

σU (z)

σU0(z)
= 1 +

[

u∗
u∗0

]
rms

∣∣∣∣1 − z

zm

ln(zm/z0)

ln(z/z0)

∣∣∣∣ (10)

normalized relative to neutral conditions, where again the coefficient [
u∗/u∗0]rms is signif-
icantly smaller than 1 (about 0.2 over land and<0.1 over sea; c.f. Troen and Petersen 1989).
As evident in (10), zm was defined by the EWA to be the height of minimum stability-induced
perturbations to the long-term wind variability.

2 Note Kelly and Gryning (2010) contains a typographical error in the definition of s, introduced after article
proofing.
3 The inverse Obukhov length variability σ± is proportional to the ratio of long-term r.m.s. heat flux to 〈u∗0〉3,
for either stable or unstable conditions; see Kelly and Gryning (2010).
4 Loff is typically positive in application, though in the case Loff < 0, the EWA takes ψs = 0 in (9), and then
ψu becomes a function of Loff as well as Lrms; see Troen and Petersen (1989) for more detail.
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‘Tall profile’ modelling of dimensionless wind-speed variance. We begin with a simple
heuristic parametrization for the dimensionless long-term standard deviation of wind speed
suggested by measurements,

σU

σU0

= 1 + (n+σ+heff )
−1

ln(z/z0m)
− 1 − z/h

1 +
[(

n+σ−1+ /	mid

)2 +
(

n−σ−1/3
− /	

1/3
mid

)2
]1/2 , (11)

where σU0(z) is taken to be σu∗0 ln(z/z0), implicitly following the EWA; here in Eq. 11
the notation echoes that used in the probabilistic wind-profile expression (8). We assume
Weibull-distributed u∗0 to obtain, for example, σu∗0 ≈0.5〈u∗0〉 near k =2 via Eq. 2.

A second model for the long-term wind variance arises through consideration of the square
of the wind profile. Just as Kelly and Gryning (2010) found the mean wind profile (8) by
integrating the wind profile (their Eq.10) over L−1, here we start with〈(

κU

u∗0

)2
〉
(z) =

� [
κU

u∗0
(z, z0, L−1, h)

]2

P(L−1, h, z0)dL−1dh dz0. (12a)

As a first attempt we assume independence of L−1 and h and a relatively narrow long-term
roughness distribution (i.e. z0 → z0m) to reduce the joint probability distribution function
P(L−1, h, z0) in (12a) to P(L−1)P(h), to obtain〈(

κU

u∗0

)2
〉
(z) ≈

� [
ln(z/z0m)− z

h
ψe(azL−1)

]2
P(L−1)dL−1 P(h)dh. (12b)

Here the effective stability function ψe(zL−1)≈−4zL−1 approximates the effective ‘blend-
ing’ of the total stability contributions from ψ(z/L) at z = z0m up to ψ(z/L)

z ≈ ψ(z/2L)
at z =h. Adopting the generalized Gamma-distribution form

P(h) =
(

h

σh

)p−1 e−h/σh

σhΓ [p] (13)

used by Liu and Liang (2010) to fit observation-derived ABL depths compiled over a number
of extensive independent campaigns, with (3) we then find a profile of the long-term standard
deviation of wind speed behaving approximately as

σU ≈ σu∗0

√〈
κU

u∗0

〉
(z; ...) ln

(
z

z0m

)
−

(
ch z

heff

)
〈ψe〉(z)+ n+(7.2σ+z)2. (14)

where 〈κU/u∗0〉 is as shown in (8) and heff is the mean ABL depth following (13). Here ch

is found to be approximately 3–5 and in effect accounts for variability in h,5 and the constant
of 7.2 arises from the integration using P(L−1) from Kelly and Gryning (2010).

The σU profile implied by the EWA form (10) is shown in Fig. 2, along with the heuristic
model (11) and reduced statistical model (14), for one of the three cases we consider here: one
year of sonic anemometer data from the suburban Hamburg tall tower (detailed in Gryning et
al. 2007), with wind directions limited to the relatively homogeneous ‘residential’ sector (as in
Kelly and Gryning 2010). One can see that relatively good predictions for the long-term wind-
speed variability are afforded by the models developed here, compared to the EWA. Similar

5 The factor ch can be recovered by integrating with the generalized form (13) of P(h) fit to aggregated
measurements of h by Liu and Liang (2010); this is e.g. roughly 3–5 over land, using their values of p and
σh , due to stable conditions dominating the statistics of 1/h.
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Fig. 2 Measured (dots) and modelled σU , Hamburg case. Magenta is EWA form (10), green is heuristic
model (11), and blue is reduced probabilistic stability model (14)

results are obtained for the other two cases that we examine below (Høvsøre and Cabauw, c.f.
Kelly and Gryning 2010), though the integrated approximation (14) gives poorer results for
the Cabauw case, and systematically overpredicts dσU/dz in the surface layer; the latter is
evident in Fig. 2. Notable is that the form (14) based on the statistical profile, which contains
the influence of variations in both stability and ABL depth, reproduces the change in dσU/dz
typically observed around 100–150 m. Again we will not directly use dimensional σU (z) to
predict profiles of Weibull-statistics, but rather the dimensionless forms of (10), (11) and (14)
to do so, via the ratio of σU as seen in Eq. 7; thus the σu∗0 from Eq. 14 will disappear in the
calculation of k(z), making the result insensitive to any assumption about the distribution of
friction velocity or σu∗0 .

Also evident in Fig. 2 is a non-physical kink in the σU profile implied by the EWA
formulation (10), though we are reminded that it was defined as a normalized perturbation
intended to extrapolate k from one height to another, and is not an explicit profile. By design
the kink at height zm will determine the maximum in k(z), as shown below. Above zm , the
behaviour prescribed by the EWA form (10) might appear somewhat arbitrary, but it is again
cast as a perturbation growing away from z = zm , and the coefficient of the height-dependent
part is damped in application (e.g. the WAsP software) by an exponentially decreasing form
to avoid spuriously large values.6

3 Weibull-k Profile Models and Results

3.1 k-Profiles Resulting from Probabilistic Wind-Speed and Variance Profiles

Figure 3 displays k(z)/k(zobs = 50 m) calculated via (7), using the tall wind profile (Eq.
8) in concert with both of the new long-term standard deviation wind-profile forms (11)
and (14) for sites at Høvsøre, Hamburg, and Cabauw. The data from Høvsøre consisted of
five years of wind profiles from the homogeneous land sectors, Hamburg has one year of
residential sectors, and Cabauw has two years of the homogeneous south-west sector. The
winds, fluxes and subsequent stability parameters used in our models were measured by sonic
anemometers in the surface layer, with more details of the data found in Kelly and Gryning
(2010) and Gryning et al. (2007). Figure 3 also shows the EWA result for these cases, based

6 The EWA implementation WAsP uses a factor exp(−z/zG ) to damp its linearized stability perturbations of
wind statistics, where zG = (u∗G/ f ) exp(−A0) ≈ u∗G/(6 f ) and A0 = 1.8 is the streamwise geostrophic
drag-law constant.
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Fig. 3 Modelled normalized Weibull parameter profile k(z)/kobs(z = 50 m) for homogeneous land sectors
(c.f. Kelly and Gryning 2010), based on 40–60 m interpolated k at Høvsøre, k(50 m) at Hamburg, and 40–80 m
interpolated k at Cabauw, respectively. Magenta using EWA forms (9–10); green via the σU model (11);
blue using (14) for σU . Calculations via both Eqs. 11 and 14 used measured surface momentum and heat
fluxes from each site. Circles observations

on (9–10), as well as the observed normalized k(z). As shown in the figure, the heuristic
empirical formulation (11) for σU leads to relatively good results, comparable to or better
than the EWA in the ‘tall’ regime, i.e. for z �100 m for the three sites considered. In the ASL,
particularly below zm (less than 80 m over land), the EWA model gives a better performance.
This is again consistent with the success (standard use) of the EWA method in wind energy
in past decades, for turbines over flat land with hub heights in this height range.

The reduced probabilistic model (14) gives poorer k(z) predictions than those using either
the heuristic or EWA model. In the ASL, this is primarily due to over-prediction of dσU /dz
and subsequent under-prediction of σU near the surface, which leads to under-prediction
of dk/dz in the ASL and over-prediction of k near the surface when extrapolating away
from observations at 50 m. This is due in part to the simplifications used to obtain a closed-
form expression for σU based on the stability distribution P(L−1); improvement of such
is expected to lead to better k(z). However, what is significant with the use of the new
probabilistic derivation (14) is the qualitative, physical result that the mutual contributions
of σh and the surface influences z0 and σ1/L together determine the bowed shape of k(z): the
top-down statistical influence of ABL (through ch from P(h)) and bottom-up contribution
from surface-based variability (via P(L−1) here) help to physically explain the Weibull-k
profile.

Despite the EWA model being based on the idealized perturbation-based expression (10),
which gives rise to a non-physical kink, neither new model for σU (z) leads to consistently
better predictions of k(z) at the sites considered, despite the improved predictions of σU

profiles as shown in Fig. 2; thus we consider an alternative method for observation-based
prediction of k(z) below.

3.2 Alternative Weibull-k Profile

Due to the limited performance of the σU -based models introduced above, we turn to another
method to predict k(z) from observations at an arbitrary height, following from the empirical
parametrization

k(z) = ksfc + ck(z − zsfc)e
−(z−zsfc)/(zr−zsfc) (15)

of Wieringa (1989). Here the ‘reversal height’ zr is the height of maximum k (correspon-
ding to maximum 〈U 〉/σU ), with ksfc ≡ k(zsfc) the near-surface value of k, zsfc ≈ 10 m,
low enough to be contained within the shallowest (nocturnal) boundary layer such that it
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is climatologically representative. Investigating the various data in Wieringa (1989) and a
number of other sites including those considered here, we find that Wieringa’s constant ck

corresponds to ksfc/(zr − zsfc) and has dimensions of m−1. Thus the parametrization (15) can
be updated to be more self-consistent, without the arbitrary constant ck and with the proper
‘dimensions’, using the form

k(z) = k(zsfc)
[
1 + ξ(z, zr )e

−ξ(z,zr )
]

(16)

where ξ ≡ (z − zsfc)/(zr − zsfc). Noting that k(z) may be affected well above the ASL by
‘top-down’ processes not directly driven by the surface, Eq. 16 can be further generalized
with a form such as

k(z) = ksfc

[
1 + ξ(z, zr )e

−ξ(z,zr )
]

+ (kh − ksfc) fk(z, zr ...). (17)

Here kh is taken to be the asymptotic value of k as z approaches and exceeds the climatological
ABL depth heff , and fk(z, heff , zr ...) is a profile function that dictates the transition towards
kh approaching the ABL top. Simple useful forms for fk may include e.g. z/heff or 1−e−z/zr ,
where fk is zero approaching the ground and fk →1 as z →heff . Gryning et al. (2013) found
limited success modelling k(z) by including an upper ABL influence, for a site with lidar
measurements extending above the ABL.

However, to ensure (16) or (17) is usable for arbitrary z within the range typically measured
in the ABL (e.g. in wind energy applications, z ≤100 m), i.e. above the shallowest ASL, one
must translate observed k to ksfc. Without information about kh , using the simple modelling
choice kh = ksfc and adaptation of (16) gives

k(z) = k(zobs)
1 + ξ(z, zr )e−ξ(z,zr )

1 + ξ(zobs, zr )e−ξ(zobs,zr )
(18)

where zobs is the height of observation, and zsfc is a near-surface height (within the ASL),
nominally taken to be 5–10 m following Wieringa (1989). However, we find that choosing
zsfc = 0 gave optimal results for all the sites we analyzed, which leads us to remove this
potentially uncertain ‘extra’ parameter; thus the observation-based empirical relation reduces
to

k(z) = k(zobs)
1 + (z/zr )e−(z/zr )

1 + (zobs/zr )e−(zobs/zr )
. (19)

However, the so-called ‘reversal height’ zr still needs to be prescribed.

3.2.1 Reversal Height and Height of Minimum Variability in Wind Speed

Troen and Petersen (1989) defined a height of minimum stability-induced variations zm based
on first-order perturbations to the geostrophic drag law, describing where the minimum in
σU (z) occurs, which is in effect equal to the height of maximum k and thus equivalent to
zr . However, the constant of proportionality reported in Troen and Petersen (1989) for zm

is inappropriately small for this purpose, inconsistent with the constants used earlier in their
derivation and also implying reversal heights smaller than observed (though it is chosen to
give optimal k(z) based on the EWA form (10) for dimensionless long-term wind variance).
Re-deriving zm (see Appendix) gives the same expression for zm as in the EWA, but with a
corrected coefficient, which we adopt for the reversal height,

zr = zm = αr z0(Ro0)
0.9, (20)
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Fig. 4 Modelled Weibull parameter profile k(z)/k(zobs = 50 m) for Høvsøre, Hamburg, and Cabauw, wind
sectors as in Gryning et al. (2007) and Kelly and Gryning (2010), using Eq. 19 with the corrected constant
in (20). Maroon EWA result; orange (19); black dots data. Values of kobs 50 m are 2.6, 2.3, and 2.55, respectively

with αr ≈ 0.003, and where the ‘surface’ Rossby number is defined as Ro0 = G/( f z0) and
the corrected constant of 0.003 (formerly 0.002) is derived in the Appendix.

Figure 4 shows k(z)/k(50 m) versus zrec for the Høvsøre, Hamburg, and Cabauw cases,
comparing the results of using the new formulation (19–20) with results from the EWA
method. The figure shows that (19–20) give a robust performance at different sites, without the
need for tuning. However, as seen above z = 200 m at Cabauw, the new adapted formulation
for the Weibull-k profile may be degraded by its lack of explicit parametrization for k(z)
at heights approaching the mean ABL depth, and might be improved by modifying the
formulation to include kh as suggested in (17).

3.3 Partitioning of Long-Term Wind Variance and Surface-Layer k(z)

To gain insight into the profile of the Weibull-k parameter, given its sensitivity to the profile
of σU , we consider contributions to σU (z). As with U (z), one may attempt to partition
the variance of wind speed into a component (σ 2

U )sfc due to surface heat fluxes (typically
assumed to be a diurnal influence) and some ‘baseline’ variations σ 2

U ≡σ 2
b +(σ 2

U )sfc, which
are presumed to be caused by mechanisms acting non-locally (over length scales  z) and
with time scales 1 day. This is in potential contrast to Wieringa (1989), who assumed
σ 2

U ≈(σ 2
U )diurnal+ (σ 2

U )synoptic for heights below 80–100m and described the behaviour of k
in terms of the diurnal component of σU .

It is expected that the ratio of diurnally-affected σU (z) to the remainder of σU may give an
indication of the influence of surface-based stability effects. To this end the long-term spectra
of wind speed were calculated, and band-pass filtered to both isolate the diurnal signal from
the longer-term (e.g. synoptic and seasonal) signal as well as eliminate any dependence
upon the length of time series. This was done at all observation heights for the Høvsøre,
Hamburg, and Cabauw masts, using the overland sectors considered above (c.f. Gryning et
al. 2007; Kelly and Gryning 2010). The spectral result is given in Fig. 5a for Høvsøre, which
shows no clear “spectral gap” between diurnal and synoptic contributions, though one can
see the hint of a gap for the near-surface (10 m) observations. We note this occurs despite
the long-term near-surface heat-flux spectra (from the sonic anemometer at 10 m) exhibiting
a dominant diurnal peak (not shown) contributing roughly 90 % of the heat flux. The upper
cut-off frequency separating synoptic and diurnal components is approximately 0.8 day−1,
which also corresponds roughly to the minima seen in the spectra, and the lower cut-off
corresponded to a time scale of roughly 40 days.

The second plot (Fig. 5b) displays the ratio of low-frequency (σsyn) to the diurnal com-
ponent (σdiurnal) of the long-term standard deviation of wind speed for the three sites, and
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Fig. 5 a Long-term spectra of wind speed at various heights, Høvsøre homogeneous land sectors. b Ratio of
synoptic to diurnal part of σU for Høvsøre (stars), Hamburg (magenta), and Cabauw (beige), land sectors as
in previous figures. σsyn is calculated between cut-off frequencies of 0.025 and 0.8 day−1

shows no remarkable height dependence in the magnitude of diurnal wind-speed fluctuations
relative to the longer time wind-speed fluctuations. The relative contribution of the diurnal
component can be seen to decrease through the ASL and up to heights of 40–100m (depending
on the site), with the ratio σsyn/σdiurnal reaching a maximum, consistent with the decreasing
influence of the surface. But an increasing short-term contribution is seen again at the highest
level observations, suggesting a change in the behaviour of the wind distribution. One reason
may be the increasing incidence of observations being taken near the capping inversion of
the ABL; the ABL depth has a diurnal component due to the nighttime occurrence of reduced
ABL depth, and the impact of inertial oscillations (and subsequent lower-level jets) with time
scales < 1 day are felt in the upper ABL (Baas et al. 2009). More data at higher levels are
needed to investigate further, and importantly to determine if e.g. the synoptic component
becomes dominant and predictable for heights falling in the upper portion of the distribution
for ABL depth at a given site. At any rate, the variation of σsyn/σdiurnal with height is rela-
tively mild for the cases examined, with less than 10 % variation over 2 m< z � 250 m. This
justifies to a great extent the attempt (Wieringa 1989) to use σUdiurnal/〈U 〉 to describe k(z).

3.3.1 Surface-Layer Behaviour

In the surface layer, for a surface heat-flux influence dominated by the diurnal contribution
(especially true over land), the decrease in the diurnal component of long term wind-speed
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variance with height (as seen by the increase of σsyn/σdiurnal in Fig. 5b) is consistent with the
positive dk/dz observed. For a given observation height in the surface layer, the EWA (Troen
and Petersen 1989) ratios of normalized variance and mean wind speed can be reduced to
give

k(z)

kobs

∣∣∣∣
ASL

≈ fk(z, z0)

fk(zobs, z0)
, (21a)

fk(z, z0) = 1 + [
u∗/u∗0]off

1 + [
u∗/u∗0]rms
+ z

λ(z0)
, (21b)

where λ(z0) is a nearly logarithmic function of roughness length, varying from about 150 m
over water to 350 m or more for z0 >1.5 m. With virtually no height-dependence inλ, the EWA
predicts approximately constant dk/dz throughout the ASL. Over land, using the nominal
EWA mean and r.m.s. values of 0.07 and 0.18 for [
u∗/u∗0] in (21), the ASL k-profile
becomes approximately

k(z)
∣∣∣
ASL,land

≈ ksfc

[
1 + z

0.79λ(z0)

]
(22)

where ksfc is the near-surface value of k. This is in part responsible for the historically good
performance of the EWA (via the commonly-used wind-industry software WAsP, Mortensen
et al. 2001) for heights z �50 m over simple terrain; i.e. Eq. 21 replicates the roughness-
dependent, nearly constant dk/dz typically seen throughout the surface layer, also evident
at the three sites shown in Fig. 4.

For comparison, when ksfc ≈ 2, the dk/dz values given by Wieringa (1989), who did not
include roughness as an influence, correspond to EWA overland ASL values (cf. Eq. 22 of
ksfc/(0.79λ(z0))with z0 ≈ 0.05 m; the Wieringa (1989) model tends to give dk/dz in the ASL
that is representative of moderately rough land surfaces. This becomes a significant problem
over the sea, where the lack of treatment of surface influence can result in an over-prediction
of dk/dz and subsequently poor extrapolations of k from near-surface observations.

4 Summary and Conclusion

4.1 Long-Term Variance and Subsequent Weibull Parameters

The heuristic and simplified probabilistic models developed here for long-term wind-speed
variance tend to give better agreement with observations well above the surface layer, com-
pared to their EWA counterpart. Despite this, the new models for σU (z) did not lead to
improved predictions of k(z) at the three sites considered: improved ‘tall’ profiles of wind-
speed variance (with slightly better mean wind-speed profiles), which use measured statistics
of near-surface heat and momentum fluxes, do not necessarily lead to better profiles of the
Weibull-k parameter. The EWA perturbation expression for σU , together with its perturbation
expression 
U , produce more consistent predictions of k(z). Though the EWA expressions
for scaling the mean wind speed and variance appear to imply unrealistic profiles, each of
which do not match measurements very closely, these are coupled perturbation forms that
together lead to good extrapolation of the Weibull-k parameter, particularly in the surface
layer. This is perhaps not surprising, since the EWA method was designed for the prediction
of wind power, i.e. 〈U 3〉, using ASL theory and measurements. The relatively poorer k(z)
predictions given by the new (and better-performing) probabilistic σU (z) formulation may
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also be due in part to the limited ability of 〈U 2〉 to accurately represent the Weibull-k parame-
ter; typically k is estimated from a Weibull fit to an observed wind distribution via the third
moment of wind speed, as the tails are not as well represented by the second moment as they
are by 〈U 3〉. However, this is a compromise justified by 〈U 2〉 being more easily connected
to the flow dynamics, as well as to its reduced demands on data and consequent uncertainty.

However, despite the limitations of the probabilistic formulation for σU (z) presented here,
an important conceptual finding follows from the k(z) result: when using the probabilistic
〈U 〉/σU (which was derived consistent with Monin–Obukhov theory), one sees that the
reversal height zr , again where k has its maximum, is determined by the distribution of
ABL depth P(h) together with the surface roughness and stability distribution. As far as the
simplified probabilistic description (14) for σU (z) can be trusted, the variability in ABL depth
and in stability together lead to a maximum in k(z) of approximately one-fifth to one-third of
the effective (long-term) ABL depth. In other words the reversal height zr , and thus the height-
dependent variation of the shape of the wind distribution, is determined to some extent by
the widths of the distributions of ABL depth P(h) and stability P(L−1), particularly during
stable conditions. The shallower ABL occurring during stable conditions leads to effectively
larger values of z/heff in the profile expressions, and the stable-stratification variability (σ+)
has more influence on the profiles than does the unstable-condition variability (σ−); the latter
follows from the stronger influence (height dependence) of stable stratification on wind speed
(as evidenced by Monin–Obukhov theory). Some assumptions have been made in deriving
σU (z), which are of limited validity; current work includes the derivation of more applicable
analytic representation of σU via the distributions P(L−1) and P(h), and refinement of the
statistical theory describing the reversal height. Inclusion of the joint behaviour (correlation)
of L−1 and h is currently lacking in our model description, and is a topic of continuing study
as well.

4.2 Different Profile Forms of the Weibull Shape Parameter

We have adapted the EWA (Troen and Petersen 1989) concept of the height zm of mini-
mum stability-induced deviations of the wind profile via a perturbed-geostrophic drag law—
correcting a constant in its formulation—to apply zm as the reversal height zr where the
profile of the Weibull-k parameter reaches a maximum. We use the corrected zm = zr as one
improvement in a semi-empirical model for k(z) building upon that of Wieringa (1989). Our
model is by design extended to be amenable to measurement-based extrapolation, and is uni-
versal in the sense that it eliminates the effectively dimensional Wieringa (1989) ‘constant,’
which varies in an undetermined way from site to site.

While the probabilistic modelling for U (z) andσU (z) implies that zr depends on roughness
and an effective boundary-layer depth, the geostrophic perturbation form for zm depends
on roughness, geostrophic wind speed G, and latitude via f . These can be rectified by
considering that the probabilistic formulations also depend on G and f via 〈U 〉, and because
the long-term characteristic ABL depth from the probabilistic model, affected by neutral and
stable conditions, tends to be (to first order) proportional to the geostrophic scale surface
friction velocity u∗ (Zilitinkevich et al. 2012) and thus to the geostrophic wind speed, due to
the general existence of the drag law relating G and u∗.

The assumption of Wieringa (1989) relating diurnal variance to k is somewhat justified
by our spectral analyses of the sites considered, since we find that the partitioning between
synoptic and diurnal variability does not change significantly with height. This assumption,
however, is not expected to hold in regions affected by e.g. sea breezes or tropical regimes
with stronger diurnally-related forcing. The data considered here were taken over relatively
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simple terrain in areas lacking such mechanisms. While the adapted semi-empirical model
(19) for the Weibull-k profile has produced better observation-based extrapolations than the
EWA method or the simple Wieringa (1989) form, it and the Wieringa (1989) model lack
surface roughness in their parametrization. In particular such models give spuriously large
dk/dz in the surface layer over water, leading to poor extrapolations of k when heights
< z ≈70 m are involved, in contrast to the EWA (Troen and Petersen 1989) method.

Continuing work includes correcting the semi-empirical k(z)model for surface roughness,
and exploration of stability effects upon it. Given the failure of the probabilistic model and its
assumption of independent probability distributions P(L) and P(h), this aspect is also under
investigation to improve the σU model and resultant k(z). Further concurrent work includes
better incorporation of expected ABL depth distributions P(h) in the theory, particularly for
improvement of Weibull-k profiles obtained via profiles of long-term second moment of the
wind speed along with the mean wind speed itself.
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Appendix

Perturbations Around Neutral Geostrophic Drag Law

Here we include an updated derivation of the height of minimum deviations from the basic
geostrophic drag law and logarithmic wind profile, which is congruent with the ‘reversal
height’ zr of the Weibull-k profile and the change in slope observed in long-term σU profiles.
The theory includes derivation of the perturbation of the geostrophic drag law, which leads
to the stability theory used in the European Wind Atlas (Troen and Petersen 1989) and
justification of the constant α chosen in our modelling.

The EWA (Troen and Petersen 1989) estimates the geostrophic-scale perturbation du∗
due to small perturbations in the barotropic geostrophic resistance-law constants A0 and B0,
which are in turn caused by first-order perturbations dH in geostrophic-scale heat flux (from
neutral, i.e. around H = 0). This is done via the stability parameter μ ≡ κ(u∗/ f )/L , taking
dA = (dA0/dμ)dμ and dB = (dB0/dμ)dμ. Since u∗/L = (κg/T0)H/u2∗, then

dμ

μ
= d H

H
− 2

du∗
u∗

. (23)

For a given G, and ignoring dz0, then the differential of the geostrophic drag law

G = u∗0

κ

√[
ln

(
u∗/ f

z0

)
− A2

0

]
+ B2

0 , (24)

123



122 M. Kelly et al.

can be written as

0 = dG

= G
du∗
u∗

+ u∗/κ√
[ln(u∗/ f z0)− A0]2+B2

0

{(
du∗
u∗

− d A0

) [
ln

(
u∗/ f

z0

)
− A0

]
+ B0d B

}
,

(25)

or more succinctly as,

0 = d ln G

= d ln u∗ +
( u∗
κG

)2
{
(d ln u∗ + 0.2dμ)

[
ln

(
u∗/ f

z0

)
− A0

]
+ 0.2B0dμ

}
(26)

if one takes d B0/dμ = −d A0/dμ = 0.2 as in Troen and Petersen (1989). By rear-
ranging (26) and exploiting (23), we obtain a relation between first-order perturbations in
geostrophic friction velocity and heat flux,

d ln u∗ =
0.2μ

( u∗
κG

)2
{

B0 −
[
ln

(
u∗/ f

z0

)
− A0

]}

1 + ( u∗
κG

)2
{[

ln
(

u∗/ f
z0

)
− A0

]
(1 − 0.4μ)+ 0.4μB0

}d ln H. (27)

Using the classic relation tan ϕG = B0/[ln(u∗/ f z0)− A0] for the barotropic ABL (Zilitinke-
vich et al. 1967; Hess 2004), this becomes

d ln u∗ ≈ 0.2B0μ
( u∗
κG

)2 {1 − cot ϕG} d ln H (28)

where ϕG is the geostrophic turning angle. The EWA gives a form equal to du∗ =
cG(g/ρcpT0 f G2)dH , which is equivalent to (28) but with 0.2B0(1 − cot ϕG) replaced by a
constant cG equal to 2.5. This value is a little higher than that expected using the geostrophic
drag law (as implemented in the EWA) in (27), which gives a constant between 0.44 and 2.0
over the range of roughnesses encountered in practice (water to urban/forest). However, given
that the tan(ϕG) dependence is not appropriate for latitudes approaching the equator (Arya
and Wyngaard 1974), and the uncertainty in the behaviour in A(μ) and B(μ) (e.g. Hess and
Garratt 2002; Hess 2004), the lack of ϕG dependence in the EWA form connectingΔu∗ and
ΔH may be interpreted as a reasonable modelling choice.

Height of Minimum Deviations from a Neutral Profile

The EWA defines the height zm to be where first-order effects of surface heat-flux varia-
tions vanish. Taking the differential of the Monin–Obukhov wind profile to be zero there,
d{u∗[ln(z/z0)− ψ(z/L)]}|z=zm =0, we have

0 = du∗
[
ln(zm/z0)− ψ(zm L−1)

] − u∗ [d lnH − 3 d lnu∗] L−1 dψ

dL−1 . (29)

Using dψ/dL−1 → −bz in the neutral limit dL−1 → 0, exploiting (28) and the definition
of Obukhov length L and using the stable side form for ψ , one then obtains

zm

ln(zm/z0)
= cG

b

u3∗
κ f G2 . (30)

The EWA uses cG = 2.5, while here we have from (27) approximately cG ≈ 0.2[B0+ A0−
ln(u∗/ f/z0)] or from (28) cG ≈ 0.2B0(1−cot ϕG). The EWA continues by using a reduced
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geostrophic drag law (u∗/G) ≈ 0.5/[ln(u∗/ f/z0)− A0] (Jensen et al. 1984) in (30), arriving
at an approximation for (30) of 0.1(G/ f )/[ln(u∗/ f/z0)− A0]3 and ultimately approximating
this expression for zm/ ln(zm/z0) with a power law to obtain

zm = αm z0

(
G

f z0

)0.9

(31)

where αm |EWA = 0.002. However, such a choice for αm implies a value of b = 8, because
the constant of 0.1 in the EWA approximation for (30) derives from 0.53cG/bκ , which is
equal to 0.16 for b = 4.7 and cG = 2.5. This implies one should have αm = 0.003 for
this value of cG . The latter correct value of αm indeed corresponds to the observed reversal
heights, whereas using the EWA value of 0.002 gives zm between 65–80 m. Such a choice
for αm might be noted to compensate for the erroneously large cG used in the EWA; however
if cG is corrected then one would need to adjust the recommended (‘default’) values of Hoff

and Hrms used in the EWA stability treatment.
Further, in application (e.g. in the commonly-used wind prediction software WAsP) the

EWA takes G to be at least 16 m s−1; for most observations the geostrophic drag law implies
G <16 m s−1, so (31) in effect reduces to zm ∝ z0.1

0 f −0.9, and the k-profile has a maximum
at a height dictated by roughness and latitude. While the zm values predicted by the EWA
have been systematically low (due to α above), the EWA has achieved substantial success in
application over several decades; however, this is likely due to the relatively small number of
validated predictions above 80–100 m. Thus the validity of the simplified (z0, f ) dependence
of zm has not (yet) been verified.
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