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Validation of the Mann spectral tensor for offshore 
wind conditions at different atmospheric stabilities

Martin de Maré1,2 and Jakob Mann2

1 DONG Energy A/S, Denmark
2 Wind Energy Department, Risø DTU, Denmark

E-mail: mardm@dongenergy.dk

Abstract. Simulated wind fields are very useful when predicting loads on structures subjected
to turbulent winds, wind turbines being a prime example. Knowledge of statistical properties
such as the spatial and temporal correlations of real turbulent wind fields increases the realism
of the simulated simulated wind fields. The statistical properties of real turbulent wind fields
have been shown to depend on quantities such as the surface roughness, the mean wind speed,
measurement height and atmospheric stability. The Mann spectral tensor attempts to predict all
spatial correlations of shear generated turbulence given only three input parameters. The most
suitable such input values have been investigated for different onshore surface roughnesses, but
so far not for typical offshore conditions. The meteorological mast at the Rødsand II offshore
wind farm has among other instruments sonic anemometers mounted at 15, 40 and 57 meters
above sea level. Wind speed spectra at the three heights are calculated and binned with respect
to both wind speed and atmospheric stability. The three parameters of the Mann spectral
tensor are determined to ensure best fit to the spectra of each of the bins and are presented as
a function of mean wind speed, measurement height and atmospheric stability. The behaviour
of the presented parameters values are largely consistent with the previous onshore results. The
parameter values are also compared to potentially related quantities and a constant quantity is
derived. Given optimal parameters the spectral tensor is found to reproduce the surface layer
generated turbulence well, also for different atmospheric stabilities, however in the wind speed
spectra a contribution from the very large scale quasi-geostrophic turbulence is also observed, a
contribution the spectral tensor does not attempt to model.

1. Introduction

The Mann spectral tensor [3] attempts to predict all second order spatial statistics of shear
generated turbulence given only three input parameters, αε2/3, LM and Γ. The tensor can for
example be used to generate realistic simulated turbulent wind fields, see [4]. These simulated
wind fields are very useful as input to aero-elastic simulation of structures subjected to turbulent
flows, wind turbines being a prime example.

The statistical properties of real turbulent wind fields has been shown to depend on quantities
such as the surface roughness, the mean wind speed, measurement height and atmospheric
stability. Although the Mann spectral tensor is developed for neutral atmospheric stability, the
parameter values which describe the turbulence best for different atmospheric stabilities has been
investigated using onshore measurements, see e.g. [1] and [6]. We will attempt to determine the
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parameter values suitable for offshore conditions, at different wind speed, measurement height
and atmospheric stability.

2. Methodology

The data was collected at the meteorological mast at the Rødsand II offshore wind farm, which
is situated just south of the Danish island Lolland, from February 2010 to October 2012. We
select wind directions from 255◦ to 285◦ where the wind has a fetch over water of approximately
100km. Among other instruments the mast has 3 Campbell Scientific sonic anemometers, a type
that includes a temperature sensor, at 15, 40 and 57 meters above sea level. We will quantify
atmospheric stability based on the Monin-Obukhov length [5], which is defined as

L = − u∗0
3T0

κgu3Θ′v0

(1)

where u∗0 =
√
−u1u3 is the friction velocity, T0 is the absolute temperature, κ ≈ 0.4 is the von

Karman constant and Θ′v is the fluctuation in virtual potential temperature, all at the surface.
We approximate these surface values with values measured at 15 m.

We employ Taylor’s frozen turbulence assumption in order to estimate the spatial cross-spectra
defined as

Fij (k1) =
1

2π

∫
〈ui(x, t) uj(x + (r1, 0, 0) , t)〉 e−ik1r1dr1 (2)

from 30-minute periods of measured wind velocities. These calculated cross-spectra are
compared to cross-spectra derived from the spectral tensor, see [3].

We bin the data simultaneously for the 3 atmospheric stability classes shown in in table 1 and
3 wind speed bins, 8, 10 and 12 ms−1 ± 1 ms−1, based on the anemometer at 15 m, resulting in
a total of 9 bins per measurement height.

Table 1: Atmospheric stability bins

Atmospheric stability class Monin-Obukhov length interval (m)

Unstable (U) −200 ≤ L ≤ −100
Neutral (N) 500 ≤ |L|
Stable (S) 50 ≤ L ≤ 200

In each bin the spectra are normalized with the for each time period corresponding u∗0. The
normalized spectra are averaged using the method of bins with respect to log(k1), using a bin
size of 0.2 log(10). In order to make the fitting algorithm more robust we depart from the
fitting procedure outlined in [3] in that we first determine LM by fitting all parameters only
to F33 (k1) and F13 (k1). Keeping LM constant we then use F11 (k1), F22 (k1) and F33 (k1) to
determine which αε2/3 and Γ that gives the best fit. In this last step we only use one decade
of the spectra, centered around k1 = L−1

M . For bins where both algorithms performed well, no
systematic change in the resulting parameter values due to the change in method was observed.

The vertical wind speed gradient, ∂U
∂z , is calculated by fitting a logarithmic profile to the mean

wind speeds at the 3 measurement heights. This method is robust but not very precise as the
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Figure 1: Spectra, k1E(k1)/u∗0
2 versus log(k1) for the bins Stable and Unstable at 15 meters. The

top row graphs shows spectra from the wind speed bin 12 ms−1 and bottom row show the wind speed
bin 8 ms−1. The broken lines are the best fit of spectra derived from the Mann spectral tensor. For the
F11 and F22 components we notice high energy levels at low wave numbers which are not matched in the
Mann spectral tensor spectra, especially for the lower wind speed bin (bottom row).

wind profile is expected to be logarithmic only for the neutral case and then only close to the
ground where u∗ is approximately constant. We see in the graph to the right in figure 7 that
assuming u∗ to be constant is a not a good approximation in this case.

3. Results and discussion

The performance of the fitting algorithm is exemplified in figure 1 where the calculated spectra
from a few bins are shown. We notice relatively high energy levels at low wave numbers which are
not matched in the Mann spectral tensor spectra, especially in the lower wind speed bin. This
behavior is not present in the vertical (red) component, which suggests that we are observing the
high wave number end of the very large scale quasi-geostrophic turbulence, discussed e.g. in [2]
and [8]. In figure 2 spectra using 90 minutes instead of 30 minutes of data are shown for the bins
Stable and Unstable at 15 meters. The streamwise and lateral component shows a |k|−5/3-slope
for low wave numbers, which is consistent with this being quasi-geostrophic turbulence.

In figures in 3 to 5 the resulting parameter values are plotted as a function of measurement height
and wind speed. We notice that the wind speed has almost no influence on the parameter values
while both atmospheric stability and measurement height are important factors. The results
in figures 3 to 5 are consistent with what was observed in [1] and [6] except for the value of the
parameter Γ which here and in [1] decreases with stability, while [6] reports a more complex
behavior.

Studying the equation for turbulent kinetic energy which can be derived from the Navier-Stokes
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Figure 2: Spectra using 90 minutes of data, log(E(k1)) versus log(k1), for the bins Stable and Unstable
at 15 meters. The solid lines highlight the |k|−5/3-slope of E(k1) for low wave numbers. The fact that
the wind speed bin is 12 ms−1 shows that this contribution is present also for high wind speeds.
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Figure 3: The parameter αε2/3 normalized with measurement height z and u∗0 as a function of
measurement height and wind speed U . A small random offset has been added to the measurement
height and wind speed for readability. Note that the x-axis of the left plot is the y-axis of the right plot.

equation the energy transfer from the mean flow is −u1u3
∂U
∂z . In the left plot of figure 6 we see

this turbulent energy production to the power 2
3 divided by αε2/3. If the production and the

dissipation were in perfect balance we would expect this ratio to be 1
α . In [7] the value 0.5 of Ck,

the Kolmogorov constant for the one-dimensional spectra, is proposed, and this value combined
with α = 55

18Ck gives 1
α ≈ 0.65.

In the plot to the right in figure 6 we see the ratio between the mixing length defined by
lmix

∂U
∂z = u∗, and LM . The result agrees reasonably but not perfectly with the 1

1.70 ≈ 0.59
reported in [6].

In [3] the so called eddy life time, τ(|k|), is given by

τ(|k|) = Γ
∂U

∂z

−1 |k|−2/3L
−2/3
M√

2F1

(
1
3 ,

17
6 ,

4
3 ,−|k|

−2L−2
M

) . (3)
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Figure 4: The parameter LM as a function of measurement height z and wind speed U . A small
random offset has been added to the measurement height and wind speed for readability. Note that the
x-axis of the left plot is the y-axis of the right plot.
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Figure 5: The parameter Γ as a function of measurement height z and wind speed U . A small random
offset has been added to the measurement height and wind speed for readability. Note that the x-axis of
the left plot is the y-axis of the right plot.

For |k| LM � 1 the hypergeometric function 2F1

(
1
3 ,

17
6 ,

4
3 ,−|k|

−2L−2
M

)
≈ 1. Thus for a k in the

inertial subrange

(4)τ(|k|) ≈ Γ
∂U

∂z

−1

|k|−2/3L
−2/3
M .

Alternatively we can argue that, in the inertial subrange, τ should only be a function of |k| and
the energy dissipation, ε, which using dimensional analysis leads to

(5)τ(|k|) ∝ |k|−2/3ε−1/3.

Eliminating τ(|k|) by combining (4) and (5) leads us to the conclusion that Γε1/3

∂U
∂z

L
2/3
M

should be
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2/3

αε2/3
which we expect to be approximately equal to 1

α ≈ 0.65

versus measurement height. To the right the ratio lmix

LM
versus measurement height agrees reasonably

but not perfectly with the 1
1.70 ≈ 0.59 presented in [6]. A small random offset has been added to the

measurement height.

0 2 4 6 8
0

10

20

30

40

50

60

z

S
N
U

√
α Γε1/3

∂U
∂z

L
2/3
M

0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

S
N
U

u∗(z)
u∗0

Figure 7: To the left the quantity
√
α Γε1/3

∂U
∂z L

2/3
M

, which we expect to be constant, plotted versus

measurement height. If we focus exclusively on the Neutral case (green) then
√
α Γε1/3

∂U
∂z L

2/3
M

≈ 3. In

the graph to the right u∗(z)
u∗0

versus measurement height illustrates that we are not generally measuring
in the surface layer, as if so u∗ would be approximately constant. A small random offset has been added
to the measurement height.

constant. In the left graph of figure 7 the quantity
√
α Γε1/3

∂U
∂z

L
2/3
M

is plotted versus measurement

height. There is a lot of scatter in the graph but if we should assign a value we recommend√
α Γε1/3

∂U
∂z

L
2/3
M

≈ 3 as the neutral data is likely most reliable due to the method used to derive ∂U
∂z .

The graph to the right in figure 7 illustrates that we are not generally measuring in the surface
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layer, and this could explain some of the scatter in figures 6 and 7 as they show results derived
using ∂U

∂z which, as mentioned is calculated using a methodology suitable to the surface layer.

4. Conclusions

The parameter values giving the best fit of spectra calculated from the Mann spectral tensor to
measured spectra was observed using data from the offshore meteorological mast at Rødsand II.
Given optimal parameters the spectral tensor reproduces 3-dimensional turbulence contribution
well, also for different atmospheric stabilities.

The results are consistent with what was observed in [1] and [6] except for the value of the
parameter Γ which here and in [1] decreases with stability, while [6] reports a more complex
behavior.

It was argued that the quantity
√
α Γε1/3

∂U
∂z

L
2/3
M

should be constant and the value≈ 3 for was proposed

for this constant.

At the low wavenumber end of the spectra a contribution from quasi-geostrophic turbulence was
observed.
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