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Method

Time-reduced models

For the time-reduced model, we consider only problems with time-harmonic excitation. These are of major

relevance in machinery with rotating parts. The FE model becomes

Mü+Cu̇+g(u) = fcosΩt

in which u, u̇ and ü is the discretized displacement, velocity and acceleration vector, respectively. The matrices

M and C represent mass and damping, and g(u) is a vector with the nonlinear forces, and fcos(Ωt) is the time

harmonic load.

A semi-analytical method called Incremental Harmonic Balance (IHB) method is used to solve the equation of

motion [3, 4]. For the incremental harmonic balance method, the governing equation becomes

(
ω2M̄+ωC̄+ K̄T(ū)

)
Δū = f̄− (

ω2M̄ū+ωC̄ū+ ḡ(ū)
)

in which ū is a vector containing all coefficients of harmonics in Fourier series of u. And M̄, C̄ and K̄T are

augmented matrices of mass, damping and tangent stiffness, respectively. And ḡ and f̄ are augmented vectors of

elastic force and external force, respectively.

Space-reduced models (future work)

In case of transient loads, e.g. encountered in machinery start-up or with impact loads such as blasts, we need to

consider the time response of the structure. The finite element model in this case becomes

Mü+Cu̇+g(u) = f(t)

in which f(t) is the specific time-dependent load. Instead of computing the transient response for the full FE

model, an analysis model based on nonlinear modal reduction will the applied. The space-reduced model becomes

Mrq̈+Crq̇+gr(q) = fr(t)

in which u has been reduced to a set of generalized coordinates q. And Mr and Cr are reduced matrices for mass

and damping, respectively. And gr and fr are reduced vectors for elastic force and external force, respectively.

The use of nonlinear modal reduction can potentially reduce computational costs by orders of magnitude.

Design optimization using reduced-order models

A general optimization problem concerning vibration is to minimize the amplitude of vibration. Based on the

time-reduced models, this problem can be expressed as

min
ρe

c(ρe,ω(ρe)) = ūT Lū

s.t. : ω2M̄ū+ωC̄ū+ ḡ = f̄,
Ne

∑
e=1

ρeVe−V ∗ ≤ 0,Ve = LeAe,

0 < ρmin ≤ ρe ≤ 1,V ∗ = αV0,

Ae = ρeAmax,V0 = LeAmax.

where ρe are design variables, N denotes the total number of design variables, the symbol α defines the volume

fraction, V0 is the volume of the admissible design domain, and V ∗ is the given available volume of solid material.
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Introduction

Why account for nonlinear vibration?

• Coupled Nonlinear Dynamics/Aeroelasticity of very Flexible Aircraft

• Vibration-based MicroElectroMechanical Systems (MEMS)

• Long, Light and Flexible Blade of Wind Turbine

• High Speed Compliant Actuator

• Squeal of the Brake System
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Figure 1: Nonlinear vibration in airplane and MEMS. Left: dynamic testing of an airplane presented by Gaëtan

Kerschen [1]; Right: ultra-wide bandwidth piezoelectric energy harvesting device developed by Arman Hajati

and Sang-Gook Kim [2].

What is the problem in optimization?

• Today’s design procedures are often based on linear finite element (FE) models.

• Nonlinear structural dynamics is analyzed after a full optimization procedure.

• High computation costs of nonlinear structural dynamics are prohibitive for iterative optimization.

The goal of this PhD project

Focus on developing reduced-order models to facilitate efficient analysis and optimization.

• Eliminate the time dimension to compute the steady-state vibration efficiently.

• Reduce the spatial dimension to obtain a model with fewer degree-of-freedom.

• Do sensitivity analysis and design optimization using reduced-order models.

Examples

Design of nonlinear beam dynamics

The structure is a doubly clamped beam with periodic load applied at the midspan. The design variable is the

width w(x). The objective function will be given in each example. The nonlinearity in the model arises from the

midplane stretching. The axial strain ε0 and the curvature κ are defined as

ε0 =
∂u
∂x

+
1

2

(
∂w
∂x

)2

,κ =
∂ 2w
∂x2
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Figure 2: Schematic of the model and a typical frequency-amplitude curve.

Minimize the resonant peak

min
ρe

c(ρe,ω(ρe)) = ūT Lū = a2
i1+b2

i1

in which ai1 and bi1 are the coefficients of the fundamental harmonic ai1 cos(ωt)+bi1 sin(ωt) for the deflection at

the midspan.
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Figure 3: Optimized width for minimizing the resonant peak using linear FE model(left top) and using noninear

FE model (left bottom), and nonlinear frequency-amplitude curves: circles denote optimized width using linear

FE model, diamonds denote optimized width using nonlinear FE model and dots denote uniform width.

Maximize the super-harmonic resonance

max
ρe

c(ρe,ω(ρe)) = ūT Lū = a2
i3+b2

i3

in which ai3 and bi3 are the coefficients of the third-order harmonic ai3 cos(3ωt)+bi3 sin(3ωt) for the deflection

at the midspan.
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Figure 4: Optimized width for maximizing super-harmonic resonance (Left top: uniform width; Left bottom:

optimized width) and the responses before optimization (dashed line) and after optimization (solid line).

Discussion

• Optimized width for minimizing the resonant peak using nonlinear FE model does not have ”weak” links.

• Nonlinear structural dynamics is essential for optimizing high-order harmonics in the response.


