
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Probabilistic Meteorological Characterization for Turbine Loads

Kelly, Mark C.; Larsen, Gunner Chr.; Dimitrov, Nikolay Krasimirov; Natarajan, Anand

Published in:
Journal of Physics: Conference Series (Online)

Link to article, DOI:
10.1088/1742-6596/524/1/012076

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kelly, M. C., Larsen, G. C., Dimitrov, N. K., & Natarajan, A. (2014). Probabilistic Meteorological Characterization
for Turbine Loads. Journal of Physics: Conference Series (Online), 524, [012076]. DOI: 10.1088/1742-
6596/524/1/012076

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/20608407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/1742-6596/524/1/012076
http://orbit.dtu.dk/en/publications/probabilistic-meteorological-characterization-for-turbine-loads(42f7ca1d-ca55-44ef-965e-5bef94ac48c5).html


 
 
 
 
 
 

Probabilistic Meteorological Characterization for Turbine 
Loads  

M Kelly1, G Larsen, N K Dimitrov, and A Natarajan 
Department of Wind Energy,  
Risø Campus, Technical University of Denmark, Roskilde 4000, DK  
 
E-mail: mkel@dtu.dk 
 
Abstract. Beyond the existing, limited IEC prescription to describe fatigue loads on wind 
turbines, we look towards probabilistic characterization of the loads via analogous 
characterization of the atmospheric flow, particularly for today's "taller" turbines with rotors 
well above the atmospheric surface layer. Based on both data from multiple sites as well as 
theoretical bases from boundary-layer meteorology and atmospheric turbulence, we offer 
probabilistic descriptions of shear and turbulence intensity, elucidating the connection of each 
to the other as well as to atmospheric stability and terrain. These are used as input to loads 
calculation, and with a statistical loads output description, they allow for improved design and 
loads calculations. 

1. Introduction 
Given the increase in sizes and hub heights of horizontal-axis wind turbines over the last decades, 
typical wind turbine rotors can frequently be located mostly or entirely above the atmospheric surface 
layer (ASL), or even rising above the top of the atmospheric boundary layer (ABL); ABL depths range 
from ~150–1500m, with ASL depth being ~10% of the ABL depth. Due to this, with the yet more 
complex physics and numerous additional phenomena that occur above the already complicated ASL, 
it becomes sensible to adopt a probabilistic approach for describing the atmosphere as ‘felt’ by wind 
turbines. Further, the current IEC standard 61400-1 [1] does not yet treat the variability of shear, nor 
the subsequent implication upon turbulence intensity for wind turbine loads calculations, in a 
systematic manner. Thus we pursue statistical characterization of the atmospheric boundary layer for 
use in wind load calculations, in order to provide a more complete functional description for wind 
engineers, and ultimately for turbine design. 

2. Atmospheric characterization; theory, statistics, and representation 
Towards a statistical description of relevant atmospheric variables for load calculations, we focus on 
wind speed, its vertical derivative (shear), and turbulence intensity. To be useful, such description 
should not be merely empirically based; as such we attempt to relate to extant formulations and with 
basis in atmospheric boundary layer theory.  
                                                      
1  To whom any correspondence should be addressed. 



 
 
 
 
 
 

2.1. Data used for analysis  

For this work we use data from a collection of sites, which all meet certain criteria: they must have 
multiple measurement heights, of which at least one should be significantly above 100m, with data 
recorded over an integer number of years. The criteria address the range of heights that correspond to 
turbine rotors, above the ASL; the statistics also need to be as representative as possible in a long-term 
sense, without e.g. seasonal biases. The sites considered are Cabauw in the Netherlands [2], 
Høvsøre [3] and Østerild [4] in Denmark, and a (confidential) commercial site (hereafter 
labeled ‘MR’) in the northeast US; Table 1 summarizes the sites used.   

Table 1. Sites used, with upper, mid-rotor, and lower heights for shear exponent 
analysis; wind direction ranges; terrain types; and instrumentation.  

Site zupper 
(m) 

zmid 
(m) 

zlower 
(m) 

Dir. 
range 

terrain  
type 

Obs. 
type 

Series  
length (y) 

Cabauw 200 140 80 120–240° farmland Sonic 2 
Høvsøre  160 100 60 60–120° farmland Sonic 6 
Østerild 200/140 140/80 80/45 all forest-mixed Lidar 1 
‘MR’ 136 80 40 all mixed-forest cup 1 

  
 The sites used vary in character, but they are all located in essentially flat terrain. The Østerild site 
has lidar data, so we do not use it for turbulence calculations. Due to the availability at many heights 
via lidar, it has been split into two sets, one “low” and one “high”, to highlight differences between the 
statistics at different heights.  The Østerild site is located in forest, with treetops less than 20m above 
ground, and the lowest lidar observation level (45m) is chosen to be above the subsequent roughness 
sub-layer [5] and above the effects of tree-induced flow-distortion for valid lidar use [6]; the terrain 
beyond several kilometers upwind also includes mixed grassland/agricultural and scattered forest. The 
site MR has similar characteristics, including forest with clearings for several km surrounding the 
mast, and mixed forest and farm/grassland farther away; both Østerild and ‘MR’ sites have winds 
prevailing from the west, though data were not filtered for direction. For both Høvsøre and Cabauw, 
relatively homogeneous wind sectors were chosen, dominated by farm and grassland; the length of 
data records (4 and 6 years respectively) allowed such directional filtering. Again the total number of 
sites was limited to 4, due to the difficulty of finding ‘tall’ measurements which meet the criteria (and 
also have high data-recovery rates and without problems e.g. flow distortion).   

2.2. Shear exponent, distributions and application 
Turbines are indirectly affected by atmospheric stability, terrain influences, and a number of 
atmospheric mechanisms, via the effects of these on the flow—as seen primarily through the wind 
shear and turbulence intensity which directly affect turbine loads. Thus we begin with the shear 
exponent α, defined implicitly by the IEC standard 61400-1 [1] and often in wind engineering [7–9] 
through the power-law relation for wind speed U at height z relative to wind speed at hub height zhub: 

( )hub hub( ) ( )U z U z z z α= . This can be inverted to give a more direct and useful definition of shear 
exponent, 

 /
/

dU dz
U z

α ≡ . (1) 

This is a ‘centered’ definition where U and shear (dU/dz) are both evaluated at z, which facilitates use 
of α in derivations and subsequent relation to other quantities, as shown later.  It is compatible with the 
form 2 1 2 1ln[ ( ) / ( )] ln( / )U z U z z zα =  used commonly since Irwin [7]; we use this form in our 
calculations and find little difference from (1). The wind speed is typically taken in wind energy 
applications as a 10-minute average, and in this paper we will be looking at statistics built upon 



 
 
 
 
 
 

collections of ‘data points’ each comprised of such an average, including wind speed and variance of 
streamwise turbulent fluctuations.2  

An indicator of the character of a potential turbine site is the distribution, i.e. probability density 
function P(α), of shear exponent. This is shown in figure 1a for all wind speeds above 3m/s at the sites 
we consider, again with Østerild broken into ‘low’ and ‘high’ cases.  From the figure we see that the 
Høvsøre case has a peak at α a bit lower than the other sites, but otherwise the distributions overlap 
significantly and do not appear markedly different.  

 
Figure 1. Shear exponent distributions for cases considered, all wind speeds above 3m/s.  

 
One expects a wind-speed dependence in the probability of finding a given shear exponent; the 

joint-distribution P(α,U) is not trivial. Indeed this is the case, as shown in figure 2.  The figure implies 
a general narrowing of the conditional distributions P(α|U) around progressively smaller α peaks for 
increasing U, with the effect more pronounced at the more homogeneous sites (given the similar z-
ranges used); this is consistent with stability having a reduced effect for high winds, and more 
turbulent transport affecting the shear over forest (discussed later). One also begins to see more 
differences between the sites, with the peak of P(α,U) occurring at lower U for lower z.3   

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2. Joint distributions of wind speed U(zmid) and shear exponent α, for 
Cabauw (orange, zmid=140m), Østerild (green, zmid=140m), Høvsøre (red, zmid=100m), and 
commercial site ‘MR’ (blue, zmid=80m). Heights used per site are listed in Table 1. 

                                                      
2 We remind the reader that averages of second (and higher) order moments, such as turbulence fluctuations, 
require longer averaging times to ensure the same amount of random ‘sampling’ error as a first moment such as 
mean wind speed [21]; e.g. 30-minutes is more effective when considering turbulence than 10-minutes, but this 
aspect is outside the scope of the present paper.  
3 More generally, for lower z/z0.This happens despite the peaks of the wind distribution (not shown) occurring in 
a different order (but with similar magnitude) due to different large-scale forcing or wind climate at the various 
locations. This insensitivity to site-dependent forcing is an attractive feature of α, arising from its ‘normalized’ 
dimensionless aspect. 



 
 
 
 
 
 

 
 

2.2.1. Effective roughness above the ASL. Because near-neutral conditions tend to be encountered 
most often [10], the distribution of shear exponent can in neutral conditions be related to an effective 
roughness length. This may be seen when considering that for a logarithmic profile, (1) gives 

0 01 / ln( / )z zα = . The concept is further demonstrated by figure 3a, which shows the distribution P(α) 
for both neutral and all conditions in the Høvsøre case. The peak of P(α) for the whole distribution is 
roughly the same as the peak of the distribution under neutral conditions, which happens in this case to 
coincide with the IEC [1] recommendation of 0.2; this corresponds to an effective roughness length 
z0eff exceeding 60 cm, which is much larger than the known surface roughness of several cm. If we 
consider the joint distribution of shear exponent and turbulence intensity in neutral conditions for this 
case, as shown in figure 3b, then we find a peak α0 of ~1/6, corresponding to z0eff ~25cm, still larger 
than z0. We can also look at the joint distribution of wind speed and α, comparable to figure 2, but in 
neutral conditions, as shown in figure 3c. The P(α,U) plot implies a peak α0~1/7, particularly for 
increasing U; this matches the wind engineering rule-of-thumb [8] but corresponds to a roughness 
of ~9cm, also higher than measured for the site. All three effective roughnesses are larger than the 
conventional surface roughness of 1-3cm determined via log-law in the ASL, but this is not 
unexpected: for heights increasing above the ASL, the ‘footprint’ of (vertical) momentum fluxes 
becomes larger, with a larger upstream area affecting the observed winds; the effective roughness is 
increased as more variations in surface roughness [11] and/or terrain elevation [12] are encountered 
over a larger area [13]. Thus the roughness z0eff ‘sensed’ by the wind profile over a rotor well above 
the ASL will depend upon the classic surface roughness z0,4 but will be augmented beyond that based 
on inhomogeneity in upstream z0 and the height above ground, relative to the variability in terrain 
elevation (i.e. the local scale or magnitude of elevation features in the vertical).5 

   

 

Figure 3. Left (a): histogram of shear exponent from Høvsøre, for both neutral (gray), and all 
conditions (pink). Center (b): joint distribution P(α,Iu) of α and turbulence intensity for near-neutral 
conditions. Right (c): joint distribution P(α,U) for neutral conditions. 

 

As seen in figure 3c, one also witnesses an increase in shear due to the effect of increased winds above 
the top of the ABL as well as related jets (tending to occur most for easterly winds at Høvsøre when 
U100m~9m/s), but we do not consider this as part of the effective roughness.  Further, there is generally 
an increase in the mean shear exponent for lower wind speeds at the sites considered, consistent with 
the increased drag seen by e.g. [14] for weaker winds.  
                                                      
4 We note that  fits to U(z/z0) in the neutral surface layer (not shown here) also give a distribution of roughness 
lengths, analogous to the P(α) shown here. The average of such dictates the accepted surface roughness length, 
but unfortunately the character of the distribution and subsequent averaging is rarely documented. 
5 Mahrt [13] also summarizes the possible influence of the scale of heterogeneities upon the effective roughness. 



 
 
 
 
 
 

As a function of wind speed, the mean shear exponent Uα  (or inverse z0eff) will tend to increase 
from cut-in speed (~3–5m/s) to a somewhat constant value for a range of moderate wind speeds, and 
then potentially decline, shown in figure 4. However, if one filters out data corresponding to the lower 
half of turbulence intensities observed (not shown), then Uα  reaches a constant value without 
declining (similar to the green line in figure 4 for the high Østerild case), consistent with [15]. Just as 
with the peaks in P(α,U), the high-wind value of Uα for the largest half of turbulence intensities (or 
the peak in all conditions as in figure 4) tends to increase with the effective surface roughness. In the 
interest of site-independent turbine load characterization, this z0,eff-dependence can itself be gauged via 
turbulence intensity—higher roughnesses and terrain variations lead to stronger turbulence.   

 
Figure 4. Mean shear exponent as a function of wind speed, Uα . 

2.2.2. Stability and shear distributions. Turbines are not directly affected by heat fluxes or thermal 
stratification, but rather by atmospheric stability’s effect on the flow, and so in wind engineering the 
stability is not considered, but its effect on shear, turbulence intensity, and mean wind speed are 
acknowledged. Here we probe the connection between distributions of stability and shear exponent.  
Following classical Monin-Obukhov theory [16], stability can be cast in terms of (inverse) Obukhov 
length 1 3/2

0( / ) ( )L g w uwκ θ θ− =  based on near-surface fluxes of heat ( )wθ  and momentum 
( )2

*uw u≡ − , where κ=0.4 is the von Kármán constant, g=9.8ms-2 is acceleration due to gravity, and θ0 
is the ASL mean potential temperature in K (overbars indicate 10-minute averages of fluctuating 
quantities). 

The distribution of stability, 1( )P L− , tends to have a peak near 1 0L− =  for sites on land, 
corresponding to zero heat flux from the surface. [10] found it could be described by a two-sided form 

( )1 1 2/3( ) exp | |P L L− −∝ − .  In the ASL where the wind speed profile can be represented by Monin-
Obukhov theory, then (1) becomes ( )0( / ) ln( / ) ( / )z L z z z Lα φ ψ= − ; this can be exploited under 
stable conditions (where ( / ) 5 /z L z Lψ+ −  and ( / ) 1 5 /z L z Lφ+ + ) along with a probability 
transformation from P(α) to 1( )P L− , to find a corresponding ( )P α+ + for the stable regimes that result in 
most instances of large shear exponents (see Appendix for details). Doing so, we obtain an analytical 
shear exponent distribution, which is shown in Figure 5 for the case of Høvsøre using measured ASL 
heat and momentum fluxes. While the stability distribution can be mapped somewhat reasonably in 
the ASL to a corresponding α distribution, the mapping fails for the Høvsøre case considered above 
the ASL (from 60–160m); further, replacing z0 in the mapping with (larger) effective roughnesses (as 
found from e.g. figure 3) only degrades the results compared to the observed ( )P α+ + . 



 
 
 
 
 
 

  

Figure 5. Shear exponent distribution ( )P α+ + predicted via stability distribution 1( )P L−  for stable 
conditions (blue line) and measured distribution (red), Høvsøre case. Left: for ASL, z=10-40m; 

right: z=60-160m. 
 
While one may analytically connect the distribution of stability to the shear distribution ( )P α  as we 

have just shown, above the ASL this does not produce reasonable results, because there is not 
necessarily a unique or 1:1 mapping between the two distributions. This is due in part to the wind at 
160m sometimes being decoupled from the stable ASL flow, and more generally is caused by the 
turbulent kinetic energy balance being more complicated than assumed by Monin-Obukhov theory 
(i.e. in the ASL over flat terrain). The failure of the mapping is also consistent with the difficulties 
found by [9] in their attempt to relate turbulence intensity to stability, as will be seen below.  

2.2.3. Variability of shear exponent. The distribution of shear exponent has a characteristic width, 
connected to the expected variability of α. Since the joint-distribution P(α,U) has a 2-dimensional 
shape (as in figure 2), then we expect that the shear variability will have a wind-speed dependence. 
The variance of α is 2 2( ) ( , )U P U dασ α α α= ∫  for a given (range of) U, but we lack an analytical form 
for P(α,U). However, we can get a hint about ( )Uασ  by looking at the differential of (1), which can 
be written as [ ]1 ( / )U z dU dz Uδα δ α δ−= − : a combination of a ‘turbulence’ or shear piece (variation 
in dU/dz) and a ‘Weibull’ or mean wind piece (δU), together divided by U.  Thus one might expect   

 1Uασ
−∝ . (2) 

One may also infer a dependence such as (2) by considering the turbulent kinetic energy budget, as in 
the next section. Indeed for the sites analyzed, we find that (2) applies in a basic sense, shown in 
Figure 6. As seen in the figure the standard deviation of shear exponent, calculated over 1 m/s bins of 
wind speed for the sites considered, tends to collapse around 1/U. This is consistent also with the 
P(α,U) contours tending to come to a ‘point’ at higher U in Figure 2.  



 
 
 
 
 
 

 

Figure 6. Standard deviation of shear exponent, for sites considered. Dotted line is 1U − . 

The case with most inhomogeneous conditions and largest generalized roughness (Østerild high-z 
case) also have higher σα; conversely the case with both the most homogeneous upwind surface and 
smallest roughness (Høvsøre) has relatively smaller variation in α for wind speeds above 15 m/s—
though the latter is also due in part to a lack of high-wind data from the homogeneous land sector at 
Høvsøre.   

2.3. Turbulence intensity and shear exponent 
When shear production of turbulent kinetic energy is not completely dominant, i.e. when a logarithmic 
profile or similarity theory may not apply, then relating shear and turbulence statistics becomes more 
complicated.  To examine the relationship of these, one may consider the budget of turbulent kinetic 
energy, e. For steady (on average) conditions it can be written in simplified form as  

 0de dUuw B T
dt dz

ε= = − + + −  (3)  

where uw is the turbulent flux of streamwise momentum, ε is the dissipation, 0( / )B g wθ θ= is buoyant 
production or destruction, and T is turbulent kinetic energy transport. Then using (1), in general we 
have  

 ( )z B T
U uw

εα − −
=

−
 (4)  

at a given height z. In the (ASL) limit that all fluxes are constant with height, using 2
*0uw u− = and 

taking 3
*0 /u zε κ=  [17], then dividing (4) by (U/z) and using (1) we obtain  

 *0
2 2

0 *0 *0 /
u gzw T
U u U u U z

θα
κ θ

− − . (5) 

If one takes *2.5U uσ ≈ (e.g. [1,8]) and uses the definition of Obukhov length, for vanishing transport 
then the shear exponent can be written more clearly in terms of turbulence intensity /U UI Uσ= , and 
in line with Monin-Obukhov theory:  

 1U
zI
L

α  +  
 . (6) 



 
 
 
 
 
 

Thus we have the sensible result that α increases conditions become more stable, and also with height 
in the ASL. We can see in the surface-layer neutral limit (i.e. a balance between shear production and 
viscous dissipation) the shear exponent becomes roughly equal to the turbulence intensity.  

Above the ASL, in the regime of focus in this paper, however, (6) is of limited validity. One way to 
address this is via local similarity, which introduces a dependence upon boundary-layer depth h into 
the fluxes in (4) and (5). Using local similarity (e.g. [18]) gives a form like (5-6) for α, generally 
following ( )*0 (1 / ) ( / )(1 / )a bu U z h z L z hα κ − = − + − where h is the ABL depth and (a,b) are 
constants of order 1, and can be extended to include transport; however this has not yet been validated 
and is the subject of ongoing work.  

As in the previous section, the behavior of the ‘amplitude’ of variations in α can be gleaned by 
considering its differential. Previously (1) was used, now (6) gives again a turbulence contribution and 
mean wind piece, both with a 1/U dependence, but now there is also a stability component: 

1 1~ (1 / )[ ]U UU z L I U z Lδα δσ δ δ− −+ − + . We note that the actual dependence will be more 
complicated than this above the ASL, with a yet more height-dependent result including ABL depth.  

2.3.1. Simplified relations between α and IU for standards. There is a need to relate the distributions of 
α and IU, or at least the most likely of each, for the purpose of standardized loads calculations. Thus a 
relation such as (6) needs to be replaced by one where the stability is implicit within the turbulence 
intensity and shear exponent, with a form that is expressed in terms of reference values—compatible 
with the IEC 61400-1 standard.    

A simple way to achieve such a relation is by extending Monin-Obukhov profile theory (see 
e.g. [10]), within α and IU. Using *0/ ( / ) / ( )dU dz u z L zφ κ= and 1

* 0[ ( / )] /U u z Lα ψ κ−= − , if we use a 
simplified form6 /z Lψ β= − , then we can write both α and IU in terms of z/L. Eliminating /z Lβ via 
α gives ( )*0 0 0( / ) (1 ) 1U UI uκ σ α α α= − − . If we take *U ua uσ ≈ (where au is a constant typically 
taken to be 2.5, c.f.[1]), then defining the neutral, reference turbulence intensity as 0 0U uI a κα≡ , we 
have  

 0

01 ( ) / (1 )
U

U
II

α α α
=

+ − −
 (7) 

regardless of the choice of either β or au. The factor 0( ) / (1 )α α α− −  arose from the stability term 
/z Lβ ; realizing that (7) should be simplified for use above the ASL, and that the (1 )α−  part 

becomes more of a constant as other terms (such as transport) affect the shear there, we parameterize 
this factor as 0( )cα α α−  to get the engineering form 

 0

01 ( )
U

U
II

cα α α
=

+ −
 (8) 

where the constant cα is empirically found to be roughly 4.    
Because the IEC 61400-1 uses a reference turbulence intensity at 15m/s, and because there is 

relatively small variation of IU at this speed (compared to lower speeds more affected by stability), we 
choose IU0 to correspond to such a reference, as well as analogously assigning α0 (at 15m/s) for the 
same reasons. Doing so, we obtain the results shown in figure 7, using the simplified form (8). The 
figure shows P(α,IU) for the sites having turbulence measurements, with the form (8) superposed as a 
line on top.   
                                                      
6 β is a constant between 0 and 5, and the form reflects the larger impact of stable conditions on U(z) relative to 
unstable conditions [10]; 1 d /z dzφ ψ= − . 



 
 
 
 
 
 

   
Figure 7. Turbulence intensity and shear exponent distribution, with engineering model (7) overlaid 

as a blue line. Left (a): Cabauw; center (b): Høvsøre; right (c): site ‘MR’. 

We can see from figure 7 that the reduced formulation (8) does a fair job reproducing the mean (and 
most likely) behavior of {α, IU}. If we had used (6) for α instead of its definition including Monin-
Obukhov functions, we arrive at a form similar to (8), 0 0(1 ) / (1 )U UI I α βα= − + ; however, this form 
does not give reasonable results, due to not having been practically adjusted to apply above the ASL.   

Since we also have an expression for the width of P(α), one can also invert (8) to obtain a model 
for α in terms of turbulence intensity and wind speed, which is the parameterization employed by [15]. 
The expression for mean shear exponent following (8) has a form 0 0( / 1) /U UI I cαα α= + − ; this is in 
contrast with that of [19], who made a fully empirical relation that multiplies α0 by a stability-based 
factor.   

Despite the turbulence intensity being the dominant driving parameter for most loads calculations, 
we re-iterate the findings of [15] who used (8) and (2) for a large number of loads simulations: the 
shear exponent distribution becomes significant for fatigue loads in low-IU conditions, and also for 
blade-tip deflection in extreme IU cases. 

3. Loads and output: effect of input distributions  
Here we give an example of the effect of varying α upon loads, based on the observed shear exponent-
wind speed distribution P(α,U).  The analysis is done for the ‘tall’ Østerild case (80-200m) from lidar, 
so no turbulence data were observed.  In particular the fatigue loads were calculated for the NREL 
5MW reference turbine [20] using HAWC-2, for IEC 61400-1 design load cases including normal 
operation, normal startup/shutdown and failure; this assumed turbulence class A, with 2m/s increments 
for U and increments of 0.1 for α, with six seeds used for every {α,U} pair. The fatigue loads were 
summed up with weighting according to observed P(α,U).   

A sample of flapwise blade-root 1 Hz equivalent moments is given in figure 8, for the wind speed 
bin from 14–16m/s. For the NREL controller, the load per α is shown in the left-hand plot, indicating 
e.g. an equivalent moment of ~9200 kN/kNm for α=0.2. In the right-hand plot, the load probability 
distribution (grey shaded) and the cumulative distribution (black line) is shown for this wind speed 
bin. One can see that width of P(α|U) for this wind speed range leads to a skewed flapwise load 
distribution, with the 50% percentile of fatigue load occurring at a value (8900 kN/kNm) several 
percent lower than that which would be predicted using the standard α of 0.2.  



 
 
 
 
 
 

  
Figure 8. Loads example using observed P(α,IU), Østerild ‘tall’ case with NREL 
controller (black/grey). Left: flapwise load (in KN/KNm) versus α. Right: CDF (line) and 
PDF (shaded) of load distribution.   

 
Systematic differences of several percent are seen in the damage equivalent fatigue loads (akin to the 
14-16m/s result shown in figure 8) for most wind speeds, and the annual energy production (not 
shown) is more than 10% lower than if one used the standard Weibull distribution with α=0.2.  Again, 
as found in [15], the variability in shear can also have a more pronounced effect in both low and 
extreme turbulence regimes.   

4. Summary and conclusions 
Here we have introduced the shear exponent α and connected it with stability and turbulence intensity, 
also showing its connection with conventional surface roughness. We examine its utility above the 
atmospheric surface layer, where similarity theory begins to fail, using data from a number of ‘tall’ 
sites. The joint statistical behavior of α, wind speed, and turbulence intensity is explored and 
interpreted, both via the observations and with connection to accepted 
micrometeorological (i.e. surface-layer and similarity) theory. We find a relationship between 
typically-averaged (i.e. 10-minute) wind speed and standard deviation of shear exponent, which is 
useful for modelling the shear for e.g. input to fatigue loads calculations. We also derive the 
relationship between shear exponent, atmospheric stability, turbulence intensity, and turbulent 
transport based on the mean turbulent kinetic energy balance, in a way consistent with Monin-
Obukhov theory in the constant-flux (ASL) limit. A practical reduction of this relationship is made for 
application above the ASL, and this leads to a characterization of turbulence intensity in terms of shear 
exponent (or vice-versa) in a form amenable to use in the IEC 61400-1 standard.  

A simple example is also shown which demonstrates the distribution of damage equivalent 
fatigue loads which arise from the joint distribution of shear exponent and wind speed at one 
observation site. 

Ongoing and future work includes: characterization of veer, its joint distribution with shear 
exponent, and effect on the loads, as well as a simplified re-formulation of the variability of shear, TI, 
and veer for application in standards to extreme and fatigue loads estimates. 
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Appendix 
A generic two-sided form for stability distributions was found by [10] in terms of the inverse Obukhov 
length, to be  
  ( )1 1 2/3 5

2( ) exp ( | | / ) ( )P L n C C L σ σ− −
± ± ± ± ± = − Γ                                 (A.1)  

where
1/2 32

0 *0( / ) ( )g T w w uσ θ θ± ±±
≡ − is the 1L−  scale (variability), C± are constants, and n± are 

the fraction of conditions which are stable ( 1 0L− > ) or unstable; “+/-” subscripts indicate values for 
either stable or unstable conditions.  

A probability distribution may be transformed from one variable to another, in this case between α 
and 1L− , via 1 1( ) ( ) /P P L d dLα α− −= . Focusing on the higher-shear case of stable 
conditions (denoted by subscript ‘+’), from Monin-Obukhov theory (1) can be written 

( )0( / ) ln( / ) ( / )z L z z z Lα φ ψ = −  , or ( )01 5 / ln( / ) 5 /z L z z z Lα+  = − +   under stable conditions. 
Since  

  1 1 1
d d d
d d dL L L
α α φ ψα

φ− − −
 = +  

                               (A.2)  

then 
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1
1

0

d d / d( ) ( )
ln( / )d

LP P L
z zL

φ φ φ ψα
α ψ

−−
−

−= ± +
−

                               (A.3)  

where the +/- is for α either increasing or decreasing with 1L− . For stable conditions then  

  
1

1 1 5( ) ( )
5 |1 |

zLP P L
z

α
α α

−
− +

+ + + +
+ +

+
= ±

−
 ;                              (A.4)  

inverting the {α+, 1L−+ } relation  we then find [ ] [ ]1
0ln( / ) 1 5 (1 )L z z zα α−

+ + += − − . Subsequently 

since 1L−+  is positive and ( )1 1Lα −
+ < , then 0 1α α+< <  where again 0 01 / ln( / )z zα = . Finally we have  

  
( )1

0
( ) ln( / )( ) 1

5 |1 | 1

P L z zP
z

α α
α

α α α

−
+ + + +

+ +
+ + +

 
= + − − 

                              (A.5)  

with 1( )P L−+  given by (A.1), where the arguments and subscripts all correspond to the stable (+) side 
distribution. 
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