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ABSTRACT 
The austenite-to-martensite transformation in a partially hardened stainless steel containing 17wt %Cr, 7wt 
%Ni and 1wt % Al was investigated with Vibrating Sample Magnetometry and Electron Back-Scatter 
Diffraction. Magnetometry demonstrated that measurable martensite formation can be suppressed on fast 
cooling to 77K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was 
observed during moderate heating from 77 K, instead. Electron Back-Scatter Diffraction demonstrated that 
the morphology of martensite is lath type. The kinetics of the transformation is interpreted in terms of a-
thermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial 
autocatalytic martensite formation occurs during thermally activated growth. The observation of several 
retardations and accelerations of the transformation rate during slow isochronal cooling is interpreted in 
terms of the contribution of self-induced mechanical stabilization of austenite during martensite formation. 
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INTRODUCTION 
Martensite in iron-based alloys can appear as laths, characterized by an internal sub-structure with a high 
density of dislocations,1,2 or as plates, which are partially3,4 or fully5 internally twinned6. Regardless of the 
morphology of martensite, the kinetics of martensite formation is historically described as fully nucleation-
controlled,7 with the implicit assumption of instantaneous growth of martensite upon nucleation. 

However, growth of lath martensite is not instantaneous, but time-dependent and proceeds at a velocity in the 
range of 10-6 m s-1 to 10-1 m s-1.8 In Refs. 9-10 a growth rate for lath martensite formation in the order of 10-3 
m s-1 was reported9 and a martensite formation event was estimated to last 10-3 s.10 Although these 
observations are consistent with Ref. 8 (i.e. time-dependent growth), surprisingly they were considered to 
corroborate nucleation-controlled descriptions.7 

Time-dependent growth of lath martensite was followed in-situ by microscopical investigations in Ref. 11-15 
and it was observed to induce time-dependent (autocatalytic) nucleation of lath martensite.12,13,15 

After initial nucleation and growth, autocatalytic nucleation is responsible for an acceleration of the 
transformation.7,16 Autocatalytic nucleation can occur either within the same austenite grain wherein 
martensite formation occurs or in neighbouring austenite grains.17 

In the case of lath martensite, austenite grains are sub-divided by martensite formation at four length 
scales.2,18-20 Firstly austenite grains are divided into groups of laths with the same habit plane, so-called 
packets. Each packet contains several blocks, which are groups of laths with the same (Kurdjumov-Sachs, K-



S) orientation relation to austenite. Block boundaries are high-angle boundaries and are either subdivided in 
sub-blocks of two K-S variants of martensite laths or can contain a single K-S variant. The individual laths 
represent the smallest level of subdivision. 

In Ref. 15, continuous growth of lath martensite was observed to promote autocatalytic nucleation (mainly) 
within a single block of laths. In Ref. 12,13, continuous growth of lath martensite was observed to promote 
the generation of variants with another orientation relation with respect to austenite, leading to the formation 
of new blocks and packets. Finally, in-situ (synchrotron) X-ray diffraction investigations in Ref. 21 
suggested that autocatalytic nucleation of lath martensite spreads the transformation over neighbouring 
austenite grains. 

Accordingly, the applicability of fully nucleation-controlled kinetics can be questioned. In Refs. 22-24 time 
dependent formation of lath martensite was interpreted in terms of thermally-activated, time-dependent, 
nucleation, while in Refs. 25,26 time-dependent lath martensite formation was described in terms of 
thermally activated growth of a-thermally formed nuclei. 

The purpose of the present work is to contribute to understanding the kinetics of lath martensite formation. 
For this purpose, a Fe-17Cr-7Ni-1Al (wt-%) stainless steel was chosen. In this steel grade the isothermal 
transformation of austenite into martensite27-29 at sub-zero Celsius temperature is industrially exploited.27,29 

Martensite formation was investigated by magnetometry, which has been demonstrated to be an accurate 
technique to study the martensitic transformation in iron-based alloys.22,23,28,30-34 

Magnetometry was supplemented by Electron Back-Scatter Diffraction, which was applied to evaluate the 
morphology of martensite. 

EXPERIMENTAL METHODS 

Material and heat treatments. 
The material used in the present work is a 0.15 mm thick foil 17-7 PH (precipitation hardening) stainless 
steel, which essentially is a Fe-17Cr-7Ni-1Al (wt-%) alloy, in rolled condition (supplied by Goodfellow 
Cambridge Ltd.) with the chemical composition reported in Table 1.  

Austenitization of samples prepared from the rolled condition was performed in argon at 1127±10 K for 0.6 
ks and was followed by cooling to 423K at an approximate average rate of 20 K min-1 in an argon flow. 
Hereafter the flow was interrupted and the samples were slowly cooled to room temperature in the sealed 
furnace. The as-quenched material was stored at 295±2 K for about 10 Ms (4 months) prior to magnetometry 
investigation; this is the controlled temperature in the room where magnetometry was performed. 

Two sets of samples were prepared: a first set of three samples I, II and III; a second set of three samples A, 
B and C. 

 

Table 1: Chemical composition (in wt%) of 17-7 PH steel as determined with Energy Dispersive Spectroscopy, EDS. 
The carbon content was measured with a LECO-CS230 Carbon analyzer 

Fe C Si Mn Cr Ni Al 
Bal. 0.09 0.5 0.7 17.3 7.3 0.8 

 



After room temperature storage, samples I, II and III were heat treated as follows. On installing the sample in 
the magnetometer the samples were cooled to 290 K for 60 seconds and thereafter kept at room temperature, 
295 K, for 180 s. Then, samples (one at a time) were immersed in boiling nitrogen and kept at 77 K for 60 s. 
From this temperature, the samples were isochronically heated to 290 K at 10 K min-1 (sample I), 3 K min-1 
(sample II) and 0.15 K min-1 (sample III). The temperature history is shown in Fig.1a for the first 6 ks. 

After room temperature storage and pre-treatment for 60 seconds at 290 K (identical to samples I, II and III) 
samples A, B and C were treated as follows: 

A. immersion in boiling nitrogen for 60 s followed by immersion in boiling water. Thereafter, 
isochronal cooling from 373 K to 80 K (at 0.1 K min-1) and heating to 290 K (at 10 K min-1) was 
followed with magnetometry. 

B. immersion in boiling water, followed by magnetometry investigation of isochronal cooling from 373 
K to 80 K (at 0.1 K min-1) and heating to 290 K (at 10 K min-1).1 

C. magnetometry investigation of isochronal cooling from 290 K to 80 K (at 0.1 K min-1) and heating to 
290 K (at 10 K min-1). 

Vibrating Sample Magnetometry, VSM. 
Magnetometry was performed with a Lake Shore Cryotronics 7407 vibrating sample magnetometer equipped 
with a Janis SuperTran-VP continuous flow cryostat. Samples were 3 mm in diameter, 0.15 mm thick disks 
and were mounted onto a rigid fiber pole using non-magnetic Kapton tape. The degree of transformation was 
followed by recording the magnetic moment of the sample at saturation. A magnetic field of 1 Tesla was 
applied to bring the samples to magnetic saturation. 

The absolute temperature was verified and validated at the boiling point of liquid nitrogen (i.e. 77 K) and at 
room temperature (i.e. 295±2 K). During thermal cycling, the temperature relative to the set point was 
accurate within ±0.5 K. 

The molar fraction of martensite fα´(t,T) in the material, as measured versus time, t, and temperature, T, is 
determined on the basis of the following assumptions: 

1. the as-received (i.e. as-rolled) material is fully martensitic, as was validated by transmission X-ray 
diffraction;33 

2. the molar fraction of martensite is proportional to the magnetic moment at magnetic saturation,2 
corrected for its dependence of temperature;34 

3. the as-rolled sample remains stable in the temperature interval under investigation. 

With these assumptions, fα´(t,T) is given by: 

fα´(t,T) = M(t,T) / Mα´(t,T) (1) 
where M(t,T)is the magnetic moment at saturation measured in the sample and Mα´(t,T) is the magnetic 
moment at saturation measured in the as-rolled material during recording of the baseline. 

Electron back scatter diffraction, EBSD. 
EBSD, was performed in a dual beam FEG-SEM FEI Helios Nanolab 600 SEM equipped with an EBSD 
system from EDAX-TSL and a Hikari camera. The measurements were performed with an electron probe 

1 The quenching steps for sample A and B were performed outside the cryostat chamber. Consequently, the content of 
martensite in sample A after quenching in boiling nitrogen was not measured. 
 
2 Note that Refs. 22, 23, 30, 31 refer to the volume fraction of martensite as determined by magnetometry. This is 
incorrect; magnetometry provides a measure for the molar fraction of the martensite formed. 

                                                      



current of 11 nA at an acceleration voltage of 18 kV, with a step size of 80nm; data were collected at four 
different sample locations on an overall surface area of 0.025 mm2. The OIM TSL 6 software was used for 
analysis of the EBSD results. 

RESULTS AND DISCUSSION 

Thermally activated martensite formation. 
In Fig. 1b the molar fraction of martensite, fα´, measured by magnetometry is shown as a function of  
temperature, T, for samples I, II, III. 

The initial content of martensite in the samples just before immersion in boiling nitrogen is 15±3% (point 1 
in Fig. 1b). Apparently, within experimental accuracy, fast cooling to 77 K does not lead to a measurable 
formation of martensite (point 2 in Fig. 1b - 16±3%). Martensite formation is first observed during 
subsequent isochronal heating. The occurrence of martensite formation during heating is counterintuitive and 
indicates convincingly that martensite formation cannot be the result of a-thermal nucleation and 
instantaneous growth of martensite nuclei. The observation can only be understood if martensite formation 
(i.e. nucleation and/or growth) is thermally activated. 

The present set of experiments does not give an indication whether thermally activated martensite nucleation 
or thermally activated growth occurs. A kinetic analysis of the data in Fig.1b taking a 50% transformation as 
a reference (cf. Ref. 35) yielded an activation energy of 15 kJ mol-1.  

 

 

Figure 1. (a) Thermal cycles of samples I, II, and III: all samples were pre-treated at 290 K (point 1) and quenched in 
boiling nitrogen (point 2). The heating step terminates at 1.56 ks, 4.5 ks and 84.3 ks (out of scale) for sample I, II, and 

III, respectively. (b) Martensite fraction fα´ plotted versus temperature T. Black open symbols, labelled 1 and 2, refer to 
the average fraction of martensite determined over the different samples after pre-treatment to 290 K and after pre-

treatment followed by quench in boiling nitrogen (77 K), respectively. Error bars represent reproducibility of the 
results according to Ref. 33. 



 

Figure 2. (a) Martensite molar fraction fα´ versus temperature T. Black open symbols, labelled 1 and 2, correspond to 
point 1 and 2 in Fig.1b. c) Transformation rate fα´/dt calculated within 2400 s time intervals (±2 K), versus temperature 

T; the vertical dotted line marks the long-term storage temperature (295±2 K). 

 

Thermally activated growth of martensite. 
The experiments presented in this section are based on the following reasoning. Provided that the 
transformation is completely suppressed on fast cooling followed by fast (re)heating above a threshold 
temperature were martensite formation is inhibited by thermodynamics, martensite formation during a 
second, slower, cooling step is: 

1. not influenced by the initial thermal step, in the case that the kinetics of the transformation is 
controlled by time-dependent nucleation; 

2. strongly influenced by the initial thermal step if the kinetics of the transformation is controlled by 
time-dependent growth of nuclei that have developed a-thermally during the initial cooling sequence. 

Samples A, B and C were heat treated accordingly. 

The fractions of martensite measured during the different controlled thermal cycles are collected in Fig. 2a. 
The transformation rate on controlled cooling in the temperature interval 330 K to 240 K is shown in Fig. 2b. 

Martensite formation appears suppressed on fast (re)heating to 373 K, both from 290 K and from 77 K. 

The slightly higher fraction of martensite at 373 K, (i.e. 19±3%) as compared to point 1 and 2 (i.e. 15±3%) is 
still within experimental error. 

On isochronal cooling, neither sample A nor sample B showed a measurable transformation down to 310 K 
(Fig. 2b). The criterion for a measurable transformation is taken as dfα´/dt > 2∙10-8 s-1, which is a value safely 
larger than the noise level (see arrow in Fig 2b). 

At 310 K, martensite formation is observed to start slowly in sample A, while martensite formation in sample 
B is first observed at 304 K. The onset of the transformation in samples A and B at temperatures well-above 
the long-term storage temperature of 295±2 K after austenitization, cannot be reconciled with a-thermal 
nucleation; neither can it be a consequence of thermally activated nucleation of martensite. These results 



indicate that both the pre-treatment from 295 K to 290 K (sample B) and the additional cooling to 77 K 
(sample A) have led to the development of martensite nuclei, and that these nuclei are thermally activated to 
grow in the isochronal cooling stage at a temperature higher than the storage temperature. The instantaneous 
martensite formation as observed in sample C on cooling from 290 K corroborates that cooling from 295 K 
to 290 K has indeed led to the development of martensite nuclei. 

The observation that measurable martensite formation starts at a higher temperature in sample A than in 
sample B (Fig. 2), is explained by a faster transformation in sample A, resulting from a larger number of 
nuclei formed upon cooling to 77 K (sample A) as compared to cooling to 290 K (sample B). During 
continuous cooling, the transformation rate reaches a maximum at 293 K, 289 K and 287 K for samples A, 
Band C, respectively. After this maximum, the transformation rate in samples A and C shows a deceleration 
followed by an acceleration, while for sample B the transformation decelerates monotonically. The 
occurrence of a deceleration of the transformation followed by a second acceleration is abnormal after Refs. 
36-39. It is anticipated that abnormal transformation indicates the presence of autocatalytic nucleation. 

The results of orientation image microscopy of samples A and B are shown in Figs. 3. A quantitative 
evaluation of the EBSD results (Fig.4) was obtained for the areas separated by high angle grain boundaries, 
i.e. a misorientation larger than 15°, which represent blocks in the lath martensite microstructure.  

 

 

Figure 3. EBSD investigation: orientation image microscopy: a) sample A; b) sample B. The reported orientation 
images represent 15% of the area investigated by EBSD. 

 

 

Figure 4. Block size distribution (area) for the samples A and B, respectively. Data refers to an overall surface area of 
0.025 mm-2 per sample. 



Evidently, the quantitative size distribution of martensite regions in samples A and B is identical within 
experimental accuracy (Fig. 4). This indicates that the higher number of nuclei in sample A as compared to 
sample B is not reflected in the microstructure after completed transformation. Hence, it has to be concluded 
that additional nucleation has occurred in sample B during isochronal cooling. 

In principle, such nucleation could have taken place purely a-thermally. However, since the largest part of 
the transformation is accomplished within a very narrow temperature range for all investigated samples (cf. 
Fig. 2b), it is anticipated that autocatalytic nucleation has contributed substantially to the transformation. 

Abnormal martensite formation. 
In this section, abnormal martensite formation is discussed in relation to the abnormal massive 
transformation of austenite into ferrite, as described in Refs. 36-39. The latter is introduced first. 

At the beginning of the massive transformation, nucleation of ferrite at several locations in the sample is 
followed by thermally activated growth. The strain energy which is introduced locally in the system as a 
consequence of the volume misfit between ferrite and austenite (i.e. the introduction of shear stresses), 
promotes autocatalytic nucleation of ferrite in front of the ferrite -austenite interface.36 Autocatalytic 
nucleation yields a strong acceleration of the transformation, which comes to a halt when the strain energy 
introduced in the system by the transformation itself, averaged over the entire sample (i.e. the sum of 
interfacial energies, introduction of crystal defects and build up of hydrostatic pressure in austenite), equals 
the chemical driving force. Thereafter, an increment of the driving force upon continuous cooling is 
necessary to initiate a new (autocatalytic) nucleation event. 

In the present case, at 310 K, several (infinitively small) nuclei of lath martensite are present in the material 
as a consequence of a-thermal nucleation in the first cooling step. The number of nuclei differs for samples A 
and B and is largest in sample A, because of the significantly lower temperature reached in sample A during 
cooling (i.e. 77 K versus 290 K). 

On cooling below 310 K, martensite starts to grow. Evidently, the driving force at 310 K is sufficient to 
compensate for the interfacial energy and the elastic and plastic strain energy terms associated with 
martensite formation and the frictional work accompanying the movement of the austenite/martensite 
interface.40,41 For a relatively small transformed fraction, martensite formation introduces shear21 and tensile 
dilatational42 stresses in the surrounding austenite matrix, which exceeds the other  energy terms in austenite 
accompanying martensite formation and promotes the driving force for (autocatalytic) martensite formation. 

For a relatively large transformed fraction, (retained) austenite regions become encaged by martensite. Then 
additional martensite formation induces compressive strain energy terms in austenite,42-44 which counteracts 
the driving force for martensite formation45-47 (i.e. mechanical stabilization of austenite8 occurs during 
martensite formation). 

The compressive strain energy in austenite suppresses martensite nucleation and results in a deceleration of 
the transformation. However, martensite formation does not completely stop, because growth of pre-existing 
nuclei can still occur.  

A new acceleration of the martensite formation occurs when additional undercooling leads to a further 
increase of the driving force. At this point, provided that there is enough austenite to transform, an increase 
in the nucleation rate may yield a new acceleration of the transformation, as is observed at 280 K in sample 
A (and C). The reason that this acceleration is not observed for sample B, could be the lower fraction of 
untransformed austenite as compared to sample A (and C) at this point. 



To summarize, autocatalytic nucleation of martensite is promoted by continuous growth of the martensite 
areas. The combined effect of autocatalytic nucleation and self-induced mechanical stabilization of austenite 
yield abnormal transformation, characterized by repeated acceleration and deceleration of the transformation. 

CONCLUSIONS 
Martensite development in a 17-7 PH (i.e. 17wt %Cr, 7wt %Ni and 1wt % Al) stainless steel was 
investigated with magnetometry and Electron Back-Scatter Diffraction. It was observed that fast cooling to 
77 K, well below Ms, and fast heating from below Ms to a temperature well above Ms did not lead to a 
measurable formation of martensite. Instead martensite develops during controlled cooling from above Ms or 
controlled heating from a temperature well below Ms (77 K). 

The results can be interpreted consistently assuming that a-thermal (mainly autocatalytic) nucleation occurs, 
followed by thermally activated growth of the martensite nuclei. The activation energy for thermally 
activated martensite growth was assessed at 15 kJ.mol-1. 

The observation of abnormal lath martensite formation is reported on continuous cooling. Abnormal 
transformation is interpreted in terms of self-induced mechanical stabilization of austenite during martensite 
formation. 
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