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a b s t r a c t

Prebiotic oligosaccharides are defined by their selective stimulation of growth and/or activity of bacteria
in the digestive system in ways claimed to be beneficial for health. However, apart from the short chain
fatty acids, little is known about bacterial metabolites created by fermentation of prebiotics, and the
significance of the size of the oligosaccharides remains largely unstudied.

By in vitro fermentations in human fecal microbial communities (derived from six different in-
dividuals), we studied the effects of high-mass (HA, >1 kDa), low-mass (LA, <1 kDa) and mixed (BA)
sugar beet arabino-oligosaccharides (AOS) as carbohydrate sources. Fructo-oligosaccharides (FOS) were
included as reference. The changes in bacterial communities and the metabolites produced in response
to incubation with the different carbohydrates were analyzed by quantitative PCR (qPCR) and Liquid
ChromatographyeMass Spectrometry (LCeMS), respectively.

All tested carbohydrate sources resulted in a significant increase of Bifidobacterium spp. between 1.79
fold (HA) and 1.64 fold (FOS) in the microbial populations after fermentation, and LCeMS analysis
suggested that the bifidobacteria contributed to decomposition of the arabino-oligosaccharide struc-
tures, most pronounced in the HA fraction, resulting in release of the essential amino acid phenylalanine.
Abundance of Lactobacillus spp. correlated with the presence of a compound, most likely a flavonoid,
indicating that lactobacilli contribute to release of such health-promoting substances from plant
structures.

Additionally, the combination of qPCR and LCeMS revealed a number of other putative interactions
between intestinal microbes and the oligosaccharides, which contributes to the understanding of the
mechanisms behind prebiotic impact on human health.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The human gastrointestinal system produces a large amount of
enzymes capable of catalyzing the hydrolysis of various

disaccharides and a few specific polysaccharides (starches). How-
ever, most complex oligo- and polysaccharides including e.g. ara-
binan, galactan, and fructo-oligosaccharides cannot be degraded by
the human digestive enzymes. These substrates need to be
metabolized by the very diverse ecosystem of bacteria inhabiting
the human gut [1]. Some of these saccharides are prebiotics,
defined as selectively fermented ingredients that result in specific
beneficial changes in the composition and/or activity of the
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gastrointestinal microbiota, thus conferring benefit(s) upon host
health [2].

Inter-bacterial interactions, as well as interactions between
bacteria and host are based on a variety of mechanisms.
Biochemical messages can be sent e.g. by simple or complex abiotic
molecules or by genetic sequences [3]. Previous studies of prebiotic
degradation were mainly focused on bacterial production and
epithelial absorption of short chain fatty acids (SCFA) [4e6]. A far
more exhaustive approach is metabolomic footprinting of the
bacterial exo-metabolome, that can be defined as the complete
pool of molecules excreted by a bacterial community into the sur-
roundings [7]. Compounds involved in signaling between bacteria
or to the host will be present in the metabolomic footprint, and the
metabolomics approach has previously been found useful in
studies of the intestinal microbial ecosystem [8,9].

By in vitro fermentation in human fecal slurry, it was recently
shown that long-chain arabino-oligosaccharides (AOS) derived
from sugar beet pulp had a potentially better bifidogenic effect than
shorter-chain AOS, and moreover that the bifidogenic effect of
longer chain AOS was as good as the effect exerted by recognized
prebiotic fructo-oligosaccharides that were used as control [10,11].
However, a more detailed evaluation of the microbial response is
required to better interpret the overall mechanisms governing the
changes in themicrobial communities and their potential effects on
the host. The present study was thus undertaken to provide a more
detailed evaluation. We addressed whether in vitro fermentation of
differently sized AOS molecules caused different changes in fecal
bacterial communities isolated from six healthy humans. Addi-
tionally, the putatively prebiotic (health-promoting) effect of AOS
was addressed using a metabolomics-based approach.

2. Materials and methods

2.1. Arabino-oligosaccharide (AOS) substrates

AOS substrates from sugar beet were obtained from Danisco A/S
(Nakskov, Denmark). The AOS were derived from a liquid side
stream from the ultrafiltration and diafiltration step in the
sequential acid extraction of pectin with nitric acid from sugar beet
pulp, involving removal of insoluble cellulose, ultrafiltration, and
diafiltration with a 50 kDa cutoff [12]. The pulp was dried prior to
extraction.

Separation of the base solution of arabino-oligosaccharides (BA)
according to size was performed in a 200 mL stirred membrane
reactormodel 8200 (Millipore, Billerica, MA) equippedwith a 1 kDa
MWCO regenerated cellulose membrane (Millipore, Billerica, MA)
connected to compressed nitrogen for flux regulation. Filtration
was performed at room temperature. Filtration was performed at
3 bar until the retentate volumewas 30% of the sample volume, and
followed by diafiltration in one sample volume of deionized water.
The permeates enriched in low molecular weight oligosaccharides
(<1 kDa) were denoted LA and the retentate enriched in high
molecular weight oligosaccharides (>1 kDa) was denoted HA. Free
sugar content and monosaccharide composition was determined
by acid hydrolysis and High Performance Anionic Exchange Chro-
matography (HPAEC) as described previously [11].

2.2. Size exclusion

High Performance Size Exclusion chromatography (HPSEC) was
performed using a P680 HPLC pump, an ASI-100 automated sample
injector, and an RI-101 refractive index detector (Dionex Corp.,
Sunnyvale, CA). Samples were separated on a Shodex SB-
806HQGPCcolumn (300 � 8 mm) with a Shodex SB-G guard col-
umn (50 � 6 mm) from Showa Denko K.K. (Tokyo, Japan) with

100 mM sodium acetate pH 6 as mobile phase used with a flow rate
of 0.5 mL/min. Temperature was maintained at 40 �C. Data were
collected and analyzed with the program Chromeleon 6.80 SP4
Build 2361 software (Dionex Corp., Sunnyvale, CA).

2.3. Removal of monosaccharides from the substrates

In order to reduce the amount of monosaccharides present in
the AOS-based substrates, we carried out an initial bacterial
fermentation using Lactobacillus acidophilus NCFM (ATCC 700396).
This strainwas kindly provided by Danisco A/S and chosen because
we have previously mapped the metabolites consumed and pro-
duced by this strain [13], and because its genome sequence [14]
does not contain the enzymes needed for AOS degradation.

L. acidophilus NCFM colonies were grown anaerobically at 37 �C
overnight in MRS broth (Oxoid Ltd., Basingstoke, Hempshire, En-
gland) and diluted 107 fold into Semi Synthetic Medium (SSM) [15]
containing 1% glucose. The cultures were incubated for 7 h,
resulting in approximately 105.8 CFU/ml of L. acidophilus NCFM, and
subsequently further diluted 100 fold into SSM containing either 1%
glucose (control), 20 g/L of BA, 20 g/L LA, or 20 g/L HA. After 24 h of
anaerobic incubation with the bacteria removing non-arabinan
monosaccharides from the media, the cultures were centrifuged
at 3000g for 5 min at 4 �C, where after supernatants were sterile
filtrated in order to remove remaining L. acipdophilus NCFM cells
and kept in at 4 �C until further use. Final concentrations of the AOS
were calculated to be approximately 10 g/L.

2.4. Subjects and fecal sample collection

Fecal samples were collected from six healthy volunteers (four
women and two men). None of the participants had been treated
with antibiotics for at least 3 months before enrolment and had no
history of gastrointestinal disorder. The mean age of the partici-
pants was 41 ± 9 years. The samples were collected in airtight
containers at home by the participants and stored at 4 �C (limited
storage time was encouraged [16]) until delivery to the laboratory,
where the samples were processed immediately. The fecal samples
were homogenized in 50% glycerol (1:1 dilution) in an anaerobic
cabinet (Macs Work Station, Don Whitley) containing 10% H2, 10%
CO2, and 80% N2, and stored at �80 �C until further analysis, as
described below.

2.5. In vitro fermentation by human fecal bacterial communities

Fermentation studies were carried out to assess the effect of BA,
LA and HA on the microbial composition and activity in human
fecal samples, while parallel incubations with the established
bifidogenic substrate fructo-oligosaccharide FOS (BENEO-Orafti,
Tienen, Belgium) and no carbohydrates, respectively, were used as
references. Fecal samples prepared as described above were
defrosted in an anaerobic cabinet and 10% (w/v) fecal slurry was
prepared by mixing the samples with anoxic PBS (Oxoid, Greve,
Denmark) immediately before fermentation.

Sterile SSM supernatants prepared as described above were
mixed 1:1 with sterile minimal basal medium containing 2 g/L of
peptone water (Oxoid Ltd., Basingstoke, Hempshire, England), 1 g/L
of yeast extract (Sigma Chemical co., St. Louis, Missouri, USA), 0.1 g/
L of NaCl (Merck KGaA, Darmstadt, Germany), 0.04 g/L of K2HPO4
(Merck KGaA, Darmstadt, Germany), 0.04 g/L of KH2PO4 (Merck
KGaA, Darmstadt, Germany), 0.01 g/L of MgSO4

. 7H2O (Merck KGaA,
Darmstadt, Germany), 0.01 g/L of CaCl2. 2H2O (Merck KGaA, Darm-
stadt, Germany), 2 g/L of NaHCO3 (Merck KGaA, Darmstadt, Ger-
many), 0.5 g/L of L-cysteine hydrochloride (Sigma Chemical co., St.
Louis, Missouri, USA), 50 mg/L of hemin (Sigma Chemical co., St.
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Louis, Missouri, USA), 10 ml/L of vitamin K1 (Sigma Chemical co., St.
Louis, Missouri, USA), 0.05 g/L manganese sulfate monohydrate
(Merck KGaA, Darmstadt, Germany) and 1 mL/L of Tween 80 (VWR,
Darmstadt, Germany). The pH of the final solution was adjusted to
7. Estimated concentrations of AOS in the medium were approxi-
mately 5 g/L. Positive controls were made by adding 5 g/L of FOS to
the SSM supernatant prepared by NCFM fermentation of glucose,
and negative controls by adding nothing to the same SSM super-
natant. All solutions were reduced over night in an anaerobic
cabinet and inoculated with fecal slurry prepared as described
above to a final concentration of 1% w/v feces. Tube caps were
loosely placed on the vials to allow gas exchange but minimize
evaporation. Each fermentation was carried out in triplicates for
each fecal community, carbohydrate source and controls. The
fermentation was non-pH controlled and non-stirred due to the
low reaction volume (6e7 mL) and was carried out in an anaerobic
cabinet at 37 �C. At the beginning of the fermentation (time 0), and
after 24 hours (time 24), 1 ml samples were taken and centrifuged
at 3000g for 15 min at 4 �C. The supernatants were used for
metabolite profiling and the pellets were used for extraction of
bacterial DNA as described below.

2.6. Extraction of bacterial DNA

DNA was extracted from each of the triplicate fermentation
samples using the QIAamp DNA Stool mini kit (Qiagen, Hilden,
Germany) with preceding bead beating as previously described
[17]. The concentration of the purified DNA was measured by
Qubit® 2.0 Fluorometer (Invitrogen) and the DNA was stored
at �20 �C until use.

2.7. Real-time quantitative PCR (qPCR) assay

Amplification and detection of purified bacterial DNA by qPCR
was performed with the ABI Prism 7900 HT from Applied Bio-
systems using optical grade 384-well plates. Each amplification
reaction was done in duplicate for each of the triplicate fermenta-
tion samples in a final volume of 11 ml containing; 5.50 ml SYBR®

Green Master Mix (Applied Biosystems, Denmark), 200 nM of each
of the primers (Eurofins MWG Synthesis GmbH, Ebersberg, Ger-
many), 2 ml template DNA (1 ng/mL), and Nuclease-free water

purified for PCR (Qiagen). The amplification program comprised
one cycle at 50 �C for 2 min; one cycle at 95 �C for 10 min; 40 cycles
at 95 �C for 15 s; 60 �C for 1 min, and finally one cycle of melting
curve analysis for amplicon specificity at 95 �C for 15 s, 60 �C for
20 s and increasing ramp rate by 1.92 �C/min until 95 �C for 15 s.
The qPCR data was baseline corrected and N0-values, representing
initial concentrations of the specified 16S rRNA genes, were
calculated using the LinRegPCR software (version 11.1, based on
Ruijter et al. [18]). All results were calculated as means of duplicate
N0 estimations, equal values required. The relative quantities of
gene targets encoding 16S rRNA sequences of the bacterial taxa
were calculated using N0 (bacterial target)/N0 (total bacterial pop-
ulation). The applied specific 16S rRNA-targeting primers are listed
in Table S1 (supplementary data). Prior to quantification, all
primers were tested to confirm sensitivity and specificity using
DNA from pure bacterial species [19].

2.8. Metabolism quenching

Time 0 and time 24 h supernatants from the fermentations were
quickly quenched by transferring into cold methanol (Fluka, Sigma-
Aldrich, Steinheim, Germany, stored at �80 �C) in the ratio 1:1 to
stop the metabolism. Samples were stored at �80 �C and centri-
fuged at 15,000g for 5 min at 4 �C just before LCeMS (Liquid
ChromatographyeMass Spectrometry) analysis was carried out as
described below.

2.9. Metabolite detection by LCeMS

Metabolite profiling was done on a Dionex Ultimate 3000 RS
liquid chromatograph (Dionex, Germering, Germany) coupled to a
Bruker maXis time of flight mass spectrometer equipped with an
electrospray ionsource (ESI-Qtof-MS) (Bruker Daltonics, Bremen,
Germany). Analytes were separated on a Kinetex penta-
fluorophenyl column 50 � 2.10 mm, 2.6 mm, 100Å (Phenomenex,
USA), using a binary solvent system: 10 mM ammonium formate
at pH 3.5 in water (A), and acetonitrile (B). This column was
chosen over the typical C-18 columns due to its ability to provide
better separation of polar compounds. Solvent programming was:
isocratic 0% B at 0 min followed by a linear gradient up to 100% B
in 7 min retaining 100% B for 8 min. Flow rate was 0.25 mL/min

Table 1
Relative fold change of bacteria target from samples incubated with either BA, LA, HA or FOS compared to the NC samples (set to 1).

ID Bacterial taxa Substrates

BA LA HA FOS

F Firmicutes 0.80 (±0.07) 0.78 (±0.07) 0.80 (±0.08) 0.96 (±0.07)
Cc � C. coccoides group 0.59 (±0.11) 0.54 (±0.16)* 0.68 (±0.09) 0.85 (±0.11)
Rs B Roseburia spp. 1.18 (±0.09) 1.18 (±0.10) 1.07 (±0.12) 1.16 (±0.17)
Cl � C. leptum subgroup 0.97 (±0.15) 0.86 (±0.17) 0.85 (±0.11) 0.94 (±0.11)
Ls � Lactobacillus spp. 1.17 (±0.12) 1.10 (±0.13) 1.11 (±0.09) 1.14 (±0.11)
B Bacteroidetes 0.90 (±0.13) 0.90 (±0.10) 0.80 (±0.13) 0.80 (±0.09)
Bs � Bacteroides spp. 0.82 (±0.15) 0.80 (±0.12) 0.74 (±0.13) 0.70 (±0.14)
Bf BBac. fragilis group 0.92 (±0.21) 0.91 (±0.15) 0.85 (±0.21) 0.78 (±0.14)
Ps � Prevotella spp. 0.96 (±0.13) 0.93 (±0.10) 0.97 (±0.08) 0.99 (±0.10)
As � Alistipes spp. 0.80 (±0.07) 0.74 (±0.06)* 0.77 (±0.06) 0.71 (±0.04)*

Actinobacteria
Bis � Bifidobacterium spp. 1.72 (±0.28)** 1.72 (±0.26)*** 1.79 (±0.24)*** 1.64 (±0.22)**

Verrucomicrobia
Am � Akk. muciniphila 1.26 (±0.09) 1.28 (±0.09) 0.80 (±0.13) 0.96 (±0.04)

Proteobacteria
E � Enterobacteriaceae 0.90 (±0.09) 1.14 (±0.09) 1.10 (±0.10) 0.94 (±0.25)
Ds � Desulfovibrio spp. 0.81 (±0.05) 0.80 (±0.04) 0.66 (±0.05)** 0.74 (±0.07)*

All calculated data are means ± SEM of the six fecal communities. Asterisks designate a significant difference from samples taken after 24 h of incubation without any added
carbon-source (NC samples) (P < 0.05 (*), P < 0.01 (**), P < 0.001 (***)). No significant difference in the relative density of bacterial taxa after fermentation was obtained when
comparing the four substrates.
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at 0 min, and increased to 0.4 mL/min at 7 min. Solvent
composition and flow were returned to initial conditions at
8.2 min. The total runtime was 10 min, the oven temperature was
40 �C, and injection volumes were 1 mL. The following key mass
spec settings were used: Nebulizer pressure 2 bar, drying gas
10 L/min, 200 �C, capillary voltage 4000 V. Data collection range
was from 50 to 800 Da/e at 1 Hz. Samples were analyzed in both

positive and negative mode. External and internal calibration was
done using sodium formate clusters (SigmaeAldrich, Steinheim,
Germany). Lock-mass calibration using hexakis(1H,1H,2H-
perfluoroetoxy)-phosphazene, (Apollo Scientific, Stockport, UK)
was applied in order to increase mass accuracy. MSMS frag-
mentation of the selected masses (Tables 2 and 3) was done
using nitrogen as collision gas with collision energy at 14 eV at

Table 2
Annotated metabolites from LCeMS analysis in positive mode found to separate fermentation samples according to carbohydrate source (Fig. 1).

Number RT [min] MLCMS [Da] Adduct MREF [Da] Error [mDa] MMSMS Metabolite candidate

1 1.7 166.086493 MþH 166.086255 0.2 120.081723 Phenylalanine
2 0.8 188.175739 MþH 188.175738 0.0 171.150205

128.071353
117.103928
100.077105
64.024444

N0-Acetylspermidine

3 0.8 104.106928 MþNH4 104.106988 0.1 NF Iso-Valeraldehyde
4 1.5 121.062386 MþNH4 121.060766 1.6 103.054712

93.069976
57.993688

3-Oxoalanine

5 1.1 138.091331 MþH 138.091340 0.0 121.064816
93.070169

Tyramine

6 0.9 139.050163 MþNH4 139.050200 0.0 121.039480 Cysteine
7 0.7 140.068238 MþNa 140.068197 0.1 96.078471 Betaine

5-Aminopentanoic acid
N-Methyl-a-aminoisobutyric acid
Valine
Norvaline

0.7 156.042329 MþK 156.042137 0.2 NF
0.7 257.147484 2MþNa 257.147175 0.3 140.069251

8 1.3 155.081504 MþNH4 155.0815 0.0 NF Aminobenzoic acid
9 1.0 137.045787 MþH 137.045787 0.0 NF Hypoxanthine
10 6.6 282.279062 MþH 282.279141 0.0 265.253039

247.245066
149.024021
142.122957
114.091440
111.117935
70.272614

Oleamide

11 6.3 321.240053 MþNa 321.240013 0.0 NF 3-Oxooctadecanoic acid
12 6.1 323.255570 MþNa 323.255663 0.1 NF (R)-3-Hydroxy-octadecanoic acid

RT e retention time on the chromatogram; MLCMSem/z (mass to charge) ratio measured; MREFem/z ratio of metabolites given in the referral data bases; Errore difference
between MLCMS and MREF; MMSMS e m/z ratio of the fragment ions after MSMS; NF e no fragmentation or fragments not visible in the given MS settings.

Table 3
Annotated metabolites from LCeMS analysis in negative mode found to separate fermentation samples according to carbohydrate source (Fig. 2).

Number RT [min] MLCMS [Da] Adduct MREF [Da] Error [mDa] MMSMS Metabolite candidate

13 2.9 195.066074 MeH 195.066283 0.2 151.094347
136.065370
121.041572

Homoveratric acid

14 0.8 133.070545 NF Fatty acid derivative
15 3.3 457.135071 397.114107

367.102362
325.094322
265.075597
235.062259
193.052703

Arabionofuranosyl structure

16 3.2 263.073298 MeH 263.071400 1.9 191.074171
165.073565

Flavonoid

17 6.3 297.243324 MeH 297.243530 0.2 NF 3-Oxooctadecanoic acid
18 1.0 151.026420 MeH 151.026149 0.2 108.020397 Xanthine
19 3.2 165.055711 MeH 165.055718 0.0 147.048091

119.052135
103.059652

Phenyllactic acid

20 0.6 131.071452 M-H 131.071368 0.0 NF Fatty acid derivative
21 6.6 279.233124 MeH 279.232954 0.1 NF Linoleic acid

Derivative of linoleic acid
22 0.9 175.049132 MeH 175.047272 1.9 157.036324

131.052535
113.039588

Allantoic acid

RT e retention time on the chromatogram; MLCMSem/z (mass to charge) ratio measured; MREFem/z ratio of metabolites given in the referral data bases; Errore difference
between MLCMS and MREF; MMSMS e m/z ratio of the fragment ions after MSMS; NF e no fragmentation or fragments not visible in the given MS settings.
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m/z 100 ramped linearly to 20 eV at m/z 500 and to 30 eV at m/z
1000.

2.10. Metabolite identification

A putative metabolite identification was based on the exact
mass to charge ratio (m/z) with a very low measurement error, and
MSMS fragments (Tables 2 and 3) using metabolite data from the
Human Metabolome Database (HMDB [20]) and the Metabolite
Mass Spectral Database (METLIN [21]) where MSMS spectra of
selected metabolites are presented, and references to the bacterial
metabolism presented in the discussion part of this paper. Metab-
olites that could not be identified reliably but showed some

significance were included in the further data analyses as unknown
metabolites given a number.

2.11. Statistical analysis of the PCR data

Statistical analysis of the qPCR data was performed with the
GraphPad Prism software (version 5.03; GraphPad Software Inc., La
Jolla, CA). One-way analysis of variance and Tukey's multiple
comparison tests were used to determine significant differences in
the density of selected bacterial taxa in the different fermentations
(NC, FOS, BA, LA and HA). Homogeneity of variance was assessed
using Bartlett's test for equal variances. Log-transformations were
performed before statistical analysis of qPCR measurements that
did not meet this criterion. The nonparametric KruskaleWallis test

Fig. 1. PCA bi-plots (scores and loadings present on the same plot) of the fermentation samples with different arabino-oligosaccharides BA, LA and HA and the established prebiotic
FOS. Data from LCeMS analyses in positive mode for tested bacterial floras separately (B1eB6). Numbers refer to metabolite candidates as listed in Table 2. Phenylalanine (1) was
observed on the border of the 1 min and 2 min bucket, which is why PCA plots are showing metabolite no. 1 twice. LCeMS chromatogram studies (data not shown) confirmed that it
was indeed the same metabolite.
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and Dunn's multiple comparison tests were used for datasets,
which did not have homogeneity of variance even after log-
transformation. Tests were considered statistically significant
when P-values lower than 0.05 were obtained.

2.12. Principal component analysis (PCA)

The basic data analysis of the LCeMS data were based on the
bucketing approach: the centroid data were grouped into buckets
of 1 min and 1 m/z differences in the range from 0.5 to 9 min and
50e800 m/z and normalized by the sum of buckets in the analysis
by use of Profile Analysis 2.0 (Brucker Daltonics, Bremen, Germany).
The typical number of buckets was 6750 per sample. Each bucket
was considered as a variable independently of whether the content

of the bucket could be attributed to a specific metabolite or not. All
variables were exported to Excel for further data analyses.

The next step of the data analysis was done in Excel, using a set
of criteria, presented below, to select metabolites present in the
medium after 24 h and produced exclusively due to the addition of
the given carbohydrate:

First, the metabolites which were present already before the
fermentation (CH0), were subtracted from the metabolites present
after 24 h of fermentation (CH24), and the remaining metabolites
were represented as an average value CH(A) of intensities of the
given bucket in three independent fermentations (I, II and III):

CH24(I)eCH0(I) ¼ CH(I); if CH(I) � 0, then CH(I) ¼ 0;
(CH(I) þ CH(II) þ CH(III))/3 ¼ CH(A)

Fig. 2. PCA bi-plots (scores and loadings present on the same plot) of the fermentation samples with different arabino-oligosaccharides BA, LA and HA and the established prebiotic
FOS. Data from LCeMS analyses in negative mode for tested bacterial floras separately (B1eB6). Numbers refer to metabolite candidates as listed in Table 3.
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Secondly, the average amount of specific metabolites NC(A)
produced only due to metabolism of the basal medium were
identified by analysis of the control incubations (NC) carried out
without addition of a carbohydrate source:

NC24(I)eNC0(I) ¼ NC(I); if NC(I) � 0, then NC(I) ¼ 0;
(NC(I) þ NC(II) þ NC(III))/3 ¼ NC(A)

Finally, the metabolite values M(A) to be included in the Prin-
cipal Component Analysis (PCA) were calculated as: CH(A)e
NC(A) ¼ M(A); If M(A) � 0, then M(A) ¼ 0.

P-values describing differences between the experiments car-
ried out with different substrates were calculated by t-test. PCA
plots made in LatentiX 2.10 (Latent 5, Copenhagen, Denmark) were
based on the metabolite buckets showing significant differences
between the tested carbohydrate types (P-value < 0.05; data not
shown). Data were only mean centered (to allow the higher in-
tensity peaks/buckets to have a greater influence on themodel) and
normalized (2-norm). From the positive mode, due to the inter-
ference from TWEEN in the medium (which was necessary for
growth of lactobacilli), all m/z buckets at 3 min, 4 min and 7 min
were removed. From the negative mode buckets with mass 555.5,
665.5, 666.5 (lock mass), 187.5, 188.5 and 189.5 at all time buckets
were disregarded due to the noise they were creating.

Selected metabolites from previous PCA plots were used
together with the PCR data (before log-transformation) to create a
PCA plot (Fig. 3) in LatentiX. Data was autoscaled and normalized
(2-norm).

2.13. Statistical analysis of the LCeMS data

Heat maps were created to illustrate the P-values of differences
between levels of selected metabolites present before and after
fermentation, taking into consideration only metabolites which
increased during fermentation. P-values were calculated using t-
test in Excel. Data used in this analysis were normalized by the sum
of buckets by use of Profile Analysis 2.0.

3. Results

3.1. Oligosaccharide composition

Size exclusion chromatography (Fig. S1) showed that the base
solution of arabino-oligosaccharides (BA) had a dual distribution

with one peak at 24.7 min corresponding tomonomers and a larger
broader peak around 1.0 kDa corresponding to the oligosaccha-
rides. The low molecular weight fraction (LA) showed a similar
profile, but with a tendency towards a lower content of oligosac-
charides below 1.0 kDa. The high molecular weight fraction (HA)
showed one homogeneous peak around 1.0 kDa with only a minor
peak at 24.7 min indicating that the content of monosaccharides
was significantly reduced, but not removed completely. The
monosaccharides in the BA fraction constituted about 30% of the
dry matter and were mainly glucose (13.3% w/w), arabinose (10.1%
w/w) and fructose (8.0% w/w). Other pectin derived free sugars like
rhamnose, galacturonic acid, galactose, and fructose were found in
small amounts (2.3% w/w in total). Acid hydrolysis revealed that
66.3% of the substrate was comprised of arabino-oligosaccharide
moieties. The relatively high content of monosaccharides
compared to similar substrates [11] might be due to the drying of
the pulp prior to the acidic extraction. LCeMS analysis of the BA
fraction revealed several peaks besides those identified by com-
parison to linear AOS, which indicated that, in accordance with
previous data obtained for sugar beet derived AOS [11,22] the AOS
applied in this study contained a mixture of linear and branched
AOS (data not shown). Initial fermentationwith L acidophilus NCFM
removed basically all of the non-arabinanmonosaccharides present
in the AOS fractions, as detected by LCeMS (data not shown).

3.2. Quantitative PCR studies of bacterial community composition

After fermentation in fecal slurries obtained from six different
healthy subjects, quantitative PCR was applied to measure the
density of gene targets encoding 16S rRNA of selected bacterial
taxonomic units. The ability of the substrates to selectively stimu-
late the growth of a given bacterial taxon was compared to that of
the NC (No added Carbohydrate) fermentations (Table 1 and
Figure S2). The fecal communities fermented on BA, LA and HA
selectively increased the relative abundance of Bifidobacterium spp.
significantly (P < 0.01, P < 0.001, and P < 0.001, respectively) as
compared to the NC fermentations. The densities of bifidobacteria
after fermentation of BA, LA and HAwere not significantly different
from the densities obtained by fermentation of FOS, which has a
well established prebiotic effect [23]. Also the densities of Lacto-
bacillus spp. appeared to be higher in the BA, LA, HA and FOS fer-
mentations than in the NC samples, although this was not
statistically significant (P ¼ 0.18, P ¼ 0.21, P ¼ 0.16 and P ¼ 0.23,
respectively). The relative abundances of the C. coccoides group and
Alistipes spp. were significantly lower in fecal communities fer-
mented on LA than in the NC fermentations (P < 0.05 and P < 0.05,
respectively). FOS fermentation resulted in a significantly lower
relative abundance of Alistipes spp. and Desulfovibrio spp. than the
NC fermentations (P < 0.05 and P < 0.05, respectively). A signifi-
cantly lower density of Desulfovibrio spp. was additionally observed
in the fecal communities fermented on HA (P < 0.01). No statistical
difference in bacterial density after fermentation of the four
different substrates was seen for the remaining investigated bac-
terial taxa.

In line with previous studies [11,24], major individual differ-
ences between intestinal bacterial ecosystems derived from
different subjects were observed. The density of 16S rRNA genes of
four different bacterial taxonomic units, showing alteration after
fermentation (Bifidobacterium spp., C. coccoides group, Alistipes spp.
and Desulfovibrio spp.), were thus determined for each of the six
individual fecal communities (Table S2). Substantial individual
differences were observed depending on substrate and bacterial
target. However, fermentations in all six intestinal communities
resulted in significantly higher increases of bifidobacteria than
measured in the NC samples. When comparing the increase caused

Fig. 3. PCA loading plot of selected metabolites (numbers corresponding to Tabels 2
and 3) combined with microbial abundance data (Abbreviations corresponding to
Table 1).
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by the three substrates (BA, LA and HA), it varied significantly
among the six fecal communities. FOS fermentation resulted in
significantly lower fold changes of bifidobacteria in three out of the
six fecal communities than seen for the AOS based substrates. Only
one fecal community (derived from individual 2) showed no sig-
nificant difference in bifidobacterial increase caused by the tested
substrates. The densities of the C. coccoides group were either un-
altered or significantly lower after fermentation of the four sub-
strates. However, fermentation of FOS generally caused a smaller
decrease of C. coccoides than observed for BA, LA and HA. In all six
bacterial communities, densities of Alistipes spp. and Desulfovibrio
spp. were either unaltered or significantly lower after fermentation
of the four substrates, however the extent of the reduction varied
between communities.

3.3. Metabolomic studies

After quenching the metabolism, LCeMS analysis of samples
taken before and after fermentation was performed using electro-
spray ionization in both positive and negative mode. After grouping
of the LCeMS data in time-mass buckets, only buckets with sig-
nificant differences between at least 2 substrates were included in
the further analysis, which significantly reduced the number of
variables (metabolites). PCA analysis of the reduced metabolite
(bucket) profile data (Figs. S3 and S4) from positive mode did not
show a clear clustering, indicating that none of the selected profile
data explain a differentiation caused by the different fermentation
substrates. However, in the negativemode, the selected profile data
from FOS-fermentation samples clustered separately from all three
types of AOS (Fig. S4). For each of the bacterial communities, we
observed that BA and LA metabolite profiles were typically very
similar to each other, but different from the profiles measured after
fermentation of HA or FOS.

In order to identify effects of the fermentation substrates on the
metabolite profiles and avoid masking caused by the differences
between the individual bacterial communities, PCA analysis was
carried out for each community separately and presented as bi-
plots (Figs. 1 and 2). Based on this, metabolites that may
contribute to the differences observed between samples fermented
on the four substrates were selected as shown in Tables 2 and 3, and
Fig. S5. As described above, the profiles obtained after BA and LA
fermentation were typically quite similar to each other, but
different from those from HA and FOS fermentation. This was also
seen in the PCA plots based on the metabolite profiles from the
individual bacterial communities. Based on the accurate mass data,
phenylalanine (Fig.1; No.1; all individuals), xanthine (Fig. 2; No.18;
B2, B3, B5 and B6) and linoleic acid or its derivative (Fig. 2; No. 21;
B1, B4 and B6) are likely candidates that contribute significantly to
differentiate between AOS and FOS-fermented samples. In all six
microbial communities, the metabolite corresponding to phenyl-
alanine (1) was present in higher amounts in one or more of the
AOS-fermented samples than in FOS-fermented samples (Fig. S5).

A metabolite corresponding to N0-acetylspermidine (Fig. 1; No.
2; B1, B2, B3, B5 and B6) was present in high levels in FOS and HA
fermentation samples, but separated these from BA and LA fer-
mentations, and although a significant increase of N0-acetyl-
spermidine was observed in all bacterial communities after
fermentation of one or more of the 4 oligosaccharides (Fig. S5), the
highest increase of this metabolite candidate was observed in HA
and FOS.

Oppositely, BA and LA fractions typically had a higher content of
themetabolite candidates: cysteine (Fig.1; No. 6; B1, B3, B5 and B6),
aminobenzoic acid (Fig. 1; No. 8; B1, B4 and B5), hypoxanthine
(Fig. 1; No. 9; B2, B3, B4 and B6) and 3-oxooctadecanoic acid (Fig. 1,
No. 11; B3, B5, B6 and Fig. 2; No. 17; B2, B3, B5, B6).

HA fermentation fractions (but not FOS) were positively corre-
lated to the presence of a metabolite corresponding to: 3-
oxoalanine (Fig. 1; No. 4; B1, B2, B3, B5, B6), tyramine (Fig. 1; No.
5; B1, B2; B3; B5, B6), homoveratic acid (Fig. 2; No. 13; B1, B2; B3;
B5, B6); and arabionofuranosyl structures (Fig. 2; No. 15; B1, B2, B3,
B4 and B5).

Presence of the remaining metabolite candidates listed in
Tables 2 and 3 depended highly on the bacterial community.

3.4. Combined data analysis of qPCR and LCeMS data

A PCA analysis was conducted for combined LCeMS and qPCR
data. A loading plot combining selected metabolites (Tables 2 and
3) with all targeted bacteria taxa (Table 1) was created (Fig. 3) in
order to reveal correlations between the presence of specific bac-
teria and specific metabolites.

The analysis indicated that abundance of the clostridial taxa (Cl
and Cc), and a fatty acid derivative (14) was likely to co-occur.
Additionally, a positive correlation was seen between the bacte-
rial taxons Bifidobacterium spp. (Bis), Roseburia spp. (Rs), Bacter-
oides spp. (Bs) and the two metabolites corresponding to flavonoid
C25H24O7 (15) and linoleic acid (21). Lactobacillus spp. (Ls) was
seen to correlate with what could be 3-oxooctadecanoic acid (11
and 17), xanthine (18), flavonoid C15H14O3 (16), phenyllactic acid
(19) and a fatty acid derivative (20). Interestingly, the outcomes also
included a negative correlation between the possible metabolites:
3-oxooctadecanoic acid (11, 17) and (R)-3-hydroxy-octadecanoic
acid (12) as well as between two different fatty acid derivatives (20
and14).

4. Discussion

Previous in vitro studies of sugar beet arabino-oligosaccharides
(AOS) have shown their bifidogenic effect and influence on the
gastrointestinal microbiota, and have indicated that the prebiotic
potential of high molecular weight AOS may be slightly better than
that of the shorter ones [10,11,24]. Our present results confirm that
AOS, whether it was high molecular weight (HA, > 1 kDa), low
molecular weight (LA < 1 kDa), or a mix of these (BA) selectively
stimulated the growth of bifidobacterial species (Table 1 and S2),
which are associated with positive effects on the host health
[25e27]. One of the health promoting properties of bifidobacteria is
known to be the production of conjugated linoleic acid [28], which
is produced from linoleic acid available in the GIT, originating
(among other sources) from consumed plant tissues. In line with
this, a positive correlation between the linoleic acid (No. 21) and
several bacterial taxa including bifidobacteria (Bis), was found in
the present study (Fig. 3).

Metabolites corresponding to phenylalanine (1), xanthine (18),
linoleic acid or its derivatives (21) (based on accurate mass data)
were all produced by AOS fermentation to a larger extent than seen
for FOS (Fig. S5). A possible source of phenylalanine is bacterial
degradation of arabionofuranosyl structures, present in the AOS
[11]. The HA fermentation fraction, which was enriched for high-
mass carbohydrates, was also enriched in feruloylated AOS, and
in line with this, arabionofuranosyl structures (15) were partly
explaining the observed difference between HA and LA or BA,
respectively (Fig. 2). Higher amounts of feruloylated AOS in the HA
fraction may lead to a higher probability of the non-digestible
carbohydrate to reach the distal colon, potentially preventing the
accumulation of toxic by-products of proteolysis and amino acid
fermentation, which typically takes place in the absence of carbo-
hydrates [29,30]. Phenylalanine produced by decomposition of the
feruloylated AOS by the intestinal microbiota is an essential amino
acid, and acts as precursor for tyrosine, signaling molecules such as
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dopamine, noradrenaline and adrenaline as well as skin pigment e
melanin [20,31]. In addition to a higher content of arabinofuranosyl
structures, the HA fermentation fraction had a higher content of
metabolites corresponding to 3-oxoalanine (4), tyramine (5) and
homoveratric acid (13) than seen in the other fractions. 3-
oxoalanine is found as an oxidation product of cysteine or serine
containing substrates in anaerobic conditions [32,33], while the
metabolite candidate cysteine (6) was typically correlated to fer-
mentations with LA and BA (Fig. 1), indicating a different meta-
bolism (pathway or rate of turnover) of sulfate containing amino
acids in the high-mass fraction. Tyramine is produced mainly by
LAB, and is reported to cause allergies, migraine and heart failure
when consumed in very high concentrations [34,35], however, the
impact of production of this essential monoamine by intestinal
bacteria is unstudied. Homoveratric acid may have an effect on
eukaryotic endocrine metabolic pathways and is found in urine
samples [36,37], plant cells [38] and microbial cells [39]. Consid-
ering the phenolic structure of homoveratric acid and tyramine, the
increase may be attributed to bacterial degradation of ferulic
structures present in the AOS fractions.

A metabolite corresponding to N0-acetylspermidine (as
determined by accurate mass) was typically increased in HA as
well as FOS fermentations. N0-acetylspermidine has significant
roles in many biological systems found in mammals, plants and
microbes [20]. Whether bacterially-produced N0-acetylspermi-
dines affect epithelial cell growth and proliferation remains to be
addressed.

Generally, we observed that BA and LA metabolite profiles were
similar to each other, but different from the profiles measured after
fermentation of HA or FOS. In fact, no major differences in the
metabolic profiles were observed between the BA and LA fractions
(Figs. 1 and 2 and S5). We speculate that intestinal bacteria were
more prone to metabolize the carbohydrates with lower mass,
which were present in rather high amounts in BA (Fig. S1). Me-
tabolites typically correlated with the BA and LA fractions corre-
sponded to cysteine (6) and aminobenzoic acid (8). Cysteine, which
may arise from bacterial metabolism of plant structures [31], and
contributes to the maintenance of anaerobic conditions by binding
free oxygen [40], is known to increase the pH during fermentation
by buffering the environment [41]. This may explain the higher
number of Desulfovibrio spp. observed in the BA and LA fermenta-
tions (Table S2), as previous reports show that cysteine supports
the growth of Desulfovibrio [42]. Aminobenzoic acid may originate
from degradation of phytochemicals or ferulic structures by the
microbial communities [31]

A significant increase of a putative flavonoid (16) was
observed in five out of six subjects for all of the tested carbo-
hydrates (Fig. S5). Flavonoids may be released by microbial
fermentation of plant structures present in the fecal matter, and
are shown to have a number of biological effects on the human
body, including antioxidative ramification of polyphenolic com-
pounds active against cancer, atherosclerosis and chronic
inflammation [43,44]. They are known to inhibit and induce a
large number of mammalian enzymes [43] involved in cell divi-
sion, proliferation and detoxification [45]. Absorption of flavo-
noids from the diet was long considered to be negligible, as they
are present in foods bound to sugars as b-glycosides [46]. How-
ever, it has now been shown that the final biological activity of
flavonoids depends on the intestinal bacterial metabolism, which
breaks the b-glycosidic bonds and leads to biotransformation of
flavonoic compounds, thereby changing their bioactivity [47].
Many lactic acid bacteria (LAB) are able to break the b-glycosidic
bonds, and the observed increase in the number of bifidobacteria
observed for all fermentation substrates may have caused a
higher amount of free flavonoids to be released. A correlation

between the abundance of Lactobacillus spp (Ls) and the candi-
date flavonoid compound (16) was found (Fig. 3), indicating that
also these species contributed to release of flavonoids.

Xanthine (18), and allantoic (22) acid are products of bacterial
purine metabolism [31], and fermentations with at least three of
the four tested oligosaccharides showed a significant increase in
the abundance of these metabolites in all six microbial commu-
nities (Fig. S5), indicating an activation in this pathway compared to
the incubations carried out without oligosaccharides.

3-Oxooctadecanoic acid (11, 17) and (R)-3-hydroxy-octadeca-
noic acid (12) are building blocks of the unsaturated fatty acids [31].
3-Oxooctadecanoic acid (17) was seen to increase in all six micro-
biotas after fermentation of at least two of the AOS fractions, and
also increased in four out of six microbiotas after FOS fermentation
(Fig. S5). A negative correlation between Oxooctadecanoic acid and
(R)-3-hydroxy-octadecanoic acid (11/17 and 12, Fig. 3) suggests that
they are present in the same bacterial metabolic pathway e an
increase in (R)-3-hydroxy-octadecanoic acid is possibly related to a
decrease of 3-oxooctadecanoic [31]. Together with an observed
negative correlation between the fatty acid derivatives no. 14 and
20, this suggests that AOS and FOS might have an impact on the
unsaturated fatty acid metabolism carried out by the intestinal
microbiota, but that different turnover rates and different pathways
are used [31], depending on the microbiota composition as well as
on the type of oligosaccharide. The co-occurrence of the clostridial
taxa (Cl and Cc) and fatty acid derivative no.14 (Fig. 3), indicates
involvement of clostridial butyrate producers in the (microbial
interaction leading to) production of this particular derivative.

5. Conclusion

In conclusion, we find that the present investigation shows that
combining PCR techniques with metabolic profiling provides a
strong tool to study complex microbiotas and their interactions
with given substrates. We have shown that the response to high-
mass arabino-oligosaccharides (HA) resembled that of FOS more
than seen for mixed and low-mass arabino-oligosaccharides (BA
and LA), supporting that the high-mass arabinans were the most
promising prebiotic candidates. The proposed list of metabolite
candidates enhanced by the arabino-oligosaccharide substrates
constitutes a new and substantial contribution to the understand-
ing of the mechanisms behind prebiotic interaction with the host.
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