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III.  PROTOTYPE IMPLEMENTATION 
 

In order to compare the performance of different 
winding strategies, a toroidal Kool Mu core from 
Magnetics is selected. The same copper cross section and 
number of turns is used in all the implemented prototypes, 
to perform a fair comparison between the different 
winding structures. Toroidal cores are selected because 
they provide a large winding area compared to the core 
volume and represent a low cost solution in PFC inductor 
implementation. A first prototype is implemented using a 
conventional two layer structure that will present very 
large capacitance due to the layer-to- layer capacitance 
contribution. The selected core is 0077439A7 Kool Mµ 
60 from Magnetics®. The winding is implemented using 
94 turns of AWG 18 coated cable obtaining an inductance 

value of	1.2	��. The well-known progressive winding or 
sectioned bobbin techniques [13] for reducing self- 
capacitance are not considered because of the difficulty 
of implementation in toroidal shaped cores. Instead, 
based on the work presented in [7] and [8], a two layer 
toroidal core with a layer to layer separator is 
implemented for layer-to-layer capacitance reduction. 
Moreover, a gap is introduced from first to last turn in 
each of the layers for reduction of the parasitic 
capacitance. Finally, in order to evaluate the feasibility of 
introducing PCB windings for this design, a copper foil 
implementation is selected where the copper cross section 
is adjusted to match the AWG18 cross section. This 
structure will present a relatively large turn-to-turn 
capacitance due to the increased area of the equivalent 

capacitance plates as shown in (1). Where ε�  is the 

relative permittivity, A  is the plate area and d  is the 
distance between plates. 

� = �� ∙ �� ∙
�

�
					 (1)  

However this structure will not present any of the 
critical layer-to-layer or first turn to last turn contribution 
due to the fact that the increased fill factor will allow 
implementing the same amount of turns in a single layer 
structure with a large gap between first and last turn. 
Moreover, this structure presents a reduced turn to core 
capacitance contribution respect to the conventional 

windings because of the reduced � �⁄  ratio. To finalize 
the comparison, as suggested in [14], the effect of adding 
a small inductor with very low capacitance in series with 
a multilayer high capacitance design is analyzed by 
constructing two single layer toroids using one core and 
three stacked cores Magnetics® Kool Mµ 125 

0077350A7  with an inductance value of 	25.9	 and 

	69.9		�  respectively. The implemented prototypes are 
presented in Fig. 2 and the impedance measurements 
results are shown in Fig. 3 and Fig. 4.   

 

 

 
Fig. 3. Impedance and phase magnitudes in the conducted EMI 
frequency range ( 150	��� − 30��� ) for the conventional (blue), 
separator (green) and copper foil (red) inductors. 

 

 
Fig. 4. Impedance and phase magnitudes in the conducted EMI 
frequency range ( 150	��� − 30��� ) for the small size inductors 

25	μ� (blue), 69	μ� (green). 
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Fig. 2. Implemented inductor prototypes. A-Conventional double layer, B-Double layer with separator, C-Copper foil, Small size low 
capacitance inductors D-25	�� and E-69	��. 
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 The parallel capacitance is calculated from the 
measured parallel resonant frequency and inductance 
value. The obtained values are shown in Table I. 
 

 
 
 

 

 As it can be observed form Table I, the two layer 
structure with separator has seven times lower 
capacitance than the conventional structure due to the 
reduced layer to layer capacitance and the inserted gap 
between the first and last turn in each of the layers. The 
copper foil implementation reaches a capacitance level 
twenty times lower than the conventional structure. Even 
with a much larger turn to turn capacitance this structure 
achieves the smallest parasitic capacitance value. Finally, 
the low size implemented inductors present a quasi-ideal 

behavior up to 30	
�� with a parasitic capacitance of 1 

and 2.7	�
 respectively. 

 

IV.  CONDUCTED EMI MEASUREMENTS 

 

The EMI performance of the different implemented 
prototypes is analyzed using an ac-dc converter 
evaluation board from Texas Instruments PMP669 (Fig. 
5) where the dc-dc conversion power stage has been 
disabled and the input EMI filter completely removed.  

 

 
 

Fig. 5. AC-DC converter with conventional PFC. Evaluation board from 
Texas Instruments PMP669 MB 

 
 The EMI measurement is performed using a Two-line 
V-Network (LISN) with the converter operating @ 

��� = 98	���   ��� = 230	����  and 	�	 = 200	� . Fig. 6 
shows the measurement result for the three main different 
prototypes. Fig. 7 shows the effect of adding the small 
inductor in series with the conventional two layer 
inductor. 

 
 

Fig. 6. EMI measurement using LISN network from 150	���  to 

30	��� @ 230	���� and 200	� for the conventional (blue), separator 
(green) and copper foil (red) implemented inductors. 
 

 
 

Fig. 7. EMI measurement using LISN network from 150	kHz  to 
30	MHz  @ 230	V���  and 	200	W .Conventional (blue), 

conventional+	25	�� (green), and conventional+	68	�� (red). 

 

 The capacitance reduction obtained in the two layers 
with separator and the copper foil implementations 
provide a significant reduction in conducted EMI ss it can 
be observed in Fig. 6. The conventional structure shows 

high amplitude harmonics around 5.5	
��  which 
corresponds to the location of the minimum impedance 
measured for this prototype (Fig. 3). Fig. 7 shows the 
small effect of adding a small series inductance in series 
with the conventional two layer inductor. In fact, as it can 
be observed, the high frequency noise will be reduced 
due to the increased impedance in this area. On the other 
hand, at low frequencies, the introduction of this 
inductance will reduce the frequency of the minimum 
inductor impedance, increasing the propagated noise due 
to the higher amplitude of the switching frequency 
harmonics and the increased quality factor at this 
resonant frequency due to the reduced ac resistance.    
 

V.  EVALUATION OF THE IMPACT ON THE SWITCHING AND 

CONDUCTION LOSS  

 

After comparing the different configurations in terms of 
conducted EMI, an efficiency related comparison is 
performed using a low inductive double pulse tester 
(DPT) shown in Fig. 8. A small die size 600V super-
junction device FCD9N60N from Fairchild 
Semiconductor is used in combination with a 600V SiC 
diode IDD10SSG60C from Infineon Technologies.         
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TABLE I 

PROTOTYPES’ INDUCTANCE AND CAPACITANCE VALUES 

	
����
�� �	[��] ��	[���] ��	[��] 

������������ 1.21 0.51 80.5 

����
���
 1.16 1.41 11 

�����
	���� 1.15 2.34 4 

25	�� 0.0259 32.5 1 

69	�� 0.0698 11.8 2.7 

 



 

 
 

Fig. 8. Implemented double pulse tester prototype. 

 
 

 Fig. 9 shows the DPT switching waveforms for the 
conventional inductor (green current) and the copper foil 
prototypes for an inductor current level of 6A and a bus 
voltage of 400V. Fig. 10 shows the switching waveforms 
for the conventional two layer inductor (green current) in 

series with the 25		�  (purple) and the 69		�  (blue) 
prototypes.   
 

 
 

Fig. 9. Switching waveform comparison between the conventional 
(green current waveform) and the copper foil (blue current waveform) 
inductor prototypes.   

 

 
 

Fig. 10. Switching waveform comparison between the conventional 
(green current waveform) and conventional with series 25	�� (purple) 
and 69	�� (blue) inductor prototypes.  

 

 
 

Fig. 11. MOSFET switching energy as a function of the inductor current 
level for the different inductor prototypes. 

 
 After performing a switching energy loss extraction, 
the turn on energy dissipated in the MOSFET is plotted 
as a function of the inductor current level (Fig. 11). As it 
can be observed, a small difference is obtained in the 
MOSFET turn on loss due to the inductor parasitic 
capacitance effect. Acording to the difference in 
calculated capacitance value and according to (2), the 
difference in energy loss from the standard double layer 

and the copper foil inductors should be at least 6		�  
 

												� =
1

2
∙ � ∙ �

� (2)  

 
 However, this difference from the measurement to the 
calculation can be easily explained by looking at Fig. 9 
and Fig. 10. As it can be observed the dissipated energy 
in the MOSFET before the drain to source voltage 
collapses to zero varies very little between the different 
measurements. This is due to the fact that the parasitic 
capacitance will not be charged on this small subinterval. 
Instead this capacitance will resonate with the parasitic 
inductance formed by the inductor interconnection and 
will finalize the charge long time after the switch has 
completed the switching transition. It can be concluded 
that the charge of the parasitic capacitance will not create 
a large increment in the MOSFET switching loss but it 
will increase the conduction losses in the inductor 
because of the presence of a high frequency resonant 
current that will be damped by the component ac 
resistance. Furthermore, there is also a risk that these 
resonances can couple through parasitic capacitances to 
the converter structure and generate common mode noise 
source further challenging the input EMI filter. Finally, as 
it can be observed in Fig. 10 the inclusion of the small 
size inductors in series with the standard double layer 
inductor will effectively reduce the frequency of this 
resonance minimizing the joule losses in the circuit 
because of the reduced ac resistance effect at lower 
frequencies.  
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 In order to complete the analysis of the different 

designs is important to evaluate the ac resistance of the 

different structures. This i

PFC applications with 

operation where the inductor current presents a large high 

frequency component.

inductors is a 
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Fig. 14 Implemented modular PFC power stage 

 

 
Fig. 15 Measured efficiency as a function of the converter output power 

for	��� = 200	� and		���� = 375	� .  

 
 The effect of the capacitance can be appreciated at 
very low power levels. Under this situation, the converter 

switching frequency is increased up to 	215	��� . The 
difference in power loss between the two solutions 

is	0.96�. With the operating voltage levels, the inductor 

parasitic capacitor changes its voltage from 200� 

to	−175�. Taking into account the measured capacitance 
for the two prototypes, this change in voltage corresponds 

to a dissipated energy difference of 2.7148	��  which 

corresponds to a power loss difference of 		0.58	� . 
Therefore the remaining power loss difference is 
attributed to ac resistance difference between the two 
structures. As it can be seen, as the converter output 
power increases the two efficiency measurements get 
closer because the converter switching frequency is 

reduced down to 48	���  at 150	�  output power, 
minimizing the ac resistance difference between the 
prototypes.   
 

VI.  CONCLUSIONS 

 

This paper analyzes different inductor winding structures 
focusing on parasitic capacitance reduction of the 
component. The parasitic capacitance effects are analyzed 
from conducted EMI and efficiency point of views. 
Different solutions for reduced capacitance effects are 
evaluated. The ac resistance of the different structures is 
evaluated together with the capacitance because it has a 
large impact on PFC converters efficiency operating in 
BCM mode. A copper foil winding structure is proposed 
with very low parasitic capacitance and ac resistance 

compared to the conventional structures. This foil 
winding structure is similar to using PCB windings in a U 
core or E core structure. Using a single layer 
configuration can be very effective in reducing the 
parasitic capacitance mitigating EMI conducted and 
radiated problems and improving the converter efficiency. 
Moreover high frequency PFC converters operating in 
BCM will benefit from a reduced winding ac resistance   
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