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ABSTRACT

The GPAW electronic structure code, developed at the physics department at the Technical Uni-
versity of Denmark, is used today by researchers all over the world to model the structural,
electronic, optical and chemical properties of materials. They address fundamental questions
in material science and use their knowledge to design new materials for a vast range of appli-
cations. Todays hottest topics are, amongst many others, better materials for energy conversion
(e.g. solar cells), energy storage (batteries) and catalysts for the removal of environmentally
dangerous exhausts.

The mentioned properties are to a large extent governed by the physics on the atomic scale,
that means pure quantum mechanics. For many decades, Density Functional Theory has been
the computational method of choice, since it provides a fairly easy and yet accurate way of
determining electronic structures and related properties. However, it has several drawbacks. A
conceptual problem is the difficulty of interpreting the calculated results with respect to exper-
imentally measured quantities, resulting in, for example, the “band gap problem” in semicon-
ductors. A practical issue is the necessity of adapting the method with respect to the system one
wants to investigate by choosing a certain functional or by tuning parameters.

A succesful alternative is the so-called GW approximation. It is mathematically precise and
gives a physically well-founded description of the complicated electron interactions in terms of
screening. It provides a direct link to experimental observables through the concept of quasi-
particles. Furthermore, it is parameter-free and thereby equally applicable to different kinds
of systems. Its downside lies in its immense computational costs that limit its use in practice.
Often, only the G0W0 approach is considered, which can be regarded as the lowest level of the
GW approximation.

This thesis documents the implementation of the G0W0 approximation in GPAW. It serves
two purposes: First, it can be read as a manual by anyone who is interested in doing GW cal-
culations with GPAW. All features and requirements are explained in detail and many examples
are given. This provides a full understanding of how the code works and how the outcome
should be interpreted. Secondly, it gives an extensive discussion of calculated results for the
electronic structure of 3-dimensional, 2-dimensional and finite systems and comparison with
other implementations, methods and experiments. It shows that bandstructures, band gaps and
ionization potentials can be obtained accurately with G0W0 for many different materials. But
also exceptions are pointed out, where higher levels of the GW approximation might be neces-
sary.
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RESUMÉ

GPAW er et program, der bruges til at beregne elektroniske strukturer og er blevet udviklet
på Institut for Fysik på Danmarks Tekniske Universitet. Det benyttes i dag af forskere i hele
verden til at modellere materialers fysiske, elektroniske, optiske og kemiske egenskaber. Herved
undersøges grundliggende problemstillinger indenfor materialvidenskab og resultaterne har en
lang række anvendelser. Nogle af tidens mest spændende emner er at finde nye materialer til
bæredygtig energiproduktion (f. eks. solceller), energiopbevaring (batterier) og katalysatorer,
der nedbryder miljøskadelige udstødninger.

De ovennævnte egenskaber afgøres hovedsageligt af fysikken på den atomare skala, dvs.
kvantemekanikken. I mange årtier har tæthedsfunktionalteori været den fortrukne beregn-
ingsmetode, for den er en forholdsvis enkel, men samtidig nøjagtig metode, til at bestemme den
elektroniske struktur og de relaterede egenskaber. Men den viser sig også at have visse ulemper.
Et konceptuelt problem er at relatere de beregnede resultater med eksperimentelle målinger. Det
fører, f. eks. til det såkaldte båndgab-problem i halvledere. Et praktisk problem er, at man er
nødt til at vælge et bestemt funktionale som er velegnet for systemet i undersøgelsen eller at
tilpasse en parameter.

Den såkaldte GW approksimation tilbyder et lovende alternativ. Den er matematisk præcis
og beskriver fysikken for den komplicerede elektron-vekselvirkning i den meningsfulde form af
afskærmningseffekter. Beregninger kan knyttes direkte til eksperimentelle resultater ved hjælp
af konceptet kvasi-partikler. Derudover er metoden fri for parametre og kan anvendes til mange
forskellige slags systemer. Praktisk sætter den høje kompleksitet dog grænser. Ofte bruges kun
G0W0, der kan betegnes som det laveste niveau af GW approksimationen.

Denne afhandling dokumenterer implementeringen af G0W0 approksimationen i GPAW.
Den har to mål: For det første kan den læses som en brugermanual til dem, der selv vil lave
GW beregninger med GPAW. Alle funktioner beskrives i detaljer ved hjælp af mange eksem-
pler. På den måde forklares der grundigt om kodens drift og om hvordan resultaterne bør
opfattes. For det andet diskuteres og vurderes beregninger af den elektroniske struktur af 3-
dimensionale, 2-dimensionale og finite systemer ved at sammenligne med resultater fra andre
implementeringer, metoder og eksperimenter. Båndstrukturer, båndgabs og ionisationspoten-
tiale for mange forskellige materialer kan præcist bestemmes med G0W0. Men der vises også
undtagelser, hvor der kan være brug for et højere niveau af GW approksimationen.
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Ivano E. Castelli, Falco Hüser, Mohnish Pandey, Anubhav Jain, Kristin Persson, Gebrand Ceder,
Kristian S. Thygesen, and Karsten W. Jacobsen
to be submitted

IX





CONTENTS

Introduction 1

1 Theoretical background 5
1.1 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Hedin’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The GW approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Linearized QP equation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 G0W0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Implementation in GPAW 15
2.1 Calculation of the self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Full frequency-dependent method . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Plasmon Pole Approximation . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Static COHSEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Divergence of the screened potential . . . . . . . . . . . . . . . . . . . 21
2.1.5 Truncation of the Coulomb potential . . . . . . . . . . . . . . . . . . . 21

2.2 Exact exchange contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Solids 33
3.1 Semiconductors and insulators . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Band gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Bandstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Perovskites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 The Materials Project database . . . . . . . . . . . . . . . . . . . . . . . . . . 46

XI



CONTENTS

4 2D materials 51
4.1 Graphene / hexagonal-boron nitride . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Molybdenum disulfide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Molecules 63
5.1 Ionization potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Frequency-dependence of the self-energy . . . . . . . . . . . . . . . . . . . . 69
5.3 BDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 73

Papers 83

XII



INTRODUCTION

Computational atomic-scale materials design is about the theoretical prediction of new mate-
rials that possess certain physical and chemical characteristics which enable their use for new
technologies. Materials, that can possibly be used to build better and faster electronic devices,
more powerful and longlasting batteries for electric cars, efficient solar cells or catalysts that
reduce toxic gases in industrial exhausts, just to name a few.

The structures are simulated atom by atom on the computer and suitable theoretical models
are used to calculate their properties. At the atomic scale, the physics is determined completely
by quantum mechanics, where particles are diffuse objects with a limited probability of existing
at a certain point in time and space, mathematically represented by wavefunctions. Interacting
particles behave collectively and are thus attributed to many-body wavefunctions. The elec-
tronic structure of a system is entirely described by its Hamiltonian. It collects the operators for
the kinetic energies of the electrons and the ionic cores, the Coulomb attraction and repulsion
between all charged particles and interactions with external fields. The wavefunctions and the
energy spectrum of the system are given by its eigenfunctions and eigenvalues, respectively.
This is written down in compact form in the Schrödinger equation. However, it is in practice
impossible to solve the Schrödinger equation directly, other than for the simplest model sys-
tems. Leaving out the ionic contributions (which can normally be separated), the complications
arise from the electron-electron interactions.

Various approximations have been developed and successfully applied over the years. The
simplest idea is to treat the electrons as if they were not interacting with each other. Then,
the many-body wavefunction is just a product of single-particle wavefunctions, or, when tak-
ing Pauly’s exclusion principle into account, a Slater determinant, which is fully antisymmetric
under exchange of two particles. This is the idea behind Hartree-Fock theory [1], where the
electron-electron interactions are reduced to a Hartree term, which describes the Coulomb re-
pulsion of an electron with the total electron density, and an exchange term, which accounts
for the antisymmetric nature of electrons. All that is left out here, is what is usually refered
to as “correlation”. In Density Functional Theory [2], the system of interacting electrons is
mapped onto an auxiliary system of effectively non-interacting electrons under the requirement
that the electron density, which is as opposed to the wavefunction an observable, of these two
systems are identical. In this scheme, wavefunctions and energies are given as eigenfunctions
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Figure 1: Schematic picture of (a) Photo Electron Spectroscopy (PES) and (b) Inverse Photo Electron
Spectroscopy (IPS). In (a), an electron is removed from the system by absorption of a photon with energy
hν. In (b), an electron is added to the system under emission of a photon. The binding energy (relative
to the vacuum level, Evac) is then given as Eel = Ekin - hν, where Ekin is the kinetic energy of the free
electron. Eel corresponds to the energy of a state in a valence and conduction band, respectively. EF is
the Fermi level.

and -values of an effective Kohn-Sham Hamiltonian [3]. However, complications do not van-
ish, but are only transferred into an exchange-correlation functional. Development of elaborate
functionals has been work in progress for many decades and great results have been achieved.
Today, Density Functional Theory is one of the most common methods for calculating elec-
tronic structures. Still, a number of problems cannot be overcome: A practical issue is that
there is a variety of different functionals to choose from and many of them are designed for
special purposes, often by tuning parameters to fit experimental data. In this sense, it is not a
100 % ab-initio method. More fundamentally, it is a groundstate theory. That means that in
principle, total energies can be calculated exactly, whereas the Kohn-Sham wavefunctions and
eigenvalues lack a meaningful physical interpretation. Physicists usually think of an electronic
structure as a series of bands, which are being filled up by a certain number of electrons, N.
The occupied (valence) and unoccupied (conduction) states are separated by the Fermi level,
EF . In experiment, the energies of the valence and conduction bands are typically measured
by Photo Electron and Inverse Photo Electron Spectroscopy, respectively, as sketched in Fig.
1. These processes include the removal or addition of one electron and are thus not properties
of the N-electron groundstate. The fundamental energy gap is defined as the difference in the
lowest electron addition and removal energies, E±el, and can be written as:

Egap = E+
el − E−el = EN+1

0 + EN−1
0 − 2EN

0 , (1)

where EN
0 and EN±1

0 are the groundstate energies of the system with N and N ± 1 electrons,
respectively. Eq. (1) allows in principle for determining the gap from three groundstate calcu-
lations for the neutral and single positive and negative charged system. However, this cannot
be done for periodic systems like semiconductors. In terms of (exact) Kohn-Sham energies, the
gap is given by:

Egap = εKS
N+1(N) − εKS

N (N) + ∆xc = EKS
gap + ∆xc, (2)

where εKS
i (N) is the i-th eigenvalue of the N-electron system and ∆xc the derivative discontinuity

[4], which in practice can only be estimated.

2
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Figure 2: Schematic picture of the concept of screening. On the left side, electrons are non-interacting
and the potential seen outside emerging from one electron is the full Coulomb potential. Interacting
electrons tend to repel each other. As sketched on the right side, this leads to the formation of an effective
positively charged cloud surrounding each electron. This Coulomb hole screens the Coulomb potential.

An alternative approach that avoids these problems is established by many-body perturba-
tion theory. Instead of trying to solve the Schrödinger equation for the wavefunctions, one wants
to determine the Green’s Function, which describes the propagation of a particle (electron or
hole) through the groundstate of the system. This corresponds exactly to the situations depicted
in Fig. 1. These and similar excitations are “quasi” single-particle-like and called quasiparti-
cles. The important difference to a real single-particle excitation is that the full response of all
particles in the system to that excitation is included in the quasiparticle itself, e.g. all correlation
effects. Quasiparticles have in general finite lifetimes and their spectrum, {εQP

i± }, is given by the
poles of the Green’s Function. The fundamental gap is then simply:

Egap = εQP
0+
− εQP

0− . (3)

Hence, εQP
0± are equal to the lowest electron removal and addition energies, E±el, introduced above.

The Green’s Function can be defined through an equation of motion, which contains the self-
energy operator, a non-local and energy-dependent analogous of the exchange-correlation po-
tential. Unfortunately, it is practically impossible to calculate it exactly. However, it is straight-
forward to expand it systematically using perturbation theory. In the GW approximation [5], the
self-energy is taken to first order in the screened potential. This seems rather crude at first sight,
but turns out to give an excellent description of weak correlation. The basic idea of screening
is illustrated in Fig. 2: When an electron is added to the system, it polarizes its surrounding and
thereby induces its own Coulomb hole, which reduces the potential.

This thesis presents GW calculations for solids, molecules and two-dimensional materi-
als. Quasiparticle energies were obtained with first-order perturbation theory from Kohn-Sham
wavefunctions and eigenvalues in the so-called G0W0 or non-selfconsistent GW approximation.
It is organized as follows:

• Chapter 1 introduces the theory of Green’s Functions and sets the mathematical frame-
work for the GW approximation.

• Chapter 2 contains all computational details of the implementation developed in this
project as well as extensive convergence tests.
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• Chapter 3 presents calculations for semiconductors, insulators and metals. Bandstructures
and band gaps are compared to results from literature, other methods and experiments,
where available.

• Chapter 4 discusses special issues that occur for two-dimensional systems for the exam-
ples of single sheets of graphene/hexagonal boron-nitride and MoS2.

• Chapter 5 focusses on the Ionization Potentials of different molecules and gives insight
into the structure of the self-energy.

Each chapter is preceded by a seperate introduction and can be read to a large extent indepen-
dently from the rest of the thesis.
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CHAPTER 1

THEORETICAL BACKGROUND

This chapter gives a brief introduction to the underlying theory of the GW approximation as
pointed out by Hedin in 1965 [5]. The theoretical description is given in the framework of
many-body perturbation theory (MBPT) in which the central quantities are the Green’s Function
G and the self-energy Σ. In principal, they contain all information on a given system, similar
to the Hamiltonian and wavefunctions as defined by the Schrödinger equation. As opposed
to groundstate theories like density functional theory (DFT), MBPT inherently offers ways to
calculate excited state properties and the corresponding wavefunctions can be interpreted as
quasiparticle (QP) states. This allows for the calculation of the fundamental band gap, for
example, which is defined by the difference of electron removal and addition energies. Since all
other electrons in the system will respond to that additional electron or hole, the gap is clearly
not a groundstate property. These complicated interactions are known as correlation effects or
screening. A further major problem of most DFT functionals is the self-interaction error [6]
which arises from incomplete cancellation of the interaction of an electron with itself in the
Hartree and exchange-correlation terms.

In MBPT, the Green’s Function is a solution to the equation of motion in which the self-
energy appears as a non-Hermitian, nonlocal and frequency-dependent operator. Determining
Σ is therefore the key to finding the electronic structure.

As will be shown in Section 1.3, the self-energy can in principal be evaluated exactly
through a set of four coupled integro-differential equations, known as Hedin’s equations. How-
ever, this turns out to be impossible to do in practice, even for simple systems. In fact, it is as
complicated as solving the Schrödinger equation directly (or as finding the one true exchange-
correlation functional in DFT) and therefore, approximations need to be made. It is, however,
possible to write down systematic expansions of the self-energy and various approaches exist,
depending on different aspects of the underlying physics. Feynman diagrams provide an easy
and instructive way of interpreting and calculating the different terms, and some of them can be
summed up to infinite order. Exxpanding the self-energy to first order in the screened potential
W reads simply: Σ = iGW. This turns out to give an astonishingly good description of the
physics of weakly-correlated materials and has become the highly successful GW approxima-

5



CHAPTER 1. THEORETICAL BACKGROUND

tion.
A mathematical rigorous introduction to quantum-mechanical Green’s Functions and Feyn-

man diagrams can be found in Ref. [7], whereas the GW approximation is discussed in detail in
the reviews [8–10].

Throughout this chapter, spin indices are suppressed in order to simplify the notation. The
extension to spin-dependent quantities is straightforward. Atomic units (~ = me = e = 1) are
used.
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1.1. GREEN’S FUNCTIONS

1.1 Green’s Functions
In second quantization, the time-ordered single-particle Green’s Function reads:

G(r, t; r′, t′) =
〈
T

{
ψ̂(r, t)ψ̂†(r′, t′)

}〉
, (1.1)

where ψ̂ and ψ̂† denote fermionic annihilation and creation operators, respectively, which fulfill
the anticommutator relations: {

ψ̂(r, t), ψ̂†(r′, t′)
}

t=t′
= δ(r − r′). (1.2)

The expectation value 〈. . . 〉 is to be taken with respect to the N-particle groundstate of the
system. T is the time-ordering operator which ensures that the field operators on which it acts
are ordered in ascending time argument t from right to left:

T
{
ψ̂(r, t)ψ̂†(r′, t′)

}
=

 ψ̂(r, t)ψ̂†(r′, t′) for t > t′

−ψ̂†(r′, t′)ψ̂(r, t) for t < t′.
(1.3)

With this, the physical interpretation of the Green’s Function (1.1) becomes clear: It de-
scribes the propagation of an electron created at space coordinate r′ and time t′ and annihilated
at another point in space, r, and a later time t through the groundstate of the system. The
opposite holds for a hole. Note that even though the Green’s Function (1.1) describes the prop-
agation of a single particle, the full information of the interacting N-electron system is contained
through the expectation value.

For a system of electrons which interact via the Coulomb potential V(r, r′) = 1
|r−r′ | , e.g.

where the Hamiltonian takes the form:

Ĥ =

∫
dr ψ̂†(r, t)h0(r)ψ̂(r, t) +

1
2

∫
dr

∫
dr′ ψ̂†(r, t)ψ̂†(r′, t′)V(r, r′)ψ̂(r′, t′)ψ̂(r, t), (1.4)

the evolution of the Green’s Function is governed by an equation of motion: 1

(ω − h0(r) − VH(r)) G(r, r′;ω) −
∫

dr′′Σ(r, r′′;ω)G(r′′, r′;ω) = δ(r − r′), (1.5)

where h0 collects all one-body terms such as the kinetic energy and interaction with an external
potential. VH(r) =

∫
dr′V(r, r′)ρ(r′) is the Hartree potential with the electron density given by

the diagonal of the Green’s Function: ρ(r) = G(rt; rt+). 2 In frequency domain, the Green’s
Function reads: G(r, r′;ω) =

∫
d(t − t′) G(r, t; r′, t′) exp(iω(t − t′)). Σ is called the self-energy

and is in general a dynamic, non-local and non-Hermitian operator.
The Green’s Function can be expressed in the spectral representation, also known as Leh-

mann representation:

G(r, r′;ω) =

∫
dω′

A(r, r′;ω)
ω − ω′ + iηsgn(ω′)

, (1.6)

with an infinitesimally small, positive η, which ensures that G is analytic along the real axis.
The spectral function is linked to the imaginary part of the Green’s Function as:

A(r, r′;ω) = −
1
π

sgn(ω)Im {G(r, r′;ω)} . (1.7)

1This can be derived with the use of d
dt Â(t) = i[Ĥ, Â(t)] + ∂tÂ(t) for any quantum-mechanical operator Â(t) and

representing the field operators in the Heisenberg picture: ψ̂(r, t) = eiĤtψ̂(r)e−iĤt.
2with t+ ≡ t + δ for positive δ→ 0

7



CHAPTER 1. THEORETICAL BACKGROUND

For a system of non-interacting electrons Eq. (1.5) reduces to:

(
ε j − h0(r)

)
G0(r, r′;ω) = δ(r − r′), (1.8)

and the non-interacting Green’s Function takes the simple form:

G0(r, r′;ω) =
∑

j

φ j(r)∗φ j(r′)
ω − ε j + iηsgn(ε j − µ)

, (1.9)

where {φi} are single-particle wavefunctions. The corresponding spectral function is a sum of
δ-functions at the orbital energies ω = εi:

A0(r, r′;ω) =
∑

j

φ j(r)∗φ j(r′)δ(ω − ε j). (1.10)

The interacting Green’s Function (also called “full” or “dressed” Green’s Function) is con-
nected to G0 through Dyson’s equation:

G(r, r′;ω) = G0(r, r′;ω) +

∫
dr1

∫
dr2 G(r, r1;ω)Σ(r1, r2;ω)G0(r2, r′;ω). (1.11)

In a simplified notation, this reads G = G0 + GΣG0 and is illustrated graphically in Fig. 1.1
using standard Feynman diagrams. It can also be used as a definition for the self-energy:
Σ = G−1 − G−1

0 . Similarly, the non-interacting and the full Green’s Function can symbolically
be written as G0(z) = (z− ĥ0 −VH)−1 and G(z) = (z− Ĥ)−1, respectively, where Ĥ = ĥ0 + VH + Σ

and z is a complex number. In this definition, the self-energy collects all electron-electron
interactions that go beyond the Hartree level, that means all exchange and correlation contribu-
tions. Therefore Σ = Σxc can be regarded as a non-local and energy-dependent analogous of the
exchange-correlation potential in DFT.

Figure 1.1: Schematic representation of the Dyson equation (1.11). By iteratively inserting the same
definition for G on the right-hand side, it becomes an infinite expansion in powers of the self-energy:
G = G0 + G0ΣG0 + G0ΣG0ΣG0 + G0ΣG0ΣG0ΣG0 + . . . .

8



1.2. QUASIPARTICLES

1.2 Quasiparticles
An alternative way of writing Eq. (1.6) is to expand G in the full complex plane in a set of
complete basis functions {ψQP

i }:
3

G(r, r′; z) =
∑

j

ψQP
j (r)∗ψQP

j (r′)

z − εQP
j

. (1.12)

In the discrete part of the spectrum, {εQP
i } are solutions to the quasiparticle equation:(

εQP
i − h0(r) − VH(r)

)
ψQP

i (r) −
∫

dr′Σ(r, r′; εQP
i )ψQP

i (r′) = 0. (1.13)

These functions are the quasiparticle states and the energies correspond to excitation energies:

ψQP
i− (r) =

〈
N − 1, i

∣∣∣ ψ̂(r)
∣∣∣ N, 0

〉
ψQP

i+ (r) =
〈

N, 0
∣∣∣ ψ̂(r)

∣∣∣ N + 1, i
〉 and εQP

i− = EN
0 − EN−1

i

and εQP
i+ = EN+1

i − EN
i

when εQP
i < µ

when εQP
i ≥ µ ,

(1.14)

where |N, 0〉 stands for the groundstate of the N-particle system and |N ± 1, i〉 for the i-th ex-
cited state of the N ± 1-particle system. Accordingly, EN

0 and EN±1
i are the total energies.

µ = EN+1
0 − EN

0 is the chemical potential. From Eq. (1.14), it becomes clear that the quasipar-
ticle states describe the removal or addition of an electron and the corresponding energies are
electron removal and addition energies. For i = 0, they are equal to the negative ionization
potential (IP) and electron affinity (EA), respectively. Thus, the fundamental band gap is given
as:

Egap = IP − EA = εQP
0+
− εQP

0− = EN+1
0 + EN−1

0 − 2EN
0 . (1.15)

In principal, the QP energies and wavefunctions are not equal to the eigenvalues and eigenfunc-
tions defined by Eq. (1.5):

(εn(ω) − h0(r) − VH(r))ψn(r, ω) −
∫

dr′Σ(r, r′;ω)ψn(r′, ω) = 0, (1.16)

with which the Green’s Function can be expressed as:

G(r, r′;ω) =
∑

m

ψm(r, ω)∗ψm(r′, ω)
ω − εm(ω)

. (1.17)

These eigenvalues are in general complex and frequency-dependent and the eigenfunctions are
non-orthogonal. However, for ωi = Re {εn(ωi)} = εQP

i , the eigenvector ψn(r, ωi) coincides with
the QP wavefunction ψQP

i (r) (except for normalization) and is denoted ψi(ε
QP
i ) = ψQP

i /||ψQP
i ||

2. If
the imaginary part of εn(ωi) is small, the spectrum shows a peak at the quasiparticle energy. Its
broadening is related to the lifetime of the quasiparticle. In other cases, where (ω − Re {εn(ω)})
and Im {εn(ω)} are small, so-called satellites appear in the spectrum [8]. In the continuous part
of the spectrum, G posesses a branch cut and the quasiparticle energies become complex. The
real part of εQP

i represents some average energy of a group of excited states and the imaginary
part the spread in energy of these states [5].

3This follows directly from Eq. (1.1) by inserting the identity 1 =
∑

i |N ± 1, i 〉 〈N ± 1, i |, performing Fourier
transformation and using analytical continuation.

9



CHAPTER 1. THEORETICAL BACKGROUND

Only for non-interacting electrons, the eigenvalues are real and the QP wavefunctions can
be written as single Slater determinants. The excitations are then true single-particle excitations
with energies ω = ε j.

The norm of the quasiparticle wavefunction (1.14) is given by:

||ψQP
i ||

2 =
〈
ψi(ε

QP
i )

∣∣∣1 − Σ′(εQP
i )

∣∣∣ψi(ε
QP
i )

〉−1
≡ Zi, (1.18)

where Σ′(εQP
i ) = d

dωΣ(ω)
∣∣∣
ω=εQP

i
. For non-interacting electrons, the QP norm can be either 1 or

0, corresponding to single- and multiple-particle excitations, respectively. In weakly correlated
systems, states with norm ∼1 are “quasi” single-particle excitations and only those are usually
called quasiparticles.

1.3 Hedin’s Equations
A formally exact way of calculating the self-energy is given by a set of four coupled equations,
known as Hedin’s equations:

self-energy: Σ(1, 2) = i
∫

d(34) G(1, 3)Γ(3, 2, 4)W(4, 1+), (1.19)

screened potential: W(1, 2) = V(1, 2) +

∫
d(34) V(1, 3)P(3, 4)W(4, 2), (1.20)

polarization: P(1, 2) = −i
∫

d(34) G(1, 3)G(4, 1+)Γ(3, 4, 2), (1.21)

vertex function: Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

∂Σ(1, 2)
∂G(4, 5)

G(4, 6)G(7, 5)Γ(6, 7, 3),

(1.22)

where ( j) denotes (r j, t j) and V(1, 2) = V(r1, r2)δ(t1 − t2) is the Coulomb potential.
The screened potential W can also be expressed through the dielectric function ε = 1 − VP

as W(1, 2) =
∫

d(3) ε−1(1, 3)V(3, 2).
These equations could in principal be solved self-consistently, along with the Dyson equa-

tion (1.11), starting from a trial Green’s Function, e.g. G0, and then iterating until the self-
energy converges. This is however, due to their complicated structure, impossible to do in
practice.

1.4 The GW approximation
A simple ansatz can be made by setting the second term in the vertex function to zero, which
yields P = −iGG and Σ = iGW. This choice seems at first somewhat arbitrary. However, it
gains a clear physical interpretation when compared to Hartree-Fock theory (HF), in which the
self-energy is given as a product of the Green’s Function and the bare Coulomb interaction:
ΣHF = iGV . Here, electron-electron interaction only occurs through the Hartree- and the ex-
change potential, that means that there is no correlation – the electrons are quasi independent.
On the other hand, correlation is to a large extent determined by screening (in fact, for weakly
correlated systems, these two terms are often used interchangeably). Thus, by replacing the

10



1.4. THE GW APPROXIMATION

Figure 1.2: Comparison of the GW, HF and RPA self-energies. The screened potential is linked to the
full Coulomb potential through a Dyson-like equation W = V + VGGW and WRPA = V + VG0G0WRPA

(see Fig. 1.3).

bare Coulomb interaction V by the screened interaction W in the self-energy, dynamical corre-
lation is introduced. In Fig. 1.2, the Feynman diagram for the GW self-energy is shown, along
with corresponding expressions for the HF and the Random Phase Approximation (RPA) for
comparison.

In real space and time domain, the GW self-energy is simply given as a product:

Σ(r, t; r′, t′) = iG(r, t; r′, t′)W(r, t; r′, t′), (1.23)

which becomes a convolution in frequency domain:

Σ(r, r′;ω) =
i

2π

∫
dω′ eiδω′G(r, r′;ω + ω′)W(r, r′;ω′), (1.24)

where the inifinitesimal δ ensures the correct time-ordering in case of a static potential, W(ω =

0). Using the spectral representation for the Green’s Function and an analogous expression for
the screened interaction, the real part of Σ breaks into two parts [11]: Σ = ΣCOH + ΣSEX with
the first term arising from the poles in the Green’s Function and the second from the poles in
W. ΣSEX can be identified as a dynamically screened version of the Fock exchange term and is
therefore called “screened exchange”. ΣCOH describes the dynamic interaction of a particle with
the charge that it induces in its surrounding, that means a dynamical “Coulomb hole”.

11



CHAPTER 1. THEORETICAL BACKGROUND

1.4.1 Linearized QP equation
The GW approximation provides a direct guideline on how to find the quasiparticle wavefunc-
tions and their spectrum: First, one has to construct the Green’s Function and the screened
potential from an initial guess, e.g. from a system of (effectively) non-interacting electrons with
wavefunctions {ψs

i } and energies {εs
i }. This allows then for the calculation of Σ and determina-

tion of new wavefunctions and energies from the quasiparticle equation (1.13). From these, a
new Green’s Function and potential can be build up and the whole procedure can be iterated
until self-consistency is reached. However, Eq. (1.13) requires the self-energy itself to be given
at the quasiparticle energy εQP

i which is exactly the quantity one wants to find. This is extremely
complicated to solve directly. Instead, the QP equation can be linearized using first-order per-
turbation theory: Assume that the initial wavefunctions are solutions to Ĥeff = ĥ0 + VH + Vxc,
where Vxc is some effective exchange-correlation potential. Then the full Hamiltonian differs
from Ĥeff by Σxc − Vxc. If the initial wavefunctions are close to the true QP wavefunctions, this
difference will be small and one can use perturbation theory in (Σxc − Vxc). In first order, this
yields for the quasiparticle energies:

εQP
i = εs

i + Z s
i ·

〈
ψs

i |Σxc(εs
i ) − Vxc|ψ

s
i
〉
, (1.25)

with a renormalization factor:

Z s
i =

〈
ψs

i |1 − Σ′xc(ε
s
i )|ψ

s
i
〉−1 . (1.26)

Z s
i is an approximation to the QP norm (1.18) and is a measure for how well the quasiparticle

wavefunction is represented by ψs
i , e.g. if the quasiparticle state can be described by effectively

non-interacting electrons.
Within this approach, new wavefunctions can be found by replacing Vxc with the effective

self-energy operator
∑

i j |ψ
s
i 〉〈ψ

s
i |Σxc(εs

i ))|ψ
s
j〉〈ψ

s
j| in the Hamiltonian and finding the new eigen-

vectors. This is know as quasiparticle self-consistent GW (QPscGW) [12], as opposed to the
full self-consistent GW (scGW) [13], in which the self-energy is calculated for all frequencies
and the Green’s Function is evaluated through Dyson’s equation (1.11).

1.4.2 G0W0

In practice, Kohn-Sham orbitals and eigenvalues from a DFT calculation are often used as input
for a GW calculation and the quasiparticle spectrum is evaluated non-selfconsistenly from Eq.
(1.25) without updating the Green’s Function or the screened potential, that means only one
iteration is made. This is known as the “one-shot” GW or G0W0 approximation and has become
a standard tool in electronic structure theory. W0 is hereby equal to the RPA screened potential,
as depicted in Fig. 1.3. Even though this approach is based on several crude simplifications,
namely: 1. the GW approximation itself, 2. non-selfconsistency and 3. linearization of the
QP equation, it gives a very good balance between accuracy and computational costs. Its great
success can be understood by the following:

1. The GW approximation is physically well motivated for weakly correlated systems by
the concept of screening, as outlined in the beginning of this section.

2. Self-consistency does not necessarily improve results. This is due to the fact that addi-
tional terms are introduced to the self-energy, which would cancel out when the full many-
body theory is considered, e.g. by taking the vertex function (1.22) into account [14].
Calculating vertex corrections, however, is enormously costly.
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1.4. THE GW APPROXIMATION

3. The linearized QP equation is a good approximation as long as the initial wave functions
already describe the true QP wavefunctions fairly well, even though this may not hold for
the eigenvalues. Then, G0W0 can give significant corrections to the energies, allowing for
accurate bandstructure calculations.

Of course, there are several drawbacks and limitations: A major problem is the starting point is-
sue, since the results depend on the initial wavefunctions and energies and can vary significantly
depending on the input. A well-considered choice may be crucial in order to minimize errors.
This issue can only be overcome by performing self-consistency. Otherwise, it is a true ab-
initio method, meaning that no empirical parameters are required, and it is system-independent
(which is not the case for most funtionals in DFT). Unfortunately, all this comes at the price
of a much higher computational cost, as will be elucidated in detail in the next chapter. And
while the lower part of the spectrum can be calculated with good accuracy, G0W0 usually goes
completely wrong in the high energy range and thus cannot describe satellites, for instance.
Finally, for strongly correlated materials, the whole quasiparticle picture does not hold and the
GW approximation is expected to fail.

Several approaches exist, that go beyond the one-shot approximation without having to deal
with all of the complications and problems of the full self-consistent scheme. In the eigenvalue-
sc GW, for instance, only the energies are being updated during the iterations while the wave-
functions are being kept on the Kohn-Sham level [15]. Furthermore, energies and/or wavefunc-
tions can be updated in the Green’s Function only with a fixed initial screened potential, which
corresponds to GW0 [16, 17].

Figure 1.3: Definition of the screened potential W in the G0W0 approximation. Similar to Fig. 1.1, it
gives an infinite sum over bubble diagrams (G0G0) and is equal to the screened potential in the Random
Phase Approximation. Each bubble corresponds to the creation and annihilation of one electron-hole
pair. Within this approximation, these pairs are non-interacting.
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CHAPTER 2

IMPLEMENTATION IN GPAW

GPAW is an electronic structure code based on the projector-augmented wave (PAW) method
[18, 19], in which the true wavefunctions are replaced by smooth auxiliary wavefunctions in-
side atom-centered augmentation spheres. A detailed description of the GPAW code is given
in Ref. [20]. Originally, wavefunctions were represented on a real-space grid [21], but later,
linear combination of atomic orbitals (LCAO) basis sets [22] and more recently, plane wave
representation have been introduced.

In this chaper, all details of the implementation of the G0W0 approximation within GPAW
are presented. It follows mainly Ref. [23]. The GW self-energy is calculated from the in-
verse dieelectric function, ε−1, in the Random Phase Approximation [24] given as a matrix in a
plane wave basis. The frequency-dependence of ε can either be evaluated explicitly on a grid
(“full frequency dependent method”) or modelled in the Plasmon Pole Approximation (PPA)
by Godby and Needs [25]. Furthermore, the static limit leads to the so-called static COHSEX
approximation.

Special care is required for the divergent terms of the screened potential in the long wave-
length limit q → 0. This divergence can be treated both analytically and numerically. Another
feature is a truncation scheme for the Coulomb potential. This is immensely important for two-
dimensional materials in supercell calculations in order to eliminate spurious interaction effects
between periodically repeated layers.

The calculation of the GW self-energy, Σ, includes sums over k points, both occupied and
empty bands as well as plane waves and, for the full frequency dependent method, an integration
over frequencies – in principal up to infinity. In practice, all summations have to be limited
and integrations must be carried out numerically, imposing a number of convergence issues.
This also makes GW calculations much more complicated and computationally demanding as
compared to groundstate DFT.
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2.1 Calculation of the self-energy
The G0W0 self-energy can be split into two contributions: ΣGW = VX + Σc, where VX is the
nonlocal exchange potential as in Hartree-Fock theory, and Σc is the correlation part. In the
following, the latter will simply be denoted as the self-energy Σ = Σc. By introducing the
difference between the screened and the bare Coulomb potential W = W − V , it reads:

Σ(r, r′;ω) =
i

2π

∫
dω′G(r, r′;ω + ω′)W(r, r′;ω′). (2.1)

In this way, the exact exchange is separated from the actual GW calculation. Since the screened
potential approaches the bare Coulomb potential for large ω, W goes to zero and the frequency
integration becomes numerically stable.

Using Bloch states |nk〉, where n and k denote band index and k-point index, respectively,
for the spectral representation of the Green’s Function (1.9) and expanding in plane waves, the
diagonal terms become:

Σnk ≡ 〈nk|Σ(ω)|nk〉

=
1
Ω

∑
GG′

1.BZ∑
q

all∑
m

i
2π

∞∫
−∞

dω′WGG′(q, ω′)
ρnk

mk−q(G)ρnk
mk−q(G′)∗

ω + ω′ − εs
mk−q + iη sgn(εs

mk−q − µ)
, (2.2)

with the pair density matrices defined as:

ρnk
mk−q(G) ≡

〈
nk

∣∣∣ei(q+G)r
∣∣∣m k−q

〉
. (2.3)

Ω = Ωcell · Nk is the total volume, Ωcell the volume of the unit cell and Nk the number of k
points. The sums in Eq. (2.2) run over plane waves with wave vectors G and G′, all differ-
ences q between k points in the first Brillouin zone and all band indices m, respectively. The
wavefunctions and corresponding eigenvalues, εs

nk, are taken from a Kohn-Sham groundstate
calculation. The potential reads:

WGG′(q, ω) =
4π
|q + G|

(
ε−1

GG′(q, ω) − δGG′
) 1
|q + G′|

, (2.4)

where ε−1
GG′(q, ω) is the inverse dielectric matrix, which is obtained in the Random Phase Ap-

proximation with a symmetrized Coulomb kernel in G and G′:

εGG′(q, ω) = δGG′ −
4π
|q + G|

χ0
GG′(q, ω)

1
|q + G′|

, (2.5)

from the non-interacting, time-ordered density response function:

χ0
GG′(q, ω) =

2
Ω

1.BZ∑
k

∑
n,n′

(
f s
nk − f s

n′k+q

) ρnk
n′k+q(G)ρnk

n′k+q(G′)∗

ω + εs
nk − ε

s
n′k+q + iη sgn(εs

n′k+q − ε
s
nk)
, (2.6)

with occupation numbers f s
nk. Details on the implementation of the linear density response

function and the calculation of the pair density matrices with PAW corrections are given in
Ref. [24].

The quasi-particle spectrum is then obtained from Eq. (1.25) as:

εQP
nk = εs

nk + Z s
nk · Re

〈
nk

∣∣∣Σ(εs
nk) + Vx − Vxc

∣∣∣nk
〉
, (2.7)
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2.1. CALCULATION OF THE SELF-ENERGY

with a renormalization factor given by:

Z s
nk =

(
1 − Re

〈
nk

∣∣∣Σ′(εs
nk)

∣∣∣nk
〉)−1

. (2.8)

The derivative of the self-energy with respect to the frequency is calculated analytically from
Eq. (2.2):

Σ′(εs
nk) = −

1
Ω

∑
GG′

1.BZ∑
q

all∑
m

i
2π

∞∫
−∞

dω′WGG′(q, ω′)
ρnk

mk−q(G)ρnk
mk−q(G′)∗(

εs
nk + ω′ − εs

mk−q ± iη
)2 , (2.9)

where ± = sgn(εs
mk−q − µ).

The calculation of the exact exchange 〈nk|Vx|nk〉 contributions is done seperately in a dif-
ferent part of the GPAW code. This can therefore be done on a different level of accuracy than
for the self-energy.

In the current implementation, Σnk is only evaluated for energies ω = εs
n k and only its

real part is stored. This means, that no further information on the spectrum like quasiparticle
lifetimes, line shapes and satellites is available. For semiconductors, however, there exists
an energy region around the quasiparticle gap for which the imaginary part of the self-energy
is zero and quasiparticle peaks become renormalized δ-functions. The size of this region is
determined by the underlying Kohn-Sham bandgap in the G0W0 approximation [26]. Since the
main focus of this work is the calculation of quasiparticle bandstructures around the Fermi level,
this simplification is reasonable. On the other hand, an extension to analysing the complex and
frequency-dependent self-energy is trivial and may be done in the future. This will in particular
be of interest for metallic systems [27, 28].

Furthermore, only the diagonal terms of the self-energy are evaluated. In principal, deter-
mining the off-diagonal elements, 〈nk|Σ(ω)|n′k〉, would allow for calculation of quasiparticle
wavefunctions and subsequently lead to the (quasiparticle) self-consistent GW method.

2.1.1 Full frequency-dependent method

The frequency integration in Eq. (2.2) can be carried out for positive values of ω′ only due to
time-reversal symmetry of the screened potential, W(−ω) = W(ω), by rewriting the integral as:

I(ω) ≡

∞∫
−∞

dω′
W(ω′)

ω + ω′ − εs
mk−q ± iη

(2.10)

=

∞∫
0

dω′W(ω′)
 1
ω + ω′ − εs

mk−q ± iη
+

1
ω − ω′ − εs

mk−q ± iη


Then, two different ways of calculating Σnk are available:

In the first method, the double sum over G and G′ is carried out first as a matrix multiplica-
tion of ρ(G)ρ∗(G′) and WGG′ . Then, the frequency integration is performed numerically. This
is done seperately for each pair of (n k) and (m k−q).

The second method reverses this order and is similar to a Hilbert transform: The numerical
frequency integration is done first, but for εs

mk−q > µ and εs
mk−q < µ separately, denoted by I+
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and I−, respectively. Defining ω = ω − εs
mk−q, four cases for the integral can be distinguished:

ω ≥ 0 and εs
mk−q > µ :
∞∫

0

dω′W(ω′)
(

1
|ω| + ω′ + iη

+
1

|ω| − ω′ + iη

)
= I+(|ω|),

ω ≥ 0 and εs
mk−q < µ :
∞∫

0

dω′W(ω′)
(

1
|ω| + ω′ − iη

+
1

|ω| − ω′ − iη

)
= I−(|ω|),

ω < 0 and εs
mk−q > µ :
∞∫

0

dω′W(ω′)
(

1
−|ω| + ω′ + iη

+
1

−|ω| − ω′ + iη

)
= −I−(|ω|),

ω < 0 and εs
mk−q < µ :
∞∫

0

dω′W(ω′)
(

1
−|ω| + ω′ − iη

+
1

−|ω| − ω′ − iη

)
= −I+(|ω|),

which can be summarized as:

I(ω) = sgn(ω)Isgn(ω)·sgn(εs
mk−q−µ)(|ω|). (2.11)

Summing over G and G′ then gives the contributions to Σ(ω) for every (m k−q) represented on a
finite, positive frequency grid, {ωi}. The self-energy at the input eigenvalue, Σ(ω = εs

nk), is found
by linear interpolation between the two closest points on the grid with ωi ≤ |ε

s
nk − ε

s
mk−q| < ωi+1,

again for every m and q seperately.
The same methods apply for the derivative.

2.1.2 Plasmon Pole Approximation
In the Plasmon Pole Approximation (PPA), all the transitions from occupied to unoccupied
states n → n′ that sum up to the to the inverse dielectric function (similar to Eq. (2.6)) are
averaged to form one single collective excitation, known as plasmon:

ε−1(ω) ∝
∑
n→n′

Rn→n′

ω − ωn→n′ + iη
−

R∗n→n′

ω + ωn→n′ − iη

≈
R

ω − ω̃ + iη
−

R
ω + ω̃ − iη

, (2.12)

with some averaged spectral function R. The imaginary part consists only of single peaks at the
main plasmon frequencies, ±ω̃GG′(q). Thus, ε−1

GG′(q, ω) can be modeled as:

ε−1
GG′(q, ω) = δGG′ + RGG′(q)

(
1

ω − ω̃GG′(q) + iη
−

1
ω + ω̃GG′(q) − iη

)
, (2.13)

where the spectral function, RGG′(q), is assumed to be real. The two terms account for positive
and negative frequencies, respectively. Using the Sokhatsky-Weierstrass theorem,

lim
η→0+

1
x ± iη

= P

{
1
x

}
∓ iπδ(x), (2.14)
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Figure 2.1: Real and imaginary parts of the head of the inverse dielectric function ε−1
00 (q, ω) of a sil-

icon bulk test system for q = (1/2, 1/2, 1/2). The PPA model (dashed lines) is compared to the fully
frequency-dependent ab-initio results (full lines). A broadening of η = 0.2 eV and E0 = 1 Hartree have
been used. The imaginary part of the PPA function consists of a single peak at the plasmon frequency.
The real part is given by the Kramers-Kronig relation: Re{ε−1(ω)} = 1/π

∫ ∞
−∞

dω′ Im{ε−1(ω′)}/(ω′ − ω).
The inset is a zoom-in on the y-axis. Both in the low and high energy range, the overall shape of ε−1(ω)
is well described by the model function.

where P denotes the Cauchy principal value, the real and imaginary parts of the potential W =

(ε−1 − δ)V are given as:

Re
{
WGG′(q, ω)

}
= RGG′(q)P

{
1

ω − ω̃GG′(q)
−

1
ω + ω̃GG′(q)

}
4π

|q + G||q + G′|
, (2.15)

and

Im
{
WGG′(q, ω)

}
= −πRGG′(q) (δ(ω − ω̃GG′(q)) + δ(ω + ω̃GG′(q)))

4π
|q + G||q + G′|

, (2.16)

respectively. Similar expressions are found for the non-interacting Green’s Function, so that the
convolution in Eq. (2.1) can be carried out analytically and the real part of the self-energy (2.2)
becomes:

Re {Σnk} = Re

− 1
Ω

∑
GG′

1.BZ∑
q

all∑
m

1
2π

4πRGG′(q)
|q + G||q + G′|

ρnk
mk−q(G)ρnk

mk−q(G′)∗

×

±π  1
ω − εs

mk−q + ω̃GG′(q) − iη
−

1
ω − εs

mk−q − ω̃GG′(q) + iη

 (2.17)

−π

 1
ω − εs

mk−q + ω̃GG′(q) ± iη
+

1
ω − εs

mk−q − ω̃GG′(q) ± iη

  ,
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where the infinitesimal η is maintained to ensure numerical stability, when the denominator
goes to 0.

The model dielectric function (2.13) is required to reproduce the ab-initio dielectric function
in the static limit ω1 = 0 and at some frequency ω2 = iE0. The latter is chosen to be imaginary,
since ε−1(ω) is smooth along the imaginary axis. This method is known as the Plasmon Pole
Approximation of Godby and Needs [25]. From

ε−1(q, ω1) =
−2RGG′(q)
ω̃GG′(q)

, (2.18)

ε−1(q, ω2) =
−2RGG′(q)ω̃GG′(q)

E2
0 + ω̃2

GG′(q)
, (2.19)

one obtains the plasmon frequency and the spectral function:

ω̃GG′(q) = E0

√
ε−1(q, ω2)

ε−1(q, ω1) − ε−1(q, ω2)
, (2.20)

RGG′(q) = −
ω̃GG′(q)

2
ε−1(q, ω1). (2.21)

The Plasmon Pole Approximation is valid for systems where the dielectric response is dom-
inated by its main plasmon excitation. Then, the overall shape of ε−1(ω) will be determined by a
single resonance at the plasmon frequency and all other details of its structure will be averaged
out in the frequency integration for the self-energy in Eq. (2.1). This is illustrated in Fig. 2.1.

2.1.3 Static COHSEX
A static approximation assumes that the main contributions to the GW self-energy (2.2) arise
from terms, where ω − εs

mk−q is small compared to the energy of the main excitation in the
screened potential, that is essentially the plasmon energy [8]. By setting ω − εs

mk−q = 0, the
Coulomb hole and screened exchange parts of the self-energy Σxc become frequency-indepen-
dent and read:

ΣCOH
nk =

1
2Ω

∑
GG′

∑
q

all∑
m

WGG′(q, 0)ρnk
mk−q(G)ρnk∗

mk−q(G′), (2.22)

ΣSEX
nk = −

1
Ω

∑
GG′

∑
q

occ∑
m

WGG′(q, 0)ρnk
mk−q(G)ρnk∗

mk−q(G′), (2.23)

respectively. This is known as the static COHSEX approximation. In real space representation,
they are given as:

ΣCOH =
1
2
δ(r − r′)

(
W(r, r′;ω = 0) − V(r, r′)

)
, (2.24)

ΣSEX = −

occ∑
j

φ∗j(r)φ j(r
′)W(r, r′;ω = 0), (2.25)

from which the interpretation as static Coulomb hole and screened exchange becomes clear.
The QP spectrum is evaluated as:

εQP
nk = εs

nk +
〈
nk

∣∣∣ΣSEX + ΣCOH − Vxc

∣∣∣nk
〉
. (2.26)
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2.1.4 Divergence of the screened potential
The head (G = 0 and G′ = 0) and wings (G = 0 or G′ = 0) of the screened potential (2.4)
diverge as 1/q2 and 1/q, respectively, in the long wavelength limit q → 0. However, for an
infinitely dense k-point sampling, these divergencies are lifted in the calculation of the self-
energy (2.2). This can be seen by replacing the sum over q by an integral over the volume of
the 1. Brillouin zone: ∑

q

→
Ω

(2π)3

∫
ΩBZ

dq =
Ω

(2π)3

∫
dq 4πq2. (2.27)

Assuming ε−1
00 (q → 0) to be isotropic, W00(q = 0) can be found by integrating the divergent

part 4π/q2 over a small sphere with volume Ω′BZ = ΩBZ/Nk (this corresponds to a radius q′ =

(6π2/Ω)1/3). This yields:

W00(q = 0, ω) =
2Ω

π

(
6π2

Ω

)1/3 [
ε−1

00 (q→ 0, ω) − 1
]
. (2.28)

and similar for the wings:

WG0(q = 0, ω) =
1
|G|

Ω

π

(
6π2

Ω

)2/3

ε−1
G0(q→ 0, ω), (2.29)

with the dielectric matrix taken in the optical limit.
Alternatively, these values can also be obtained by numerical averaging on a very fine q′-

point grid around the Γ-point.

2.1.5 Truncation of the Coulomb potential
In supercell calculations for systems which are infinite and periodic in two dimensions (2D
systems), the long range Coulomb interaction can be cut off along the non-periodic direction, z,
in order to avoid artificial image charge effects from neighboring cells [29]:

ṽ2D(r) =
θ(R − |rz|)
|r|

, (2.30)

where θ is the step function and R the truncation length. Fourier transformation to reciprocal
space yields:

ṽ2D(G) =
4π
G2

[
1 + e−G‖R

(
Gz

G‖
sin(GzR) − cos(|Gz|R)

)]
, (2.31)

where G‖ and Gz are the parallel and perpendicular components of G, respectively. For R =

Lz/2, where Lz is the length of the unit cell in the non-periodic direction, this becomes [30]:

ṽ2D(G) =
4π
G2

(
1 − e−G‖R cos(|Gz|R)

)
. (2.32)

For G‖ → 0, the expression of Eq. (2.31) and thereby also Eq. (2.32) is not well defined. It
is therefore replaced by numerical averaging on a fine uniform q′-point grid around the Γ-point
over a small volume Ω′BZ:

ṽ2D(G‖ = 0) =
1

Ω′BZ

∫
Ω′BZ

dq′ ṽ2D(Gz + q′). (2.33)

The truncated Coulomb potential is used both for the calculation of the dielectric function
and of the self-energy.
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Figure 2.2: Computational time for a small bulk silicon test system with full parallelization over q
points on 1, 2, 4 and 8 Intel Xeon cores. The actual time spent for the whole calculation is shown in
black, while the CPU time (sum of the times spent on all CPUs) is in red. For perfect parallelization the
CPU time would be constant and the total time would divide by the number of cores. Deviances are due
to initialization of the calculations, postprocessing and communication between the cores.
(2 × 2 × 2) k points, 89 plane waves and bands and 1064 frequency points were used in the calculations.

2.2 Exact exchange contributions
The exact exchange contributions are given in plane wave representation as:

〈nk|Vx|nk〉 = −
π

Ω

∑
m

∑
k′

f s
mk′

∑
G′

|Cnkmk′(G′)|2

|k − k′ −G′|2
, (2.34)

where
Cnkmk′(G′) =

∑
G

c∗nk(G)cmk′(G + G′), (2.35)

and cnk(G) are plane wave coefficients. Treatment of the divergent term k = k′ and G′ = 0
follows Ref. [31], while the calculation of the PAW corrections is described in Ref. [20].

2.3 Computational details
By default, the calculation of the self-energy is fully parallelized over q points. As shown for
the example of 8 q points in Fig. 2.2, the parallelization is very efficient, meaning that the
total computational time scales very well with the number of available cores. For every q, the
inverse dielectric function ε−1

GG′(q, ω) is calculated on a given frequency grid as a matrix in G
and G′ using the GPAW implementation of the linear density response function as described
in Ref. [24], but modified for time-ordering. From this, the screened potential WGG′(q, ω) is
constructed. Then, Eqs. 2.2 and 2.9 are evaluated for every matrix element |nk〉 as described
in the previous section. For calculations including the Γ point only, that means finite systems,
parallelization over bands m is used instead. Since the arrays ε−1

GG′(ω) and WGG′(ω) can become
very large for high plane wave cutoffs, they can be split and distributed over different cores with
additional frequency and plane wave parallelization. This reduces the required memory on each
core.
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Figure 2.3: Computational time as function of the number of (a) frequency points and (b) bands for a
bulk silicon test system with (3 × 3 × 3) k points. A cutoff energy of 100 eV (corresponding to 89 plane
waves) was used. For (a), 89 bands were included, while the PPA was applied for (b). The time spent
on the calculation of the screened potential only (of the self-energy from the screened potential only) is
shown in red (blue). Dashed lines are linear fits to the data points.

The calculation of Σnk scales as Nω ×Nb ×N2
k ×N2

G with number of frequency points, bands,
k points and plane waves, respectively. This is demonstrated in Figs. 2.3 and 2.4 for a silicon
bulk test system on a single 64-bit Intel Xeon core. The graphs also show that the ratio of the
computational times spent on the calculation of the screened potential and the self-energy alone
depends strongly on the parameters used. For a large number of k points, the computation of
the screened potential becomes the bottleneck, since this has to be done seperately for every q
in the 1. Brillouin zone and the calculation of the response function (2.6) itself involves a sum
over all k points.

2.3.1 Parameters
All parameters for a GW calculation are defined in a GW object and are listed in Table 2.1.

• file is a GPAW file from which all wavefunctions |nk〉 and energy eigenvalues εs
nk used

as starting point as well as general informations on the system are read. It is created in a
preceeding groundstate calculation.

• nbands is the number of bands to be included in the summations for the response function
(2.6) and the self-energy (2.2).

• bands is a list of band indices for which the quasi-particle spectrum 2.7 should be evalu-
ated. Often, only a few bands around the Fermi level are requested.

• kpoints is a list of k-point indices for which the quasi-particle spectrum 2.7 should be
evaluated. This can be a line of points along a certain direction of the Brillouin zone, for
example.

• e skn can be defined to use self-defined starting point eigenvalues εs
nk different from the

groundstate. This can be used to perform eigenvalue self-consistent GW calculations, for
instance.
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Figure 2.4: Computational time as function of the squared number of (a) k points and (b) plane waves
for a bulk silicon test system. For (a), 89 bands and plane waves and for (b), 100 bands and (3 × 3 × 3) k
points were used. The PPA was applied in all calculations. The number of k points in (a) correspond to
samplings of (2×2×2) up to (9×9×9). The number of plane waves in (b) correspond to cutoff energies
from 50 up to 300 eV.

• eshift shifts all unoccupied bands of the starting point energy eigenvalues by the given
value in eV. This corresponds to applying a constant scissors operator like the derivative
discontinuity, for example.

• w defines the frequency grid on which ε(ω) and W(ω) are evaluated. In the static COH-
SEX approximation, it is simply put to ω = 0, while the two values ω1 = 0 and ω2 = iE0

are used in the PPA. For the full frequency-dependent method, a non-uniform grid is
created as depicted in Fig. 2.5.

• ecut is the plane wave energy cutoff in eV and determines the size of the matrices εGG′

and WGG′ (local field effects). For every q, all plane waves with a maximum kinetic
energy (G + q)2/2 = Ecut are included.

• eta is the broadening parameter given in eV for the calculation of the response function
(2.6) and in the PPA for Eq. (2.17). For the static COHSEX approximation, it is set to
η = 0.0001 eV, while it is chosen accordingly to the frequency grid for the full frequency-
dependent method as η(ω) = 4∆ω.

• ppa enables the use of the Plasmon Pole Approximation.

• E0 defines the PPA fitting frequency.

• hilbert trans can be used to switch between the two different ways of calculating the
self-energy in the full frequency-dependent method, as explained in Section 2.1.1.

• wpar is the number of cores for parallelizing over frequencies and plane waves in the full
frequency-dependent method.

• vcut=’2D’ enables use of the Coulomb truncation.

• txt defines the name of the file to which the output from the GW calculation is written.
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Table 2.1: Parameters of the GW object. The number of bands, nbands, and the plane wave cutoff

energy, ecut, are always equal in the calculation of the response function (2.6) and the self-energy (2.2).

name type default value
file string None
nbands integer equal to number of plane waves
bands numpy.ndarray all up to nbands
kpoints numpy.ndarray all irreducible k points
e skn numpy.ndarray None
eshift float None
w numpy.ndarray None
ecut float 150 eV
eta float 0.1 eV
ppa boolean False
E0 float 27.2114 eV
hilbert trans boolean False
wpar integer 1
vcut string None
txt string None

Figure 2.5: For the full frequency-dependent method, a non-uniform grid is defined by w = [wlin,
wmax, dw]. It is linear in the lower part up to wlin with a constant grid spacing dw. Above wlin, the
grid spacing increases linearly up to the maximum frequency wmax.

Two functions can be used from the GW object:

• get exact exchange(ecut=None, communicator=world, file=’EXX.pckl’)

calculates the exact exchange and exchange-correlation contributions and stores the re-
quired matrix elements 〈nk|Vx|nk〉 and 〈nk|Vxc|nk〉 for later use.

• get QP spectrum(exxfile=’EXX.pckl’, file=’GW.pckl’)

performs the actual GW calculation and adds the different contributions for the QP spec-
trum together.

Further details are documented on the GPAW homepage [32].

2.3.2 Convergence
In principal, all GW calculations need to be checked carefully for convergence with respect
to all parameters used. The broadening parameter η and the fitting frequency E0 for the PPA,
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Figure 2.6: Dependence of the direct band gap at the Γ point on the (a) fitting parameter E0 and (b)
broadening η in the PPA for a bulk silicon test system with (3×3×3) k points. A cutoff energy of 100 eV
and 89 bands were used. All calculations were performed with the LDA functional as starting point, that
means G0W0@LDA.

however, are often kept at their default values of 0.1 eV and 1 Hartree, respectively, since results
are rather insensitive to variations around them. This is illustrated in Fig. 2.6 for the case of the
direct band gap of silicon.

For the full frequency-dependent method, results have to be converged with respect to the
frequency grid used, e.g. the density and the total number of frequency points. This is shown
in Fig. 2.7 (a) for the dependence of the Γ-point band gap on the linear grid spacing ∆ω and
the frequency ωlin up to which the grid is linear. The maximum frequency is kept constant
at 150 eV. In general, ωmax only needs to be slightly larger than the largest energy difference
εs

nk−ε
s
mk−q that occurs in the summation (2.2), as can be seen in Fig. 2.7 (b). The frequency grid

should reflect the spectral structure which exhibits in principal very sharp and irregular features
for low energies, while it is more broad and smooth in the high range. Well converged results are
usually found for ∆ω = 0.05 eV and ωlin = ωmax/3, which results in a few thousand frequency
points in practice. Choosing a nonuniform grid in this way may increase the computational
speed significantly without any loss of accuracy.

Much more care is to be taken for the convergence with respect to the number k points and
the plane wave cutoff. This already holds for the exact exchange contributions, as demonstrated
in Fig. 2.8, which shows the Hartree-Fock band gap. The HF bandstructure was obtained non-
selfconsistently from LDA wavefunctions and eigenvalues as:

εHF
nk = εs

nk + 〈nk|Vx − Vxc|nk〉 . (2.36)

Due to the long-range nature of the exchange potential, a high number of k points is required in
order to obtain well-converged results. However, the k-point dependence of the GW self-energy
is less severe, since the screened interaction is more short-ranged. As shown in Fig. 2.9 (a),
the GW band gap converges much faster with respect to k points, while the dependence on the
plane wave cutoff energy is similar. Furthermore, the curves showing the dependence on the
cutoff energy only differ by a vertical offset for different k-point samplings. That means, that
results converge independently with respect to these two parameters.

On the other, hand it becomes clear from Fig. 2.9 (b) that the convergence of the band gap
with respect to the number of bands is not independent from Ecut. A too low plane wave energy
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Figure 2.7: Convergence of the direct band gap at the Γ-point with respect to the frequency grid for
the silicon test system with (3 × 3 × 3) k points, 100 eV plane wave cutoff energy and 89 bands. For
(a), the maximum frequency is 150 eV and for (b), the linear grid spacing is 0.1 eV. EΓ

gap is found to be
well converged (within 20 meV) for ∆ω = 0.1 eV and ωlin = 50 eV. This corresponds to 548 frequency
points. ωmax hardly effects the results as long as it is larger than 100 eV (the energy difference between
the highest and the lowest band).

cutoff may lead to a wrong value, which seems converged with respect to the number of bands,
Nb. Therefore, Nb should always be adapted to Ecut.

These observations allow for a general strategy for convergence tests: One series of calcu-
lations with varying Ecut for a low k-point sampling and another series with increasing number
of k points for a fixed (low) value of the cutoff energy. It is convenient to check the convergence
for the non-selfconsistent HF bandstructure, which is usually fast and easy to do. Thereby, the
computational efforts can be minimized. From these results, the ‘optimal’ parameters for the
actual GW calculation can be determined. The number of bands included in the evaluation of
the self-energy should be chosen so that the energy of the highest band is close to the plane
wave cutoff energy. This is the default option. The use of the Plasmon Pole approximation is
about 5-20 times faster than the full frequency dependent method. Its quality, however, needs
to be checked for every system.

These observations only serve as a rough guideline. For different materials, the convergence
behavior can change significantly. They will be one central topic in the following chapters.

To conclude this chapter, a typical input script and the corresponding output are shown in
Figs. 2.10 and 2.11. The direct QP band gap of bulk silicon can be read off from the last lines
of the output as 3.28 eV, which is very close to the experimental value of 3.40 eV [34] and in
good agreement with other implementations [23, 35]. In order to determine the indirect gap, a
finer k-point sampling should be used.
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Figure 2.8: Hartree-Fock Γ-point band gap of bulk silicon as function of the (a) plane wave cutoff energy
and (b) k-point sampling. The calculations were performed non-selfconsistently from LDA wavefunc-
tions and eigenvalues. Good convergence is reached for Ecut = 150 eV, while a k-point sampling of at
least (9 × 9 × 9) is required.
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Figure 2.9: G0W0 Γ-point band gap of bulk silicon as function of (a) plane wave cutoff energy and (b)
number of bands. For (a) the number of bands equal the number of plane waves corresponding to Ecut,
while (3 × 3 × 3) k points were used for (b). All calculations were performed with LDA wavefunctions
and eigenvalues as starting point. The exact exchange contributions were determined seperately with
a higher, fixed value of Ecut. That means, that the curves shown depend on the correlation part of the
self-energy only (for a given k-point sampling). In comparison to Fig. 2.8, the scale on the y-axis is much
smaller.
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import numpy as np

from ase.structure import bulk

from gpaw import GPAW, FermiDirac

from gpaw.wavefunctions.pw import PW

from gpaw.response.gw import GW

a = 5.431

atoms = bulk(’Si’, ’diamond’, a=a)

calc = GPAW(mode=PW(200),

kpts=(9,9,9),

xc=’LDA’,

eigensolver=’cg’,

occupations=FermiDirac(0.001),

txt=’Si groundstate k9.txt’)

atoms.set calculator(calc)

atoms.get potential energy()

calc.diagonalize full hamiltonian()

calc.write(’Si groundstate k9.gpw’,’all’)

gw = GW(file=’Si groundstate k9.gpw’,

nbands=None,

bands=np.array([2,3,4,5]),

kpoints=None,

ecut=150.,

ppa=True,

txt=’Si GW k9 ecut150.out’)

gw.get exact exchange()

gw.get QP spectrum()

Figure 2.10: Example script for a GW calculation in GPAW for bulk silicon. A plane wave basis up to
a kinetic energy of 200 eV and the LDA functional is used for the groundstate. The G0W0 bandstructure
is evaluated for all k points in the irreducible Brillouin zone for a (9 × 9 × 9) k-point sampling and the
two highest valence and two lowest conduction bands. The plane wave cutoff is 200 eV (as given by the
groundstate calculation) for the exact exchange contributions and 150 eV for the self-energy.
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GPAW version 0.9.1.10481

-----------------------------------------------

GW calculation started at:

Tue Aug 20 00:10:28 2013

-----------------------------------------------

Use eigenvalues from the calculator.

------------------------------------------------

calculating Exact exchange and E XC

Use planewave ecut from groundstate calculator: 200.0 eV

------------------------------------------------

non-selfconsistent HF eigenvalues are (eV):

[[[ 4.16253746 4.16271098 12.19495873 12.19495872]

...

[ 2.42342032 2.4234209 10.83576913 13.33986919]]]

Lowest eigenvalue (spin=0) : -6.831460 eV

Highest eigenvalue (spin=0): 148.298072 eV

Plane wave ecut (eV) : 150.0

Number of plane waves used : 169

Number of bands : 169

Number of k points : 729

Number of IBZ k points : 35

Number of spins : 1

Use Plasmon Pole Approximation

imaginary frequency (eV) : 27.21

broadening (eV) : 0.10

Coulomb interaction cutoff : None

Calculate matrix elements for k = :

[ 0. 0. 0.]

...

[ 0.44444444 0.44444444 0.44444444]

Calculate matrix elements for n = :

[2 3 4 5]

calculating Self energy

Finished iq 0 in 0:24:23, estimated 18:41:31 left.

...

Finished iq 45 in 18:25:56, estimated 0:15:34 left.

W wGG takes 14:59:26

Self energy takes 3:26:31
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reading Exact exchange and E XC from file

------------------------------------------------

Kohn-Sham eigenvalues are (eV):

[[[ 5.13518868 5.1351951 7.66534713 7.66534713]

...

[ 3.96136002 3.96136002 6.58726608 8.45939817]]]

Occupation numbers are:

[[[ 2.00000000e+00 2.00000000e+00 7.44015195e-44 7.44015195e-44]

...

[ 2.00000000e+00 2.00000000e+00 7.44015195e-44 7.44015195e-44]]]

Kohn-Sham exchange-correlation contributions are (eV):

[[[-13.52403727 -13.52403428 -11.78313739 -11.78313739]

...

[-13.20283986 -13.20283986 -12.62234213 -10.9711573 ]]]

Exact exchange contributions are (eV):

[[[-14.49668849 -14.49651839 -7.25352579 -7.2535258 ]

...

[-14.74077956 -14.74077899 -8.37383909 -6.09068628]]]

Self energy contributions are (eV):

[[[ 0.43563965 0.43563883 -4.09443116 -4.09443151]

...

[ 0.93440746 0.93438013 -3.82047071 -4.44281029]]]

Renormalization factors are:

[[[ 0.77244275 0.77244309 0.77209811 0.77209854]

...

[ 0.76569843 0.76569572 0.78009198 0.77452521]]]

GW calculation finished in 18:57:06

------------------------------------------------

Quasi-particle energies are (eV):

[[[ 4.72037799 4.72051267 8.00134912 8.00134904]

...

[ 3.49923634 3.49921748 6.92117067 8.79837744]]]

Figure 2.11: (Abridged) output from the example script. The calculation ran on two 8-core HP DL160
G6 nodes with two 64-bit Intel Nehalem Xeon X5570 quad-core CPUs each running at 2.93 GHz [33].
Results are sorted by spins (blocks), k points (rows) and bands (columns).

31





CHAPTER 3

SOLIDS

Any new implementation needs to be tested thoroughly and compared with other exisiting
codes. The GW method has been known for more than 50 years and has been applied to real
systems since the late 1980’s. Up to today, a large number of results from GW calculations for
simple materials have been well established in literature. Only about 10 years ago, progress
in the development of computational resources made it possible to investigate more complex
structures and perform calculations for a broader range of systems. But even though the GW
method is now a standard tool in many electronic structure codes and its advantages and draw-
backs have been intensively discussed, it has not been used in systematic studies in the same
way as traditional methods, namely DFT, have. This is mostly due to its immense computational
requirements. However, as more powerful supercomputers become available, this is starting to
change and numerous applications are gaining interest.

This chapter starts with a discussion of results for a number of simple semiconductors and
insulators – systems which have been extensively studied both in theory and by experiment –
and an assessment of the different approximations. Band gaps obtained at the G0W0@LDA
level are in very good agreement with results from literature and experimental data. The Plas-
mon Pole approximation is found to perform very well, whereas the static COHSEX fails com-
pletely. LDA as a standard DFT functional drastically underestimates band gaps, due to two
main problems: First, it contains large self-interaction errors. These can be reduced if hybrid
functionals are used instead. Hartree-Fock on the other hand is self-interaction free, but com-
pletely neglects correlation effects and thereby overshoots gaps. Secondly, density functional
theory suffers in general from the so-called band gap problem. Here, the band gap is defined as
the difference between Kohn-Sham energies at the conduction band minimum and the valence
band maximum, which is not equal to the fundamental or quasiparticle band gap. The difference
is given by the derivative discontinuity, ∆xc [4].

Of special interest is therefore a comparison with the GLLBSC potential [36, 37], which is
non-local and allows for the calculation of ∆xc. With only slight additional computational effort,
it cures some of the main deficiencies of DFT.

Investigation of the quasiparticle bandstructure illustrates that the main effect of the GW
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approximation lies in an almost constant shift of the occupied and unoccupied bands, similar to
the application of a scissors operator.

Following is a G0W0 study of gold as one example of a metallic system, where the band-
structure is effected in an inhomogeneous way.

Furthermore, the GW method is applied to a series of layered perovskites, which are poten-
tial new candidates for photocatalytic water splitting. In order for a semiconductor to be capable
of converting sunlight into electrical energy, one requirement is that its electronic band gap lies
within a certain energy window. The G0W0 calculations help to confirm results from a vast
screening study, performed with the GLLBSC potential. In this way, efficiency and accuracy
can be combined in the search for new materials.

Finally, a comparison of calculated band gaps with G0W0, GLLBSC and the hybrid func-
tional HSE06 is made for 20 randomly chosen materials with different geometry and chemical
properties, for which no experimental data is available, providing an estimate of the accuracy
of the different methods.
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Figure 3.1: Calculated vs. experimental band gaps for Ne, Ar, LiF, MgO, AlN, BN, C, NiO, ZnS, ZnO,
GaN, AlP, CdS, SiC, GaAs, Si and Ge (from right to left in descending order). Data taken from Refs. [38]
and [39].

3.1 Semiconductors and insulators

3.1.1 Band gaps

The GW approximation is a true ab-initio method and therefore universally applicable for elec-
tronic structure calculations. This is in contrast to DFT, in which a thoughtful choice of the
functional has to be made, depending on the kind of system and the properties one is inter-
ested in. Most functionals are designed to meet special requirements, often by fitting them to
experimental data of a test set. This leaves them with a big uncertainty when applied to new
materials and errors are often hard to estimate. On the other hand, the GW approximation is
based on fundamental physical observations. As pointed out in Sec. 1.4, its validity is well
justified for weakly correlated systems, in which correlation is dominated by screening effects.
Screening is expected to play a particularly large role for systems with a small band gap, while
it diminishes for large gaps. Therefore, GW acts as an intermediate between many of the DFT
functionals, which overestimate screening and thereby underestimate band gaps, and Hartree-
Fock theory, which does not contain screening at all. HF band gaps are typically found to be
much too large. An interesting alternative is given by the hybrid functionals, in which a fraction
of the DFT exchange is replaced by exact exchange and which thus balance between the two
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Table 3.1: Crystal structures for the ten semiconductors and insulators studied.

structure lattice constant in Å
Si diamond 5.431
InP zincblende 5.869
GaAs zincblende 5.650
AlP zincblende 5.451
ZnO zincblende 4.580
ZnS zincblende 5.420
C diamond 3.567
BN zincblende 3.615
MgO rocksalt 4.212
LiF rocksalt 4.024
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Figure 3.2: Convergence of the direct QP band gap of diamond with respect to (a) plane wave cutoff

energy and number of bands for a (9× 9× 9) k-point sampling and (b) number of k points for 200 bands.

opposites. Typical results from literature are shown in Fig. 3.1 for Hartree-Fock, the local den-
sity approximation (LDA), the generalized gradient approximation PBE functional by Perdew,
Burke and Ernzerhof [40], the range-seperated hybrid HSE functional by Heyd, Scuseria and
Ernzerhof [41] and G0W0@PBE. They clearly illustrate the above mentioned problems of DFT
and HF.

As a first test application for the GW implementation in GPAW, ten different semiconductors
and insulators with band gaps ranging from 1 to 15 eV of both direct and indirect nature have
been chosen. Their geometric structures are listed in Table 3.1. For the groundstate calculations
and evaluation of the exact exchange contributions, a plane wave basis set with a kinetic energy
up to 800 eV was used. All GW calculations were performed with LDA wavefunctions and
eigenvalues as starting point, that means G0W0@LDA. Convergence with respect to k points,
plane wave cutoff energy and number of bands was checked for all systems individually. This
is shown for the direct band gap of C as one example in Fig. 3.2. For all systems, convergence
within around 20 meV is reached for Ecut = 200 − 300 eV and a few hundred empty bands. A
k-point sampling of (9 × 9 × 9) was found sufficient for InP, GaAs, ZnO, ZnS, MgO and LiF,
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Figure 3.3: Calculated band gaps for the different methods described in the text

which all have a direct band gap at the Γ-point, whereas (15×15×15) k points were used for Si,
AlP, C, BN, which have an indirect band gap. The finer k-point sampling also ensures a good
resolution of the bandstructure to determine the valence band maximum and conduction band
minimum.

A frequency grid with typically 1000 to 3000 grid points was used for the full frequency
dependent method. The broadening parameter η was set to 0.2 eV in the Plasmon Pole approx-
imation and 10−4 eV in the static COHSEX approximation.

Additional calculations were done with non-selfconsistent HF from LDA orbitals and ener-
gies and with PBE0, a hybrid method based on the PBE functional, in which 1/4 of the PBE ex-
change contributions are non-selfconsistently replaced by exact exchange. Further comparisons
were made with self-consistent GLLBSC calculations [37], which use the PBEsol correlation
potential [42] and an efficient orbital-dependent approximation to the exact exchange optimized
effective potential [43].

The calculated band gaps are summarized in Table 3.2 and Fig. 3.3 and compared to ex-
perimental reference data. In all cases, LDA drastically underestimates the band gap by up to
a factor of 4, as for GaAs. It performs poorly for both the systems with low and with large
gaps with a mean absolute error (MAE) of 2 eV and a mean relative error (MRE) of around 50
%. Even larger errors are found for Hartree-Fock with 5.7 eV (180 %) on average. The highest
deviations occur for Si, InP and GaAs. Screening is particularly important in these systems with
small gaps. The relative error decreases from 350 % for Si to 50 % for LiF. The results for PBE0
lie inbetween these two extremes, as expected for a hybrid method. Quantitative agreement,
however, is still poor, in particular for systems with small band gaps. The static COHSEX ap-
proximation seems to give a slight improvement over LDA with 1.5 eV MAE. However, some
results are even qualitatively wrong. For example, it predicts indirect band gaps for InP and

38



3.1. SEMICONDUCTORS AND INSULATORS

Table 3.3: Comparison of G0W0 band gaps. Details about methodological differences are described in
the text.

present Ref. [39] Ref. [45] experiment
Si 1.13 1.12 0.90 1.17
InP 1.36 . 1.25 1.42
GaAs 1.75 1.30 1.31 1.52
AlP 2.42 2.44 2.15 2.45
ZnO 2.24 2.12 . 3.44
ZnS 3.32 3.29 3.24 3.91
C 5.66 5.50 5.49 5.48
BN 6.34 6.10 . 6.25
MgO 7.61 7.25 6.77 7.83
LiF 13.84 13.27 . 14.20
MAE 0.31 0.43 0.38

GaAs, whereas ZnO becomes almost metallic. Also for ZnS, the gap is even smaller than with
LDA. This means that the inclusion of only static screening is clearly insufficient. On the other
hand, G0W0 results are in very good agreement with experiment when dynamical screening is
taken into account, both with PPA and full frequency dependence with mean errors of 0.35 eV
(9,5 %) and 0.31 eV (8,6 %), respectively. For all systems studied, the PPA turns out to be an
excellent approximation to the frequency dependence of the dielectric function with obtained
band gaps deviating by 0.2 eV at most for LiF.

Table 3.3 shows a comparison with two similar GW studies. In Ref. [39], the full frequency-
dependent G0W0 was used with PBE wavefunctions and eigenvalues as starting point. The
implementations are to a large extent similar. One difference worth mentioning is the inclu-
sion of core-valence interaction in the exchange part [23], which is not present in this work.
The results agree very well with an average absolute deviation of 0.21 eV. The only notable
differences are for GaAs and the two materials with the widest gaps, MgO and LiF, probably
due to the choice of a different starting point. The band gaps of Ref. [45] were obtained with
full frequency-dependent G0W0@LDA and are systematically smaller by 0.31 eV on average.
That implementation uses a mixed basis set in an all-electron linear muffin-tin orbital frame-
work, which is fundamentally different from the PAW method. Better quantitative agreement
can therefore not be expected. Other recent works [46–48] report band gaps in the same range
as the values presented here.

Overall, the G0W0 approximation gives very good band gaps for most of the semiconduc-
tors and insulators in this study. Noticeable deviations from the experimental values are only
found for LiF and ZnO where the calculated gaps are about 0.4 and 1.2 eV too small, respec-
tively. For LiF, results are very sensitive to changes in the lattice constant. A slightly smaller
lattice constant of 3.972 Å, which is the experimental value corrected for zero-point anharmonic
expansion effects [49], yields a 0.4 eV larger band gap.

The quasiparticle band gap of ZnO has been intensively discussed in literature. Calculated
G0W0 are typically 1 eV too low [50–53], both in the zincblende and the wurtzite structure. The
results presented here are for the zincblende structure only, although this phase is not found to be
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Figure 3.4: Convergence of the band gap of zinc oxide for G0W0@LDA with the plasmon pole approx-
imation. The number of bands is chosen equally to the number of plane waves corresponding to the
respective cutoff energy, i. e. 300 eV equal ∼ 1100 plane waves and bands.

stable in experiment [54]. It was chosen for consistency with Ref. [39]. Additional calculations
for the wurtzite structure gave around only 0.1 eV smaller gaps, both with LDA, G0W0@LDA
and GLLBSC. Thus, all conclusions made here are expected to hold for the wurtzite structure
as well. In Refs. [55] and [56], the low value of the QP band gap was attributed to a very
slow convergence of the self-energy with respect to the number of bands. Ref. [55] finds a
converged band gap of 3.4 eV for 3000 bands using pseudo-potentials, whereas the all-electron
calculations of Ref. [56] yield only 2.99 eV after extrapolation to infinite number of bands.
Both studies used the LDA functional as starting point. In the present work, good convergence
is already reached for Ecut = 100 eV and around 200 bands, as can be seen in Fig. 3.4. A
major technical difference between the current implementation and the one of Ref. [55] is the
model used for the Plasmon Pole approximation, namely the method by Godby and Needs in
contrast to the one by Hybertsen and Louie [35]. The latter fits the model dielelectric function
only to the static limit, but requires Johnson’s f -sum rule [57] to be fulfilled. However, as
pointed out in Ref. [58], this can lead to a wrong convergence behavior and too large band gaps
for ZnO as compared to evaluating the frequency dependence explicitely. This is consistent
with the results presented here, where the PPA reproduces the results from the full frequency-
dependent method. The calculations in Ref. [56] in a full-potential linearized augmented-plane-
wave method on the other hand depend strongly on the special set of basis functions chosen.
In Ref. [59], an effective-energy technique was applied, which avoids the summations over an
in principle infinite number of empty states. In this way, a band gap of 2.56 eV was obtained.
The drastic underestimation of the band gap of ZnO thus seems to be a systemtatic error of
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G0W0 on top of LDA or GGA. In Ref. [60], this was explained by a wrong positioning of
the d-bands. With an onsite DFT+U correction, a band gap of 3.30 eV was found, in very
good agreement with experiment. Good results were also achieved using HSE as starting point,
yielding 3.22 eV [60] and 3.14 eV [61] and eigenvalue self-consistent GW calculations with
3.20 eV [39].

The orbital-dependent GLLBSC potential gives overall good band gaps with a mean aver-
age error of 0.41 eV compared to experiments and close to the GW results for most systems.
Only for GaAs, the band gap is found considerably lower, while it is too large for MgO and LiF.
As with GW, the band gap of ZnO is underestimated by more than 1 eV. In all GLLBSC cal-
culations, the derivative discontinuity is added explicitely to the eigenvalues of the unoccupied
bands. This shift is around 50 % of the Kohn-Sham band gap for the investigated structures and
has therefore an essential impact on the bandstructure.

3.1.2 Bandstructures

The bandstructure of diamond is shown in Fig. 3.5 (a) for LDA and G0W0@LDA. With both
methods, the valence band maximum is at the Γ point and the conduction band minimum close
to the X point along the Γ-X direction giving an indirect band gap of 4.12 eV and 5.66 eV,
respectively. With the GW approximation, the valence bands are shifted down in energy by
around 0.7 eV. The opposite holds for the conduction bands, which are shifted up in energy by
roughly the same value. Thus, the effect of the GW self-energy is an opening of the band gap.
These shifts are almost constant across the whole Brillouin zone, leaving the shape of the bands
unchanged. This is comparable to applying a scissors operator.

The same holds for Si, as shown in Fig. 3.5 (b), with a constant downshift of the occupied
bands of around 0.5 eV, and a constant upshift of the unoccupied bands of around 0.3 eV. This
leads to an increase of the indirect band gap, which is located between the Γ- and a point close
to X.

For GaAs, as shown in Fig. 3.5 (c), the main effect of the GW approximation can be seen
in the conduction bands, whereas the valence bands remain nearly unchanged. Unlike for the
previous two examples, the shift of the unoccupied bands to higher energies is not entirely con-
stant but varies between 0.4 and 1.0 eV. The largest change occurs at the Γ-point, giving rise to
a significant increase of the direct band gap. Thereby, the calculated G0W0 gap is exceptionally
high compared to experiment and previous studies.

Overall, for a number of simple semiconductors and insulators, the self-energy can be ap-
proximated by a simple scissors operator to correct the Kohn-Sham energy spectrum in an easy
and efficient way [62].

3.2 Metals

In noble metals, many-body correlation effects typically influence the bandstructure in a non-
trivial way, which cannot be accounted for by a simple scissors operator. Self-energy corrections
are found to be band and k-point dependent and may not even be of the same sign among
occupied and unoccupied bands [63]. A correct quasiparticle description is thus essential in
order to determine the electronic structure correctly, in particular the position and width of the
d bands and energies of interband transitions [64, 65].
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Figure 3.5: Bandstructure of (a) diamond, (b) Si and (c) GaAs, interpolated by splines from a (15× 15×
15) k-point sampling. Bands are aligned to the respective LDA valence band maximum.
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Figure 3.6: Calculated bandstructure of fcc gold with LDA (black lines) and G0W0@LDA with PPA (red
dots) and full frequency dependence (blue diamonds). The highest occupied bands have 5 d character,
whereas the lowest unoccupied band arises from 6 sp electrons. The Fermi level is set to 0.

Fig. 3.6 shows the Kohn-Sham and quasiparticle bandstructure of gold in the fcc structure
with a lattice constant of 4.079 Å, obtained with the LDA functional and with G0W0@LDA,
respectively. Only 5 d and 6 sp states were considered for valence electrons. With the GW
approximation, the d-band width increases by up to 0.5 eV, since the upper bands are moved
up in energy while the lower bands are moved down. Larger deviations up to 1 eV are found
for the low-lying s and the unoccupied s-p band. However, the effects are significantly smaller
when the full frequency dependent method is used instead of the Plasmon Pole approximation.
It is clear that the shifts in energy are not constant throughout the Brillouin zone but vary for
different k points and bands.

The effect of including 5 sp semicore states is shown in Fig. 3.7 with PBE wavefunctions
and eigenvalues as starting point. Chosing the PBE instead of the LDA functional does not
change the Kohn-Sham bandstructure. The semicore states, which lie around 50 eV deeper in
energy than the valence states, have no impact on the electronic structure around the Fermi level
within DFT. On the other hand, significant changes can be seen within the GW approximation,
in particular a downshift of the d bands when the semicore states are included. These shifts
arise mainly from the exact exchange contributions.

These results agree well with the calculations of Ref. [66] using pseudopotentials. In that
study, it was shown that QP self-consistent GW calculations are necessary in order to bring
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Figure 3.7: PBE (black lines) and G0W0@PBE bandstructures without (green triangles) and with (purple
squares) inclusion of 5 sp semicore states. GW calculations were performed with the Plasmon Pole
approximation.

the position of the d bands in better quantitative agreement with experiments. Also, spin-orbit
coupling and relativistic effects should be considered.

3.3 Perovskites

Perovskites are a group of structures of the same kind as CaTiO3 with the general chemical
formula ABX3, where A and B is a large and a small cation, respectively. X is an anion, com-
monly oxygen, nitrogen or halogens. In extensive screening studies, new potential candidates
for one- and two-photon water-splitting could be identified among 19.000 oxides, oxynitrides,
oxysulfides, oxyfluorides and oxyfluoronitrides in the cubic perovskite structure [67, 68]. One
important requirement for a material to be a good photocatalyst, that means to be able to con-
vert sunlight into chemical energy, is that the electronic band gap lies within the visible light
range and is well positioned with respect to the redox potential of water. For the one-photon
water-splitting process, this implies a gap between 1.5 and 3 eV with a valence band edge above
1.23 eV and a conduction band edge below 0 eV. Furthermore, high charge carrier mobility and
chemical and structural stability are needed. In these studies, the GLLBSC potential was used
for the calculation of the electronic bandstructure, after being tested on a set of 40 metal oxides
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for which a good overall agreement with experimental data was found [67].
In order to further assess the reliability of this method, additional GW calculations were per-

formed for 20 cubic perovskites for which the desired electronic properties had been predicted
by GLLBSC. Throughout the study, a (7 × 7 × 7) k-point sampling, 150 eV plane wave cutoff

energy and 150 bands have been used. A careful examination of the convergence of the band
gap was done for LaTiO2N as one example and is illustrated in Fig. 3.8. The chosen parameters
gave a good balance between efficiency and accuracy. Furthermore, the PPA was compared to
the full frequency dependent method for this system, giving almost identical values for the band
gap. Since the number of atoms and the symmetry group are identical for all structures, the
same set of parameters was used consistently. Also, the number of valence electrons is similar
in all cases. The expected accuracy is around 0.1 eV.

Fig. 3.9 shows the calculated band gaps from LDA, PBE0, G0W0 and GLLBSC, respec-
tively. GLLBSC results are shown with and without the derivative discontinuity, ∆xc, added to
the Kohn-Sham gap. In all cases, ∆xc increases the gap by around 30 % and gives therefore an
essential contribution to the total gap. The total gaps from GLLBSC agree well with the quasi-
particle gaps from G0W0 with a mean average error of 0.3 eV. In comparison, the PBE0 results
deviate much stronger and are considerably higher in some cases. LDA gaps are drastically
lower, indicating a very poor description of the electronic structure for all systems in this study.

In conclusion, the results suggest that the GLLBSC potential can provide a cheap way to de-
termine electronic band gaps of novel materials, that are possible candidates for photocatalytic
water splitting, with much better accuracy than convential functionals. The G0W0 approxima-
tion as a much more advanced method, on the other hand, is orders of magnitude slower and
can therefore not be used for screening purposes. It can, however, help to confirm the outcomes
of GLLBSC calculations for systems which seem especially promising.

3.4 The Materials Project database

The Materials Project database [69] contains results from computational studies of the elec-
tronic structure of materials from the ICSD database [70], which is the most complete repository
for experimental data of crystal structures. It serves as a complementary source of information
for materials, where no or only insufficient experimental results for the electronic structure is
available and helps to analyse and compare theoretical findings. High-throughput materials de-
sign has become feasible in the last decade due to the rapid increase in computational resources.
However, this is still out of reach for many-body methods like the GW approximation and there-
fore, cheaper methods have to be used instead, generally at the cost of reduced accuracy.

Here, the electronic structure of 20 randomly chosen compounds from the Materials Project
database is calculated with G0W0@LDA and compared to LDA, GLLBSC and HSE06, a range-
separated hybrid functional [71, 72].

Quasiparticle gaps were obtained in the G0W0 approximation in a plane wave representation
using LDA wavefunctions and eigenvalues as input. The initial Kohn-Sham states and energies
have been calculated in a plane wave basis with kinetic energies up to 600 eV. The same value is
used for determining the exact exchange contributions. The GW self-energy has been carefully
converged with respect to k points, number of bands and plane wave cutoff energy for each
material individually. Typically, a (7 × 7 × 7) k-point sampling, 100 - 200 eV energy cutoff

and unoccupied bands up to the same energy (a few hundred bands in total) were found to
be sufficient in order to converge band gaps within less than 0.1 eV. Both, the Plasmon Pole
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Figure 3.10: Γ point band gaps for 20 structures from the Materials Project database. The results shown
for G0W0 were obtained with the full frequency dependent method.

Table 3.4: Mean absolute errors in eV of the Γ-point band gap of the materials from Fig. 3.10 for the
different methods compared to each other.

GLLBSC G0W0

LDA PBE w/o ∆xc incl. ∆xc @LDA HSE06
LDA . 0.15 1.07 2.13 1.56 1.43
PBE 0.15 . 0.93 1.98 1.41 1.28
GLLBSC w/o ∆xc 1.07 0.93 . 1.01 0.56 0.53
GLLBSC incl. ∆xc 2.13 1.98 1.01 . 0.75 0.86
G0W0@LDA 1.56 1.41 0.56 0.75 . 0.34
HSE06 1.43 1.28 0.53 0.86 0.34 .
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Table 3.5: Mean relative errors of the Γ-point band gap of the materials from Fig. 3.10 for the different
methods compared to each other.

GLLBSC G0W0

LDA PBE w/o ∆xc incl. ∆xc @LDA HSE06
LDA . 0.09 0.35 0.51 0.43 0.43
PBE 0.10 . 0.30 0.47 0.38 0.38
GLLBSC w/o ∆xc 0.67 0.50 . 0.25 0.15 0.16
GLLBSC incl. ∆xc 1.26 1.02 0.34 . 0.23 0.26
G0W0@LDA 0.88 0.69 0.18 0.17 . 0.08
HSE06 0.90 0.71 0.21 0.19 0.08 .

approximation and the explicit frequency dependence of the dielectric function, ε(ω), have been
used, yielding almost identical results (within 50 meV) for all materials, except for NaO3, where
the full frequency dependent method gives a ∼ 0.8 eV lower Γ point gap.

For all materials in this study, comparison between the different methods is shown by means
of the direct Γ-point gap, in order to avoid the need for interpolation of the bandstructure in
case that the minimum of the conduction band is not located at a high symmetry point in the
Brillouin zone. The results are illustrated in Fig. 3.10. Mean absolute and mean relative errors
for all methods compared to each other are given in Tab. 3.4 and 3.5, respectively. A very good
agreement is found between G0W0 and HSE06 with a mean absolute error of 0.33 eV and a
mean relative error of 0.08. Typically, HSE06 underestimates band gaps of semiconductors and
insulators [72] as it is also the case with G0W0@LDA (see previous sections). In comparison,
the GLLBSC results are much larger on average when the derivative discontinuity is included,
while the agreement with HSE06 and G0W0 is reasonably well when ∆xc is not added to shift the
unoccupied bands. Since GLLBSC + ∆xc often overestimates band gaps [67], the right values
are expected to lie somewhere in between.

The bandstructures of ZrS2 and BaHfN2 are shown as two examples in Figs. 3.11 and 3.12.
For ZrS2, no considerable differences in the two highest valence and the two lowest conduction
bands can be seen for GLLBSC, G0W0@LDA and HSE06 and the band gap at the Γ point is
thus almost the same with all three methods. This is clearly different for BaHfN2: While the
valence bands are similar, large deviations are found for the conduction bands. Throughout the
Brillouin zone, the position of the second unoccupied band is affected much stronger by the
different methods than the position of the first one. In particular, the order of bands is reversed
at the Γ point for G0W0 compared to GLLBSC, while they are almost degenerate for HSE06.

In the GLLBSC method, the derivative discontinuity, ∆xc, is added as as constant shift to
all unoccupied bands. As illustrated for BaHfN2, this might result obviously in a deficient
description of the conduction states. This might be one reason for the large discrepancies of
calculated gaps for many materials of this study.
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Figure 3.11: Bandstructure of ZrS2. Bands have been aligned to the respective valence band maxima.
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Figure 3.12: Bandstructure of BaHfN2. Bands have been aligned to the respective valence band maxima.
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CHAPTER 4

2D MATERIALS

2-dimensional (2D) materials are characterized by non-periodicity in one of the spatial direc-
tions. This includes not only flat monolayers, but also surfaces and interfaces, for example. The
physics in these systems is often completely different than in 3 dimensions.

Dynamical screening plays a particularly important role at interfaces between semiconduc-
tors, where changes in the charge density lead to the formation of an interface dipole [73], and
between metals and an insulators, where it takes the form of an image charge effect [74, 75].

One model system for studying the impact of screening and exploiting the advantages of
the GW approximation over DFT is graphene/hexagonal-boron nitride (h-BN). Recently, it has
been shown that h-BN serves as an ideal substrate for graphene, due to its great stability, low
roughness and high charge carrier mobility [76]. Furthermore, these and similar graphene-
based 2D heterostructures have opened up new possibilities for the design of novel electronic
and photonic devices with unique physical properties [77–80].

In this chapter, first the Kohn-Sham and quasiparticle bandstructures of freestanding sheets
of graphene and h-BN are discussed. Compared to LDA, G0W0 increases the Fermi veloc-
ity and the band gap, respectively. For boron nitride adsorbed on graphene, screening effects
are illustrated by varying the distance between the two slabs and by changing the number of
graphene layers. As a technical aspect, it is shown that truncating the Coulomb interaction in
the perpendicular direction is crucial for GW calculations of 2-dimensional systems.

Another 2D material, which has gained much attention in the past years is single layer
MoS2 [81–84]. Whereas strong photoluminescence suggests a direct band gap in experiment,
there is disagreement even on the type of gap in theory and among various GW studies, in
particular. Here, a very careful analysis of the dependence of the quasiparticle gap on the cell
size and the number of k points in G0W0 calculations is given. The results explain why previous
studies found reasonable band gaps, even though a Coulomb truncation had been neglected in
the calculations. The fully converged G0W0@LDA band gap is indirect with a value of 2.58 eV
when the experimental lattice constant is used. Applying strain leads to a transition to a direct
gap.
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Figure 4.1: Convergence of the direct G0W0 band gap of a freestanding h-BN sheet with respect to
(a) plane wave cutoff energy and corresponding number of bands and (b) interlayer separation with and
without truncating the Coulomb interaction in the direction perpendicular to the slab. Dashed lines are for
a (15×15×1) and straight lines for a (45×45×1) k-point sampling. The interlayer separation is defined
as the distance between the centers of the slabs in neighboring supercells. Even much higher interlayer
distances than the ones shown here would be required for the curve with the untruncated interaction to
reach the results obtained with the Coulomb truncation.

4.1 Graphene / hexagonal-boron nitride
Graphene and hexagonal-boron nitride both form perfectly flat honeycomb structures with very
similar lattice constants, which in these studies is set to the experimental value for h-BN of
2.503 Å [85] for both materials. In addition to the parameters discussed in the previous chapters
for bulk structures, GW results need to be converged with respect to the cell size for two-
dimensional materials, which defines the distance between layers in neighboring supercells.
For h-BN, the convergence behaviour of the direct band gap at the K point, calculated with
G0W0@LDA, as a function of the plane wave cutoff energy and the interlayer separation is
shown in Fig. 4.1. For the untruncated (1/r) interaction, a numerical integration around each q
point has been used for the head of the screened potential:

W00(q) =
1

Ωq

∫
Ωq

dq′ V(q′)ε−1
00 (q′)

≈
1

Ωq
ε−1

00 (q)
∫

Ωq

dq′ V(q′), (4.1)

where Ωq is a small volume around q.
Without truncating the Coulomb interaction, the value of the band gap depends strongly on

the separation and increases drastically between 5 and 15 Å. And even for 30 Å, it is far from
being converged. Using a truncation of the Coulomb potential, as described in Sec. 2.1.5, corre-
sponds to extending the interlayer separation to infinity, and thus makes the calculations largely
independent of the cell size. This results in, that with the truncation, convergence is already
reached for a separation of 20 Å. The calculated gap is significantly higher than without use of
the truncation, even for very large separations. The very slow convergence of the quasiparticle
gap and the necessity of correcting for the spurious long-range interaction in periodic supercell
calculations for slabs and surfaces has previously been discussed in Refs. [86–88]. From Fig.
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Figure 4.2: Bandstructure of graphene. The zero of energy is set to the Fermi level. Not shown are the
results with GLLBSC since they lie almost completely on top of LDA.

4.1 (a), one can see that the use of the Coulomb truncation does not affect the convergence with
respect to the plane wave energy cutoff and number of bands, which again is in all calculations
set equal to the number of plane waves according to Ecut, other than by a constant shift. This
is not the case for the k-point dependence (see Fig. 4.1 (b)). A more detailed discussion of
the convergence of the band gap of a 2D material with respect to the k-point sampling and the
interlayer separation with and without truncating the Coulomb interaction will be given in the
next section.

All further calculations are performed with 30 Å interlayer separation (unless otherwise
stated), Coulomb truncation and (45 × 45 × 1) k-point sampling. The bandstructure of a free-
standing graphene sheet is plotted in Fig. 4.2. The typical Dirac cone can be seen at the K point.
LDA and GLLBSC yield almost identical curves, whereas G0W0 affects in particular strongly
the slope of the valence and conduction band at the Fermi level. This gives a large reduction of
the Fermi velocity, which can be derived as:

vF =
a

2h
∆E
∆k

, (4.2)

where a is the lattice constant, h = 4.1357·10−15 eVs and k given in units of the reciprocal lattice
vectors. The calculated values are 0.87 ·106 m/s (LDA), 0.87 ·106 m/s (GLLBSC) and 1.17 ·106 m/s

(G0W0@LDA), respectively. The latter is in excellent agreement with corresponding results
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Figure 4.3: Bandstructure of h-BN, aligned to the top of the LDA valence band.

from previous calculations [89, 90] and state-of-the-art experiments [91].
For h-BN, the calculated valence band maximum lies with all three methods at the K point,

as shown in Fig. 4.3. However, LDA and GLLBSC predict a direct band gap of 4.57 eV and
7.94 eV, respectively, whereas an indirect gap of 6.58 eV is found with G0W0@LDA. The direct
transition at the K point is 7.37 eV. This is a result of a very inhomogeneous shift of the
conduction bands in particular, which are moved up in energy by around 3 eV at the K point,
but only by around 1.5 eV at the Γ point, compared to LDA. For GLLBSC, the effect is opposite
with a larger upshift at the Γ point. In a previous study [92], 6.37 and 6.0 eV were obtained
within the G0W0 approximation for the lowest indirect and direct quasiparticle gap, respectively.
These calculations were, however, performed for an interlayer separation of only 13.5 Å and
with a low k-point sampling. According to Fig. 4.1 (b), these parameters are not converged and
the direct band gap is therefore around 1 eV too low.

Three different possibilites of stacking one h-BN and one graphene layer on top of each
other are sketched in Fig. 4.4. Geometry optimization using the LDA functional yields the en-
ergetically most favorable structure to be configuration (c) with a distance of 3.18 Å between
the layers, which agrees well with Ref. [93]. For this geometry, the Kohn-Sham and quasiparti-
cle bandstructures are shown in Fig. 4.5. The different bands originating from either one of the
two isolated layers can easily be identified: The highest valence and lowest conduction band
still exhibit the linear dispersion at the K point typical for graphene. However, both with LDA,
GLLBSC and G0W0, a small gap of around 50 meV is introduced, which is consistent with
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Figure 4.4: Different geometric structures for a graphene/hexagonal-boron nitride heterostructure. (a)
The hexagons are placed on top of each other. (b) The N atom is placed on top of one C atom, while the
B atom is centered above a graphene hexagon. (c) The B atom is placed on top of one C atom, while
the N atom is centered above a graphene hexagon. A perspective view is chosen for clarity. Both lattices
have the same size with a lattice constant of 2.503 Å and are separated by 3.18 Å.
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Figure 4.5: Bandstructure of graphene/h-BN in the configuration (c) of Fig. 4.4 for the equilibrium
distance d = 3.18 Å.
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Figure 4.7: h-BN band gap at the K point for different numbers of adsorbed graphene layers. GLLBSC
results are shown without and with explicit inclusion of the derivative discontinuity, ∆xc, which becomes
0 when one or more graphene layers are present. A cell height of 60 Å was used.

previous calculations [93, 94]. Furthermore, the Fermi velocity is reduced to 0.78 · 106 (LDA),
0.78 · 106 (GLLBSC) and 1.01 · 106 m/s (G0W0@LDA), respectively. This decrease is expected
when graphene is adsorbed on a substrate due to an increase of the dielectric screening [95].
The second highest occupied and unoccupied bands can be attributed to the boron nitride sheet.
Especially with LDA, these bands hardly change, compared to the isolated layer, with a h-BN
gap at the K point of 4.67 eV. With G0W0, on the other hand, this gap decreases to 6.35 eV.
With GLLBSC, this value is 5.84 eV. These observations imply that, although there is no direct
coupling between the layers, the electronic structure is effected considerably by long-ranged
screening effects, which are not accounted for by a local potential.

This is further demonstrated in Fig. 4.6, where the distance between the graphene and the
boron nitride sheet is varied. The value of the h-BN gap, which is defined as the transition
energy between the second highest valence and the second lowest conduction band at the K
point, remains almost constant with LDA and GLLBSC. Only for a very small distance, a
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slight deviation is seen. This might be due to the formation of a chemical bond. For distances
larger than 4 Å, the calculated gaps are the same as for the freestanding boron nitride, which
indicates that screening is not described correctly within these methods. In contrast, the GW
gap increases monotoneously with the distance between the layers and slowly approaches the
value for a single h-BN sheet. Above 4 Å, this behaviour can be described by a function that
is inversely proportional to d, which is expected within a simple picture of nonlocal screening.
A classical image charge model predicts a 1/d dependence for the band gap reduction in a
metal/semiconductor heterojunction [74, 75].

Another way of tuning the screening in a h-BN/graphene heterojunction is to change the
number of graphene layers on which the boron nitride sheet is adsorbed. This is demonstrated
in Fig. 4.7. Again, the h-BN gap is constant within LDA and GLLBSC. For the latter, however,
there is a jump in the size of the gap when going from 0 (freestanding boron nitride) to 1
graphene layer, when the derivative discontinuity, ∆xc is explicitely included. This is simply
because ∆xc vanishes for metallic systems, as it is the case when one or more graphene layers
are present. With G0W0, the gap decreases by 1 eV, when adding one layer of graphene and by
another 0.15 eV, when adding the second layer. This can be understood in the way that a thicker
metal substrate enhances the screening which leads to a reduction of the gap. For more than two
graphene layers, the GW gap does not change any further. This would presumably correspond
to a system with a single boron nitride sheet adsorbed on bulk graphite.

4.2 Molybdenum disulfide

The quasiparticle bandstructure of monolayer molybdenum disulfide (MoS2) has been studied
intensively in literature over the past few years, both with one-shot and self-consistent GW
methods. However, there remains ambiguity on the size and even on the type of the band gap.
Reported values lie in the range from 2.6 to 3 eV and both direct and indirect gaps have been
found with G0W0. A summary is given in Table 4.1 and will be discussed in detail at the end of
this section.

Throughout the present study, the 4 s and 4 p semicore states of molybdenum were included.
LDA and exact exchange calculations were done in a plane wave basis with kinetic energies up
to 400 eV. A plane wave cutoff energy of 50 eV and 200 bands were used for the calculation
of the dielectric function and the GW self-energy, which was found sufficient to converge band
gaps to within 10 meV. Results shown here were all obtained within the Plasmon Pole approxi-
mation. Quasiparticle energies calculated with the full frequency dependent method differed by
only around 0.1 eV.

First, the bandstructure is presented in Fig. 4.8 for the experimental lattice constant for bulk
MoS2 of 3.16 Å. The LDA band gap is direct at the K point with a value of 1.77 eV. A second
minimum in the conduction band lies along the Γ-K direction, yielding a smallest indirect gap
of 1.83 eV. This order is changed for G0W0@LDA which gives 2.77 and 2.58 eV for the direct
and indirect transition energies, respectively.

When comparing these values to previous results, one has to consider that the gaps depend
strongly on the number of k points, the interlayer distance, L, as defined in Fig. 4.9, and whether
or not a truncation scheme for the Coulomb interaction is applied. This is shown in Fig. 4.10.
Following conclusions can be drawn:

• For the 1/r interaction, enlarging L leads to a strong increase of the gaps.
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Figure 4.8: Bandstructure of monolayer MoS2 obtained from a (45 × 45 × 1) k-point sampling, 23 Å
interlayer separation and use of the truncated Coulomb interaction. The top of the valence band has been
set to 0.

• For the truncated interaction, an increase of the number of k-points gives a significant
reduction of the gaps.

Since applying the truncation corresponds to L → ∞, there exists a region, where these two
effects cancel each other. This demonstrates that the interlayer separation and the k-point grid
cannot be regarded as independent parameters. The interplay becomes clear from Fig. 4.11,
where the direct band gap is shown as a function of the interlayer separation for different k-point
samplings. The inverse plot allows for extrapolation of the data to infinite L. The extrapolated
values are expected to converge towards the results obtained with truncation of the Coulomb
interaction. Without the truncation, convergence of the gap with respect to either the number of
k points or the layer separation alone gives wrong values. With (9×9×1) k points, for example,
the direct band gap goes to 3.7 eV for L → ∞, which is around 1 eV too large. In contrast, a
calculation with L = 23 Å and 21 k points in the in-plane directions seems well converged, but
the obtained gap is too small. Due to these two errors, which are of different sign, the evaluated
quasiparticle gaps are identical for different sets of parameters. This is where the curves cross
the dashed horizontal lines. For example yield (9× 9× 1) k points and L = 23 Å or (15× 15× 1)
k points and L = 33 Å the same result of 2.77 eV as (45 × 45 × 1) k points and infinite layer
separation. Fig. 4.12 shows all calculated results and interpolated values in a contour plot as a
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Figure 4.9: Definition of interlayer separation L for monolayer MoS2 in a periodic supercell.
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Figure 4.10: Direct (straight lines) and indirect (dashed lines) G0W0 band gap of monolayer MoS2 as
function of (a) interlayer separation for a k-point sampling of (15 × 15 × 1) and (b) number of k points
(in one of the in-plane directions) for L = 23 Å.

function of 1/L and number of k points.
The band gaps reported in previous studies were all obtained with low k-point samplings,

small interlayer separations and without Coulomb truncation. All parameters and calculated
values are summarized in Table 4.1. From the previous discussion of the convergence behaviour,
the rather good agreement between those results and this work seems coincidental. Furthermore,
almost all of these calculations were done with a single k point in the z direction (perpendicular
to the layer). For small unit cells, this is not sufficient in order to obtain converged results.
Additional calculations demonstrated that the gap size increases by around 0.2 - 0.3 eV when 3
k points are used along the z-axis for L = 13 Å, for example.

Another important issue, one has to keep in mind when comparing the data, is the effect
of strain. As pointed out in Ref. [97], even a slight increase of the lattice constant, a, leads to
significant changes in the electronic bandstructure. The present calculations predict a reduction
of the direct band gap by around 0.1 eV for a = 3.19 Å, which corresponds to 1 % strain. The
indirect gap, on the other hand, is almost unaffected. For a = 3.255 Å, the direct gap is further
reduced, leading to a transition from an indirect to a direct band gap material.
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Figure 4.11: Direct G0W0 band gap of monolayer MoS2 for different k-point samplings and interlayer
separations without use of the truncated Coulomb interaction. Dotted lines serve as a guide for the eye
to extrapolate to infinite L. The dashed horizontal line indicate the values obtained with the truncated
Coulomb interaction. Also shown are results for L = 6.145 Å, which corresponds to bulk MoS2.

All in all, the careful examination of the dependence of the electronic structure on the differ-
ent parameters, as presented in Fig. 4.11 and Table 4.1, shows that the current implementation
reproduces most of the results for the direct band gap reported in literature, given the same
set of parameters. The fact that they are in good agreement with the fully converged values is
mainly due to a fortunate cancellation of errors. For the experimental lattice constant of 3.16 Å,
the G0W0@LDA band gap is found to be indirect with a value of around 2.6 eV. Choosing the
PBE functional as starting point is not expected to give noticeable changes. On the other hand,
both partially self-consistent GW0 [97] and quasiparticle self-consistent GW [98] calculations
have yielded direct band gaps of 2.75 − 2.80 eV.

Experimentally, single-layered MoS2 is a direct gap semiconductor [83] with a band gap
of around 1.9 eV [82]. It is known that there are strong excitonic effects in this system, which
lead to the formation of bound electron-hole pairs [96]. The experimentally measured value
corresponds then to the optical gap, which is smaller than the quasiparticle gap by the exciton
binding energy.
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Figure 4.12: Contour plot of the direct G0W0 band gap as a function of the inverse interlayer distance
and number of k points in one of the in-plane directions with the full 1/r interaction. Contour lines are
separated by 0.1 eV. Interpolation from splines was used.
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CHAPTER 5

MOLECULES

Molecules can be regarded as 0-dimensional systems, since their spatial extent is finite in all
directions. This means, that in all electronic structure codes which require periodic boundary
conditions, calculations have to be performed in sufficiently large supercells in order to circum-
vent artificial effects from interactions between molecules in neighboring cells. The electronic
structure of finite systems consists of a discrete spectrum of well-seperated energy levels. This
would correspond to a completely flat bandstructure, which can be restricted to the Γ-point only.
Instead of Bloch waves, the eigenfunctions are given as molecular orbitals.

The energy gap between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) is typically on the size of several eV for an isolated
molecule in the gas phase. From a physicist’s point of view, they are large gap insulators.
Screening is therefore expected to play a minor role and HF methods usually describe the elec-
tronic structure reasonably well. Most DFT functionals on the other hand, tend to underestimate
the gaps dramatically. Furthermore, unoccupied states are in principal not accessible with DFT,
and only the HOMO energy can be interpreted in a physically meaningful way as the negative
ionization potential (IP), given the correct functional [4].

Adsorbing a molecule on a metal surface leads to an alignment of the molecular orbitals
with respect to the Fermi energy of the metal and to a decrease of the HOMO-LUMO gap.
This is a direct consequence of dynamical screening and can therefore not be described with
DFT [103–106]. Instead, the correct physics is captured by GW as quasiparticle theory, which
enables quantitatively accurate modeling of electron transport in molecular junctions [107–111],
for example.

This chapter gives a discussion of the calculated IPs of 32 small molecules. G0W0 results
are in much better agreement with experiment than various DFT based methods, but still around
0.5 eV too low on average. This systematic deviation can be explained by a suboptimal choice
of the starting point, namely LDA. The problem of extreme slow convergence of the HOMO
energy with respect to the plane wave cutoff energy and number of bands is resolved by applying
a simple extrapolation scheme. A detailed analysis of the frequency-dependence of the self-
energy illustrates the underlying physics.
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Finally, the frontier orbitals of benzenediamine are studied as a typical example for a struc-
ture used in molecular electronics.
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Figure 5.1: Ionization potential of water as function of (a) the plane wave cutoff energy and (b) the
inverse plane wave cutoff energy for G0W0@LDA. The dashed line in (b) shows a linear fit of the data
points with Ecut > 100 eV (1/Ecut < 0.01 eV−1). Extrapolation to 0 eV−1 (infinite cutoff energy) gives a
value of 12.1 eV.

5.1 Ionization potentials

In order to study the performance of the implementation for finite systems, the quasiparticle
energies of 32 small molecules in the gas phase were calculated with the G0W0 approxima-
tion and compared to results from non-selfconsistent Hartree-Fock, LDA, PBE0 and GLLBSC.
Their geometric structures were taken from the Atomic Simulation Environment database [112].
3.5 Å of vacuum were added in each direction of the supercell. For all groundstate calculations,
plane waves with kinetic energies up to 400 eV were used as basis functions. In literature, linear
combinations of atomic orbitals (LCAO) are usually preferred as basis functions for molecular
systems. In this way, even small basis sets are often sufficient in order to describe the spatially
localized electronic states with good accuracy. With plane waves, this can only be achieved with
a very high number of basis functions. On the other hand, the size of the plane wave basis can
be increased freely for a systematic control over the quality of the basis, which is particularly
important for GW calculations. This is very difficult to assess with LCAO.

The G0W0@LDA results for the ionization potential of a water molecule are shown in Fig.
5.1 (a) for different values of the plane wave cutoff energy used in the calculation of the GW self
energy. The exact exchange contributions were determined with a fixed cutoff energy of 400 eV.
In all cases, the number of bands in the calculation of Σ was chosen accordingly to Ecut. Even for
400 eV, which corresponds to more than 8000 plane waves and bands, the IP does not seem to
be fully converged. This extremely slow convergence behaviour has been observed previously
for a benzene molecule [113, 114]. A data fit to the linear function IP(Ecut) = IP(∞) − A/Ecut

allowed for extrapolation to infinite basis size. A similar scheme has been applied for the
valence band maximum in rutile TiO2 [115]. As demonstrated in Fig. 5.1 (b), a linear function
of 1/Ecut fits the data points perfectly for Ecut > 100 eV. Its intersection with the y-axis gives
an IP of 12.1 eV.

This extrapolation scheme has been applied to all 32 molecules by a linear fit of the calcu-
lated IPs for plane wave cutoff energies between 200 and 400 eV. Examples are shown in Fig.
5.2. The Plasmon Pole approximation was used in all GW calculations presented here. Addi-
tional calculations were performed with the full frequency-dependent method for comparison.
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Figure 5.2: Calculated IPs with G0W0@LDA and linear fitting of the data points with extrapolation to
infinite number of plane waves and bands (Ecut = 0).

Deviations in the QP energies were smaller than 0.1 eV.
All IPs obtained from extrapolation are listed in Table 5.1, along with results from LDA,

non-selfconsistent HF on top of LDA, PBE0 with 1/4 of PBE exchange replaced non-selfcon-
sistently by exact exchange and GLLBSC and compared to experimental data taken from Ref.
[116]. LDA and PBE0 predict much too small values with mean absolute errors of 4.8 and
3.5 eV, respectively. Also GLLBSC underestimates IPs by 1.8 eV on average. This is not
surprising, since it is a method designed for calculating the electronic structure of solids. HF on
the other hand overestimates the IP for most molecules with a MAE of 1.1 eV. Best results are
found with the GW approximation, where the MAE is less than 0.6 eV. Still, many IPs are too
low and the mean signed error is −0.3 eV. This systematic error may be attributed to the use
of LDA wavefunctions as starting point, which are most likely a bad representation of the true
quasiparticle wavefunctions.

A comparison of the G0W0 results with previous studies on the same set of molecules is
shown in Fig. 5.4. The calculated IPs agree overall well with Ref. [117], in which also LDA
wavefunctions and eigenvalues were used as starting point, but with a Gaussian basis set. The
values spread with a mean absolute error of 0.32 eV, but with similar magnitude for both pos-
itive and negative deviations, so that the mean signed error is only 0.02 eV. In comparison
to the all-electron G0W0@PBE calculations of Ref. [118], in which numerical atomic orbitals
were used as basis set, a systematic deviation is found with a MAE of 0.36 eV and a MSE of
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Figure 5.3: Calculated IPs for the 32 molecules listed in Table 5.1 plotted against the experimental
values. The dashed line indicates equality.
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Table 5.1: Theoretical IPs calculated with different methods as described in the text. Experimental data
is given in the last column. All values are in eV. The last rows shows the mean absolute error and the
mean signed error with respect to experiment.

Molecule LDA HF@LDA PBE0 GLLBSC G0W0@LDA experiment
LiH 4.37 8.96 5.38 7.30 7.79 7.90
LiF 6.08 14.15 7.95 10.16 10.53 11.30
NaCl 4.74 10.00 5.95 6.94 8.72 9.80
CO 8.72 14.61 10.15 12.51 13.48 14.01
CO2 8.75 14.69 10.09 11.93 13.05 13.78
CS 6.76 11.88 8.00 9.81 10.69 11.33
C2H2 6.81 11.21 7.79 9.41 11.22 11.49
C2H4 6.48 10.54 7.37 8.62 10.74 10.68
CH4 9.19 15.22 10.68 13.58 14.45 13.60
CH3Cl 6.68 12.32 8.01 9.53 11.55 11.29
CH3OH 6.09 13.18 7.77 8.77 10.98 10.96
CH3SH 5.21 10.21 6.37 7.33 9.78 9.44
Cl2 6.53 11.67 7.77 9.12 10.93 11.49
ClF 7.38 13.46 8.85 10.54 12.14 12.77
F2 9.27 18.44 11.50 13.43 14.66 15.70
HOCl 6.20 12.39 7.68 8.72 10.78 11.12
HCl 7.56 12.86 8.87 10.96 12.28 12.74
H2O2 6.15 13.76 7.97 8.86 11.05 11.70
H2CO 5.98 12.64 7.58 8.44 10.64 10.88
HCN 8.64 13.35 9.72 11.89 13.27 13.61
HF 9.53 18.29 11.67 14.18 15.02 16.12
H2O 7.12 14.42 8.87 10.46 12.07 12.62
NH3 6.02 12.20 7.52 8.89 10.83 10.82
N2 9.85 16.59 11.54 13.77 14.72 15.58
N2H4 5.54 11.75 7.02 8.04 10.30 8.98
SH2 5.83 10.58 6.97 8.27 10.27 10.50
SO2 7.58 13.37 8.89 10.08 11.68 12.50
PH3 6.23 10.77 7.31 8.74 10.70 10.59
P2 6.17 9.38 6.93 8.80 9.70 10.62
SiH4 8.10 13.57 9.41 12.09 12.92 12.30
Si2H6 6.82 11.30 7.84 9.15 11.04 10.53
SiO 6.97 12.24 8.21 9.53 10.70 11.49
MAE 4.84 1.11 3.46 1.83 0.56 .
MSE -4.84 0.99 -3.46 -1.83 -0.30 .
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0.30 eV. These errors are expected regarding the different starting points and basis sets. Com-
paring the results of Ref. [117] with Ref. [118] gives almost the same MAE and MSE (0.30 eV
and 0.28 eV, respectively). Very similar deviations are also found between these results and
Ref. [119], where an accurate basis set of Wannier functions augmented by numerical atomic
orbitals was used. Discrepancies in the calculated values are therefore within the accuracy of
different implementations.

A much better agreement with experiment was found for HF and hybrid functionals as
starting point for G0W0 [117, 119], whereas this does not necessarily seem to be the case with
self-consistent GW [118–120].

5.2 Frequency-dependence of the self-energy
For all molecules in this study, both the HOMO and the LUMO energies decrease with larger
plane wave cutoff energies (meaning that the IPs increase). Since the exact exchange contri-
butions are left unchanged, this results from the correlation part of the self-energy only. This
might be surprising at first, since one could expect that a larger basis set, e.g. number of plane
waves, would enhance the screening which would shift the occupied orbitals down in energy. A
closer look at the frequency-dependence of the self-energy, Σ(ω), helps to understand this seem-
ing conflict. This is shown for the HOMO and LUMO of the CO molecule in Fig. 5.5, as one
example. The imaginary part of Σ(ω) is to a large extent built up by the poles of the convolution
of the Greens’ Function and the screened potential, Σ(ω) =

∫
dω′G(ω + ω′)W(ω′). W itself

has poles at all transition energies between occupied and unoccupied states, ωn→n′ , while G has
poles at all energies εs. Thus, the poles of Σ lie between (2εmin − εmax) and (2εmax − εmin), where
εmin and εmax are the lowest and highest input eigenvalues, respectively. As a consequence of
this asymmetry, including more bands gives larger contributions to the imaginary part of Σ(ω)
in the high energy range, whereas the lower part of the spectrum is less effected. This is clearly
seen in Fig. 5.5 (a), by comparing the light and dark blue curves (for the HOMO) for positive
and negative values of ω, and correspondingly the orange and red curves (for the LUMO). The
real and imaginary parts of the self-energy are related by the Kramers-Kronig relation:

Re {Σ(ω)} =
1
π
P

{∫
dω′

Im {Σ(ω′)}
ω′ − ω

}
(5.1)

The correlation contributions to the quasiparticle energies are in the G0W0 approximation given
by the value of the real part of the self-energy at the starting point eigenvalues, as indicated by
the dashed lines in Fig. 5.5 (b). The real part of Σ(ω) changes sign around the HOMO-LUMO
gap, where its structure is dominated by large resonance/antiresonance peaks. As more empty
states are added and the imaginary part extends to higher energies, the real part is pushed down,
in particular for high ω as a consequence of the asymetric structure of Im {Σ}. This lowers the
antiresonance peak and thereby the correlation.

5.3 BDA
One of the most commonly studied organic molecules is benzene with its delocalized system
of π electrons. For example, it is used as a model system for electronic transport in molecular
junctions, where the molecule is attached to metal electrodes via anchor groups, e.g. amino
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Figure 5.5: (a) Imaginary and (b) real parts of the self-energy 〈n|Σ(ω)|n〉 for the HOMO and LUMO lev-
els of the CO molecule and two different plane wave cutoff energies. Dashed lines indicate the respective
LDA eigenvalues. The lowest input eigenvalue, εmin, is around 30 eV, while the highest, εmax, is around
50 eV and 100 eV, respectively. Thus, Im {Σ(ω′)} is only non-zero in the range from −110 to 130 eV and
−160 to 230 eV, respectively.
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Figure 5.6: Geometric structure of benzenediamine, para-C6H4(NH2)2.

groups [121]. The transport properties are to a large extent determined by the alignment of the
molecular frontier orbitals with respect to the metal Fermi level. For theoretical predictions, it
is therefore essential to obtain a correct description of the electronic structure of the molecule
in the gas phase at first.

The frontier orbitals of benzenediamine (C6H8N2, as sketched in Fig. 5.6) have been cal-
culated in the same way as described for the small molecules in Chapter 5.1, but in a larger
unit cell with 5 Å of vacuum added in each direction around the molecule. This was found
necessary in order to converge the DFT energies. The extrapolation scheme has been applied
both to the HOMO and the LUMO. Additional HF and GW calculations have been made with
PBE as starting point. All results are summarized in Table 5.2. No large differences can be
seen between the results with LDA and PBE, and consequently non-selfconsistent HF and GW
calculations also give very similar results for the two different starting points. G0W0 leads to a
drastic opening of the gap, with a large downshift of the HOMO energy and an increase of the
LUMO energy. With HF, these effects are even bigger.

The extrapolated IP of the BDA molecule is 7.47 eV with G0W0@PBE, which is in re-
markably good agreement with the result of 7.3 eV reported in Ref. [122], which also used a
plane wave basis, but a different extrapolation scheme, and the experimental value of 7.34 eV
[123, 124].

The results of a previous study of the same molecule are presented in Table 5.3. It is impor-
tant to note that a double-zeta atomic orbital basis set has been used, compared to plane waves
in the present study. In principal, both methods are expected to give identical results, given
that the basis sets are complete. For LCAO, this requires basis functions of very good quality,
while for plane waves, the cutoff energy needs to be sufficiently high. Large differences can be
seen for the Hartree-Fock results, both for the energies of the frontier orbitals and the HOMO-
LUMO gap. Two reasons may be used for an explanation: First, the neglection of core-valence
exchange in the current calculations. According to Ref. [110], however, these contributions are
expected to be rather small, generally less than 0.4 eV for the frontier orbitals of benzene-like
molecules. Therefore, the role of self-consistency is much more important, which seems to shift
both the HOMO and LUMO significantly and decrease the HF gap by more than 1 eV. Also for
GW, there is a large discrepancy between the orbital energies. The gap size, on the other hand, is
very similar. This might be due to a cancellation of errors in the exchange and in the correlation
contributions using DFT wavefunctions instead of doing self-consistent calculations. The last
column of Table 5.3 states the results of PBE total energy difference calculations, which can be
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Table 5.2: Frontier orbitals and HOMO-LUMO gap of the BDA molecule. All values are in eV.

LDA PBE HF@LDA HF@PBE G0W0@LDA G0W0@PBE
HOMO -4.00 -4.05 -8.05 -8.04 -7.51 -7.47
LUMO -0.88 -0.82 4.33 4.33 1.41 1.45
gap 3.12 3.23 12.38 12.37 8.92 8.92

Table 5.3: Results from Ref. [110] in eV.

PBE scHF scGW ∆Etot (PBE)
HOMO -4.1 -7.2 -6.2 -6.8
LUMO -0.9 3.9 2.9 2.3
gap 3.2 11.1 9.1 9.1

regarded as reference values. In this method, HOMO and LUMO energies are obtained by cal-
culating the electronic groundstate with an extra electron explicitely added to or removed from
the system. In comparison, the DFT gaps are vastly underestimated which is a consequence
of self-interaction errors in the functionals. These are not present within Hartree-Fock by con-
struction. Instead, neglect of correlation, which is here equal to the lack of orbital relaxations,
leads to a large overestimation of the gap [110]. In contrast, the GW approximation naturally
includes these effects via the screened interaction.
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[19] P. E. Blöchl, C. J. Först, and J. Schimpl, “Projector Augmented Wave Method: ab-initio
molecular dynamics with full wave functions”, Bull. Mater. Sci. 26, 33 (2003).

[20] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt,
C. Glinsvad, V. Haikola, H. A. Hansen, et al., “Electronic structure calculations with
GPAW: a real-space implementation of the projector augmented-wave method”, J. Phys.:
Condens. Matter 22, 253202 (2010).

[21] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of
the projector augmented wave method”, Phys. Rev. B 71, 035109 (2005).

[22] A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and K. W. Jacobsen, “Localized
atomic basis set in the projector augmented wave method”, Phys. Rev. B 80, 195112
(2009).

[23] M. Shishkin and G. Kresse, “Implementation and performance of the frequency-
dependent GW method within the PAW framework”, Phys. Rev. B 74, 035101 (2006).

[24] J. Yan, J. J. Mortensen, K. W. Jacobsen, and K. S. Thygesen, “Linear density response
function in the projector augmented wave method: Applications to solids, surfaces, and
interfaces”, Phys. Rev. B 83, 245122 (2011).

[25] R. W. Godby and R. J. Needs, “Metal-Insulator Transition in Kohn-Sham Theory and
Quasiparticle Theory”, Phys. Rev. Lett. 62, 1169 (1989).

[26] A. Fleszar and W. Hanke, “Spectral properties of quasiparticles in a semiconductor”,
Phys. Rev. B 56, 10228 (1997).

[27] I. Campillo, J. M. Pitarke, A. Rubio, E. Zarate, and P. M. Echenique, “Inelastic lifetimes
of Hot Electrons in Real Metals”, Phys. Rev. Lett. 83, 2230 (1999).

74



BIBLIOGRAPHY

[28] A. Marini, R. Del Sole, A. Rubio, and G. Onida, “Quasiparticle band-structure effects of
the d hole lifetimes of copper within the GW approximation”, Phys. Rev. B 66, 161104(R)
(2002).

[29] C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, “Exact Coulomb
cutoff technique for supercell calculations”, Phys. Rev. B 73, 205119 (2006).

[30] S. Ismail-Beigi, “Truncation of periodic image interactions for confined systems”, Phys.
Rev. B 73, 233103 (2006).

[31] A. Sorouri, W. M. Foulkes, and N. D. Hine, “Accurate and efficient method for the treat-
ment of exchange in a plane-wave basis”, J. Chem. Phys. 124, 064105 (2006).

[32] http://wiki.fysik.dtu.dk/gpaw/documentation/gw theory/gw theory.html

[33] http://wiki.fysik.dtu.dk/niflheim/Hardware

[34] “Physics of Group-IV Elements and III-V Compounds”, Landolt-Börnstein: Numerical
Data and Functional Relationships in Science and Technology - New Series, Group III,
Vol. 17a, edited by O. Madelung, M. Schulz, and H. Weiss, (Springer, New York, 1982).

[35] M. S. Hybertsen and S. G. Louie, “Electron correlations in semiconductors and insula-
tors: Band gaps and quasiparticle energies”, Phys. Rev. B 34, 5390 (1986).

[36] O. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J. Baerends, “Self-consistent ap-
proximation to the Kohn-Sham exchange potential”, Phys. Rev. A 51, 1944 (1995).

[37] M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, “Kohn-Sham potential with dis-
continuity for band gap materials”, Phys. Rev. B 82, 115106 (2010).

[38] F. Tran and P. Blaha, “Accurate Band Gaps of Semiconductors and Insulators with a
Semilocal Exchange-Correlation Potential”, Phys. Rev. Lett. 102, 226401 (2009).

[39] M. Shishkin and G. Kresse, “Self-consistent GW calculations for semiconductors and
insulators”, Phys. Rev. B 75, 235102 (2007).

[40] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made
Simple”, Phys. Rev. Lett. 77, 3865 (1996).

[41] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened
Coulomb potential”, J. Chem. Phys. 118, 8207 (2003).

[42] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin,
X. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in
Solids and Surfaces”, Phys. Rev. Lett. 100, 136406 (2008).
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We present a plane-wave implementation of the G0W0 approximation within the projector augmented wave
method code GPAW. The computed band gaps of ten bulk semiconductors and insulators deviate on average
by 0.2 eV (∼5%) from the experimental values, the only exception being ZnO where the calculated band
gap is around 1 eV too low. Similar relative deviations are found for the ionization potentials of a test set of
32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies
and Fermi velocities in supported two-dimensional (2D) materials is illustrated by the case of graphene/h-BN
interfaces. Due to the long-range Coulomb interaction between periodically repeated images, the use of a truncated
interaction is found to be essential for obtaining converged results for 2D materials. For all systems studied, a
plasmon-pole approximation is found to reproduce the full frequency results to within 0.2 eV with a significant
gain in computational speed. Throughout, we compare the G0W0 results with different exact exchange-based
approximations. For completeness, we provide a mathematically rigorous and physically transparent introduction
to the notion of quasiparticle states.

DOI: 10.1103/PhysRevB.87.235132 PACS number(s): 71.10.−w, 71.15.Mb, 71.20.Nr, 33.15.Ry

I. INTRODUCTION

For several decades, density functional theory (DFT)1,2 has
been the method of choice for electronic structure calculations
due to its unique compromise between accuracy and efficiency.
Large efforts have been made to develop better exchange-
correlation (xc) functionals continuously pushing the quality
of total energy calculations towards the limit of chemical ac-
curacy. However, it is well known that the Kohn-Sham single-
particle energies do not correspond to physical excitation
energies, and in fact the widely used semilocal xc potentials
significantly underestimate quasiparticle (QP) energy gaps.3,4

For molecules and insulators better results can be obtained by
replacing a fraction of the local exchange potential with the
nonlocal Hartree-Fock exchange potential, as in the hybrid
functionals. In the range-separated hybrids, the nonlocal
exchange is used only for the short-range part of the potential.
This improves the quality of semiconductor band structures
and leads to faster convergence with k-point sampling,
albeit at the cost of introducing an empirical cutoff radius.
Still, the (range-separated) hybrids tend to underestimate
the role of exchange in systems with weak screening, such
as low-dimensional structures, and fail to account correctly
for the spatial variation in the screening at metal-insulator
interfaces (see below).

Many-body perturbation theory, on the other hand, offers a
powerful and rigorous framework for the calculation of quasi-
particle (QP) excitations. The key quantity is the electronic
self-energy which is an energy-dependent and spatially nonlo-
cal analogous of the xc potential of DFT. The self-energy can
be systematically approximated by summing certain classes of
perturbation terms to infinite order in the Coulomb interaction.
The GW approximation5 is the simplest approximation of
this kind where the self-energy, �, is expanded to first order
in the screened interaction. Symbolically it takes the form
�xc = iGW , where G is the Green’s function and W = ε−1V ,

is the screened interaction. Comparing the GW self-energy to
the exchange potential, which can be written as Vx = iGV ,
we see that the GW self-energy is essentially a dynamically
screened version of the exchange potential.

Apart from screening the static exchange potential, the
replacement of the bare Coulomb interaction by the dynami-
cally screened potential introduces correlation effects, which
accounts for the interaction of an electron (or a hole) with
the polarization charge that it induces in the medium. This is
a highly nonlocal effect that becomes particularly evident at
metal/insulator interfaces such as a molecule on a metal surface
or the graphene/h-BN interfaces studied in the present work.
For these systems, the correlation takes the form of an image
charge effect that reduces the energy gap of the molecule or
insulator by up to several electron volts.6–11

The GW approximation has been applied with great
success to a broad class of materials ranging from bulk
insulators, semiconductors, and metals to low-dimensional
systems such as nanoclusters, surfaces and molecules (see,
e.g., the reviews of Refs. 12–14). Beyond the calculation of
QP energies, the GW method also serves as starting point
for the calculation of optical spectra from the Bethe-Salpeter
equation (BSE)15–18 and for quantitatively accurate modeling
of electron transport at metal-molecule interfaces where the
alignment of the molecular energy levels with the metal Fermi
level is particularly important.19–23

In principle, the GW self-energy should be evaluated
self-consistently. However, due to the computational demands
of such an approach, nonselfconsistent (G0W0) calculations
with the initial G0 obtained from the local density approxi-
mation (LDA) or similar, have traditionally been preferred.24

Recently, fully self-consistent GW calculations have been
performed for molecular systems yielding energies for the
highest occupied orbitals with an absolute deviation from
experiments of around 0.5 eV.25,26 In comparison, the standard
G0W0@LDA approach was found to yield slightly lower
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accuracy, while better results were achieved when starting
from Hartree-Fock or hybrid calculations.25–28 For solids,
earlier studies yielded contradictory conclusions regarding
the accuracy of self-consistent versus nonselfconsistent GW
calculations. More recently, the quasiparticle self-consistent
GW method, in which the self-energy is evaluated with a
self-consistently determined single-particle Hamiltonian, has
been shown to yield excellent results for solids.29–32

On the practical side, any implementation of the GW
approximation has to deal with similar numerical challenges.
In addition to the already mentioned G0W0 approximation,
it is common practice to evaluate the QP energies using
first-order perturbation theory starting from the Kohn-Sham
eigenvalues thereby avoiding the calculation of off-diagonal
matrix elements of the self-energy. This approach is based
on the assumption that the QP wave functions are similar
to the Kohn-Sham wave functions. As recently shown for a
metal-molecule interface this is sometimes far from being the
case.33 Another common simplification is the use of a plasmon
pole approximation (PPA) for the dielectric function. The PPA
leads to a considerable gain in efficiency by removing the need
for evaluating the dielectric function at all frequency points and
allowing the frequency convolution of G and W in the GW
self-energy to be carried out analytically. In his original paper,
Hedin introduced a static Coulomb hole and screened ex-
change (COHSEX) approximation to the full GW self-energy.
The COHSEX approximation is computationally efficient and
clearly illustrates the physics described by the GW approxima-
tion. However, its validity is limited to rather special cases and
it should generally not be used for quantitative calculations.

In this paper we document the implementation of the
G0W0 method in the GPAW open source electronic struc-
ture code.34 GPAW is based on the projector augmented wave
(PAW) method35,36 and supports both real space grid and plane
wave representation for high accuracy as well as numerical
atomic orbitals (LCAO) for high efficiency. The G0W0

implementation is based on plane waves. The implementation
supports both full frequency dependence (along the real
axis) as well as the plasmon-pole approximation of Godby
and Needs.37 For low-dimensional systems, in particular
two-dimensional (2D) systems, a truncated Coulomb
interaction should be used to avoid the long-range interactions
between periodically repeated unit cells. For both solids,
molecules and 2D systems, we find that the PPA gives excellent
results with significant reduction of the computational efforts.
In contrast, the static COHSEX and the PBE0 hybrid yield
unsatisfactory results. An interesting alternative to GW is
offered by the local, orbital dependent potential of Gritsenko,
Leeuwen, Lenthe, and Baerends with the modifications from
Kuisma (GLLBSC), which explicitly adds the derivative
discontinuity to the Kohn-Sham energy gap.38 The GLLBSC
band gaps for solids are found to lie on average within 0.4 eV
of the G0W0 values but give similar accuracy when compared
to experimental data. The GLLBSC ionization potentials of
molecules are in average 1.5 eV below the G0W0 values.

The paper is organized as follows. Sec. II gives a gen-
eral introduction to the theory of quasiparticle states. In
Sec. III, we briefly review the central equations of the G0W0

method in a plane-wave basis and discuss some details
of our implementation. In Sec. IV, we present results for

bulk semiconductors, insulators and metals, comparing with
experiments and previous calculations. The application to 2D
systems is illustrated in Sec. V by the example of graphene
on hexagonal boron nitride and the importance of screening
effects on the QP energies is discussed. Finally, we test the
implementation on finite systems by calculating the ionization
potential of a set of 32 small molecules in Sec. VI.

II. QUASIPARTICLE THEORY

Quasiparticle states provide a rigorous generalization of
the concept of single-particle orbitals to interacting electron
systems. In this section we provide a compact, self-contained
introduction to the general theory of quasiparticle states with
a combined focus on physical interpretation and mathematical
rigor. This presentation is completely formal; in particular
we shall not discuss the physics and computation of specific
self-energy approximations. Our presentation is thus comple-
mentary to most other papers on the GW method which tend
to focus on the theory and derivation of the GW self-energy
within the framework of many-body Green’s function theory.
To avoid inessential mathematical complications, we shall
make the assumption that the system under consideration is
finite and the relevant excitations are discrete.

A. Definition of QP energies and wave functions

We denote the N -particle many-body eigenstates and
energies by |�N

i 〉 and EN
i , respectively. The occupied and

unoccupied QP orbitals are denoted |ψQP
i− 〉 and |ψQP

i+ 〉, respec-
tively. These belong to the single-particle Hilbert space and
are defined as:

ψ
QP
i− (r)∗ = 〈

�N−1
i

∣∣�̂(r)
∣∣�N

0

〉
(1)

ψ
QP
i+ (r) = 〈

�N+1
i

∣∣�̂†(r)
∣∣�N

0

〉
, (2)

where �̂(r) and �̂†(r) are the field operators annihilating and
creating an electron at point r, respectively. The QP wave
functions defined above are also sometimes referred to as
Lehman amplitudes or Dyson orbitals.

The corresponding QP energies are defined by

ε
QP
i− = EN

0 − EN−1
i (3)

ε
QP
i+ = EN+1

i − EN
0 . (4)

They represent the excitation energies of the (N ± 1)-particle
system relative to EN

0 and thus correspond to electron addition
and removal energies. It is clear that ε

QP
i+ > μ while ε

QP
i− � μ

where μ is the chemical potential. Having noted this, we can in
fact drop the +/− subscripts on the QP states and energies. We
shall do that in most of the following to simplify the notation.

The fundamental energy gap is defined as

Egap = ε
QP
0+ − ε

QP
0− (5)

= EN+1
0 + EN−1

0 − 2EN
0 . (6)
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We note that Egap can also be expressed within the framework
of Kohn-Sham (KS) theory as

Egap = εKS
N+1 − εKS

N + �xc, (7)

where εKS
n are the (exact) Kohn-Sham energies and �xc is the

derivative discontinuity.39

B. Interpretation of QP wave functions

Since the many-body eigenstates of an interacting electron
system are not Slater determinants, the notion of single-particle
orbitals is not well defined a priori. For weakly correlated
systems we can, however, expect that the single-particle picture
applies to a good approximation. To make this precise we
ask to what extent the state |�N+1

i 〉 can be regarded as a
single-particle excitation from the ground state, i.e., to what
extent it can be written on the form c

†
φ|�N

0 〉 when φ is chosen in
an optimal way. It turns out that the optimal φ is exactly the QP
orbital. This statement follows simply from the observation80

〈
φ
∣∣ψQP

i+
〉 = 〈

�N+1
i

∣∣ĉ†φ∣∣�N
0

〉
, (8)

for any orbital φ. Similarly, |ψ−
i 〉 is the orbital that makes

ĉφ|�N
0 〉 the best approximation to the excited state |�N−1

i 〉.
Consequently, the QP wave function ψ

QP
i± is the single-particle

orbital that best describes the state of the extra electron/hole
in the excited state |�N±1

i 〉.
From Eq. (8) it follows that the norm of a QP orbital is a

measure of how well the true excitation can be described as a
single-particle excitation. Precisely,

∥∥ψ
QP
i+

∥∥ = max
φ

{〈
�N+1

i

∣∣ĉ†φ∣∣�N
0

〉
, ‖φ‖ = 1〉}, (9)

and similarly for the norm of ψ
QP
i− .

The definition (1) implies a one-to-one correspondence
between QP states and the excited many-body states |�N±1

i 〉.
Obviously, most of the latter are not even approximately of the
single-particle type. These are characterized by a vanishing (or
very small) norm of the corresponding QP orbital. In case of
noninteracting electrons the QP states have norms 1 or 0. The
former correspond to single excitations (Slater determinants)
of the form c

†
n|�N

0 〉 while the latter correspond to multiple
particle excitations, e.g., c

†
nc

†
mck|�N

0 〉. Strictly speaking the
term quasiparticle should be used only for those |ψQP

i 〉 whose
norm is close to 1. The number of such states and whether
any exists at all, depends on the system. For weakly correlated
systems, one can expect a one-to-one correspondence between
the QP states with norm ∼1 and the single-particle states of
some effective noninteracting Hamiltonian, at least for the
low-lying excitations.

C. Quasiparticle equation and self-energy

Below we show that QP states fulfill a generalized eigen-
value equation known as the QP equation, and we derive a
useful expression for the norm of a QP state in terms of the
self-energy.

The QP states and energies are linked to the single-particle
Green’s function via the Lehmann spectral representation40

G(z) =
∑

i

∣∣ψQP
i

〉〈
ψ

QP
i

∣∣
z − ε

QP
i

, (10)

where z is a complex number and it is understood that the sum
runs over both occupied and unoccupied QP states. It follows
that G(z) is analytic in the entire complex plane except for the
real points ε

QP
i , which are simple poles. We note in passing that

G(z) equals the Fourier transform of the retarded (advanced)
Green’s function in the upper (lower) complex half plane.

The Green’s function also satisfies the Dyson equation

G(z) = [z − H0 − �xc(z)]−1, (11)

where H0 is the noninteracting part of the Hamiltonian
including the Hartree field and �xc is the exchange-correlation
self-energy. The Dyson equation can be derived using many-
body perturbation theory or it can simply be taken as the
definition of the self-energy operator.

In the case where ε
QP
i belongs to the discrete spectrum, ψQP

i

and ε
QP
i are solutions to the QP equation[

H0 + �xc

(
ε

QP
i

)]∣∣ψQP
i

〉 = ε
QP
i

∣∣ψQP
i

〉
. (12)

This follows from the residue theorem by integrating the
equation [z − H0 − �xc(z)]G(z) = 1 along a complex contour
enclosing the simple pole ε

QP
i .

The operator [H0 + �xc(z)] is non-Hermitian and is diag-
onalized by a set of nonorthogonal eigenvectors,

[H0 + �xc(z)]|ψn(z)〉 = εn(z)|ψn(z)〉. (13)

Using these eigenvectors, the GF can be expressed in an
alternative spectral form

G(z) =
∑

n

|ψn(z)〉〈ψn(z)|
z − εn(z)

. (14)

where {ψn(z)} is the dual basis of {ψn(z)}, which by definition
satisfies 〈ψn(z)|ψm(z)〉 = δnm.81 We shall take the functions
ψn(z) to be normalized which also fixes the normalization of
the dual basis.

In general, the vectors ψn(z) do not have any physical
meaning but are pure mathematical objects. An exception
occurs for z = ε

QP
i where one of the vectors ψn(εQP

i ) coincide
with the QP orbital ψ

QP
i (except for normalization). We shall

denote that vector by ψi(ε
QP
i ), i.e.,∣∣ψi

(
ε

QP
i

)〉 = ∣∣ψQP
i

〉/∥∥ψ
QP
i

∥∥. (15)

By equating the matrix element 〈ψi(z)|G(z)|ψi(z)〉 evalu-
ated using the two alternative spectral representations Eq. (10)
and Eq. (14), and integrating along a contour enclosing the
pole ε

QP
i , we obtain

〈
ψi

(
ε

QP
i

)∣∣ψQP
i

〉〈
ψ

QP
i

∣∣ψi

(
ε

QP
i

)〉 = 1

1 − ε′
i

(
ε

QP
i

) , (16)

where the prime denotes the derivative with respect to z. This
result follows by application of the residue theorem. Using
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Eq. (15) it follows that the norm of the QP states is given by∥∥ψ
QP
i

∥∥2 = 〈
ψi

(
ε

QP
i

)∣∣1 − �′
xc

(
ε

QP
i

)∣∣ψi

(
ε

QP
i

)〉−1
(17)

≡ Zi, (18)

where we have used the Hellman-Feynman theorem to differ-
entiate εi(z) = 〈ψi(z)|H0 + �xc(z)|ψi(z)〉.

D. Linearized QP equation

Given a self-energy operator, one must solve the QP equa-
tion to obtain the QP states and energies. This is complicated
by the fact that the self-energy must be evaluated at the QP
energies, which are not known a priori. Instead, one can start
from an effective noninteracting Hamiltonian (in practice often
the Kohn-Sham Hamiltonian),

[H0 + Vxc]
∣∣ψs

i

〉 = εs
i

∣∣ψs
i

〉
, (19)

and treat �xc(εQP
i ) − Vxc using first-order perturbation theory.

Thus we write ε
QP
i = εs

i + ε
(1)
i with

ε
(1)
i = 〈

ψs
i

∣∣�xc

(
ε

QP
i

) − Vxc

∣∣ψs
i

〉
(20)

= 〈
ψs

i

∣∣�xc

(
εs
i

) + (
ε

QP
i − εs

i

)
�′

xc

(
εs
i

) − Vxc

∣∣ψs
i

〉
. (21)

Rearranging this equation yields

ε
QP
i = εs

i + Zs
i · 〈

ψs
i

∣∣�xc

(
εs
i ) − Vxc

∣∣ψs
i

〉
, (22)

where

Zs
i = 〈

ψs
i

∣∣1 − �′
xc

(
εs
i

)∣∣ψs
i

〉−1
(23)

approximates the true QP norm.
If Zs

i 	 1 we can conclude that ψs
i is not a (proper) QP

state. There can be two reasons for this: (i) the electrons are
strongly correlated and as a consequence the QP picture does
not apply, or (ii) ψs

i is not a good approximation to the true
QP wave function ψ

QP
i . While (i) is rooted in the physics of

the underlying electron system, reason (ii) merely says that
the Kohn-Sham orbital does not describe the true many-body
excitations well. For an example where the QP picture is
completely valid, i.e., all the QP states have norms very close to
1 or 0, but where simple noninteracting orbitals do not provide
a good approximation to them, we refer to Ref. 33.

III. G0W0 APPROXIMATION

The self-energy of the GW approximation is given as a
product of the (time-ordered) Green’s function and screened
Coulomb potential and can be split into an exchange and a
correlation part, �GW = Vx + �c, where Vx is the nonlocal
Hartree-Fock exchange potential. The correlation contribution
(which we from now on refer to as the self-energy � = �c)
is then evaluated by introducing the difference between the
screened and the bare Coulomb potential W = W − V ,

�(rt,r′t ′) = iG(rt,r′t ′)W (rt,r′t ′), (24)

which becomes a convolution in frequency domain

�(r,r′; ω) = i

2π

∫
dω′ G(r,r′; ω + ω′)W (r,r′; ω′). (25)

In this way, the exchange and the correlation contributions
can be treated separately at different levels of accuracy.

Additionally, the screened Coulomb potential approaches the
bare one for large frequencies, so that W vanishes in this limit
making the frequency integration numerically stable.

In the present G0W0 approach, the self-energy is con-
structed from Kohn-Sham wave functions |nk〉 and eigenvalues
εs
nk, where n and k denote band and k-point index, respectively.

Throughout this paper, spin indices are suppressed in order to
simplify the notation.

Using the spectral representation for the Green’s function
in this basis and Fourier transforming to reciprocal space, the
diagonal terms of the self-energy read41

�nk ≡ 〈nk|�(ω)|nk〉

= 1

�

∑
GG′

1.BZ∑
q

all∑
m

i

2π

∫ ∞

−∞
dω′ WGG′(q,ω′)

× ρnk
mk−q(G)ρnk∗

mk−q(G′)

ω + ω′ − εs
m k−q + iη sgn

(
εs
m k−q − μ

) , (26)

where m runs over all bands, q covers the differences between
all k points in the first Brillouin zone. The infinitesimal η → 0+
ensures the correct time ordering of the Green’s function, � =
�cell Nk is the total crystal volume, and μ is the chemical
potential. The pair density matrix elements are defined as:

ρnk
mk−q(G) ≡ 〈nk|ei(q+G)r|m k − q〉. (27)

The potential WGG′(q,ω) is obtained from the symmetrized,
time-ordered dielectric function in the random phase approxi-
mation (RPA)

WGG′(q,ω) = 4π

|q + G|
(
ε−1

GG′(q,ω) − δGG′
) 1

|q + G′| . (28)

The calculation of the dielectric function in the GPAW code is
described in Ref. 42.

The quasi-particle spectrum is then calculated with Eq. (22)
using first-order perturbation theory in (�GW − Vxc), where
Vxc is the Kohn-Sham exchange-correlation potential

ε
QP
nk = εs

nk + Zs
nk Re〈nk|�(

εs
nk

) + Vx − Vxc|nk〉, (29)

with a renormalization factor given by

Zs
nk = (

1 − Re〈nk|�′(εs
nk

)|nk〉)−1
, (30)

where the derivative of the self-energy with respect to the
frequency is calculated analytically from Eq. (26). The
calculation of the exact exchange potential within GPAW is
described in Ref. 34 using the plane-wave expressions of
Ref. 43.

As discussed in the previous section, this first-order
approach, i.e., using only the diagonal terms of the self-energy,
is based on the assumption that the true QP wave functions
and energies are similar to the Kohn-Sham wave functions
and energies. To proceed beyond this approximation one must
evaluate also the off-diagonal terms of the self-energy and
invoke (partial) self-consistency. This is, however, beyond the
scope of the present work. Similarly, the effect of electron-
electron interactions on the QP lifetimes, which in principle
can be deduced from the imaginary part of the GW self-energy,
will not be considered in this study.
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A. Frequency grid

For a fully frequency-dependent GW calculation, the
dielectric matrix and thus the screened potential is evaluated
on a user-defined grid of real frequencies and the integration
in Eq. (26) is performed numerically. The frequency grid
is chosen to be linear up to ωlin with a spacing of �ω,
which typically is set to 0.05 eV. Above ωlin the grid spacing
grows linearly up to a maximum frequency, ωmax. In practice
we set ωmax to equal the maximum transition energy and
ωlin ≈ (1/4) · ωmax which results in a few thousand frequency
points. Compared to a fully linear grid, the use of a nonuniform
grid gives a computational speedup of around a factor 2–3
without any loss of accuracy. The broadening parameter η is
set to 4�ω to ensure a proper resolution of all spectral features.

B. Plasmon-pole approximation

In the plasmon-pole approximation (PPA), the frequency
dependence of the dielectric function ε−1

GG′(q,ω) is modeled as
a single-pole approximation

ε−1
GG′(q,ω) = RGG′(q)

(
1

ω − ω̃GG′(q) + iη

− 1

ω + ω̃GG′(q) − iη

)
. (31)

The plasmon frequency ω̃GG′(q) and the (real) spectral
function RGG′(q) are determined by fitting this function to
the dielectric matrix given at the frequency points ω1 = 0 and
ω2 = iE0:

ω̃GG′(q) = E0

√
ε−1

GG′(q,ω2)

ε−1
GG′(q,ω1) − ε−1

GG′(q,ω2)
, (32)

RGG′(q) = − ω̃GG′(q)

2
ε−1

GG′(q,ω1). (33)

Using the relation

lim
η→0+

1

x ± iη
= P

{
1

x

}
∓ iπδ(x), (34)

where P denotes the Cauchy principal value, the spectral
function of the screened potential, Im{WGG′(q,ω)}, is simply
a δ function at the plasmon frequencies ±ω̃GG′(q). Similarly,
the relation (34) can be used in Eq. (26) allowing the GW
self-energy to be evaluated analytically.

The PPA is expected to be a good approximation, when
the overall structure of the dielectric function is dominated
by a single (complex) pole. The true dielectric function will
show variations on a finer scale. However, these are averaged
out by the frequency integration in Eq. (26). In practice, we
set the free parameter, E0, to 1 Hartree in all our calculations
and we find results to be insensitive to variations of around
0.5 Hartree.

C. Static COHSEX

By setting ω − εm k−q = 0 in Eq. (26), the self-energy
becomes frequency independent and can be split into two parts,
named Coulomb hole and screened exchange.44 The first term
arises from the poles of the screened potential and describes

the local interaction of an electron with its induced charge

�COH = 1
2δ(r − r′)[W (r,r′; ω = 0) − V (r,r′)]. (35)

The plane-wave expression for a matrix element on a Bloch
state |nk〉 becomes

�COH
nk = 1

2�

∑
GG′

∑
q

all∑
m

WGG′(q,0)ρnk
mk−q(G)ρnk∗

mk−q(G′).

(36)

The second term originates from the poles of the Green’s
function and is identical to the exchange term in Hartree-
Fock theory with the Coulomb kernel replaced by the screened
interaction

�SEX = −
occ∑
j

φ∗
j (r)φj (r′)W (r,r′; ω = 0), (37)

which yields the matrix element

�SEX
nk = − 1

�

∑
GG′

∑
q

occ∑
m

WGG′(q,0)ρnk
mk−q(G)ρnk∗

mk−q(G′).

(38)

The quasiparticle energies are then given as

ε
QP
nk = εs

nk + 〈nk|�SEX + �COH − Vxc|nk〉. (39)

D. Coulomb divergence

For q → 0, the head, W 00(q), and wings, WG0(q),W 0G′ (q),
of the screened potential diverge as 1/q2 and 1/q, respectively.
These divergences are, however, integrable. In the limit of a
very fine k-point sampling we have

∑
q → �

(2π)3

∫
dq 4πq2,

and thus we can replace the q = 0 term in the q sum of Eq. (26)
by an integral over a sphere in reciprocal space with volume
�BZ/Nk. The head and wings of the screened potential then
take the form

W 00(q = 0,ω) = 2�

π

(
6π2

�

)1/3 [
ε−1

00 (q → 0,ω) − 1
]
, (40)

WG0(q = 0,ω) = 1

|G|
�

π

(
6π2

�

)2/3

ε−1
G0(q → 0,ω), (41)

with the dielectric function evaluated in the optical limit.42

E. Coulomb truncation

In order to avoid artificial image effects in supercell
calculations of systems, which are nonperiodic in one direction
(2D systems), we follow Ref. 45 and cut off the Coulomb
interaction by a step function in the nonperiodic direction
(z axis)

ṽ2D(r) = θ (R − |rz|)
|r| , (42)

where R is the truncation length. In reciprocal space, this
becomes

ṽ2D(G) = 4π

G2

[
1 + e−G‖R

(
Gz

G‖
sin(GzR) − cos(|Gz|R)

)]
,

(43)
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where G‖ and Gz are the parallel and perpendicular compo-
nents of G, respectively. By setting R to half the length of the
unit cell in z direction, this simplifies to46

ṽ2D(G) = 4π

G2
(1 − e−G‖R cos(|Gz|R)). (44)

Since Eq. (43) and thereby Eq. (44) are not well defined
for G‖ → 0, we have to evaluate these terms by numerical
integration

ṽ2D(G‖ = 0) = 1

�′

∫
�′

dq′ ṽ2D(Gz + q′), (45)

where �′ is a small BZ volume around G‖ = 0. This integral
is well defined and converges easily for a fine grid q′ not
containing the � point.

We mention that other methods have been applied to correct
for the spurious long-range interaction in GW calculations for
surfaces.47,48

F. Computational details

The calculation of one matrix element of the self-energy
of Eq. (26) scales as Nω × Nb × N2

k × N2
G with number

of frequency points, bands, k points, and plane waves,
respectively. The code is parallelized over q vectors. For
calculations including the � point only, i.e., isolated systems,
full parallelization over bands is used instead. Therefore, the
computational time scales linearly with the number of cores.
The screened potential WGG′(q,ω) is evaluated separately for
every q as an array in G, G′ and ω. For large numbers of
plane waves and frequency points, this array can be distributed
onto different cores, thus reducing the memory requirement on
every core.

In practice, the use of the plasmon-pole approximation
gives a computational speedup of a factor of 5–20 on average
compared to a full frequency calculation. For both methods
(PPA and full frequency integration), the computational time
spent on the evaluation of the dielectric matrix and on the
calculation of the quasiparticle spectrum from the screened
potential is comparable.

IV. SOLIDS

As a first application, we calculate the band structures of
ten simple semiconductors and insulators ranging from Si to
LiF thus covering a broad range of band gap sizes of both
direct and indirect nature. We compare the different approxi-
mation schemes within nonselfconsistent GW, namely (i) full
frequency dependence, (ii) plasmon-pole approximation, and
(iii) static COHSEX. In all these cases the self-energy is
calculated with orbitals and single-particle energies obtained
from an LDA calculation, i.e., G0W0@LDA. In addition we
perform nonselfconsistent Hartree-Fock (HF), as well as PBE0
hybrid calculations in both cases using LDA orbitals. Finally,
we compare to self-consistent GLLBSC38,49 calculations. The
GLLBSC is based on the PBEsol correlation potential and uses
an efficient approximation to the exact exchange optimized
effective potential which allows for explicit evaluation of the
derivative discontinuity, �xc. We have recently applied the
GLLBSC in computational screening studies of materials for
photocatalytic water splitting.50,51 Here we present a system-
atic assessment of its performance by comparing to experi-

TABLE I. Geometric structures.

Structure Lattice constant in Å

Si Diamond 5.431
InP Zincblende 5.869
GaAs Zincblende 5.650
AlP Zincblende 5.451
ZnO Zincblende 4.580
ZnS Zincblende 5.420
C Diamond 3.567
BN Zincblende 3.615
MgO Rocksalt 4.212
LiF Rocksalt 4.024

ments and GW results for various types of systems. The bulk
structures and the used lattice constants are listed in Table I.

All calculations were performed with the GPAW code, which
is based on the projector augmented wave method and supports
both real space and plane-wave representations. In the present
work only the plane-wave basis set has been used. The same set
of parameters is used for the calculation of the dielectric matrix
and the self-energy. For all GW calculations, convergence with
respect to the plane wave cutoff, number of unoccupied bands
and k points has been tested carefully, together with the size
of the frequency grid for the full frequency calculations. As
an example, Fig. 1 shows the dependence of the G0W0 band
gap of zinc oxide on the plane-wave cutoff and the number of
k points. For cutoff energies above 100 eV (corresponding to
around 200 plane waves and bands), the value of the band gap is
converged to within 0.02 eV, whereas increasing the number
of k points results in a constant shift. For all the solids we
have investigated, the band gap is well converged with Ecut =
200–300 eV and a few hundred empty bands. For materials
with direct band gaps (9 × 9 × 9) k points were found to be
sufficient, whereas for AlP, BN, C, Si, and ZnS, which have
indirect gaps, (15 × 15 × 15) k points were used in order to
clearly resolve the conduction band minimum.

The results for the band gaps are summarized in Fig. 2 and
Table II along with experimental data. The last row shows
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FIG. 1. (Color online) Convergence of the band gap of zinc
oxide for G0W0@LDA with the plasmon-pole approximation. The
number of bands is chosen equally to the number of plane waves
corresponding to the respective cutoff energy; for example 300 eV
corresponds to ∼1100 plane waves and bands.
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FIG. 2. (Color online) Comparison of calculated and experi-
mental band gaps for the solids listed in Table I. The numerical
values are listed in Table II. A logarithmic scale is used for better
visualization. G0W0@LDA refers to the fully frequency-dependent
nonselfconsistent GW based on LDA. The PBE0 results are obtained
nonselfconsistently using LDA orbitals.

the mean absolute errors (MAE) of each method relative to
experiment.

As expected LDA predicts much too small band gaps with
relative errors as large as 400 % in the case of GaAs. In contrast
HF greatly overestimates the band gap for all systems yielding
even larger relative errors than LDA and with absolute errors
exceeding 7 eV. The failure of HF is particularly severe for
systems with narrow band gaps like Si and InP where the
relative error is up to 500% whereas the error for the large gap
insulator LiF is 50%. This difference can be understood from
the relative importance of screening (completely neglected
in HF) in the two types of systems. The PBE0 results lie
in between LDA and HF with band gaps lying somewhat

closer to the experimental values, however, still significantly
overestimating the size of the gap for systems with small to
intermediate band gap.

The inclusion of static screening within the COHSEX
approximation significantly improves the bare HF results.
However, with a MAE of 1.59 eV, the results are still
unsatisfactory and there seems to be no systematic trend in
the deviations from experiments, except for a slightly better
performance for materials with larger band gaps. We mention
that a detailed discussion of the drawbacks of COHSEX and
how to correct its main deficiencies can be found in Ref. 52. In
Ref. 53, the static COHSEX approximation was explored as a
starting point for G0W0 calculations and compared to quasipar-
ticle self-consistent GW calculations. However, no systematic
improvement over the LDA starting point was found.

Introducing dynamical screening in the self-energy brings
the band gaps much closer to the experimental values.
The G0W0 calculations with the PPA and full frequency
dependence yield almost identical results, with only small
deviations of about 0.2 eV for the large band gap systems
LiF and MgO, where the fully frequency-dependent method
performs slightly better.

Our results agree well with previous works for G0W0

calculations using LDA54 and PBE29 as starting points with
mean absolute errors of 0.31 and 0.21 eV in comparison, re-
spectively. Compared to Ref. 29, the only significant deviations
can be seen for GaAs and the wide gap systems, where our
calculated band gaps are somewhat larger. We expect that this
is due to the difference between LDA and PBE as starting
point. The values reported in Ref. 54 are all smaller than ours.
A more detailed comparison is, however, complicated because
of the differences in the implementations: Ref. 54 uses a mixed
basis set in an all-electron linear muffin-tin orbital (LMTO)
framework. We note that for LiF, the calculated band gap is

TABLE II. Band gaps in eV. The type of gap is indicated in the last column. The last row gives the mean absolute error compared
to experiment. Experimental data is taken from Ref. 59. Note that the experimental data for ZnO refers to the wurtzite structure. We find
the calculated band gap to be around 0.1 eV smaller in the zincblende than in the wurtzite structure for both LDA, G0W0 and GLLBSC.
Experimental gap for InP taken from Ref. 63.

G0W0@LDA

LDA HF@LDA PBE0@LDA COHSEX PPA dyn GLLBSC Experiment

Si 0.48 5.26 3.68 0.56 1.09 1.13 1.06 1.17 Indirect
InP 0.48 5.51 1.92 1.99a 1.38 1.36 1.53 1.42 Direct
GaAs 0.38 5.46 1.88b 3.77c 1.76 1.75 1.07 1.52 Direct
AlP 1.47 7.15 4.66 1.88 2.38 2.42 2.78 2.45 Indirect
ZnO 0.60 10.42d 3.07e 0.10 2.20 2.24 2.32 3.44 Direct
ZnS 1.83 9.43 3.94f 1.52 3.28 3.32 3.65 3.91 Direct
C 4.12 11.83 7.42 6.51 5.59 5.66 5.50 5.48 Indirect
BN 4.41 13.27 10.88 7.08 6.30 6.34 6.78 6.25 Indirect
MgO 4.59 14.84 7.12 10.30 7.44 7.61 8.30 7.83 Direct
LiF 8.83 21.86 12.25 16.02 13.64 13.84 14.93 14.20 Direct
MAE 2.05 5.74 1.52 1.59 0.35 0.31 0.41

aCOHSEX predicts an indirect band gap of 1.73 eV.
bPBE0 predicts an indirect band gap of 1.79 eV.
cCOHSEX predicts an indirect band gap of 1.07 eV.
dHF predicts an indirect band gap of 9.73 eV.
ePBE0 predicts an indirect band gap of 2.83 eV.
fPBE0 predicts an indirect band gap of 3.80 eV.
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strongly dependent on the lattice constant. With only a slightly
smaller lattice constant of 3.972 Å, which is the experimental
value corrected for zero-point anharmonic expansion effects,55

the quasiparticle gap increases by 0.4 eV.
One well-known problematic case for the GW

approximation is ZnO (both in the zincblende and the
wurtzite structure). The calculated band gap in the present
study at the G0W0@LDA level is about 1 eV too low, which
is consistent with other previous G0W0 studies.56–59 Recent
G0W0 calculations employing pseudopotentials and the PPA60

as well as all-electron G0W0
61 have attributed this discrepancy

to a very slow convergence of the band gap with respect
to the number of bands. This is, however, not in agreement
with our PAW-based calculations, which are well converged
with a cutoff energy of 100 eV and around 200 bands. We
note that semicore d states of zinc are explicitly included
in our calculations. The large differences of the results and
the convergence behavior compared to Ref. 60 are most
likely due to the use of different models for the plasmon-pole
approximation. As discussed in Ref. 62, the use of a model
dielectric function, which fulfills Johnson’s f -sum rule (as
the PPA of Hybertsen and Louie)44 leads to a very slow
convergence of the band gap of ZnO with respect to the number
of plane waves and unoccupied bands and gives a result,
which is 1 eV higher than obtained with the fully frequency-
dependent method. With the PPA of Godby and Needs on
the other hand, results converge considerably faster and agree
remarkably well with the frequency-dependent method.

Our results are consistent with Ref. 29 who attributed the
underestimation of the gap to the starting point (PBE in their
case) and also showed that the eigenvalue-sc GW method
yields a band gap of 3.20 eV in very good agreement with
experiment.

The band gaps denoted GLLBSC in Table II have been
obtained as the self-consistently determined Kohn-Sham band
gap of a GLLBSC calculation with the estimated derivative
discontinuity �xc added. Compared to G0W0, this approach
yields a slightly lower accuracy compared to experiment. On
the other hand, the much lower computational cost of the
GLLBSC (which is comparable to LDA) makes this method
very attractive for band structure calculations of large systems.

We conclude that even single-shot GW calculations with
the plasmon pole approximation reproduce the experimental
results to 0.2 eV for most of the semiconductors. The largest
deviations are observed for ZnO and LiF where the computed
band gaps are around 1 and 0.5 eV too small, respectively.
Both of these systems have strong ionic character and LDA is
presumably not a good starting point—in particular the LDA
wave functions might be too delocalized. In such cases, a
different starting point based on, e.g., a hybrid or LDA + U
might yield better results although a systematic improvement
seems difficult to achieve in this way.29

In Fig. 3, we compare the band structure of diamond
obtained with the LDA and G0W0@LDA approximation.
The valence band maximum occurs at the � point and the
conduction band minimum is situated along the �–X direction,
resulting in an indirect band gap of 4.1 and 5.7 eV, respectively.
We can see that the main effect of the G0W0 approximation
lies in an almost constant shift of the LDA bands: Occupied
bands are moved to lower energies, whereas the unoccupied
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FIG. 3. (Color online) Band structure of diamond calculated with
LDA (black) and G0W0 (red). The bands have been interpolated by
splines from a (15 × 15 × 15) k-point sampling. The band gap is
indirect between the � point and close to the X point with a value of
4.12 eV and 5.66 eV for LDA and G0W0, respectively.

bands are shifted up. This is thus an example where the effect
of G0W0 is well described by a simple scissors operator.

Finally, we present the calculated band structure of gold
in Fig. 4 as one example for a metallic system. The lattice
parameter used for the fcc structure is 4.079 Å. The effect of
GW is a small broadening of the occupied d bands, with the
top being shifted slightly up and the bottom down in energy.
The change in the low-lying s band and the unoccupied s-p
band are significantly larger and inhomogeneous. Our band
structure agrees well with the calculations of Ref. 64 with
use of the plasmon-pole approximation and exclusion of 5s

and 5p semicore states. In Ref. 64 it was also shown that QP
self-consistent GW approximation shifts the d band down by
0.4 eV relative to PBE in good agreement with experiments.

V. 2D STRUCTURES

In this section we investigate the quasiparticle band struc-
ture of a two-dimensional structure composed of a single
layer of hexagonal-boron nitride (h-BN) adsorbed on N layers
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FIG. 4. (Color online) Band structure of fcc gold calculated
with LDA (black lines) and G0W0@LDA with PPA (red dots).
(45 × 45 × 45) and (15 × 15 × 15) k points have been used for LDA
and GW, respectively. The bands are aligned to the respective Fermi
level.
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FIG. 5. (Color online) Schematic picture of the N-graphene/h-BN
interface.

of graphene (as sketched in Fig. 5 for N = 2). Such 2D
heterostructures have recently attracted much attention due
to their unique physical properties and potential application in
the next-generation electronic and photonic devices.65–68

Since graphene and h-BN are hexagonal structures with
almost the same lattice constant, h-BN serves as a perfect sub-
strate for graphene.69 Based on LDA total energy calculations
we find the most stable structure to be the configuration with
one carbon over the B atom and the other carbon centered
above a h-BN hexagon [equivalent to configuration (c) of
Ref. 70] with a layer separation of 3.18 Å. The lattice constant
is set to 2.5 Å for both lattices. The calculations are performed
in the same way as described in the previous section with a
k-point sampling of (45 × 45) in the in-plane direction. Also
for this system we have found that the PPA yields almost
identical results to the full frequency G0W0 and therefore all
calculations presented in this section have been performed
with the PPA.

The importance of truncating the Coulomb potential in
order to avoid spurious interaction between neighboring
supercells is shown in Fig. 6 for the direct gap at the K
point for a freestanding boron nitride monolayer. Without
truncation, the gap converges very slowly with the cell size
and is still 0.3 eV below the converged value for 30 Å of
vacuum. Applying the truncated Coulomb potential, the band
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FIG. 6. (Color online) Direct G0W0 band gap at the K point for a
freestanding h-BN sheet as function of the vacuum used to separate
layers in neighboring supercell with and without use of the Coulomb
truncation method as described in Sec. III E.
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FIG. 7. (Color online) Band structure for a freestanding h-BN
sheet. The band gap is direct at the K point with LDA (4.57 eV) and
GLLBSC (7.94 eV) and changes to indirect between the K and the �

point for G0W0 (7.37 eV).

gap is clearly converged already for 10 Å vacuum. These
observations are consistent with recent G0W0 calculations for
a SiC sheet, where the same trends were found.71

First, we summarize the most important features of the
band structure calculations for the freestanding h-BN as
shown in Fig. 7. LDA predicts a direct band gap at the K
point of 4.57 eV and an indirect K–� transition of 4.82 eV.
With GLLBSC, the bands are shifted significantly in energy.
However, the shift is not constant for the different bands,
resulting in a larger increase of the gap at the � point than
at the K point. This yields 7.94 eV and 9.08 eV for the direct
and indirect transition, respectively. The opposite is the case
for G0W0@LDA calculations, which predict an indirect band
gap of 6.58 eV and a direct transition at the K point of 7.37 eV.
These values are 0.6 and 1.0 eV larger than the ones reported
in Ref. 72 which were obtained from pseudopotential-based
G0W0@LDA calculations. We note, however, that the amount
of vacuum used in Ref. 72 was only 13.5 Å, which is not
sufficient according to our results.

For the freestanding graphene (not shown), we find from
the slope of the Dirac cone at the K point the Fermi velocity
to be 0.87 × 106 m/s, 0.87 × 106 m/s, and 1.17 × 106 m/s
with LDA, GLLBSC, and G0W0, respectively. This is in good
agreement with previous G0W0 calculations, which obtained
1.15 × 106 m/s (Ref. 73) and 1.12 × 106 m/s (Ref. 74),
respectively, and accurate magnetotransport measurements,
which yielded 1.1 × 106 m/s (Ref. 75).

The band structure of graphene on a single h-BN sheet
is shown in Fig. 8. At a qualitative level the band structure
is similar to a superposition of the band structures of the
isolated systems. In particular, due to the limited coupling
between the layers, the bands closest to the Fermi energy can
clearly be attributed to the different layers: At the K point, the
linear dispersion of the graphene bands is maintained and the
second highest valence and second lowest conduction band
belong to the h-BN. However, there are important quantitative
changes. First, the slope of the Dirac cone is reduced, giving
a Fermi velocity of 1.01 × 106 m/s (0.78 × 106 m/s) with
G0W0 (LDA). Exactly at the K point both LDA and G0W0

predict a small gap of 50 meV. Moreover, at the K point, the
h-BN gap obtained with G0W0 is reduced from 7.37 eV for the
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FIG. 8. (Color online) LDA and G0W0@LDA band structure for
a graphene/boron nitride double layer structure. Only the two highest
valence bands and the two lowest conduction bands are shown.

isolated sheet to 6.35 eV. In contrast the LDA gap is almost
the same (4.67 eV) as for the isolated h-BN.

To further illustrate the importance of screening effects,
we calculate the dependence of the h-BN gap with respect to
the distance between the two layers. From Fig. 9, we can see
that for LDA the gap is almost constant at the value of the
freestanding boron nitride. For GLLBSC, the gap is around
1.2 eV larger but it does not change with the interlayer distance
either. In contrast, GW predicts an increase of the gap with
increasing distance and slowly approaches the value of the
isolated system. The distance dependence of the gap is well
fitted by 1/d as expected from a simple image charge model.
Only for small distances, the results deviate from the 1/d

dependence, most likely due to the formation of a chemical
bond between the layers. We mention that the band gap closing
due to substrate screening has been observed in previous GW
studies of metal/semiconductor interfaces6,7 as well as for
molecules on metal surfaces.8–11

In Fig. 10, the size of the h-BN gap is shown for a varying
number of graphene layers in a h-BN/N -graphene heterostruc-
ture. While LDA predicts a constant band gap of h-BN, G0W0

predicts a slight decrease of the gap with increasing number
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FIG. 9. (Color online) The band gap of h-BN at the K point as
function of the distance to the graphene sheet (see inset). Dashed
horizontal lines indicate the values for the freestanding h-BN,
corresponding to d → ∞.
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FIG. 10. (Color online) h-BN gap at the K point for different
number of adsorbed graphene layers. GLLBSC results are plotted
without and with the derivative discontinuity �xc.

of graphene layers due to enhanced screening. Additionally,
we show the results for GLLBSC with and without the
derivative discontinuity �xc added to the Kohn-Sham gap.
Due the construction of the GLLBSC, �xc vanishes when
one or more graphene layers are present because the system
becomes (almost) metallic. Thus the GLLBSC gap becomes
independent of the number of graphene layers, but is still close
to the G0W0 result.

VI. MOLECULES

In this section, we present G0W0 calculations for a set of
32 small molecules. Recently a number of high-level GW
studies on molecular systems have been published.25–28 These
studies have all been performed with localized basis sets and
have explored the consequences of many of the commonly
made approximations related to self-consistency, starting point
dependence in the G0W0 approach, and treatment of core
electrons. Here we use the more standard G0W0@LDA method
and apply a plane-wave basis set. This is done in order to
benchmark the accuracy of this scheme but also to show the
universality of the present implementation in terms of the types
of systems that can be treated.

Our calculations are performed in a supercell with 7 Å
distance between neighboring molecules in all directions. As
pointed out in the previous sections, careful convergence tests
are crucial in order to obtain accurate results with GW. For
a plane-wave basis we have found that this is particularly
important for molecules, as demonstrated in Fig. 11 for water.
Here, we plot the calculated ionization potential as a function
of the inverse plane-wave cutoff. Again, for each data point,
the number of bands is set equal to the number of plane waves
corresponding to the cutoff. Even for Ecut = 400 eV (1/Ecut =
0.0025 eV−1 and corresponding to more than 8000 bands), the
IP is not fully converged. However, for a cutoff larger than
100 eV, the IP grows linearly with 1/Ecut and this allows us
extrapolate to the infinite cutoff (and number of empty bands)
limit.76,77 In this case the converged ionization potential is
12.1 eV, which is about 0.5 eV smaller than the experimental
value. For all the molecules we have extrapolated the IP to
infinite plane wave cutoff based on G0W0 calculations at cutoff
energies 200–400 eV. Furthermore, as found for the solids
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FIG. 11. (Color online) Convergence of the Ionization Potential
for H2O with respect to the plane wave cutoff for G0W0@LDA.
The dashed line shows a linear fit of the points with Ecut > 100 eV
(1/Ecut < 0.01 eV−1). The IP is given as the negative HOMO energy.

and the 2D systems, the plasmon-pole approximation and the
fully frequency-dependent GW calculations yield very similar
results with typically 0.05 to 0.1 eV smaller IPs for the latter.

The results for all molecules are summarized and compared
in Fig. 12. The LDA, PBE0 and GLLBSC calculations
underestimate the IP with mean absolute errors (MAE) of
4.8 , 3.5 , and 2.0 eV, respectively. The opposite trend
is observed for (nonselfconsistent) Hartree-Fock, which
systematically overestimates the IP due to complete lack of
screening. The MAE found for HF is 1.1 eV. We note that
for an exact functional, according to the ionization-potential
theorem, the Kohn-Sham energy of the highest occupied
molecular orbital (HOMO) from DFT should be equal to the
negative ionization potential.39

The G0W0 results are typically around 0.5 eV smaller than
the experimental IPs, although there are a few exceptions
where the calculated ionization potential is too large, and
with a MAE of 0.56 eV. Recently, very similar studies have
been reported for G0W0@LDA27 with Gaussian basis sets and
G0W0@PBE28 in an all-electron framework using numerical
atomic orbitals. Although there are differences of up to
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FIG. 12. (Color online) Comparison of theoretical and experi-
mental ionization potentials. The G0W0 results are obtained by apply-
ing the extrapolation scheme as explained in the text. Corresponding
values are listed in Table III.
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FIG. 13. (Color online) Deviations for the ionization potentials
obtained with G0W0@LDA compared to (a) Ref. 27 and (b) Ref. 28.
The mean deviations are 0.02 and 0.30 eV, respectively.

0.5 eV (both positive and negative), we find reasonable overall
agreement with 0.32 eV MAE relative to Ref. 27. The mean
signed error (MSE) is only 0.02 eV. Compared to Ref. 28, our
results are systematically smaller with a MAE of 0.36 eV and
a MSE of 0.30 eV. This is within the range of the accuracy
of the different implementations, e.g., basis set, the PPA and
the frozen core approximation applied in our calculations and
the differences between LDA and PBE as starting points. A
graphical comparison with these studies is shown in Fig. 13.

For detailed discussions of the role of self-consistency and
other approximations we refer to Refs. 25,27,28, and 78.

VII. CONCLUSION

We have presented a plane-wave implementation of the
single-shot G0W0 approximation within the GPAW projector
augmented wave method code. The method has been applied
to the calculation of quasiparticle band structures and energy
levels in bulk crystals, 2D materials, and molecules, respec-
tively. Particular attention has been paid to the convergence of
the calculations with respect to the plane-wave cutoff and the
number of unoccupied bands. While for all extended systems
the value of the band gap was found to be converged at around
200 eV, the ionization potentials of the molecules required
significantly higher cutoffs. In these cases, the data points were
fit linearly to 1/Ecut, allowing to extrapolate to infinite number
of bands. For all calculations, the plasmon-pole approximation
and the use of full frequency dependence of the dielectric
function and the screened potential give very similar results.
With these two observations, the computational demands can
be drastically reduced without losing accuracy.

For the bulk semiconductors, we found good agreement
with experimental results with a mean absolute error (MAE)
of 0.2 eV. However, in the special case of zinc oxide and
for the large gap insulators, the calculated band gaps were
underestimated by 0.5–1 eV. These errors are most likely due
to the lack of self-consistency and/or the quality of the LDA
starting point used in our calculations. Similar conclusions
apply to the 32 small molecules where the ionization potentials
obtained from G0W0@LDA were found to underestimate the
experimental values by around 0.5 eV on average. The im-
portant role of screening for the quasiparticle band structure
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TABLE III. Calculated and experimental ionization potentials. All energies are in eV. Last row shows the mean absolute error (MAE) with
respect to experiments. Experimental data taken from Ref. 79.

Molecule LDA HF@LDA PBE0@LDA GLLBSC G0W0@LDA Experiment

LiH 4.37 8.96 5.38 7.30 7.79 7.90
LiF 6.08 14.15 7.95 10.16 10.53 11.30
NaCl 4.74 10.00 5.95 6.94 8.72 9.80
CO 8.72 14.61 10.15 12.51 13.48 14.01
CO2 8.75 14.69 10.09 11.93 13.05 13.78
CS 6.76 11.88 8.00 9.81 10.69 11.33
C2H2 6.81 11.21 7.79 9.41 11.22 11.49
C2H4 6.48 10.54 7.37 8.62 10.74 1 0.68
CH4 9.19 15.22 10.68 13.58 14.45 13.60
CH3Cl 6.68 12.32 8.01 9.53 11.55 11.29
CH3OH 6.09 13.18 7.77 8.77 10.98 10.96
CH3SH 5.21 10.21 6.37 7.33 9.78 9.44
Cl2 6.53 11.67 7.77 9.12 10.93 11.49
ClF 7.38 13.46 8.85 10.54 12.14 12.77
F2 9.27 18.44 11.50 13.43 14.66 15.70
HOCl 6.20 12.39 7.68 8.72 10.78 11.12
HCl 7.56 12.86 8.87 10.96 12.28 12.74
H2O2 6.15 13.76 7.97 8.86 11.05 11.70
H2CO 5.98 12.64 7.58 8.44 10.64 10.88
HCN 8.64 13.35 9.72 11.89 13.27 13.61
HF 9.53 18.29 11.67 14.18 15.02 16.12
H2O 7.12 14.42 8.87 10.46 12.07 12.62
NH3 6.02 12.20 7.52 8.89 10.83 10.82
N2 9.85 16.59 11.54 13.77 14.72 15.58
N2H4 5.54 11.75 7.02 8.04 10.30 8.98
SH2 5.83 10.58 6.97 8.27 10.27 10.50
SO2 7.58 13.37 8.89 10.08 11.68 12.50
PH3 6.23 10.77 7.31 8.74 10.70 10.59
P2 6.17 9.38 6.93 8.80 9.70 10.62
SiH4 8.10 13.57 9.41 12.09 12.92 12.30
Si2H6 6.82 11.30 7.84 9.15 11.04 10.53
SiO 6.97 12.24 8.21 9.53 10.70 11.49
MAE 4.84 1.11 3.46 1.83 0.56

was illustrated by the case of a 2D graphene/boron-nitride
heterojunction. For this system, we found a truncation of
the Coulomb potential to be crucial in periodic supercell
calculations.

The G0W0 results were compared to band structures ob-
tained with Hartree-Fock, the PBE0 hybrid, and the GLLBSC
potential. While Hartree-Fock and PBE0 yield overall poor
results, the computationally efficient GLLBSC results were
found to be in surprisingly good agreement with G0W0

for the band gaps of semiconductors, while the ionization
potentials of molecules were found to be 1.5 eV lower on
average.
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081101(R) (2011).
62M. Stankovski, G. Antonius, D. Waroquiers, A. Miglio, H. Dixit,

K. Sankaran, M. Giantomassi, X. Gonze, M. Côté, and G.-M.
Rignanese, Phys. Rev. B 84, 241201(R) (2011).

63I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys.
89, 5815 (2001).

64T. Rangel, D. Kecik, P. E. Trevisanutto, G.-M. Rignanese, H. Van
Swygenhoven, and V. Olevano, Phys. Rev. B 86, 125125 (2012).

65L. A. Ponomarenko, A. K. Geim, A. A. Zhukov, R. Jalil, S. V.
Morozov, K. S. Novoselov, I. V. Grigorieva, E. H. Hill, V. V.
Cheianov, V. I. Fal’ko et al., Nature Phys. 7, 958 (2011).

66H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi,
P. Jarillo-Herrero, and T. Palacios, IEEE Electron Device Lett. 32,
1209 (2011).

67S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C.
Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and
R. Gorbachev, Nature Mater. 11, 764 (2012).

68L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin,
A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V.
Morozov et al., Science 335, 947 (2012).

69R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu,
W. Gannett, A. Zettl, and M. F. Crommie, Nano Lett. 11, 2291
(2011).

70G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van
den Brink, Phys. Rev. B 76, 073103 (2007).

235132-13
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Abstract. Direct production of hydrogen from water and sunlight requires
stable and abundantly available semiconductors with well positioned band
edges relative to the water red-ox potentials. We have used density functional
theory (DFT) calculations to investigate 300 oxides and oxynitrides in the
Ruddlesden–Popper phase of the layered perovskite structure. Based on
screening criteria for the stability, bandgaps and band edge positions, we suggest
20 new materials for the light harvesting photo-electrode of a one-photon water
splitting device and 5 anode materials for a two-photon device with silicon as
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ion. Finally, the quality of the GLLB-SC potential used to obtain the bandgaps,
including the derivative discontinuity, is validated against G0W0@LDA gaps for
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1. Introduction

The direct conversion of solar light into chemical fuels through electrochemical reactions
represents a clean, sustainable and potentially cheap alternative to fossil fuels. The simplest
reaction of this kind is the water splitting (WS) reaction in which water is split into hydrogen and
oxygen. In the most basic photo-electrochemical device, each photon is harvested by a single
semiconductor and the created electron–hole pair is used to evolve hydrogen and oxygen. The
maximum efficiency of such a one-photon device is only around 7% when overpotential of the
reactions and losses are accounted for [1]. Significantly higher energy conversion efficiencies
of up to 27% [2] can be achieved using a combination of two or more semiconductors with
appropriately aligned band edges.

First attempts of photocatalytic WS were made in the 1970s using TiO2 as the light
harvesting and hydrogen evolving material [3]. Due to the large bandgap of TiO2 and its poor
catalytic properties the devices had extremely low efficiencies. Since then several materials have
been proposed as light harvesting photo-electrodes for WS both in the UV and in the visible
range [4]. Still, the efficiencies of the WS devices are significantly lower than the alternative
combination of electrolysis driven by standard photovoltaic cells.

The search for new materials can be guided by ab initio quantum mechanical calculations,
avoiding expensive ‘trial and error’ experimental processes. Recently, high-throughput materials
design of stable binary and ternary alloys [5], carbon capture and storage [6], batteries [7],
photovoltaic [8, 9] and WS materials [2, 10] have been reported. A number of databases have
been also implemented to store and to analyze the huge amount of computed data generated.
Some examples are the Materials Project database4, the AFLOWLIB consortium [5] and the
Computational Materials Repository5.

In previous studies [2, 10], we have investigated the cubic perovskite structure and
proposed 20 materials for the one-photon WS process and 12 others for the anode in a two-
photon device with a Si cathode. Several of those were unknown in the WS community, but
some of them have been already successfully tested. In particular the oxynitrides, like BaTaO2N,
SrTaO2N, CaTaO2N, LaTiO2N and LaTaON2, gives good results in term of oxygen and/or
hydrogen evolution in presence of sacrificial agents [11].

4 Materials Project—A Materials Genome Approach (http://materialsproject.org/).
5 Computational Materials Repository (documentation: https://wiki.fysik.dtu.dk/cmr/ and database: https://cmr.
fysik.dtu.dk/).
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(a) A2BO4 (b) A3B2O7 (c) A2BO3N

Figure 1. Crystal structure of the Ruddlesden–Popper phase with n = 1 (a) and
n = 2 (b). Panel (c) shows the n = 1 structure when one oxygen is replaced by
nitrogen. (a) A2BO4, (b) A3B2O7 and (c) A2BO3N.

The perovskite is a very versatile structure with materials exhibiting a large variety
of properties and applications [12]. In addition to the standard cubic and low-symmetry
perovskites, two cubic perovskites with general formula ABO3 can be combined together in
the so-called double perovskite [13]. The double perovskite structure was recently explored
with the focus of finding new materials for WS and engineering of the bandgap by combining
two perovskites with different electronic properties [14, 15].

In the present work, we investigate the layered perovskite structure. A layered perovskite
is composed of two-dimensional (2D) slabs of ABO3 cubic perovskite separated by a motif of
metal atoms. There are several phases of layered perovskites which differ in the thickness and
the relative displacement of the cubic perovskite slabs and in the motifs. The phase studied
here is the Ruddlesden–Popper with general formula An+1BnO3n+1, where n = 1, . . . ,∞ is the
number of BO6 octahedra forming the 2D slabs and the upper limit for n correspond to the
cubic phase. Figure 1 shows the structures under investigation: we consider the cases of n = 1
and n = 2 (A2BO4 and A3B2O7, respectively) and one oxygen replacement in favor of nitrogen
in the case of n = 1 (A2BO3N).6 There are several distinct oxygen sites that can be replaced by
nitrogen. To avoid large distortions in the octahedron, we replace the oxygen between the A-
and B-atoms leaving the xy-plane of the octahedron unchanged. This unit cell does not allow

6 The phases with n = 1 and 2 permit us to investigate the layered perovskite structures at a reasonable
computational cost. The n = 3 structure is described by a 34 atoms unit cell, which is too demanding for a screening
project.
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to investigate possible symmetry lowering in the structure (i.e. octahedra tilting and Jahn–Teller
distortions). In order to do that a larger unit cell is required, which would increase dramatically
computational time, making the screening unaffordable. In any case we should remark that the
use of a cubic symmetry is well justified since this symmetry lowering usually disappears at
high temperatures. Indeed in many cases perovskites recover a cubic-like symmetry at room
temperature [16, 17].

2. Method

In the one-photon WS device, one material is responsible for the evolution of both oxygen and
hydrogen. First a photon is harvested creating an electron–hole pair. Next, the electron and hole
reach two different points on the surface where the evolution of O2 and H2 takes place. Any
material that should function as photo-electrode for WS should meet a number of criteria: (i)
chemical and structural stability; (ii) a bandgap in the visible range; (iii) well positioned band
edges with respect to the red-ox levels of water; and (iv) high mobility for electrons and holes.
In addition, low cost and non-toxicity are required. Here we focus on the criteria (i)–(iii).

The stability of a material is evaluated with respect to around 2000 reference systems. The
reference systems constitute stable phases of the possible materials into which the considered
layered perovskite can be decomposed, and are taken from the experimental ICSD database7

and the Materials Project database (see footnote 4). A material is considered stable only if
the energy difference between the layered perovskite phase and the most stable alternative
combination of reference systems is below 0.2 eV atom−1. We use this finite threshold energy
to avoid the exclusion of potential candidates due to inaccuracies in the calculations [18] and to
take into account metastability of the investigated structure. Each combination is fully relaxed
using the revised Perdew–Burke–Ernzerhof (RPBE) functional [19] implemented in the density
functional theory (DFT)-GPAW code [20, 21].

As an example, the stability of the Ba2TaO3N compound is given by

1E = Ba2 TaO3N − min
ci

{
c1Ba2 + c2 Ta2 + c3BaO + c4BaO2 + c5Ta2O5 + c6BaN6 + c7 Ta3N5

+c8Ba2 TaN3 + c9BaTaO2N + c10N2 + c11O
}
, (1)

where ci are positive and sum up to assure the correct stoichiometry of the A2BO3N layered
structure and the chemical formulae indicate the DFT total energies of the references. All the
references are in their solid state phase except for N2 and O which are in the gas phase. Note that
the energy of oxygen is calculated from H2 and H2O due to the well known problems associated
with the DFT description of the O2 triplet ground state.

We note that the present stability analysis does not include corrosion of the materials.
Extended stability analysis including this effect were recently found to be of some
importance [22, 23]. However, we leave this for a future study.

It is well known that the Kohn–Sham eigenvalues from DFT systematically underestimate
bandgaps of extended semiconductors due to the approximate nature of the exchange-correlation
functionals and the missing derivative discontinuity [24]. On the other hand, many-body
methods like the GW approximation give better bandgaps, but are computationally too
expensive to be used in a screening project of several hundred materials. Here, we used the
Gritsenko, van Leeuwen, van Lenthe and Baerends potential (GLLB) improved for solids (-SC)

7 ICSDWeb (www.fiz-karlsruhe.de/icsd web.html).
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Figure 2. The bandgaps of the 20 identified candidates for one-photon WS
calculated with the GLLB-SC potential (in blue) G0W0@LDA (in red), LDA (in
black) and PBE0 (in green). The GLLB-SC bandgaps are obtained adding the
derivative discontinuity (1xc, in dashed blue) to the Kohn–Sham bandgap (KS,
in solid blue). The discontinuities are usually proportional to the KS bandgaps.
The agreement between the GLLB-SC potential and G0W0 is very good.

potential [25, 26], which includes an explicit estimation of the derivative discontinuity. In
a previous work [10], the GLLB-SC bandgaps of around 40 metal oxides were compared
to experiments. On average the GLLB-SC bandgaps were found to lie within 0.5 eV of the
experimental gaps.

Figure 2 shows the bandgaps of the 20 earlier identified cubic perovskites for one-
photon WS [2] here calculated using different methods and xc-functionals. Standard DFT
functionals, like local density approximation (LDA) and PBE (not shown in the figure),
seriously underestimate the bandgap, while the hybrid PBE0 tends to overestimate the gaps.
We have performed G0W0 calculations using a recent implementation in the GPAW code [27].
In these calculations the G0W0 self-energy is evaluated using LDA energies and wave functions
and the frequency dependence of the dielectric function is fitted to a plasmon pole model. We
use a 150 eV plane wave cut off for the representation of the dielectric matrix and include
empty bands up to the same energy cut off. A 7 × 7 × 7 k-point mesh is used for both DFT
and G0W0 calculations8. The GLLB-SC and G0W0 bandgaps are quite similar with a mean

8 Convergence with respect to k points, plane wave cutoff and bands as well as validity of the plasmon pole
approximation have been carefully tested for one of the structures. With the chosen parameters, we expect GW
bandgaps to be converged within around 0.1 eV for all materials.
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absolute difference of 0.3 eV. This is consistent with the results of a similar comparison made
for a set of ten well characterized simple semiconductors and insulators [27]. Based on this we
conclude that the bandgaps obtained with the GLLB-SC are sufficiently accurate for the purpose
of materials screening.

In addition to the bandgap, the position of the conduction and valence band edges with
respect to the water red-ox levels is crucial: the energy of electrons at the surface should be
above the hydrogen evolution potential and the energy of holes must be below the oxygen
evolution level. It is not trivial to calculate the band edge positions at a semiconductor–water
interface from first principles. Although some methods have been proposed [28, 29], they are
computationally rather demanding and not suited for screening studies. Instead we obtain the
position of the band edges simply using an empirical equation [30, 31] that gives the center
of the bandgap in terms of the geometrical average of the electronegativities in the Mulliken
scale of the pure chemical elements, χM, forming the compound. The band edge positions are
then calculated by adding and subtracting half of the bandgap, Egap. In formula, for the A2BO4

layered perovskite:

EVB, CB = E0 + (χ2
AχBχ4

O)1/7
± Egap/2 , (2)

where E0 is the difference between the normal hydrogen electrode (NHE) and the vacuum
(E0 = −4.5 eV). More details about the method and its validation are available in [2, 10].

It has been recently shown for the cubic perovskite structure [32], that the search for new
materials can be guided using chemical-based rules. The three chemical rules used here are:

• Valence balance rule: in a realistic material, the sum of the possible oxidation states of its
elements must be zero.

• Even–odd electrons rule: the number of electrons per unit cell should be an even number.
A material with an odd number of electrons has partially occupied bands at the Fermi level
and is thus a metal. There are some exceptions to this rule, but they correspond to magnetic
and/or strongly correlated materials which require more advanced theoretical descriptions
than the one used here.

• Ionic radii of the atoms: the metals that can occupy the A- and B-ion position in the
perovskite depend on the ionic radii of the neutral atoms. Usually alkali and alkaline
earth metals occupy the A-ion side, and post-transition metals the B-ion position [12]. We
implement this rule by having separate allowed chemical elements for the A- and B-sites9.

The use of these rules drastically reduce the number of calculations from around 8000 to 300
different materials.

The screening parameters for the one-photon WS device are summarized in table 1. In
addition to stability and a bandgap in the visible range, the band edges should straddle the
red-ox levels of water plus the required overpotentials (0.1 eV for hydrogen and 0.4 eV for
oxygen [33]).

The ideal efficiency of the one-photon device can be up to 7% [1]. Higher efficiencies can
be achieved using a two-photon, or tandem, device, consisting of two semiconductors forming
a pn-junction. Electrons generated in the cathode move to the surface and evolve hydrogen

9 The metals used in the A-ion position are: Li, Na, Mg, K, Ca, Ga, Ge, Rb, Sr, Y, Ag, Cd, In, Sn, Cs, Ba, La, Tl
and Pb. The B-metals are Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, In, Sn, Sb, Te,
Hf, Ta, W, Re, Os, Ir, Pt and Bi.
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Table 1. Screening parameters (in eV) used for the one- and two-photon WS
devices. The red-ox levels of water with respect to the NHE are 0 and 1.23 eV for
the hydrogen and oxygen evolution, respectively. The criterion for the position
of the band edges include also the overpotentials for hydrogen (0.1 eV) and for
oxygen (0.4 eV) [33]. Silicon is used as cathode in the two-photon WS device
(VBSi

edge = 0.86 eV).

Criterion One-photon WS Two-photon WS

Stability (1E) 0.2 eV atom−1 0.2 eV atoms−1

Bandgap (Egap) 1.76 Egap 6 3 1.36 Egap 6 3
Band edges VBedge > 1.6 VBanode

edge > 1.6
(VBedge, CBedge) CBedge < −0.1 CBcathode

edge < −0.1
CBanode

edge < VBcathode
edge

while the holes move toward the pn-junction and recombine with electrons from the anode.
Similarly, the holes generated in the anode move toward the surface and evolve oxygen. Thus
it takes two photons to generate one H2. The efficiency of the device depends strongly on the
relative sizes of the bandgaps of the two materials. Assuming ideal band edge line up, the best
performance (around 25%) is obtained by combining two materials with bandgaps of 1.1 eV and
1.7, respectively [2]. The sum of the two bandgaps should not be smaller than 2.8 eV: 1.23 eV is
the energy required per electron to split water and approximately 0.5 eV is required to account
for the overpotentials of the oxidation and reduction reactions. In addition, the relevant quasi-
Fermi levels are located ≈ 0.25 eV below (above) the conduction (valence) bands10. Finally,
the quasi-Fermi level corresponding to the conduction band of the cathode should be at least
0.1 eV above the quasi-Fermi level corresponding to the valence band of the anode to ensure
efficient charge recombination at the interface. As it turns out, silicon is an ideal photo-cathode
for WS since it has a bandgap of 1.1 eV well positioned with respect to the reduction potential
of hydrogen and because of the mature fabrication technology. A more detailed explanation of
the two-photon device is available in [2]. In the case of two-photon devices we therefore limit
our search to photo-anode materials assuming a silicon cathode and use the screening criteria
summarized in table 1.

3. Trends in stability and bandgaps

The simplest layered perovskite is the Ruddlesden–Popper phase. The two phases studied here
have the general formula A2BO4 and A3B2O7. The former is composed of slabs of cubic
perovskite ABO3 offset by a translation of (1/2, 1/2) with respect to each other, terminated
by oxygens to complete the octahedra, and separated by a layer of A metal atoms. In the
latter structure each slab of perovskite is formed by two octahedra BO6 units. The unit cells

10 The quasi-Fermi level describes the population electrons and holes in a semiconductor when their populations
are not in equilibrium, for example when the semiconductor is under illumination. When an electron–hole pair
is created, the density of both electrons and holes are above their equilibrium values and the populations of the
carriers cannot be described by a single Fermi level. One of the consequences of the quasi-Fermi levels is that the
effective energy of the electrons and holes does not correspond anymore to the conduction and valence band but
the quasi-Fermi levels have to be considered.
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Figure 3. Calculated heat of formation plotted versus bandgap for the A2BO4

(black circles), A2BO3N (red squares) and A3B2O7 (blue diamonds). The oxides
show high stability and a wide range of bandgaps. The oxynitrides are overall
less stable and have smaller bandgaps than the oxides.

of the two phases contain 14 and 24 atoms, respectively. The A-ion position is generally
occupied by an alkali or alkali-earth metal, and the B-ion by a transition or post-transition metal.
Materials of the form A2BO3N, in which an oxygen atom has been replaced by nitrogen, have
been considered. In general, oxides tend to have valence band edges that are somewhat deep
compared to the oxidation potential of water. Nitrogen is slightly less electronegative compared
to oxygen and the valence bands of the oxynitrides are consequently shifted up compared to the
oxides [34]. The smaller electronegativity of nitrogen leads also to a reduction in the size of the
bandgaps. In addition, a nitrogen replacement breaks the symmetry of the cubic perovskite and
creates an excess of charge in one of the corners of the octahedron. This leads to a reduction in
the stability of the obtained materials, as shown in figure 3.

Figure 3 shows the calculated heat of formation for the A2BO4, A2BO3N and A3B2O7

perovskites plotted against the GLLB-SC bandgap. The bandgaps of both types of oxides range
from 0 to above 6 eV. The oxides are in general highly stable especially the materials with
larger bandgaps. As expected, the oxynitrides are less stable and show smaller gaps. Despite of
this, around 8 oxynitrides are found to fulfill the criteria on bandgap and stability for the one-
photon WS device. A further nitrogen replacement is likely to lower the bandgaps and reduce
the stability even further [2], and therefore has not been investigated here.

All the bandgaps of the stable A2BO4 layered perovskites are plotted in figure 4. There is
some degree of correlation between the chemical elements and the size of the bandgaps. First
of all it can be seen that the gap is mainly determined by the B-ion while the A-ion has less
influence. Hf and Zr in the B-ion position generate large bandgap insulators with gaps above
6 eV. Ti, Ge and Sn lead to structures with gaps above 3 eV while W and Zn produce structures
with gaps around 2 eV.
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Figure 4. Bandgaps of the stable compounds in the A2BO4 structure. The gaps
range from 0 to more than 6 eV. The chemical elements are sorted for similarity
so that atoms that generate layered perovskites with similar bandgaps are close
together.

Most of the oxides investigated have valence bands formed by the 2p levels of the O2−

ions. Since the nature of the bonds in these materials is highly ionic, this implies that the top
of the valence band is roughly the same for all the oxides11. The conduction bands are mainly
composed of the lowest unoccupied molecular orbitals (LUMO) of the A and B metal ions. This
means that the size of the bandgap should correlate with the lowest lying LUMO level of the
A and B cations. The relevant LUMO level is, however, not that of the cations in vacuum, but
rather a cation sitting in the electrostatic field from the rest of the lattice, VR. To analyze this,
we follow an Ewald–Evjen scheme, assuming that all the ions keep their nominal charges. This
scheme is described elsewhere in the literature [35].

Table 2 shows how the LUMO energies change drastically passing from the free cations to
the cations under the effect of VR. VR destabilizes much more the energies of the B-site ions than

11 There are some exceptions to these rule, e.g. those compounds that contain carbon group ions with valence 2+
(Ge2+, Sn2+ and Pb2+), in which the valence band is a mix between the 2p levels of the O2− ions and the s levels of
the carbon group ion.
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Table 2. LUMO energies (in eV) of several B4+ ions in vacuum and in the
presence of the crystal electrostatic field VR, respectively. VR is calculated for
ASnO4 and CaBO4 for the A2+ and B4+ ions, respectively, (similar results are
obtained for other lattices). The LUMO energies of the A2+ ions in vacuum and
under the effect of VR are for Ca2+ (s): −14.65 and −0.58; for Sr2+ (s): −13.58
and −1.02; and for Cd2+ (s): −20.35 and −4.91. The bandgaps of the compounds
containing these ions are also shown for comparison.

Bandgap

B-ion In vacuum Including VR Ca2BO4 Sr2BO4 Cd2BO4

Ti4+ (d) −56.13 −3.35 4.01 3.82 0.78
Zr4+ (d) −42.30 −1.24 6.19 6.09 1.90
Hf4+ (d) −39.90 −1.10 6.11 6.57 1.60
Ge4+ (s) −52.28 −3.64 3.67 3.39 0.36
Sn4+ (s) −45.45 −3.82 3.70 3.67 0.54

the ones of the A-site ions. This is due to the short distance between the O2− and A ions (usually
in a range from 1.9 to 2.3 Å) in comparison with the B–O2− distances (in a range from 2.5 to
3.0 Å). The table shows the correlation between the lowest LUMO energy from A and B (under
the effect of VR) ions and the bandgap for the particular case of (A2+)2B4+(O2−)4 perovskites.
The LUMO of the B4+ ions is more stable than the LUMO of the A2+ ions when the A position is
occupied by an alkaline-earth ion (in the table only the results for Ca2+ and Sr2+ are shown, but
similar features are observed for Mg2+ and Ba2+). Thus, in these cases the bandgap is correlated
with the LUMO of the B ion. This explains why Zr4+ and Hf4+ compounds have similar gaps,
whereas Ti4+ shows a smaller gap. This could be understood even just by looking at the energies
of the ions in vacuum, since the d-levels of Ti4+ are much deeper in energy that those of Zr4+

and Hf4+. This difference is strongly reduced when VR is considered due to the smaller ionic
radius of Ti4+ (10 pm smaller than Zr4+ or Hf4+ ionic radii [36]), which has O2− ions closer. In
the case of the carbon group (Ge4+ and Sn4+), their compounds have similar bandgaps due to a
compensation of effects: Ge4+ s level in vacuum is lower in energy than Sn4+ s level (by ≈ 7 eV),
but Ge4+ ionic radii is 16 pm smaller than that of Sn4+.

When Cd2+ occupies the A site, its LUMO (the s level) is more stable than the LUMO of
B4+ ions, contrary to the case of an alkaline-earth on A position. This leads to compounds with a
conduction band dominated by the Cd2+ s level and consequently to a small bandgap. A similar
investigation has been performed also for the A3B2O7 layered perovskites with similar results.
Since nitrogen has an electronegativity very close to the one of oxygen, we expect that these
results are still valid for the oxynitrides. The main difference will be that the valence band is
formed by an hybridization of the oxygen and nitrogen 2p orbitals.

A couple of A- and B-ions can be used for both the A2BO4 and the A3B2O7 perovskites.
For these cases, we have investigated the changes in the size of the bandgaps depending on the
number of octahedra forming the 2D slab. There is a weak trend that correlates the bandgaps
to the B-ions: when the B-ion position is occupied by a p-metal (e.g. Ge and Sn) the gaps are
generally reduced when the slab thickness is increased, while for d-metals (e.g. Ti, Zr and Hf),
the gaps seem to increase with slab thickness. In average, for the p-metals the bandgaps are
reduced by 0.6 eV from the n = 1 to n = 2 structures and by 0.4 eV from the n = 1 to n = ∞
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Figure 5. The identified candidates in the Ruddlesden–Popper phases for one-
photon WS. The figure shows the red-ox levels of water and the calculated band
edges for the indirect (red) and direct (black) bandgaps.

structures. For the d-metals the bandgaps are reduced by 0.03 and 0.2 eV, respectively. There
are some exceptions to this trend, like Srn+1TinO3n+1. Lee et al [37] have recently shown that
bandgaps of the Srn+1TinO3n+1 Ruddlesden–Popper phase is reduced with an increase of the
thickness and we have seen the same effect. In general, these trends could be used to tune the
bandgap by increasing or reducing the number of octahedra within the layers.

4. Candidates for water splitting

The screening criteria of table 1 have been applied to the calculated structures. Out of the 300
investigated materials 20 fulfill the criteria for one-photon WS, see figure 5. Ba2TaO3N and
Sr3Sn2O7 are known to exist experimentally in the layered perovskite structure. Ba2TaO3N has
also recently been proposed as a WS material by Wu et al [38] who used a computational
screening procedure similar to the one proposed here. Y2BiO3N and the other A3B2O7

compounds are already known in other stoichiometries and most of the A2BO4 materials and
Sr2TaO3N have been synthesized in other crystal structures with the same stoichiometry as
the layered perovskite. It might not be an issue that some compounds are known in another
crystal structure. In fact, layered perovskites can often be grown epitaxially even if they are not
globally stable. Eight of the identified perovskites have not been investigated experimentally
to our knowledge. In particular, the oxynitrides are interesting candidates for WS. In fact, the
cubic perovskites ABO2N with A = Ba, Sr and Ca, and B = Ta and Nb are known to evolve
hydrogen and/or oxygen in the presence of a sacrificial agent [11, 39]. We expect that the
layered perovskites containing these elements conserve the good properties in terms of activity
already present in the cubic phase.

For the two-photon device with a silicon cathode, our screening identifies five layered
perovskites as candidates for the anode material. All five are experimentally known in other
structures/stoichiometry, but none of them has been used so far as photocatalyst.
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Figure 6. The identified candidates in the Ruddlesden–Popper phases for two-
photon WS device. The figure shows the red-ox levels of water and the valence
band of silicon. The calculated band edges for the indirect (red) and direct (black)
bandgaps are drawn.

5. Conclusions

With the aim of identifying stable and abundantly available semiconductors for light harvesting
photo-electrodes for WS, we have screened 300 oxides and oxynitrides in the layered perovskite
structure with stoichiometry A2BO4, A3B2O7 and A2BO3N. The stability and bandgaps were
calculated using DFT and the band edge alignment relative to the water red-ox potentials was
estimated using an empirical formula. The accuracy of the calculated bandgaps, which were
obtained with the GLLB-SC potential, was validated by comparing with state of the art G0W0

calculations for 20 oxides in the cubic perovskite structure.
We have identified 20 candidate materials for one-photon WS, and additional 5 materials

for photo-anode in a two-photon device with a silicon cathode. A few of these materials are
already experimentally known, but none of them have been used so far for photoelectrocatalysis.

The trends in stability and bandgap have been studied in some detail. We have found that
the bandgap of the layered perovskites is mainly determined by the position of the most stable
LUMO of the A- and B-ion. Furthermore, our results indicate that the bandgap can be tuned
to some extent by varying the number of octahedra forming the layered structure. Specifically,
for a d-metal (p-metal) at the B-ion position the effect is to increase (decrease) the gap with the
number of octahedra within a layer.
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We present first principles many-body calculations of the dielectric constant, quasiparticle band
structure and optical absortion spectrum of monolayer MoS2. As the separation between the re-
peated layers is increased, the dielectric function of the layer develops a strong q-dependence around
q = 0. This implies that denser k-point grids are required to converge the band gap and exciton
binding energies when large supercells are used. In the limit of inifinite layer separation, here ob-
tained using a truncated Coulomb interaction, a 45 × 45 k-point grid is needed to converge the
G0W0 band gap and exciton energy to within 0.1 eV. We provide an extensive comparison with
previous studies and explain agreement and variations in the results. It is demonstrated that too
coarse k-point sampling and the interactions between the repeated layers have opposite effects on
the band gap and exciton energy, leading to a (partial) fortuitous error cancellation in the previously
published results.
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I. INTRODUCTION

Atomically thin two-dimensional (2D) materials such
as graphene, hexagonal boron nitride, and transition
metal dichalcogenides (TMDC) possess unique electronic
and optical properties including high intrinsic carrier
mobilities,1–3 tunable band gaps,4,5 and strong light-
matter interactions.6–9 These features, combined with
the possibility of engineering their electronic properties
further via strain, alloying or stacking, make the 2D ma-
terials ideal as building blocks for new opto-electronic
structures and devices with minimal sizes and perfor-
mances surpassing present technologies.
After the intense focus on graphene, the TMDCs are

now attracting increasing interest.10 This stems mainly
from the greater variation in their electronic properties
including both semiconducting and metallic behavior. So
far, the most intensively studied single-layer TMDC is
the semiconductor MoS2. Nanostructured forms of MoS2
have previously been explored as potential catalysts for
desulferization of crude oil and more recently for (photo)-
electrochemical hydrogen evolution.11–13 Bulk MoS2 is
composed of two-dimensional sheets held together by
weak van der Waals forces and individual sheets can be
isolated by exfoliation techniques similar to those used to
produce graphene.1 Single layers of MoS2 therefore com-
prise highly interesting two-dimensional systems with a
finite band gap and have recently been proposed for nano-
electronics applications.2

The optical properties of MoS2 have been thoroughly
studied experimentally.14–19 The absorption spectrum

shows two distinct low energy peaks at 1.88 eV and
2.06 eV, which are denoted by A and B, respectively,20

and derive from direct transitions between a split valence
band and the conduction band at the K point of the Bril-
louin zone. Their Rydberg satellites, Zeeman splitting,
and dependence on crystal thickness have been investi-
gated in detail.17 Recently, the quantum yield of lumi-
nescence from MoS2 was shown to increase dramatically
when the sample thickness was changed from a few layers
to a monolayer7,8 indicating a transition to a direct band
gap in the single layer.

In the past couple of years a number of theoretical
studies of the electronic band structure and optical exci-
tations in monolayer MoS2 have been published.4,21–26

These studies are based on many-body perturbation
theory in the GW approximation (mainly the non-
selfconsistent G0W0 approach) for the band structure
and the Bethe-Salpeter equation (BSE) with a statically
screened electron-hole interaction for the optical excita-
tions. As is standard practice, the calculations have been
performed on a supercell geometry where the MoS2 lay-
ers have been separated by 10 − 20 Å vacuum and the
Brillouin Zone (BZ) sampled on grids ranging from 6× 6
to 15 × 15. With these parameters G0W0 band gaps in
the range 2.6 − 3.0 eV, and G0W0-BSE exciton binding
energies of 0.6 − 1.1 eV, have been reported. Moreover,
both direct21–25 and indirect4 band gaps have been found
at the G0W0 level, while only direct gaps have been ob-
tained with self-consistent GW21 and GW0.

4,26 When
comparing these values, it should be kept in mind that
both size and nature of the band gap of MoS2 depends
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sensitively on the in-plane lattice parameter, a.4

One of the most fundamental quantities describing the
electronic structure of a material is the dielectric func-
tion. The dielectric properties of atomically thin 2D ma-
terials are quite different from their 3D counterparts.27

For example plasmons in 2D metals have acoustic dis-
persion relations (ωp(q) → 0 as q → 0), and screening is
generally much weaker leading to strong exciton binding
energies in 2D semiconductors. Reported static dielec-
tric constants for monolayer MoS2 obtained using the
supercell approach lie in the range 4.2 −7.6 (for in-plane
polarization).21,24,28 These values have been used to ra-
tionalize the exciton binding energy in MoS2 using the
simple Mott-Wannier model.

In this paper, we present an in-depth study of the di-
electric function, quasiparticle band structure and ex-
citonic states in monolayer MoS2. We focus on sepa-
rating the spurious interlayer screening from the intrin-
sic intralayer screening in supercell geometries, and the
consequences that the physics of screening in 2D has
for the convergence of many-body excited state calcu-
lations. The 3D macroscopic dielectric constant, as used
for solids, converges to 1 for all q vectors in the limit
of infinite separation of the layers and is thus meaning-
less for a 2D material. We use an alternative approach
to calculate the dielectric constant by averaging the total
field over the material rather than the supercell. This 2D
dielectric constant shows strong q-dependence for small
wave vectors and becomes exactly 1 for q = 0. This prop-
erty has important consequences for the k-point conver-
gence of many-body calculations.

In general, the use of a truncated Coulomb interac-
tion is essential to avoid interlayer screening which de-
cays slowly with the layer separation, L. The interlayer
screening yields too large dielectric constant for wave vec-
tors q < 1/L. As a consequence, the G0W0 band gaps
and exciton energies are 0.5 eV too low on average for
layer separations of around 20 Å. For larger layer separa-
tions, the strong q-dependence of the dielectric constant
for small q implies that a k-point grid of at least 45× 45
is required to converge band gaps and exciton energies
to 0.1 eV. For k-point grids below 15× 15 the band gap
is at least 0.5 eV too large in the limit L → ∞. Thus
the effect of interlayer screening and too coarse k-point
grids partially cancel out leading to reasonable values for
the band gap and exction binding energy with undercon-
verged parameters as applied in previous studies.

The paper is organized as follows. In Sec. II we present
G0W0 band structures and study the convergence of the
gap with respect to interlayer separation and k-point
sampling. In Sec. III we show calculations for the 2D
dielectric constant and explain the origin of the slow k-
point convergence of the band gap. In Sec. IV we present
many-body calculations of the lowest excitons and anal-
yse their convergence with layer separation and k-point
sampling. Our conclusions are given in Sec. V.

II. QUASIPARTICLE BAND STRUCTURE

In this section we demonstrate that GW band struc-
tures for monolayer MoS2 converge extremely slow with
respect to the interlayer separation. In order to obtain
well converged results (within 0.1 eV), the use of a trun-
cated Coulomb interaction is inevitable, along with a k-
point grid of around 45× 45. Previously reported calcu-
lations with the full Coulomb interaction have employed
only separation between 10 and 20 Å and used from 6×6
to 12 × 12 k points. The resulting band structures are,
however, somewhat saved by a fortunate error cancella-
tion between the two effects.

A. Computational details

All our calculations have been performed with the pro-
jector augmented wave method code GPAW.2943 The
Kohn-Sham wave functions and energies of monolayer
MoS2 were calculated in the local density approxima-
tion (LDA) using a plane wave basis with cut-off energy
400 eV. The 4s and 4p semicore electrons of Mo were
explicitly included in all calculations. Unless otherwise
stated the calculations have been performed for the ex-
perimental lattice constant of 3.16 Å. One-shot G0W0

calculations were performed using the LDA wave func-
tions and eigenvalues to obtain the G0W0@LDA quasi-
particle energies. A plane wave cut off of 50 eV and
200 bands were used for the dielectric function, screened
interaction and GW self-energy. Convergence with re-
spect to these parameters has been checked very carefully.
With these values band gaps were found to be converged
within around 10meV. The plasmon pole approximation
for the dielectric function was found to yield QP energies
within 0.1 eV of those obtained from full frequency de-
pendence and was consequently used in all calculations.
To avoid interaction between the periodically repeated
MoS2 sheets, we have applied a truncated Coulomb in-
teraction of the form vc(r) = (1/r)θ(Rc − z), following
Refs. 30 and 31. For details on the implementation of
the GW method in the GPAW code we refer to Ref. 32.
We note that we have used a numerical averaging of the
head of the screened potential W00(q) for all wavevectors
q in the Brillouin zone (similar to Eq. 9 in Sec. III C).
This was found to be crucial in all calculations with the
full 1/r Coulomb interaction.

B. Results

The band structure calculated using 45 × 45 k points
and the truncated Coulomb interaction is shown in Fig.
1. At the LDA level, we find a direct band gap at the K
point of 1.77 eV while the smallest indirect gap of 1.83 eV
occurs from Γ to a point along the Γ-K direction. In
contrast, G0W0 predicts an indirect gap of 2.58 eV and
at direct gap at K of 2.77 eV.
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FIG. 1: (Color online). Bandstructure of monolayer MoS2

calculated with LDA and G0W0@LDA using 45×45 k points
and a truncated Coulomb interaction to avoid interaction be-
tween periodically repeated layers. The valence band tops
have been aligned.

FIG. 2: Definition of the interlayer separation, L.

In Fig. 3 we show the convergence of both the direct
and the indirect band gap with respect to the k-point grid
for a fixed interlayer separation of 23 Å (see Fig. 2 for
the definition of L). It is clear that a very dense k-point
grid is needed in order to obtain well-converged results
with the truncated Coulomb interaction. For 45 × 45 k
points, band gaps are converged within less than 0.1 eV,
while this is already the case for 15 × 15 k points with
the bare Coulomb interaction. However, the calculated
values are too low. The slow convergence with respect to
k points when the truncation is used will be discussed in
detail in Sec. III C.
We see that results do not converge independently with

respect to the number of k points and the interlayer sep-

10 20 30 40 50

Number of k points

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

B
an

d 
ga

p 
(e

V
)

1/r interaction
truncated interaction

(X)

(X)

FIG. 3: (Color online). Direct (full symbols) and indirect
(open symbols) G0W0 band gaps as function of the number of
k points in one of the in-plane directions for a layer separation
of L = 23 Å.
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FIG. 4: (Color online). Direct G0W0 band gap plotted as a
function of interlayer distance for different k-point samplings
with the full 1/r interaction. Dotted lines serve as a guide for
the eye to extrapolate for L → ∞. They were obtained by
fitting all values for L > 30 Å, including the results with the
Coulomb truncation, to a quadratic function. Dashed hori-
zontal lines indicate the calculated values with the truncated
Coulomb interaction.

aration. In Fig. 4, we plot the L-dependence of the
direct band gap for different k-point samplings with the
bare interaction. The k-point dependence becomes much
stronger for large L. For L → ∞, the values are expected
to converge to the results calculated with the truncation
(indicated by dotted lines). They seem to exhibit a linear
1/L behaviour only for L > 50 Å or very dense k-point
samplings. Fig. 5 shows all results and interpolated val-
ues in a contourplot as a function of 1/L and number
of k points. The effects of using more k points and in-
creasing L are of different sign and partially cancel each
other. This is the reason, why different choices of the
two parameters yield the same results. Especially, the
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FIG. 5: (Color online). Contour plot of the direct G0W0

band gap as a function of the inverse interlayer distance and
number of k points in one of the in-plane directions with the
full 1/r interaction. Contour lines are separated by 0.1 eV.
Interpolation from splines was used.

band gaps calculated with 9 × 9 k points and L = 23 Å
and 15× 15 k points and L = 43 Å are the same as with
45 × 45 k points and infinite L. This seems, however,
conincidental and we do not expect it to be the case for
other systems.
We note that all calculations have been performed with

a single k point in the direction perpendicular to the
layer. This is, however, insufficient for small interlayer
distances. For L = 13 Å, we find an increase of the band
gap of around 0.2 - 0.3 eV when at least 3 k points are
used, for example. For L > 20 Å or use of the truncation,
this effect is negligible.

C. Comparison with previous work

In table I we show our converged results obtained with
the truncated Coulomb interaction and 45× 45 k points
together with previous G0W0 results from the literature.
For each reference we show the values used for the lat-
tice constant, the interlayer separation and the k-point
sampling. It can be seen that all the previous calcula-
tions have used small layer separations and no trunca-
tion method. As pointed out in the preceding discussion,
this gives a fast k-point convergence. A properly con-
verged calculation, however, requires larger separations
and thereby more k points. But as a consequence of a
cancellation of errors, a calculation with 19 Å layer sepa-
ration and 12× 12 k points yields almost the same band
gaps as our converged result (within 0.15 eV). We are
thus led to conclude that the reasonable agreement be-
tween our results and previous ones are to a large extent
fortuitous.
Furthermore, the effect of strain can have a large im-

pact on the MoS2 band gap. As demonstrated in Ref.
4, using 12 × 12 k points and 19 Å layer separation, the
G0W0 band gap for the experimental lattice constant of
3.160 Å is indirect. With a lattice constant of 3.190 Å,
corresponding to 1% strain, the gap changes to direct.
The lowering of the direct band gap becomes even more
pronounced for larger lattice constants. As can be seen
from the table our converged results predict the same
trend, in particular the decrease of the direct gap as func-
tion of strain, with our values for the direct gap being
generally 0.2 eV larger. We note that for 3.255 Å, the
smallest indirect transition occurs from the Γ point at
the valence band to the K point at the conduction band.
This is also in agreement with Ref. 4. In the partially
self-consistent GW0 calculations of Ref. 26, the oppo-
site trend was found, namely a transition from a direct
to indirect band gap for ∼ 5 % strain. However, a layer
separation of only 12 Å and less than 9 k points in the
in-plane directions were used.

In Ref. 22, the band gap was determined by extrap-
olating from L = 20 Å to infinite layer separation, un-
der the assumption that the gap scales linearly with the
inverse distance between the layers. The obtained val-
ues for the direct and indirect band gaps are ∼ 3.0 and
∼ 3.3 eV, respectively. This is consistent with our find-
ings using the truncated Coulomb interaction, the same
lattice constant of 3.18 Å and the same (under-converged)
k-point grid of 12× 12 as in Ref. 22.

From our studies, we conclude that the G0W0@LDA
band gap of monolayer MoS2 is indirect with a value of
2.6 eV while the direct gap is 2.8 eV, when the experimen-
tal lattice constant of 3.16 Å is used. The question of how
well the one-shot G0W0@LDA approximation describes
the true electronic structure of this system remains open.
Partially self-consistent GW0

4 and fully self-consistent
GW21 calculations have been shown to consistently yield
direct band gaps of 2.75 − 2.80 eV.

III. STATIC SCREENING

In this section we present a detailed investigation of
the (static) dielectric properties of monolayerMoS2. This
serves a dual purpose. First, it illustrates the origin of the
slow convergence of the GW results presented in the pre-
vious section (and the BSE results presented in the next
section). Secondly, it shows that the usual definition of
the macroscopic dielectric constant of a periodic solid is
not meaningful when applied to a 2D system represented
in a periodic supercell. We discuss the difference between
screening in 2D and 3D which becomes particularly pro-
nounced in the q → 0 limit with large consequences for
the calculation of optical excitations with static screening
of the electron-hole interaction (see next section).
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TABLE I: Calculated G0W0 band gaps obtained in present work and compared with previous results from the literature. All
our calculations have been performed using a truncated Coulomb interaction.

Egap (eV)

Ref. starting point a (Å) number of k-points layer separation (Å) direct indirect

This work LDA 3.16 45× 45× 1 23 (truncated vc) 2.77 2.58
This work LDA 3.19 45× 45× 1 23 (truncated vc) 2.65 2.57
This work LDA 3.255 45× 45× 1 23 (truncated vc) 2.41 2.51
Ref. 25 LDA 3.15 18× 18× 1 24 2.41 ∼ 2.40
Ref. 4 PBE 3.16 12× 12× 1 19 ∼ 2.60 2.49
Ref. 4 PBE 3.19 12× 12× 1 19 2.50 ∼ 2.55
Ref. 4 PBE 3.255 12× 12× 1 19 2.19 2.19
Ref. 21 LDA 3.16 8× 8× 2 19 2.96 –
Ref. 22 PBE 3.18 12× 12× 1 20+1/L extrapolation 2.97 3.26
Ref. 22 PBE 3.18 12× 12× 1 20 ∼ 2.60 ∼ 2.85
Ref. 23 LDA 3.11 12× 12× 1 13 2.57 –
Ref. 24 HSE 3.18 6× 6× 1 15 2.82 ∼ 3.00
Ref. 33 PBE 3.19 15× 15× 1 15 2.66 –

A. 3D macroscopic dielectric constant

The microscopic dielectric function determines the re-
lation between a weak external potential and the total
potential in the material,

Vtot(r) =

∫
dr′ ǫ−1(r, r′)Vext(r

′). (1)

For a periodic system the dielectric function can be con-
veniently expressed in plane waves

ǫ−1(r, r′) =
∑

GG′

∑

q

ei(G+q)rǫ−1
GG′(q)e

−i(G′+q)r′ , (2)

where G is a reciprocal lattice vector, q belongs to the
1. BZ. Within the random phase approximation (RPA)
we have

ǫGG′(q, ω) = δGG′ − vc(q +G)χ0
GG′(q, ω), (3)

where χ0 is the non-interacting density response func-
tion. Here, vc can be the Fourier representation of either
the full or the truncated Coulomb interaction. For the
calculations in this section we have used a 50 eV cut-
off for the reciprocal lattice vectors to account for local
field effects. The non-interacting response function, χ0,
was constructed from local density approximation (LDA)
wave functions and energies including states up to 50 eV
above the Fermi level. All calculations were performed
with the projector augmented wave method code GPAW.
Details on the implementation of the dielectric function
in the GPAW code can be found in Ref. 34.

It follows from Eq. (2) that the total potential result-
ing from a plane wave external potential V0e

iq·r has the
form

Vtot(r) = Ṽq(r)e
iq·r (4)

where Ṽq(r) is a lattice periodic function. We thus define
the macroscopic dielectric constant as

1

ǫM (q)
≡ 〈Ṽq〉Ω

V0
= ǫ−1

00 (q), (5)

where 〈. . .〉Ω denotes a spatial average over a unit cell.
Note that in general ǫM (q, ω) 6= ǫ00(q, ω) because of local
field effects.35,36

To explicitly demonstrate that Eq. (5) does not ap-
ply to low-dimensional materials, we have calculated the
macroscopic dielectric constant as a function of the layer
separation, L. The results are shown in Fig. 6 for differ-
ent values of the in-plane momentum transfer q. We also
show the dielectric constant corresponding to polariza-
tion orthogonal to the layer. Clearly the macroscopic di-
electric constant approaches unity for all q-vectors in the
limit of large interlayer separation. This occurs because
the total field is averaged over an increasingly larger vac-
uum region.
Previously reported values for the macroscopic di-

electric constant of monolayer MoS2 lie in the range
4 − 8 .21,24,28 In these calculations the MoS2 layers were
separated by 10 − 20 Å vacuum. As can be seen from
ǫ‖(q = 0) in Fig. 6 this is consistent with our results.
However, it should also be clear that numbers depend on
the distance between layers and in fact are not meaning-
ful.

B. 2D macroscopic dielectric constant

For a 2D material, the average of the total potential in
the definition of the macroscopic dielectric constant must
be confined to the region of the material. Since Eq. (4)
still holds for a 2D material when q is confined to the
plane of the material, we average the in-plane coordi-
nates (r‖) over the unit cell area A and the out-of-plane
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FIG. 6: (Color online). The 3D static macroscopic dielectric
constant 1/ǫ−1

00 (q) of monolayer MoS2 as a function of the
interlayer separation, L. ǫ‖ is the dielectric constant with
polarization parallel to the monolayer and ǫ⊥ is the dielectric
constant for polarization orthogonal to the layer.

coordinate (z) from z0 − d/2 to z0 + d/2 where z0 de-
notes the center of the material and d its width. The 2D
macroscopic dielectric constant then becomes

1

ǫ2DM (q‖)
≡ 〈Ṽq〉A,d

V0

=
2

d

∑

G⊥

eiG⊥z0
sin(G⊥d/2)

G⊥
ǫ−1
G0(q‖), (6)

where the sum is over all G with G‖ = 0. In this work

we have taken d = 6.15 Å corresponding to the interlayer
separation in bulk MoS2. We shall return to the problem
of chosing d below.
The results for the static dielectric constant evaluated

from Eq. (6) using the bare Coulomb interaction is shown
in Fig. 7 for four different layer separations. The re-
sult for L = d = 6.15 Å coincides with the 3D dielectric
constant of bulk MoS2 given by Eq. (5). The result ob-
tained with the truncated Coulomb interaction is shown
in black; it represents the case of infinite layer separation.
Before discussing the results, it is instructive to consider
the potential arising from a 2D charge density fluctuation
of the form,

n(r) = n0e
iq‖·r‖δ(z), (7)

The corresponding potential follows from Poisson’s
equation44

φ(r) =
n0

q‖
e−iq‖·r‖e−q‖|z|. (8)

It follows that the potential perpendicular to the layer
falls off exponentially over a characteristic distance of
1/q‖. This explains why in general ǫ2DM (q‖) coincides
with the isolated layer result for q‖ & 1/L.

The variation of ǫ2DM when the parameter d is changed
by ±10% is indicated by the shaded region in Fig. 7.
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FIG. 7: (Color online). Static macroscopic dielectric constant
for a single layer of MoS2 calculated along the Γ-K line. The
calculations are performed using Eq. (6) with the microscopic
dielectric constant, ǫ−1

GG′(q), evaluated from Eq. (3) with ei-
ther the bare Coulomb interaction (dotted and dashed lines)
or truncated Coulomb interaction (full black line). The grey
area represents the result obtained when the averaging region
perpendicular to the layer, d, is varied by ±10%. The dotted
line corresponds to a layer separation of 6.15 Å and thus co-
incide with the dielectric constant of bulk MoS2. The curves
have been interpolated from a 32× 32 q-point mesh.

To the left of the maximum, ǫ2DM (q‖) is insensitive to
d since the induced potential is more or less constant
over the averaging region. To the right of the maximum,
the variation in ǫ2DM (q‖) follows the ±10% variation in
d. This is because for these wave vectors the induced
potential has essentially vanished at the borders of the
averaging region. In general, increasing (decreasing) d
will decrease (increase) ǫ2DM (q‖) in the large wave vector
region.

Another characteristic feature of the potential in Eq.
(8) is the 1/q‖ scaling which should be compared with

the 1/q2 form of the Coulomb potential from a 3D charge
oscillation. Since the non-interacting response function,
χ0
00(q), scales as ∼ q2 for q → 0 for both 2D and 3D sys-

tems, it follows from Eq. (3) that ǫ2DM (0) = 1, while
this is in general not the case in 3D. In our calcula-
tions, the effect of interlayer interactions is eliminated
by using a truncated Coulomb interaction of the form
vc(r) = (1/r)θ(Rc − z). For qz = 0 and in the limit
of small q‖, the Fourier representation of the truncated

Coulomb interaction becomes v2D(q) = 4πRc

|q| , i.e. it

scales as 1/q as the potential from the 2D charge den-
sity wave ensuring the correct limit ǫ2DM (0) = 1.

Finally, we note that previous studies37,38 have em-
ployed a strict 2D model for the dielectric function in
the small q limit of the form ǫ(q‖) = 1 + αq‖. This form
is convenient as it leads to an analytical expression for
the screened interaction in 2D.27 Our definition differs by
being a 3D (or quasi 2D) quantity valid for general q‖.
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C. Screened interaction

In Fig. 8 we show ǫ−1
00 as a function of q‖ evaluated

with and without the truncated Coulomb interaction.
For small q, the two curves differ significantly due to
the long range nature of the induced potential (8). At
large q (∼ K/2), the induced potential decays within
the cutoff range for the truncated Coulomb interaction
and therefore no difference can be seen between the two
methods. We emphasize that neither of the dielectric
constants shown in the figure can be interpreted as a
dielectric constant of monolayer MoS2, since they give
the average potential over the supercell and not over the
MoS2 layer. In particular their value will be highly de-
pendent on the size of the unit cell (in the limit of infinite
layer separation both will equal 1 for all q). Nevertheless,
this quantity is a crucial ingredient of both the GW self-
energy and the BSE kernel as it provides the screening
of the divergent term of the Coulomb interaction.
For q = 0 the Coulomb kernel diverges and we approx-

imate W (q = 0) by the integral

W00(q = 0) =
1

ΩΓ

∫

ΩΓ

dq vc(q)ǫ
−1
00 (q)

≈ 1

ΩΓ
ǫ−1
00 (q = 0)

∫

ΩΓ

dq vc(q), (9)

where ΩBZ is the Brillouin zone volume and ΩΓ is a small
volume containing q = 0. In isotropic systems ǫ−1

00 (q) is
usually constant in the vicinity of q = 0 and the approxi-
mation works well. However, when ǫ−1 is evaluated with
the truncated Coulomb interaction, ǫ−1

00 acquires much
more structure for small q as can be seen from Fig. 8.
Thus, for coarse k-point samplings we will underestimate
the Γ-point screening since we simply use ǫ−1

00 (q = 0) = 1.
The linear behavior of the screened interaction for

small q suggests that a better approximation forW00(q =
0) would be

W00(q = 0) =
1

ΩΓ

∫

ΩΓ

dq vc(q)
[
1 + q · ∇qǫ

−1
00 (q)

∣∣∣
q=0

]
.

(10)
Since the dielectric matrix in RPA is ǫGG′(q) = 1 −
vc(q)χ0

GG′(q), we can derive an analytic expression for
the first order Taylor expansion in q, and its inverse.
These quantities can be evaluated with vanishing addi-
tional cost, but we will leave the assessment of this ap-
proximation to future work.

IV. OPTICAL ABSORPTION SPECTRUM

In this section we present many-body calculations of
the optical absorption spectrum of monolayer MoS2 by
solving the Bethe-Salpeter Equation (BSE) under the
standard assumption of static screening of the electron-
hole interaction. As for the GW band gap, we find that
the use of a truncated Coulomb interaction is essential
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FIG. 8: (Color online). The 3D static inverse dielectric con-
stant ǫ−1

00 (q) of monolayer MoS2 calculated in the RPA for
different values of in-plane momentum transfer q along the Γ-
K direction. The separation between layers is L = 20 Å. Note
that neither of the quantities can be interpreted as the macro-
scopic dielectric constant of the monolayer (this quantity is
the black curve in Fig. 7).

to avoid interlayer screening and obtain well converged
exciton binding energies. Furthermore, the very strong
q-dependence of the 2D static dielectric function around
q = 0, leads to very slow k-point convergence for the
exciton binding energy.
In order to obtain an accurate absorption spectrum in-

cluding excitonic effects we calculate the response func-
tion from the Bethe-Salpeter Equation (BSE). Using the
standard assumption of a static dielectric screening of the
electron-hole (e-h) interaction, the BSE39 can be recast
as an effective two-particle Hamiltonian,40 which is diag-
onalized on a basis of electron-hole pairs. In this way the
excitonic eigenstates can be expressed as a linear combi-
nation of single-particle transitions

|λ〉 =
∑

vck

Aλ
vck|vck〉, (11)

where v, c, and k denote valence band, conduction band
and Brillouin zone wave vector, respectively. The absorp-
tion spectrum is proportional to the imaginary part of
the macroscopic dielectric function, which in the Tamm-
Dancoff approximation can be written

ǫ2(ω) =2π lim
q→0

vc(q)
∑

λ

δ(ω − Eλ)

×
∣∣∣∣
∑

vck

Aλ
vck〈vk− q|e−iq·r|ck〉

∣∣∣∣
2

, (12)

where Eλ are the eigenvalues associated with |λ〉.
In all calculations we have included a single valence

band and a single conduction band in the BSE Hamilto-
nian. We have tested that the first excitonic peak is com-
pletely unaffected if we instead include 6 valence bands
and 4 conduction bands. This is also expected since the
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highest (lowest) valence (conduction) band is well iso-
lated from the remaining bands at K where the exciton
is centered, see Fig. 1. For the screening we have in-
cluded 65 bands in the evaluation of the response func-
tion, which is sufficient for converged results. Increasing
the number of bands to 300 affects the position of the
first exciton by less than 10meV. The plane wave cutoff
for the response function (local field effects) was set to
50 eV and we checked that the excitonic binding energy
changed by less than 10meV when increasing the cutoff
to 200 eV. The dependence on k-point sampling and in-
terlayer separation will be examined below. Details on
the implementation of the BSE method in the GPAW
code can be found in Ref. 5.

A. Convergence tests

In the lower panel of Fig. 9, we show the exciton
binding energy as a function of interlayer separation cal-
culated for different k-point samplings using the bare
Coulomb interaction and the truncated Coulomb inter-
action. With the bare Coulomb interaction, the obtained
results are far from convergence, even for L = 50 Å. The
dependencies on the layer separation and number of k
points is very similar as for the quasiparticle gap dis-
cussed in Sec. II B, even on a quantitative level. There-
fore, the optical gap, which is given by the difference
of the QP gap and the exciton binding energy, is al-
most indenpedent of L and whether or not the truncation
method is used, as shown in the upper panel. This is con-
sistent with the observations in Ref. 22.
The convergence of the binding energy with respect to

the k-point sampling is plotted in Fig. 10 for an inter-
layer separation of 20 Å. The truncated Coulomb ker-
nel gives a much slower convergence with respect to the
number of k-points than the bare Coulomb interaction.
However, it should be clear from Fig. 9 that the bind-
ing energy obtained with the bare Coulomb interaction
converges to a value which is highly dependent on the
interlayer separation. In Ref. 25, convergence was found
with 18× 18 k points, but for a layer separation of only
24 Å. The obtained exciton binding energy was around
0.2 eV. According to our results, this is much too weak
due to interlayer screening.
The slow k-point convergence observed when using

the truncated Coulomb interaction is related to the q-
dependence of the screening in two-dimensional systems.
As demonstrated by Eq. (9) and Fig. 8 (blue curve),
a too low k-point sampling leads to an underestimation
of the screening in the vicinity of q = 0 and thus an
overestimation of the exciton binding energy.

B. Results

From the convergence tests described above we con-
clude that the BSE calculations are (nearly) converged if
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FIG. 9: (Color online). Optical gap and binding energy of the
lowest exciton in monolayer MoS2 as a function of interlayer
separation calculated from the BSE and the G0W0 quasipar-
ticle gap. Results with the full 1/r Coulomb interaction (full
lines) and the truncated interaction (dashed lines) are shown.
Dotted lines give an estimation for extrapolation to infinite
L.
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FIG. 10: (Color online). Binding energy of the lowest exciton
in monolayer MoS2 as a function of k-point sampling for a
supercell with a layer separation of L = 20 Å.

we use a truncated Coulomb interaction and a 45 × 45
k-point sampling. With these setting we have calculated
the BSE spectrum on top of a G0W0 quasiparticle band
structure obtained with the same parameters. The re-
sulting absorption spectrum is shown in Fig. 11. We also
show an RPA calculation, i.e. neglecting electron-hole
interactions in the BSE, performed on top of the same
G0W0 band structure for comparison. With electron-
hole interaction included, we obtain an exciton binding
energy of ∼ 0.6 eV, whereas RPA does not show an ex-
citon peak and simply gives an absorption edge at the
band gap.
Experimentally, the absorption spectrum of single

layer MoS2 exhibits a spin-orbit split peak around
1.9 eV.7 Since we have not included spin-orbit coupling
in our calculations, the spectrum Fig. 11 only shows
a single peak at low energies. However, it has previ-
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FIG. 11: (Color online). Absorption spectrum of single layer
MoS2 calculated with the RPA and BSE using the G0W0

quasiparticle band structure. The calculation has been per-
formed with a truncated Coulomb interaction to avoid inter-
actions between repeated layers and with a 45 × 45 k-point
grid.

ously been shown4,24 that the spin-orbit coupling does
not have a large effect on the exciton binding energy and
only results in a split excitonic peak. The main peak in
the BSE@G0W0 spectrum is situated at 2.2 eV which is
0.3 eV higher than the experimental value. At present
we cannot say if this is due to an insufficient description
of the quasiparticle gap within G0W0 or underestima-
tion of the exciton binding energy in BSE with a static
electron-hole interaction.
From the above discussion it should be clear that it

is extremely challenging to converge the exciton binding
energy with respect to interlayer separation and k points.
In general, the optical gap is much easier to converge with
respect to interlayer separation than either the quasipar-
ticle gap or the exciton binding energy.22,41 Nevertheless,
for many physical applications it is of importance to ob-
tain accurate values for both the quasiparticle gap and
the exciton binding energy separately. In Ref. 22 the ex-
citon binding energy was obtained by 1/L extrapolation
of the quasiparticle gap calculated in a range of interlayer
separations between 10 and 20 Å and assuming the same
dependence for the exciton binding energy. Our results
indicate that one should be cautious with such extrapola-
tions. This is because the screening at different q-points
has a very different dependence on interlayer separation,
which results in different convergence behavior at differ-
ent k-point samplings (see Fig. 9 full lines). The extrap-
olation procedure may therefore not give reliable results,
since higher k-point samplings are required at larger in-
terlayer separation. We are aware that the convergence
issues may depend a lot on the implementation of the
BSE method. However, we have previously performed
the same calculations with YAMBO42 code, which pro-

duced very similar convergence behavior for quasiparti-
cle gap and exciton binding energy (also using truncated
Coulomb cutoff and 45× 45 k-point sampling).

V. CONCLUSIONS

We have presented a careful investigation of the di-
electric properties, band gap and excitonic states in
a two-dimensional semiconductor exemplified by mono-
layer MoS2. We have demonstrated that the ”standard”
macroscopic dielectric constant used for solids is not ap-
plicable (meaningless) to supercells describing the 2D
material as an infinite array of parallel sheets, and there-
fore replaced it by a 2D version in which the induced field
is averaged over the extent of the material rather than
over the entire supercell. We showed that the effect of
interlayer screening leads to underestimation of the band
gap and exciton binding energy by up to more than 0.5 eV
for layer separations < 30 Å. The reason for this is that
interlayer screening affects ǫ(q) for q < 1/L where L is
the distance between layers in the supercell. Since it is
the small q limit of ǫ(q) that is most important for the
screened interaction W (q) = ǫ−1(q)/q2, the effect cannot
be neglected. Here we have circumvented the problem
by using a truncated Coulomb interaction that explicitly
cuts off the interaction between neighboring layers.

The properly defined 2D dielectric function ǫ2DM (q) has
a very sharp wave vector dependence for small q and sat-
isfies ǫ2DM (0) = 1 in general. This has the consequence
that quasiparticle- and optical excitations obtained from
the GW and Bethe-Salpeter Equation, respectively, re-
quire much denser k-point grids than experience from
3D systems would suggest. For MoS2 we find that a pre-
cision of 0.2 eV requires k-point grids of at least 30× 30.
Interestingly, the effect of interlayer screening and too
small k-point grids have opposite effects on the band gap
and exciton energies leading to fortuitous error cancella-
tion. Our calculations applying the truncated Coulomb
interaction and 45 × 45 k points give G0W0@LDA gaps
of 2.77 eV (direct) and 2.58 eV (indirect) and binding en-
ergy of the lowest exciton of 0.55 eV. This places the low-
est exciton at ∼ 2.2 eV which is 0.3 eV higher than the
experimental result. This difference may be due to the
G0W0@LDA approximation or the use of static screening
in the BSE.
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