

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Coordinating Interactions: The Event Coordination Notation

Kindler, Ekkart

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kindler, E. (2014). Coordinating Interactions: The Event Coordination Notation. DTU Compute. (DTU Compute-
Technical Report-2014; No. 05).

http://orbit.dtu.dk/en/publications/coordinating-interactions-the-event-coordination-notation(714667a1-4786-4b68-969e-c011187a6ab8).html

Coordinating Interactions:

The Event Coordination Notation

Ekkart Kindler
Technical University of Denmark

DTU Compute
DK-2800 Kgs. Lyngby

Denmark
ekki@dtu.dk

May 13, 2014

DTU Compute Technical Report 2014-05

DTU Compute - Department of Applied Mathematics and Computer Science
Technical University of Denmark

Building 324
Richard Petersens Plads
DK-2800 Lyngby, Denmark
Phone +45 4525 3031
Fax +45 4588 1399
compute@compute.dtu.dk
www.compute.dtu.dk

Technical Report: ISSN 1601-2321

Abstract

The purpose of a domain model is to concisely capture the con-
cepts of an application’s domain, and their relation among each
other. Even though the main purpose of domain models is not
on implementing the application, major parts of an application
can be generated from the application’s domain models fully au-
tomatically with today’s technologies. The focus of today’s code
generation technologies, however, is mostly on the structural as-
pects of the domain; the domain’s behaviour is often not mod-
elled at all, or implemented manually based on some informal
models, or the behaviour is modelled on a much more technical
level.

The Event Coordination Notation (ECNO) allows modelling the
behaviour of an application on a high level of abstraction that is
closer to the application’s domain than to the software realizing
it. Still, these models contain all necessary details for actually
executing the models and for generating code from them.

In order to be able to model the behaviour of a domain, the
ECNO makes the events in which the different elements of the
domain could engage explicit. The local behaviour of an element
defines at which time an element can engage or participate in
an event. The global behaviour of the application results from
different elements jointly engaging in such events, which is called
an interaction. Which events are supposed to be jointly executed
and which elements need to join in is defined by so-called coor-
dination diagrams of the ECNO. Together, the models for the
local and the global behaviour define the overall behaviour of the
domain.

In this technical report, we discuss the main idea and philos-
ophy of ECNO and its notation as well as all the subtle de-
tails and concepts – and we motivate the decisions made for its
design. Moreover, we discuss the prototypical implementation
of ECNO, which consists of a modelling environment based on
Eclipse and the Eclipse Modeling Framework (EMF) and an exe-
cution engine, which fully supports all the concepts and features
of ECNO discussed in this technical report. All the examples
are based on EMF, but the ECNO Engine can be used with
different other platforms or object-oriented code across different
platforms, once some adapters are provided.

iii

Though the focus of this technical report is on the general con-
cepts of ECNO, the examples discussed here work for version
0.3.2 of the ECNO Tool and Framework. The ECNO Tool as
well as the examples are available from the ECNO Home page:
http://www2.imm.dtu.dk/˜ekki/projects/ECNO/.

iv

Contents

Contents v

Preface 1

1 Introduction 3

1.1 Simple example: Workers and car sharing 4

1.2 Basic concepts and terminology 10

1.2.1 Object-oriented modelling 10

1.2.2 The Event Coordination Notation 11

1.3 Tooling: Quick guide . 12

1.3.1 Structural models . 13

1.3.2 Coordination diagram editor 15

1.3.3 ECNO net editor . 16

1.3.4 ECNO code generation 18

1.3.5 ECNO instance code 20

1.3.6 Running the example 20

1.3.7 Overview of advanced features 22

1.4 Literature . 23

1.5 Overview of report . 26

2 Coordination and Interaction 27

2.1 Petri nets . 28

2.1.1 Example and concepts 28

2.1.2 Playing the token game with the ECNO Tool 29

2.1.3 Formalizing Petri nets 31

2.2 ECNO concepts . 40

2.2.1 Concepts from object-orientation 40

2.2.2 Events . 41

2.2.3 Elements . 43

2.2.4 Local behaviour (life cycle) 44

2.2.5 Coordination . 46

2.2.6 Interaction . 48

2.2.7 Discussion . 50

v

3 Formal Semantics 55

3.1 Basic definitions . 55

3.1.1 Basic notation . 55

3.1.2 Class diagrams and object diagrams 56

3.2 Formalization of the core fragment of ECNO 57

3.2.1 Formalisation of modelling concepts (syntax) 58

3.2.2 Formalisation of meaning (semantics) 59

3.3 Summary . 63

4 Inheritance 65

4.1 Example: Vending machine 65

4.1.1 Structural model . 66

4.1.2 ECNO models: Part 1 68

4.1.3 ECNO models: Part 2 74

4.1.4 ECNO models: Part 3 75

4.1.5 ECNO models: Part 3 (variation) 77

4.2 Concepts of inheritance . 81

4.2.1 Behaviour inheritance 81

4.2.2 Event inheritance . 86

4.2.3 ECNO and aspect- and subject-orientation 90

5 Using the ECNO Tool 93

5.1 Creating models and instances 93

5.1.1 Ecore models . 94

5.1.2 ECNO coordination diagrams 95

5.1.3 ECNO nets . 99

5.1.4 Creating instances . 101

5.2 Code generation . 102

5.2.1 Ecore model code . 102

5.2.2 ECNO model code . 102

5.2.3 ECNO as Java applications 105

5.3 ECNO GUI . 106

5.4 ECNO Eclipse application . 107

5.4.1 Setting up a configuration 108

5.4.2 Running a configuration 110

5.5 Programming with the ECNO Framework 111

5.5.1 Computing and executing interactions 112

5.5.2 Customized controllers and GUIs 114

5.5.3 Transactions and automatic controllers 131

5.5.4 Advanced features . 136

5.6 ECNO meta model . 138

vi

6 More examples 141
6.1 An ECNO semantics for signal-event nets 141
6.2 Workflow engine . 143

6.2.1 AMFIBIA: A recapitulation 143
6.2.2 ECNO models of the worklfow engine 144
6.2.3 Worklist GUI . 153
6.2.4 Enacting the example processes 155
6.2.5 Discussion . 159

7 Conclusion and future plans 165
7.1 What is achieved . 165
7.2 What is missing . 167

7.2.1 Integration with databases 167
7.2.2 DSL for modelling GUIs 167
7.2.3 Clearer interface definition 168
7.2.4 Performance . 168
7.2.5 IDE integration . 169
7.2.6 Adapters for more technologies 170

7.3 Road ahead . 170
7.3.1 Tooling . 170
7.3.2 Concepts . 171

7.4 Getting started . 172

A Glossary 173
A.1 Terms from object-oriented modelling 173
A.2 Terms of the ECNO notation 174
A.3 Terms of the ECNO programming framework 178

B ECNO Installation 181
B.1 Installing Eclipse . 181
B.2 Installing ECNO . 182
B.3 Importing the ECNO Examples 182
B.4 Overview of examples . 184

Bibliography 187

Index 193

vii

viii

Preface

The ideas discussed in this technical report, the concepts of the Event Coor-
dination Notation (ECNO), and the way how theses concepts play together
have developed over a long time. The feeling that there is a need for some-
thing else capturing coordination on top of classical object-oriented models
dates back so long that it is not even possible to put a date to it.

The first tangible ideas of what we call ECNO now came up and where
presented in the context of AMFIBIA [2], when we tried to capture the
core concepts and main aspects of business process models independently
from a specific modelling notation. At that time, we introduced an ad-hoc
notation for capturing the intended behaviour of these models. And the core
concepts for coordination of that ad-hoc notation are still the same in ECNO
today. From that seed, the concepts of ECNO have gradually evolved over
time [49, 38, 30, 33, 32, 36, 37]: by adding and generalizing constructs and
stripping away others again, by removing unnecessary restrictions, and by
building a tool which integrates with existing model-based technologies.

Actually, the ideas of ECNO are still evolving, which, in particular,
applies to the ECNO methodology, which is still in its infancy. But, the
ideas of ECNO seem to be in a more stable stage now, so that they are
ready for being presented to a wider audience – for evaluation, discussion,
and further improvement. I am looking forward to any feedback.

Acknowlegements Over time, many people, colleagues as well as stu-
dents, have contributed to ECNO by commenting and challenging early
publications and by making these ideas work in practice. Here is a list of
people who, in one form or the other, have contributed to what ECNO is
now:

Achim Heynen, André Altenau, Björn Axenath, Christiane Klap-
dohr, David Schmelter, Dennis Goeken, Elmar Köhler, Elżbieta
Pielenz, Jesper Jepsen, Lukasz Nowak, Maciej Zarzycki, Patrick
Könemann, Peter Pietrzyk, Piotr Borowian, Ranghild van der
Straeten, Steve Hostettler, Tigran Tchougourian, Vaidas Karosas,
Vladimir Rubin, and Yang Li.

1

2

It is almost impossible to attribute specific contributions to specific per-
sons. Therefore, I would like to thank all of them together for their work,
their ideas, and many interesting discussions.

Specifically, I would like to mention David Schmelter for the implemen-
tation of an execution engine of MoDowA [49], which can be considered an
early pre-cursor of ECNO. Moreover, I would like to mention Jesper Jepsen
for a first “beyond-Mickey-Mouse” example using (almost) the current ver-
sion of ECNO for modelling a workflow engine [26], which brings us back to
where the ideas of ECNO originally started out: modelling the concepts of
business process models; only now the models “are” the workflow engine.

May 2014,
Ekkart Kindler,

Chapter 1

Introduction

Long before the advent of Model-based Software Engineering (MBSE), and
one of its main driving forces, the Model-driven Architecture (MDA) [43],
there was an endeavor to better understand and distill the nature of com-
munication and interaction in concurrent systems – with pioneering work
of Petri [46], Hoare [21, 22], Harel [17], and Milner [41] identifying founda-
tional concepts, which are still valid today. And there are many different
modelling notations for different kinds of purposes for modelling behaviour
of distributed, concurrent or cooperating systems based on their concepts.

With the advent of Model-based Software Engineering, models became
more and more attention – with the promise that major parts a software
system could be generated from these models. Using technologies like the
Eclipse Modeling Framework (EMF) [8] can save a lot of programming,
making software development significantly faster and the resulting software
more reliable. Most of the code generation, however, concerns the structural
parts of the software and not the actual behaviour.

In view of the fact that notations for modelling behaviour have been out
there for a quite a long time, it might appear a bit surprising that the use
of behaviour models lags a bit behind in Model-based Software Engineering.
There are different reasons for that. One of them is that the structural
models that, typically, are used are class diagrams, which lack a natural
mechanism for communication or for “hooking” in behaviour. The only
mechanism they provide are method invocations – which are quite different
from the communication mechanisms proposed by Hoare and Milner [21, 41].

In this report, we propose concepts and a modelling notation, which al-
lows us to model the behaviour on top of structural models such as class
diagrams. It is called the Event Modelling Notation (ECNO). The basic
mechanism for integrating behaviour models with the structural models are
events1. The life cycle of an object, basically, defines in which type of

1In Milner’s terminology, our events would be called actions, and in Hoare’s terminology
events would be channels or channel names.

3

4 CHAPTER 1. INTRODUCTION

events the object can participate. We call this the local behaviour of the
object which according to Harel and Marelly [18] would be the intra-object
behaviour. ECNO could use any notation for defining the local behaviour of
objects; but throughout this report, we will use a simple form of Petri nets,
which we call ECNO nets for modelling the life cycles of objects. Due to
their inherent notion of concurrent and parallel behaviour, Petri nets will
have some slight advantage for modelling the local behaviour, which we will
see much later in this report. The more exciting part is the coordination of
different objects that need to join in the execution of the event. The ECNO
provides coordination diagrams for defining which partners, in a given situa-
tion, need to participate in an event. We call the joint execution of events by
different objects the global behavior, whereas Harel and Marelly [18] would
call it inter-object behaviour. The mechanisms used in coordination dia-
grams are similar to the communication mechanisms of Hoare and Milner,
but – as we will see later – coordination diagrams are more general in that
many partners can be required, and more than one event might be jointly
executed. We call the particular combination of objects and events that
meet the requirements of the coordination diagram an interaction.

In order to get a better understanding of the basic idea of the Event
Coordination Notation, we explain it by the help of a simple example.

1.1 Simple example: Workers and car sharing

As an example, we model a company in which workers are required to jointly
do some jobs. Only if all the workers that are needed for the job join in, the
job can be done. Our ECNO model of that company needs to make sure that
the job can be done only when all the needed partners are ready for doing
it. For simplicity, we assume that a job can be done instantaneously, once
all partners join in. To make things slightly more interesting, we assume
that the workers share cars for coming in for work and for leaving again.
Therefore, the workers sharing the same care will come and leave together.
And only when a worker is in, the worker can do a job.

This structure is shown in the structural domain model of Fig. 1.1 –
as a kind of class diagram. The association between classes Worker and Car
represent which workers share the same car. Note that at any given time, we
assume that one worker can be partner in one shared car. The association
between classes Worker and Job represents which workers are needed for a
job. Every worker can be assigned many jobs – but a worker can only be
active in one job at a time (we will come back to that later). Note that a
single job may need more than one worker to participate. The class Job has
an operation or method, which actually will be executed when the job is
done – as in real live, executing a job will create more work: so the method
creates other jobs (which is programmed in a classical way).

1.1. SIMPLE EXAMPLE: WORKERS AND CAR SHARING 5

Figure 1.1: Structural domain model workers

The diagram from Fig. 1.1 has one additional class Setting, which con-
tains a concrete configuration or setting of workers, jobs and cars. This,
however, is needed for technical reasons only, so that the initial situation or
configuration can be set up and contained somewhere and thus, be stored
in some file. Fig. 1.2 shows an example of such a configuration as an object
diagram, which is an instance of the class diagram of Fig. 1.1. In order to
avoid clutter, we do not show the Setting object that contains all the objects.

vw:Car bmw:Car

cleo:Workerbert:Workerali:Worker dan:Worker

ab:Job
acd:Jobabcd:Job

d:Job

Figure 1.2: Some configuration

Up to now, we have defined the structure of our system by class dia-
gram and its initial configuration by an object diagram. Some parts of the
intended behaviour were explained in the text, but the behaviour was not
modelled yet.

Next, we model the behaviour of the system. For modelling the be-
haviour we distinguish between the local behaviour of objects and the co-
ordination of the local behaviour among the different objects. Before, we
can actually coordinate something, there needs to be something that can
be coordinated. In the Event Coordination Notation, it will be explicitly
defined events which are coordinated. In our workers example, the events
are arrive and depart, which mean that the workers and cars are arriving or

6 CHAPTER 1. INTRODUCTION

departing from the work site2; moreover, there is the event doJob, which
means that a job is done; and there is an event cancelJob, which means that
an existing job is cancelled.

These events are formally defined in the coordination diagram of Fig. 1.6,
which defines the coordination of the behaviour among different objects. We
start, however, with explaining the local behaviour – i. e. the life cycle – of
the different elements first, and explain the coordination of the behaviour
later. In ECNO, there are different ways of defining the local behaviour.
Here, we use a simple form of Petri nets, which we call ECNO nets.

Figure 1.3 shows the ECNO net for the local behaviour of the Worker.
The two places home and work represent the two states of a worker: being
home or at work. Initially, the worker is at home. There are three tran-
sitions, which are annotated with assignments, where the right-hand side
of the assignment refers to some event. These annotations are called event
bindings. For now, it is only the reference to these events that is important.
The transitions together with the event bindings define when a worker can
participate in some event, and how the state of the worker changes when
the worker participates in the respective event: When at home, the worker
can participate in the event arrive, and when he does, he will be work after
the event has happened. When the worker is at work, he can participate in
doJob; and when he does, he still stays at work. When at work, he can also
participate in the event depart, after which he will be home again.

home 1

t1

work

t2 a = arrive();d = depart();

j = doJob(workers = self());t3

Figure 1.3: Behaviour of a Worker

home

work

1

t1t2 a = arrive();d = depart();

Figure 1.4: Behaviour of a Car

The ECNO net for the local behaviour of the Car is shown in Fig. 1.4.
This is even simpler than the behaviour of a worker: A car can go round
between home and work – alternately participating in arrive and depart.

The ECNO net for the local behaviour for the Job is shown in Fig. 1.5.
After a job was created, it can either participate in a doJob event or a
cancelJob event – after which no events are possible anymore. When the

2Note that we take the employer’s perspective here for the meaning of arrive and depart.

1.1. SIMPLE EXAMPLE: WORKERS AND CAR SHARING 7

job is done, it assigns itself (denoted by self()) to the job parameter to
the event doJob – we will come back to that later. The transition t1, which

1

created

done

t1

j = doJob(job=self());

t2

c =cancelJob();

cancelled

for (Object job: self().createJobs()) {

 engine.addElement(job);

}

Figure 1.5: Behaviour of a Job

is bound to the doJob event, has another annotation right below it, which
is called an action. This is a piece of Java code, which is executed if and
when a Job participates in a doJob event. In our example, the action calls
the method createJobs() of the job object (referred to byself()); as
explained earlier, this method return a list of new jobs. The code snippets
then iterates over all these newly created jobs to make them known to the
ECNO engine (actually to its GUI).

The different examples of local behaviour show that the life cycle of some
objects can be infinite, whereas the life cycle of others is finite.

Now that we know what the objects can do locally, we need to coordinate
the behaviour of the different components. For example, we need to make
sure that the workers sharing a car arrive and and depart together and with
the same car; or all workers required for a job need to join the execution of
the job. We could call this coordination orchestration if that term was not
taken already [45].

Figure 1.6 shows the ECNO coordination diagram for our example. As
mentioned earlier, this diagram defines the possible events, which are shown
as rounded boxes. The coordination diagram also shows some parts of the
structural model from Fig. 1.1 again, which are now equipped with some
additional annotations. These annotations are explained below.

Let us assume that a Car can participate in an arrive event. This would
of course require that the local behaviour of the car would be able to par-
ticipate in the arrive event; in addition, the coordination diagram requires
that all the workers sharing that car participate in this arrive event, too. To
this end, there is a box with label arrive in the Car. This box, is linked to
the reference passenger with an annotation arrive->ALL. The box is called a
coordination set for event arrive of class Car. The annotation is called coor-
dination annotation and says that, for a given car participating in an arrive
event, every passenger (i. e. every worker at the other end of the links corre-
sponding to passenger in the given situation) must participate in the arrive

8 CHAPTER 1. INTRODUCTION

Worker

arrive

depart

doJob

Job

doJob

cancelJob

Car

arrive

depart

arrive depart doJob

job: Job

cancelJob

arrive->ONE

depart->ONE

doJob->ONE

car

1

assigned

*

needed

*

passenger

*

doJob->ALL

arrive->ALL

depart->ALL

Figure 1.6: Coordination diagram

event too. For the car vw in the situation shown in Fig. 1.2, this means that
workers ali and bert need to participate in the arrive event, too. Now, for a
Worker participating in an arrive event, there is another coordination set for
arrive which imposes additional requirements of other elements participat-
ing. The Worker has a coordination set which has a coordination annotation
arrive->ONE linked to reference car. This means that for a Worker partici-
pating in the arrive event, there must be one Car at the end of the link car,
which must participate in the arrive event. In our example, for ali as well as
for bert, this car would be vw, which is – not by accident – the car we started
our exploration from. So, we know that the workers ali and bert as well as
the car vw could participate in an arrive event. We call such a combination
of objects and events an interaction; and since all requirements by coordi-
nation sets of the involved objects and events are met, we call it a valid or
an enabled interaction. A valid interaction can be executed, which means
that all participating objects participate in executing the arrive event. If and
when executed, the car vw as well as both workers ali and bert would be in
their local states work , due to their local behaviour. After such an interac-
tion, for these three objects, an interaction with the depart event would be
enabled, by the coordination sets and coordination annotations for depart
– with the same arguments as for the arrive event before. And there are
similar interactions for cloe and dan who share car bmw for coming to work
together.

Now let us assume that all workers are in for work (all their ECNO nets
would be in state work) and the configuration is still as shown in Fig. 1.2.
This means that, locally, each worker could participate in a doJob event. Let
us assume cloe would want to participate in a doJob event: since there is a
coordination set for event doJob for Worker, other object would be required
to participate; the coordination annotation doJob->ONE would require one
of the jobs assigned to cloe to participate in the doJob event too. In our
example, there are two possibilities, job acd and abcd. Let us investigate
job acd. Since the life cycle of this job is still in its initial state created , the

1.1. SIMPLE EXAMPLE: WORKERS AND CAR SHARING 9

local behaviour would allow the job to participate in the doJob event. The
coordination set of Job for event doJob with the coordination annotation
doJob->ALL linked to reference needed, says that also all the workers at
the end of the link need to participate in the doJob event; for the job acd,
this would be the workers ali, cleo, and dan. The worker cleo is already
participating in the doJob event – we started from there. But, now also ali
and dan need to participate – and according to their local behaviour they
can. For ali and dan we still need to check the coordination annotations,
which require that one of the jobs assigned to them would participate in the
doJob event. Actually, job acd is already participating; therefore, workers
ali, cleo, and dan and the job acd participating in the doJob event would
be a valid interaction. All requirements of the coordination diagram are
met. After executing this interaction, the workers would still be in the state
work , but the job acd would be in state done. And when the interaction is
executed, the job acd would also execute the action attached to the doJob
transition, which is creating some new jobs; this would actually create a new
object in the configuration of Fig. 1.2, which shows that the configuration
can change dynamically.

Up to now, we have seen the basic principles of ECNO and how events
and coordination sets and annotations are used to define combinations of
object and events that can be executed together as interactions. These re-
quirements are local in the sense that each requirement for an object involves
only objects to which the object is directly related by links in the current
configuration. But for an interaction, the requirements for every object
need to be met. In combination, all these local requirements can result in
interactions that consist of many different partners and even many different
events. Luckily enough, the valid interactions in a given configuration are
computed by the ECNO execution engine fully automatically. Basically, the
model or code generated from the models above can be executed without
any additional programming. We will give a brief overview of the ECNO
Tool in Sect. 1.3.

For now, let us have a look at one minor twist in our workers examples.
As discussed before, we started with cloe participating in a doJob event,
chose to let job acd participate too, then were forced to let ali and dan
participate too. Then for ali and dan we still needed to find one Job to
participate too. We chose to refer to the job that was involved already acd;
but, we could have chosen or at least could have tried to choose another job,
say abcd. Then, in the same interaction two jobs would be executed; but, we
do not want to allow that. In our model, this is actually not allowed for the
following reason: We had seen earlier, when discussing the local behaviour of
Job on Fig. 1.5, that the job passes itself self() as a parameter to the doJob
event. The local behaviour of each partner defines (in the event binding)
whether to assign one or more parameters to an event or not. For example,
the Worker does not assign a value to the parameter of the job in the ECNO

10 CHAPTER 1. INTRODUCTION

net of Fig. 1.3. In principle, different partners in an interaction can provide
values to the same parameter of the same event; but in that case, ECNO
requires that it is the same one (in the sense of Java’s equal). If different
partners assign different values to the same parameter of the same event, the
interaction would be invalid. Since each job assigns itself as a parameter,
this implies that only one job can participate in an interaction in our model.
Of course, parameters can not only be used for guaranteeing uniqueness
of some partners; parameters can also be used in the actions of the local
behaviour – this way exchanging information among the participants of an
interaction. This is discussed in more detail later in this technical report.

1.2 Basic concepts and terminology

In this section, we give an overview of the main concepts of the ECNO and
the terms we use for them. For now, we focus on the terms which are at
the core of ECNO and form the basis for explaining ECNO’s more advanced
concepts later in this technical report.

1.2.1 Object-oriented modelling

The ECNO is based on and extends object-oriented modelling. In particular,
we use class diagrams and object diagrams. Here, we do not explain the
concepts of class diagrams and object diagrams; we just name those concepts
that ECNO uses and builds on. Since, most of our examples are based on
the Eclipse Modeling Framework (EMF) [8], we stick to EMF’s terminology.

Basically, we use classes and references between them along with their
multiplicity. Later, we also use inheritance on classes.

For classes, we use attributes, but attributes are not specifically exploited
by ECNO. In some of our class diagrams, we use compositions, which are
a special case of references. Like attributes, compositions are not directly
exploited in ECNO. Classes and references are defined in the scope of a
Package.

We have seen an example of a class diagram or a package in Fig. 1.1 –
actually it is an Ecore diagram, which is the EMF version of class diagrams.
Though technically not quite correct, we call Ecore diagrams class diagrams
throughout this technical report, except when discussing the technical de-
tails of a technology.

An object diagram is an instance of a class diagram, which shows a
specific situation of a system. Figure 1.2 shows an example of an object dia-
gram, which is an instance of the class diagram from Fig. 1.1. An instances
of a class is an object and an instances of a reference is a link – or vice the
type of a link of an object is a references of the class.

In the context of this technical report, we call class diagrams that are
representing the concepts of an application’s domain a domain model, and

1.2. BASIC CONCEPTS AND TERMINOLOGY 11

the objective of ECNO and all our modelling is to bring our models as close
as possible to domain models – and then generate executable code from
them.

1.2.2 The Event Coordination Notation

The ECNO aims at modelling the behaviour of a domain on top of an object-
oriented or structural part of the domain model. To this end, the ECNO
extends the notion of objects and classes of object-orientation. In order to
make the difference explicit, we call ECNO’s objects elements, and we call
ECNO’s classes element types. In a sense, an ECNO element is an object
with an explicitly defined life cycle. The life cycle of the element is defined
by a model which defines the local behaviour for a specific element type.
So, an element type consists of the class and the local behaviour, and some
more concepts, which are discussed a bit later. In most of our examples,
the local behaviour is defined by a special version of Petri nets, which we
call ECNO nets. In our example, the the element types were defined by the
class diagram of Fig. 1.1 and the ECNO nets of Figures 1.3–1.5, by using
the same name for the class and the ECNO net.

The life cycle of an element defines, at which points in time the element
could participate or engage in some event, and how the state of the element
changes, when the element participates in the respective event. Actually,
we need to distinguish between event types, and an instance or occurrence
of an event at a specific time at runtime when an interaction occurs or is
executed. The event types are defined in ECNO’s coordination diagrams.
The ECNO nets refer to these event types for defining the local behaviour.
For simplicity, we call the instance of an event just event in the rest of this
technical report – so an instance of an event type is an event. Note that
even though the relation between an even and an event type is an “instance
of” relation, which looks similar to the relation between objects and classes
or elements and element types, the nature of events is fundamentally differ-
ent from objects or elements. An event is inherently volatile and – at least
conceptually – exists only for the time an interaction is executed: instanta-
neously. After that, all events evaporate; only their effects – defined by the
life cycles of the elements participating in the events – stay.

An interaction is the joint participation of some elements in some events,
which conceptually is executed instantaneously3. What constitutes a legal
combination of elements and events is defined by the local behaviour of the
element as well as the coordination annotations. As explained already, the
local behaviour defines, whether an element could participate in an event
at a given time. The coordination annotations define which combinations
of elements and events are valid. Basically, each coordination annotation

3We will see later that interactions are executed transactionally; in particular, they are
executed atomically and in isolation.

12 CHAPTER 1. INTRODUCTION

formulates a requirement of the following nature: if an element of some type
participates in an even of some type, one or all elements to which there
exists a link of a certain reference need to participate in that event too. We
have seen in Fig. 1.6 that, for a Worker to arrive, the (one) car to which
the worker is linked must participate in the arrive event too. Together, these
requirements might require that many elements need to participate in a valid
interaction – once one element participates in some event. And it might
happen, that there is no such combination at all – in which case the overall
behaviour would not allow the element to participate in that event at that
time. We will see later, that the local behaviour of elements can require
other events to join when executing an event – effectively synchronizing
different events.

The coordination annotations are defined in an ECNO coordination dia-
gram. On the side, coordination diagrams are used to define the event types,
which are used in the coordination annotations as well as in the ECNO nets
for the local behaviour.

As discussed above, in any given situation, the coordination annotations
together with the local behaviour for the elements define which interactions
would be possible. And the local behaviour and, in particular, the actions
define what each element would do and how its state (including that of its
local behaviour) would change when the interaction is actually executed.
The question, however, is when are possible interactions executed? Actu-
ally the ECNO does not define that at all. The ECNO defines only which
interactions can be executed (are valid) – and the ECNO execution en-
gine will make sure that only valid interactions are executed. It is left to
controllers on top of the ECNO engine to decide when valid executions are
triggered or scheduled for execution. Typically, the execution of interactions
is triggered by the user by clicking on some button in some Graphical User
Interface (GUI), and the ECNO Tool comes with some predefined controllers
and GUIs for that purpose. We briefly discuss this GUI in Sect. 1.3 about
tooling. For realistic applications one would use the ECNO Framework for
programming own controllers which are integrated into an own GUI, which
is discussed later in this technical report.

For now, we can assume that, for some element types and some event
types, which are specifically marked as GUI types, there are some buttons,
which are enabled when some interaction for that element and event type
are possible (see Fig. 1.10–1.12 for a glimpse of the GUI).

1.3 Tooling: Quick guide

Introducing a notation for coordinating interactions is one thing. The proof
of the pudding, however, is bringing the notation into action and make it
work. To this end, a tool along with a set of examples is published together

1.3. TOOLING: QUICK GUIDE 13

with this technical report: the ECNO Tool.

The ECNO Tool is independent from any specific technology and works
together with any object-oriented technology. This independence of a spe-
cific technology is achieved by adapters, which will be discussed later in this
technical report. Most of our examples, however, are based on the Eclipse
Modeling Framework (EMF) and its Ecore models. In this section, we give
a brief account of how to get started with EMF. This cannot replace a
thorough introduction to EMF [8], though.

The ECNO Tool has its own graphical editor for ECNO coordination
diagrams, which is briefly discussed in this section.

In order to support ECNO Nets, the ECNO Tool defines a new Petri net
type for the ePNK [33]. In this section, we will briefly discuss how to create
and edit ECNO nets, for more details on how to used the ePNK, however,
we refer to the User’s Guide of the ePNK Manual [35].

We explain the use of EMF and the ECNO Tool by going step by step
through the Workers and Car Sharing example of Sect. 1.1. The best thing
to do would be to do this example hands on. In that case, we suggest that
you install the ECNO Tool and the example as discussed in the installation
instructions in Appendix B.

1.3.1 Structural models

At first, we need to create the class diagram from Fig. 1.1. Technically, this
is actually not a class diagram, but an Ecore diagram, which is a light-weight
version of UML class diagrams following the principles of EMOF [44]. But,
for the purpose of the ECNO, this need not bother us too much.

Once you have installed the ECNO Tool and imported the example
project dk.dtu.imm.se.ecno.example.workers (see Appendix B), you
should have a look into the folder “models” of this project, from which all the
code can be generated fully automatically. The Ecore model for our example
is contained in file “workers.ecore”. This file, however, contains the model
only; the actual diagram information is contained in “workers.ecorediag”. If
you double click on it, it will be opened in a graphical editor as shown in
Fig. 1.7.

Later, you might want to create you own Ecore models. You can create
them by right-clicking in some folder or project and by selecting “New →
Other...”; in the opened “New” dialog, you should select “Ecore diagram” in
the category “Ecore Tools”. You can quickly find this by entering something
like “Ecore” into the filter field at the top of the “New” dialog. Then you
will be asked for a name and you need to follow through the steps of the
wizard.

For now, you do not need to create a new Ecore diagram – you do not
even need to change it. Note that, in this model, the operation create

Jobs() in class Job has a so-called annotation. This annotation carries the

14 CHAPTER 1. INTRODUCTION

Figure 1.7: Workers example: Ecore diagram

body of the implementation of this operation. This way, it is possible, that
the complete code can be automatically generated from the models.

In order to generate code from this model, we need to create a so-called
EMF generator model. The generator file allows us to customize the code
generation in many different ways. In our example, however, we have made
one change only: the code generated from the Ecore model should go to
the sub-package dk.dtu.imm.se.emf.example, which makes it easier to
distinguish the code generated by EMF from the code generated by ECNO.
In our example, the EMF generator file is “workers.genmodel”.

In the workers example, the generator model exists already. If you want
to create a generator model for a new Ecore model, you would select the
file with the Ecore model (not the diagram), right-click and then select
“New→Other...”; in the opened “New” dialog, you then need to select “EMF
Generator Model” in the “Eclipse Modeling Framework” category, and fol-
low through the dialog (you need to press the “Load” button, when asked
for the model).

Once the generator model file is opened in the simple EMF tree editor,
the code can be generated by a right-click on the top level element and se-
lecting “Generate Model Element”. This will generate all the code from the
model that we need in our example4. The model code generated by EMF

4Readers who know EMF already might know that EMF can also be used to generate
the so-called “Edit Code” and the “Editor Code”; for now, we do not need this, since we

1.3. TOOLING: QUICK GUIDE 15

can be inspected in the sub-packages in dk.dtu.imm.se.emf.example;
basically, for each class of the model, there is an interface and an imple-
mentation class. Moreover, there are some utility and helper classes. Most
importantly, there is a factory, which should be used for creating instances
of the classes (see [8] for more details).

1.3.2 Coordination diagram editor

Next, we discuss the ECNO coordination diagram from Fig. 1.6. Like
for Ecore models, the actual model and the diagram information are split
up into two files. The ECNO coordination model is contained in the file
“workers.ecno”, whereas the diagram information is contained in “work-
ers.ecno diagram”. The diagram can be opened by double-clicking on “work-
ers.ecno diagram”, which will look as shown in Fig. 1.8.

Figure 1.8: Workers example: ECNO Coordination Diagram

As you can see in the properties view at the bottom, the ECNO co-
ordination diagram has a reference to the Ecore models “workers” from
Sect. 1.3.1.

For now, we do not need to create a new coordination diagram. If you
want to create a new ECNO coordination diagram, this can be done in a way
similar to the Ecore diagram: Once the project or folder to which the dia-
gram should be created is selected, right-click and select “New→Other...”;

use our code in a simple Java application only in this overview.

16 CHAPTER 1. INTRODUCTION

in the opened “New” dialog, you should select “ECNO Coordination Dia-
gram” in the category “Examples”5. You can quickly find this by entering
something like “ECNO” into the filter field at the top of the “New” dialog.
Then you will be asked for a name and you need to follow through the steps
of the wizard. Once the editor with the newly created ECNO Coordination
Diagram is opened, the first thing to do is selecting the underlying Ecore
model. To this end, you need to make the Ecore model available in this
editor, which is done by right-clicking into the empty canvas of the editor,
and selecting “Load Resource”; in the opened “Load Resource” dialog, you
can select “Browse Workspace...” and select the file with the Ecore model
(“workers.ecore” in our example). Once you have loaded the resource, you
can go to the properties view, and select the workers package for the EPack-
age property.

When a package is selected in this way, the ECNO coordination diagram
editor will automatically create element types for each class that it finds
in the Ecore package and connect the element type to the resp. class. The
ECNO coordination diagram editor will also create the references between
the classes of the selected package and the inheritance relations between
them. This make it easier and faster to create an ECNO coordination di-
agram from an existing Ecore diagram. In many cases, you do not need
element types for all classes; you can delete them manually. For our workers
example, we have deleted the class Setting since this does not have any
behaviour; it just servers as a container for all the other elements. From this
basic skeleton, you can then create coordination sets, and connect them to
the references by synchronisations with the tools that are available in the
editors tool bar. And you can create event types and their parameters.

Note that, in the ECNO Coordination Diagram for the workers example,
we have used different colours for different events. This was done manually,
however, for the sole purpose of making it a bit easier to read the ECNO
Coordination Diagrams. Colours do not have any meaning.

From the ECNO coordination diagram alone, we cannot create any code.
We first need to create the models for the local behaviour and – similarly
to EMF – create an ECNO generator model.

1.3.3 ECNO net editor

Next, we discuss how to create the ECNO nets of the workers example shown
in Figures 1.3–1.5 of Sect. 1.1. The ECNO nets of the workers example are
contained in the file “workers.pnml”, which is shown open in Fig. 1.9.

Since ECNO nets are implemented as a Petri net type of the ePNK [33],
creating and editing of ECNO nets follows the rules of the ePNK, which can
be found in the User’s manual part of the ePNK manual [35].

5This category will eventually be changed to ECNO.

1.3. TOOLING: QUICK GUIDE 17

Figure 1.9: Workers example: ECNO Nets

Here, we give a brief overview of how to use the ePNK editor for inspect-
ing existing ECNO Nets, and how to create and edit new PNML documents
with ECNO nets. As for all resources, the ePNK editor can be opened by
a double-click on the resp. file. Note that the ePNK will always open a
tree editor for a PNML document, which is the primary editor. In Fig. 1.9,
the ePNK tree editor is open on the left side. When a PNML document is
initially opened, this ePNK tree editor is the only one open and only the top-
level element is visible. From there, the tree elements can be browsed and
inspected in the usual way. By double-clicking on a page, a graphical editor
for the ECNO net is opened6. Normally, this graphical editor is opened on
top of the tree editor; in Fig. 1.9, the graphical editor has been moved to
the side, so that both, the tree editor as well as the graphical editor, are
visible. The places, transitions and arcs can be created by using the tools
from the toolbar of the graphical editor. The creation of labels for the event
bindings, conditions, and actions is specific for the ePNK (for details see
Sect. 3.4.2 of the ePNK Manual [35]): you first need to create a label with
the respective tool from the toolbar; then, the label needs to be linked to
an element by the “Link Label” tool, which is dragged from the label to the
respective element; only then, the ePNK will offer you to choose the type
of the label. Global labels for import statements or attribute declarations

6Note that the tree editor should not be used for making any changes withing a page.
To this end, the graphical editors should be used.

18 CHAPTER 1. INTRODUCTION

are added as so-called page labels. When created by the respective tool from
the tool bar, the ePNK will ask which kind of label (import or attribute) it
should be. The legal syntax for the different labels will be explained, in the
more detailed discussions later in this technical report. For now, just follow
the examples.

Note that the graphical editors of the ePNK for the individual pages of
the net run as clients of the tree editor. Therefore, all save operations on a
PNML document need to be done from the corresponding tree editor. The
graphical editors do not even show the dirty flag, when the PNML document
file is changed.

A new empty PNML Document can be created by selecting the folder or
project to which the file should be added, then selecting “New→Other...”
and, in the “New” dialog selecting “PNML Document” in the category
“ePNK”. In this empty document, you can create new nets, by right-clicking
the “Petri Net Doc” and selecting “New Child→Petri Net http://se.
imm.dtu.dk/ecnonet”, which represents ECNO nets. In the same way,
you should create the child element for the name of the net and its top-level
Page. In principle, the ePNK allows a net to have more than one page; since
ECNO nets, typically, are quite small, we would recommend to use ECNO
nets with a single page only.

Once you validate ECNO nets (right-click and select “Validate” on an
item) you might realize that every Petri net element is supposed to have a
unique identifier (which is required by the PNML standard [23, 20]). You
can automatically add the missing identifiers by double-clicking on the top-
level “Petri Net Doc” element.

1.3.4 ECNO code generation

Once we have created the ECNO coordination diagram and the ECNO nets,
we are – almost – ready to generate code. Similar to the EMF technology,
ECNO has a ECNO generator model for adding some configuration infor-
mation. In our example, this ECNO generator model is contained in file
“workers.ecnogen”.

A new generator model can be created by using the “Ecnogen Model”
wizard, which can be – as usual – started with “New→Other...”. The ECNO
generator model, consists of a single element for which the following prop-
erties can be set:

Ecno Model The reference to the ECNO coordination model.

Behaviour Model The reference to the PNML Document that contains all
the ECNO nets with the local behaviour of each element type (note
that element types for which no behaviour is defined will have a simple
default behaviour).

1.3. TOOLING: QUICK GUIDE 19

Emf Gen Model The reference to the EMF Generator model, from which
the model from the Ecore model was generated; it is possible to provide
a reference to several models here, in case different ECNO packages
and Ecore packages are used. The first reference, however, should be
the one to the EMF generator model for Ecore model underlying the
ECNO coordination model above.

Model Class Name The name of the generated class that represents the
ECNO coordination model.

Automata Factory Class Name The name of the factory class, which
will be created by the code generator. This factory class will be used
by the ECNO engine for creating the behaviour for new elements.

PackageAdapter Factory Class Name (optional) If the ECNO model
should be registered as an extension with Eclipse, this is the name of
the respective factory class. This is not relevant, if the generated code
is run as Java code only; it is relevant when the ECNO model should
be run inside an Eclipse application, which is discussed later in this
technical report.

Base Path ECNO Automata The base package (path) to which all the
code for the automata for the local behaviour is generated.

Base Path ECNO Events The base package (path) to which the code
for the events (actually the event values class) is generated. This
class provides the access to the values of the involved events in event
bindings, in conditions, and in actions.

Base Path Model Class The base package (path) to which the class rep-
resenting the coordination diagram is generated.

Required This is referring to a list of ECNO gen models for the ECNO
models on which this ECNO model depends on. For models that
consist of a single ECNO model only, this attribute is empty.

Some of the above properties are strings only and can be entered as
strings. The references to other resources are not strings, however. In
order to create these references, the resources containing these elements
need to be loaded by the “Load Resource” mechanism, which was discussed
in Sect. 1.3.2. Once the resources are loaded, they can be selected by a drop
down menu in the properties view of the ECNO Gen Model editor.

In order to generated the code, the ECNO generator model should be
opened in the ECNO generator model editor. Then right-click on the top-
level element and select “ECNO→Generate ECNO Package code”. In our
workers example, this generates the code in the sub-packages automata,
coordination, and events in package dk.dtu.imm.se.ecno.example.

workers, which is the code which will be running in the ECNO engine.

20 CHAPTER 1. INTRODUCTION

1.3.5 ECNO instance code

In order to start executing something, we need to have some start configura-
tion, such as the one shown in Fig. 1.2 for our workers example. For creating
the initial situations, we make use of an generic editor for instances of Ecore
models, which is called dynamic instance editor and is part of EMF.

In order to create such a configuration, we can open the Ecore model
in the EMF tree editor, select an element, right-click and select “Create
Dynamic Instance...”. In our workers example, we have created a dynamic
instance from the class Setting of “workers.ecore”; this instance is con-
tained in file “setting.xmi”, which exactly represents the configuration from
Fig. 1.2. Once a dynamic instance is created, the instance can be edited as
in any other EMF tree editor. Therefore, we do not discuss the details of
this editor here.

From this instance, ECNO is able to generate a class, which creates this
instance and starts the ECNO engine on it. For adding some configuration
information, there is yet another configuration file, which we call ECNO in-
stance generator model. This file can be created with the “Ecnoinstancegen
Model” wizard.

Similar to the ECNO generator model, the ECNO instance generator
model contains a single element with references to the instance, to the ECNO
generator model, and with the name and the package for the instance class
to be generated.

When the top-level element is selected in the ECNO instance genera-
tor model, right-clicking and selecting “ECNO→Generate ECNO Instance
Code” will generator the Java class with the instance code. In our work-
ers example, the class Setting is generated in the package dk.dtu.imm.

se.ecno.example.workers.instances. This class has a static main()

method, which allows us to start it as a Java application.

1.3.6 Running the example

At last, we can start the generated code from the generated instance class
Setting above. This is done as usual for Java applications in Eclipse by
right-clicking on the class Setting and then selecting “Run as→Java Ap-
plication”.

This will open a window as shown in Fig. 1.10, which shows all the
elements of the initial setting7; the enabled buttons show for which event
types there is an interaction for that element enabled. When the mouse is
moved over an enabled button, the tool tip information shows the elements,
events and event parameters that are involved in this interaction – once it is
selected for execution. When a user clicks on an enabled button, the respec-

7Actually, it shows only the element types, which are marked as GUI elements in the
model.

1.3. TOOLING: QUICK GUIDE 21

tive interaction is executed, and all buttons will automatically be updated
depending on the interactions that are enabled in the new situation. If, for
example, the user presses the “arrive” button for the element [1] (the car
VW) in this situation, the situation changes to the one shown in Fig. 1.11.
If the user then presses the “doJob” button on element [7], the situation of
Fig. 1.12 will be reached.

Figure 1.10: Initial sit-
uation

Figure 1.11: After
pressing “arrive” on [1]

Figure 1.12: After
pressing “doJob” on [7]

Since the ECNO GUI is generic and works for all ECNO models in the
same way, it does not look too nice. But, it serves its purposes for experi-
menting with ECNO. For realistic applications, ECNO provides a framework
for implementing customized GUIs, which will be discussed in Sect. 5.5.2 –
continuing the workers example of this informal introduction.

The GUI will also indicate if, for some element and event type, there is
more than one interaction enabled that involves the resp. element and event
type. This is indicated by an asterisk for the respective button; the user can
iterate over all enabled interactions by pressing the mouse button together
with the “SHIFT” key. Once the last possible interaction is reached, this is

22 CHAPTER 1. INTRODUCTION

indicated by an exclamation mark. Pressing the mouse button together with
the “CONTROL” key, will reset the iteration of the possible interactions to
the first one again (the order might vary though in different iterations).

If the user presses the exit icon of the GUI window, the ECNO Engine
terminates. Actually, the ECNO does this in a slightly more sophisticated
way: The GUI works as a so-called engine controller; the ECNO engine
terminates automatically, when the last controller terminates. The details
are discussed later, when discussing how to use and program own controllers
(see Sect. 5.5 for details).

1.3.7 Overview of advanced features

The sections above gave a brief overview of the most important features of
the ECNO Tool. We did not discuss some more advance features, which are
important for running more realistic applications. In Chapter 5, we discuss
all the basic features as well as the advanced features of the ECNO Tool in
more detail. Below, we just mention some of the more advanced features.

In ECNO, it is possible to save the current state of an ECNO application
and to later start it in that state again. This way, ECNO supports some
basic persistence mechanism. Moreover, the code generated from ECNO
models can be run as an Eclipse application (in the example above, we
run it as a Java application only). When an ECNO application is run as
Eclipse application, there is a view available, which gives an overview of
all running ECNO engines; this view, allows (dependent of the underlying
object-oriented technology) not only to save the current state of an appli-
cation, it also allows to undo interactions in reverse order and to redo them
again. Moreover, this view gives access to some statistics on the computation
of possible interactions and their executions – mostly for experimentation
purposes.

The standard GUI of an ECNO application is useful only for testing an
ECNO application and for quite small examples. For realistic applications,
the developer would need to develop a customized GUI. The ECNO Tool
provides a framework for implementing such customized GUIs.

Maybe, the most important feature for the practical use of ECNO is its
mechanism to build ECNO applications from different parts, so that the
ECNO models do not need to be monolithic. To this end, ECNO has a
notion of packages. What is more, it is possible to integrate different ECNO
packages that are based on different underlying object-oriented technolo-
gies. This way, ECNO might eventually ease the integration of systems
with different technologies. In Sect. 4.1, we discuss a simple example, which
is built up from different packages. The more technical details are discussed
in Chapter 5.

1.4. LITERATURE 23

1.4 Literature

The ideas of ECNO have evolved over many years and started out from a
meta model that distilled the essence of business process modelling nota-
tions: AMFIBIA [2]. For capturing the behaviour of these concepts, AM-
FIBIA used an ad-hoc notation for the local behaviour and for the coor-
dination of the behaviour of the different elements. The ad-hoc notation
that was used in AMFIBIA was later formalized and implemented in a kind
of pre-cursor of ECNO, which we called MoDowA [49, 38]. The core con-
cepts of ECNO go back to the ad-hoc notation of AMFBIA and MoDowA –
ECNO is more general and the too tight integration with aspect-orientation
was dropped, so that ECNO – at its core – is not explicitly aspect-oriented
anymore. Moreover, inheritance was introduced for elements and for events,
which needed some careful tuning; for that reason, there is a complete chap-
ter devoted to the discussion of inheritance in ECNO: Chapter 4. Starting
out from the challenges of behaviour modelling [30], we then defined the
core concepts of ECNO [32, 37, 36] with minor variations, which now seem
to converge.

As pointed out in our earlier work [37] already, none of the concepts used
in ECNO are particularly new or original; the contribution of ECNO is more
in the combination of its concepts and, on the technical side, its integration
with existing object-oriented technologies.

ECNO’s coordination mechanism via events resembles the synchroniza-
tion of actions in process algebras [21, 22, 41]. One difference, though, is
that ECNO’s synchronization is not restricted to bi-lateral synchronizations
and that the required synchronizations might dependent on the dynamically
changing underlying structure of the system. But also this aspect has been
seen before in process algebras like ACP [4], the chemical abstract machine
[5], or the Π-calculus [42]. What is new, however, is that, in ECNO’s co-
ordination mechanism, different of these synchronization mechanisms work
together, combining these coordination requirements transitively, which al-
lows us to define much more complex interactions.

Another major concern in the design of ECNO was the clear separation
between coordination aspects and computation aspects of a system. Ac-
tually, ECNO is about coordination only, but ECNO’s concept of actions
provides a way to interface with the computational aspects by invoking
methods or functions. This idea, however, is not new either: Harel and
Pnueli [16] had proposed the distinction between transformational and re-
active systems. ECNO takes care of the reactive aspect of the system by
defining possible interactions – the transformational aspect is left to the
underlying programming language (Java in our case) for the actions by in-
voking methods.

Another major concern of ECNO is the distinction between local be-
haviour and global behaviour [30]. But also this idea is not really new: Harel

24 CHAPTER 1. INTRODUCTION

and Marelly [18] distinguish between intra-object behaviour and inter-object
behaviour, which correspond to local and global behaviour, respectively. The
only difference is the way this behaviour is represented. Concerning the lo-
cal behaviour, this is mostly a question of syntactic sugar. For inter-object
behaviour (global behaviour), Harel and Marelly use a set of Live Sequence
Charts (LSCs) [11], which are an extension of Message Sequence Charts
[24]. This is a scenario-based and temporal approach, where the focus of
inter-object behaviour is the behaviour over time. In ECNO, the coordina-
tion annotations refer to the needed partners for a single interaction only:
it is about behaviour at a time. Therefore, both approaches have a different
focus. It might be interesting to combine both of them; this might in par-
ticular be interesting since ECNO does not have a way to define what must
happen in a system – it defines what can happen only. LSCs [11] allow to
characterize both kinds. But a detailed investigation of such a combination
would require further research.

As discussed above, the ideas of ECNO started out from an ad-hoc no-
tation in which aspects were an explicit modelling concept and therefore,
ECNO has some relation to aspect-oriented programming [28, 40] or aspect-
oriented modelling [7, 9]. Actually, from the philosophical angle the origi-
nal ideas were close to the Theme approach [10] and closer to the idea of
subject-oriented programming [19]. Anyway, the explicit notion of aspects
was removed in ECNO again. A bit of the original subject-oriented idea
survived in one of the two different concepts of inheritance on event types,
which is discussed in Sect. 4.2.3. And by using some specific modelling
patterns, ECNO can be used for modelling in an aspect-oriented way.

In a way, events of ECNO can be considered to be join points of AspectJ
[27]. The difference, though, is that events are an explicit modelling concept
[12], whereas join points are formulated on top of a program. This way,
events are a concept of the domain, whereas join points are programming
artifacts (which of course could have a counter-part in the domain). The
coordination annotations of ECNO then correspond to pointcuts. Though
stripped of an explicit notion of aspects, ECNO still shares some philosophy
with aspect- or subject-orientation: joining events together via coordination
annotations into interactions.

The local behaviour of elements could be modelled in many different
ways. We could use traditional automata or StateCharts [17]. We mainly use
a special form of Petri nets [46, 47], which we call ECNO nets. The reason for
using ECNO nets was mostly a practical decision, since we could use our own
framework for Petri net tools, the ePNK [31, 35], for easily implementing a
graphical editor for ECNO nets. And the ePNK is based on EMF [8], which
is the object-oriented technology that happens to be the default object-
oriented technology of ECNO. It turned out to be useful that Petri nets
have a natural notion of concurrent or parallel firing of transitions, when it
comes to parallel behaviour (see Sect. 2.2.4 for details). Therefore, simple

1.4. LITERATURE 25

automata are not sufficient for modelling the local behaviour of elements.
Like Petri nets, StateCharts have a notion of parallel local behaviour, which
makes them a good candidate for local behaviour, too. Our main concern
with StateCharts would be that they might be too powerful: modellers
might be tempted to put too much into the local behaviour of elements,
since StateCharts allow nested complex states. But, this is up to future
evaluation and a question of methodology, which is yet to be worked out in
full detail.

At last, ECNO has some similarities with agent-based software engineer-
ing and Multi-Agent Systems (MAS) [57, 25]; but, at least in its basic form,
ECNO would probably not qualify as an approach towards agent-based soft-
ware engineering. This, however, depends on which level we look at things:
From our point of view, ECNO is more a notation and technique8 whereas
agent-based software engineering is more a way of thinking. Anyway, some
of the principles underlying ECNO were proposed by the proponents of
agent-based software engineering. The two most important are: getting
rid of the thread-oriented way of thinking, and giving agents control over
what they do or to which kind of request they react – or as we would say
in ECNO – in which events they participate. In addition, in agent-based
software engineering, agents have attitudes and are pro-active and take ini-
tiative. Even disregarding the more social notions of initiative and attitude,
ECNO elements are not even active – remember that ECNO models describe
what can happen in a given situation, but they do not describe what must
happen. Therefore, ECNO’s elements are technically not agents. But, by
adding controllers on top of elements (see Sect. 5 for details), elements can
be turned active. This way, ECNO might be a notation and technique in
which agent-based designs or agent-based thinking can be formulated and
implemented. But, this is up to others to judge.

Speaking of agents, we should mention another approach, which uses
Petri nets for defining local behaviour: Renew [39]. Renew also uses a mech-
anism for synchronizing different parts of a system with each other following
some fixed relations between these parts. But, theses synchronisations need
to follow some very specific containment structures following the so-called
nets-within-nets paradigm [53]. By contrast, ECNO models can exploit the
dynamic structure of the underlying object-oriented model for defining the
required partners, which was one of its express goals.

Altogether, ECNO has many different flavours. On a first glance, ECNO
might appear as just another process algebra, just another notation for
aspect-oriented modelling, just another agent-based approach, just another
form of transactions, just another ... And there is some truth to it. But, we
believe that it is the combination of these different things and a carefully

8The methodology part of this technique is yet to be worked out in detail.

26 CHAPTER 1. INTRODUCTION

adjusted set of concepts that makes ECNO what it is: A way of clearly
separating coordination from computation, and of separating coordination
from local behaviour.

1.5 Overview of report

In this chapter, we gave a brief and informal introduction to ECNO. In the
rest of this report, we discuss the details of the concepts and notations of
ECNO and its use.

In Chapter 2, we discuss the core concepts of ECNO and motivate the
choice of these concepts. In Chapter 3, we formalize the semantics of the
core concepts of ECNO.

In Chapter 4, we discuss inheritance in ECNO. This concerns the be-
haviour of the elements, since all types in an element’s type hierarchy con-
tribute to the element’s life cycle. More importantly, there is also inheritance
on event types; actually, there are two different notions of inheritance for
event types. Therefore, we devote a complete chapter to the discussion of
inheritance in this report.

In Chapter 5, we discuss the use of the ECNO Tool for modelling, for gen-
erating the code, and for setting up and using initial configurations of ECNO
applications. In addition, we discuss how to use the ECNO framework for
programming own controllers, GUIs, and for programmatically interacting
with an ECNO application.

In Chapter 6, we discuss two more examples. In particular, we discuss
one larger example, a model of a workflow engine.

At last, in Chapter 7, we discuss what is achieved with ECNO so far, but
also some of its current technical and conceptual limitations. From there,
we discuss the next steps in the research on and development of ECNO.

Note that, this report also contains an appendix with a glossary of the
most important terms of ECNO (Appendix A) and an appendix with instal-
lation instructions for the ECNO Tool (Appendix B).

Chapter 2

Coordination and Interaction

Chapter 1 gives a rough and informal account on the main concepts of
ECNO. In the following, we give a more detailed account of ECNO’s main
concepts along with a precise meaning of these concepts. In this chapter,
we focus on ECNO’s concepts for coordination and interaction; to this end,
we completely ignore ECNO’s concepts for inheritance, which is a topic in
its own right and is discussed in Chapter 4.

In order to explain some of the more advanced features, we discuss an
other example, which formalizes the semantics of Petri nets [34]. The main
reason for using this example, is that it makes use of most of ECNO’s core
concepts, but does not make use of inheritance. But, there are some addi-
tional reasons for choosing this example: First, this Petri net example con-
tinues the Model-based Software Engineering story that we started telling
some year’s ago [29], where the focus was on generating code from struc-
tural models and for standard functionality such as graphical editors with
the Graphical Modeling Framework (GMF) [14]. Moreover, we discussed as
to why modelling non-standard functionality and non-standard behaviour
was still a challenge. The example that we had used at that time was called
“A Petri Net Editor in 15 Minutes” – with the focus on the structural mod-
els and a graphical editor [29]. Now, we go beyond the graphical editor and
show how also the behaviour of Petri nets can be modelled by using ECNO.
Second, formalizing the semantics of a formalism such as Petri nets might
give a hint already that ECNO could eventually be used to formalize its own
semantics. Third, we need to understand the semantics of Petri nets any-
way, since Petri nets form the basis of ECNO nets, which are our prevalent
notation for modelling the local behaviour of elements.

We start with informally introducing Petri nets and then formalizing
their syntax and semantics by EMF and ECNO. Later, we analyse and
discuss the used modelling constructs of ECNO in more detail.

27

28 CHAPTER 2. COORDINATION AND INTERACTION

2.1 Petri nets

Petri nets are a formalism for modelling the synchronization and coordina-
tion of dynamic systems. There are many different versions and variants of
Petri nets. Here, we use one of the most basic versions of Petri nets, which
focus on the basic machanisms of synchronisation and are called Place/-
Transition systems or P/T-systems for short [48].

2.1.1 Example and concepts

Figure 2.1 shows a simple example of a Petri net, which models the mutual
exclusion of two processes by a semaphor. The Petri net models two agents

req1

pend1

idle1

enter1

crit1

exit1

req2

enter2

exit2

idle2

pend2

crit2sem

Figure 2.1: A Petri net modelling mutual exclusion

or processes, which cyclically run through the phases idle, pending (pend),
and critical (crit). As indicated by the name, the two processes should
never be in their critical section at the same time. This is achieved by each
agent acquiring the semaphor (sem) when entering the critical section. The
semaphor is returned again when the agent exits the critical section. In a
Petri net, the possible states are represented by places which are graphically
shown as circles or ellipses. A black dot, called a token, on a place indicates
that the agent currently is in this state. In P/T-systems, it is possible
that there is more than one token on a place, but this situation does not
occur in our example. Figure 2.1 shows that, initially, both processes are idle
(represented by the tokens on places idle1 and idle2) and that the semaphor
is available (represented by the token on place sem). A distribution of tokens
on the places of a Petri net is called a marking of the Petri net, which
represents the current state of the system.

In a Petri net, the possible state changes are modelled by transitions,
which are graphically represented by squares or rectangles. The arcs from
a place to a transition indicate on which places there needs to be a token
for the transition to be enabled. In the initial situation of our example from
Fig. 2.1, for example, the transition req1 is enabled, since there is a token
on the place idle1, which is the only place with an arc to transition req1.
Likewise, transition req2 is enabled since there is a token on idle2. All

2.1. PETRI NETS 29

the other transitions are not enabled in the initial situation. An enabled
transition can fire; if and when a transition fires, it removes one toke from
each place from which an arc is pointing to the transition; at the same time
the transition adds one toke to each place to which it has an arc pointing
to. The set of places with an arc towards the transition is called the preset
of that transition. The set of places with an arc from that transition is
called the postset of that transition. With the notions of preset and postset,
the enabledness and firing of a transition can be formulated as follows: A
transition is enabled, if every place in its preset has at least one token. When
an enabled transition fires, one token is removed from each place in its preset
and one token is added to every place in its postset.

For example, transition req1 will remove a token from place idle1 and
add one token to place pend1 when it fires. The transition enter1 removes
one token from place pend1 and one token from place sem and adds one
token to place crit1. Since both enter transitions need a token on place
sem, it is guaranteed that never both processes are in their critical section
at the same time, since the firing of a transition of a Petri net is atomic and
instantaneous.

2.1.2 Playing the token game with the ECNO Tool

If you want, you can play a bit with the Petri net from Fig. 2.1 to get some
feeling for the semantics of Petri nets – which nicely fits with its name: token
game. If you don’t want to play the token game, you can skip this subsection
and safely read on in Sect. 2.1.3. You can obtain this example Petri net by
importing the project APetriNetEditorIn15Minutes.runtime (as source
project) to the workspace of your version of Eclipse as discussed in Ap-
pendix B.3. You will find the Petri net as file “semaphor.behaviourstates”
in the folder “run” of this project, this file is a so-called start configuration
for the ECNO engine, which defines in which way an ECNO application
should be started and on which data it should be run. This configuration
file also contains the states (in this example the initial states) of the lo-
cal behaviours of all the elements – which is the reason for using the file
extension “.behaviourstates”. In this example, the actual elements are the
objects of the Petri net that is contained in the file “semaphor.pertinets”; the
file “semaphor.petrinets diagam” contains the actual diagram information
of the Petri net for the graphical editor.

You can start the execution of the ECNO engine by right-clicking on the
file “semaphor.behaviourstates” and selecting “ECNO→Start ECNO En-
gine”. Then, you will see a GUI popping up, with a button corresponding
to each transition as shown in Fig. 2.2; in addition, the graphical editor
opens – showing how the marking of the Petri nets changes when transi-
tions are fired. Figure 2.2 shows the Eclipse workbench with one simulation
engine running after firing some transitions. The enabled transitions of the

30 CHAPTER 2. COORDINATION AND INTERACTION

Petri net show up as enabled buttons on the GUI panel on the left; and click-
ing on the button of an enabled transition will fire the transition. When you
click the button corresponding to an enabled transition, the enabled transi-
tions are updated in the GUI panel, and the new marking is shown in the
graphical editor.

Figure 2.2: Playing the token game with the ECNO engine

In order to control this simulation and eventually terminate it, you
should open the ECNO: Engine Registry view of ECNO Tools. You can
do this by selecting “Window→Show View→Other...” and then selecting
“ECNO: Engine registry” from category “ECNO”. In this view, you will see
all the currently running ECNO execution engines. By checking them (in
the checkbox in the first column) and then clicking “delete” (the red cross
on the top right of this view), you can shut down (delete) these engines.

If you have selected a row in the “ECNO: Engine registry view” by click-
ing on it, you can also get some extra information on the running execution,
and you can redo and undo the previous or next interaction. You can also
save the current state of the execution engine (it will be saved in the file
from which it was started, which is shown in the third column of this view).
If you start the engine next time from that file as discussed above, it will
start exactly from the situation where you saved it. You can save the state
by clicking on the save icon at the top right of the “ECNO: Engine registry
view” – if a row for an execution is selected.

Note that, if you have started the ECNO Engine as an ECNO applica-
tion, the ECNO Engine does not close automatically when you close its GUI
or the editor showing the Petri net. You need to close the ECNO engine
explicitly by deleting it via the ECNO registry view as discussed above.

Note also that it depends on the underlying object-oriented technology
whether the state of ECNO application can be saved. But, as long as you
stick with EMF and ECNO nets – as we do in this report for most of our
examples – you can save the state of the ECNO execution engine. For a

2.1. PETRI NETS 31

selected ECNO execution engine, the save button is enabled only, if the
underlying technology allows saving the state.

2.1.3 Formalizing Petri nets

Next, we formalize the syntax and semantics of Petri nets. We do not
formalize Petri nets in the traditional way by using mathematical definitions
[48]; we formalize Petri nets in a software engineering way by providing
models [29, 34]: We formalize the syntax of Petri nets by providing an
(Ecore) model for Petri nets with some additional OCL constraints; we
formalize the semantics of Petri nets using ECNO. This formalisation was
actually running behind the scenes when playing the token game as discussed
in Sect. 2.1.2.

2.1.3.1 Abstract syntax of Petri nets

Note that we do not formalize the concrete (or graphical) syntax of Petri
nets here, which would correspond to modelling a graphical editor for Petri
nets (see [29] for more details). We define the abstract syntax of Petri nets
only, basically formalizing the concepts of Petri nets and how they relate to
each other.

PetriNet

Object

Node

name : EString
Arc

Transition Place

capacity : EInt

Token

object0..*

in
0..*

out
0..*

source
1

target
1

token

0..*

Figure 2.3: Abstract syntax of Petri nets: Ecore model

Figure 2.3 shows the Ecore model, which formalizes the concepts or the
abstract syntax of Petri nets. Basically, a Petri net consists of objects, which
are either nodes or arcs, where the nodes can be places or transitions. The
arcs can connect nodes with each other, where each arc has exactly one

32 CHAPTER 2. COORDINATION AND INTERACTION

source and one target node. Each node can have a name, which is a String,
and places can contain any number of tokens.

Note that, in Petri nets, there are some additional constraints, which say
that an arc must not connect a transition to a transition or a place to a place
directly. This can be expressed by so-called OCL constraints. We do not
discuss these OCL constraints here, but you will find them in the project
APetriNetEditorIn15Minutes, if you import it as a source project. In
EMF, there are different ways of adding OCL constraints; in this project,
they are added as so-called link constraints in the definition of the GMF
editor1.

Note that the model from Fig. 2.3 also has a capacity for places, which
we did not discuss yet. This capacity restricts the number of tokens that are
allowed to be on a place (if the capacity is a positive number). This condition
can also be expressed as an OCL constraint and added to the model. We
will come back to the place capacity later, when we discuss automatic roll
back of interactions that violate a constrain after they are executed. For
now, the place capacity can be ignored.

Together with the OCL constraints, the model from Fig. 2.3 completely
and concisely define the abstract syntax of Petri nets. We discuss some
subtleties of this definition later in this chapter.

2.1.3.2 Semantics of Petri nets

Next, we formalize the semantics of Petri nets in ECNO, which defines the
token game or the firing rule for transitions. This semantics consists of
two parts: The global behaviour is formalized by an ECNO coordination
diagram, and the local behaviour is formalized by an ECNO net for each
element type.

We start with the discussion of the global behaviour, with some refer-
ences to the local behaviour that we discuss in more detail later. Figure 2.4
shows the coordination diagram that defines the global behaviour of Petri
nets. It defines the event types fire, add, remove, and removeToken with some
parameters, which we ignore for now – we come back to these parameters
later. The only event that is visible at the GUI is fire.

Only the element type Transition is associated with the externally visible
event fire. Therefore, we start explaining the coordination diagram there.
The element type Transition is associated with three event types: fire, add,
and remove. Technically, this can be seen by there boxes with the respective
labels, which are called coordination sets. We will see later in Fig. 2.5 that
the local behaviour of the element type Transition requires that all three

1If you have GMF installed in your Eclipse, you can have a look into the
models defining the GMF editor of Petri nets. The constraint can be found in
the GMF mapping file “PetriNet.gmfmap” in folder “model” of the plugin project
APetriNetEditorIn15Minutes.

2.1. PETRI NETS 33

Figure 2.4: Coordination diagram: Global behaviour of Petri nets

event types fire, add, remove must be executed together. The coordination
annotations attached to the coordination sets for add and remove and to the
references out and in respectively, require that all the arcs starting at the
Transition (out) need to participate in an add event, and that all the arcs
ending at the Transition (in) need to participate in a remove event.

We will see later when discussing the local behaviour for Arc, that arcs
can always participate in add and remove events. The coordination anno-
tations of reference target2 in Fig. 2.4 in addition requires that the Place
to which the arc points to participates in the add event, too. Likewise, the
coordination annotations of reference source in addition requires the Place
at which the arc starts to participates in the remove event, too. This way,
the coordination diagram guarantees that every place in the present of a
transition is involved in a remove event, and every place in the postset of
a transition is involved in an add when the transition is involved in a fire
event.

The local behaviour of a Place when it participates in an add event creates
and adds a token to this place. The place does not require other associated
elements to participate in the add event. Therefore, the coordination set for
add is not attached to any coordination annotation. Note that the label of
that coordination set is enclosed between two plus signs, which indicates a
subtlety that we discuss later.

The local behaviour of a Place when it participates in a remove event
requires the Place to also participate in a removeToken event, which will
actually take care of getting hold of a token – which then will be removed
by the place. In order to get hold of one Token, the coordination annotation
attached to reference token requires one Token to participate in the remove-
Token event. This way, the coordination diagram makes sure that one Token

2Note that the name of this reference is shown in parentheses in this diagram. The
reason is that the type of the target is restricted to the class Place as compared to the class
diagram of Fig. 2.3 where the target is referring to class Node. Therefore, the coordination
annotation requires to propagate an add or a remove event to source resp. target elements
of class Place only. In our example, this does not make any difference though. When
formalizing the semantics of signal-event nets, this subtle issue is relevant – which is
discussed in [34].

34 CHAPTER 2. COORDINATION AND INTERACTION

is involved for each place in the preset of the transition that can participate
in fire event. Also for these events, we discuss why the names are enclosed
between plus signs later.

Next, we discuss the ECNO nets that define the local behaviour for
the different elements. The ECNO nets for these behaviours are shown in
Fig. 2.5–2.8.

Figure 2.5 shows the ECNO net for the local behaviour of the Transition.
There is only one transition, which does not have any places in its preset.
This means that the transition can be fired any time. The event binding
attached to this transition, which is indicated in bold-faced font, requires
that the events fire, remove, and add must be executed together. Note that
the order in this event binding does not have any meaning. The reason that
the event bindings are represented as assignments is that we need a way
to refer to the parameters of the events sometimes, which is through the
variable the event is assigned to. We will come back to that later, when we
discuss the action which is shown below the transition, which prints out the
places from which the transition removes and adds tokens.

Figure 2.6 shows the ECNO net for the local behaviour of the Arc. There
are two transitions, which can be executed anytime, which means that the
Arc can participate in the events add and remove any time. Since the tran-
sitions are independent of each other, an arc can even participate in both
events in parallel – we come back to this later. Actually, the participation
of an arc in any of these events does not have any local effect on the Arc
at all. The Arc element is a mediator only, which propagates the respective
event from the transition to the respective places in the pre- and postset of
the transition.

Figure 2.7 shows the ECNO net for the local behaviour of the Place.
Again, there are two transitions in this net, which are enabled all the time
and can be executed in parallel. The first transition is bound to the add
event. In this event binding, we can see an example of a parameter assign-
ment, where the resp. place assigns itself (self()) to the parameter places
of the add event – we come back to this later. Moreover, the action, a Java
code snippet which is executed when the add event is executed, creates a new
token (using the factory that is generated by EMF from the Ecore model of
Fig. 2.3). This token is then added to the place itself (self()) using the
API generated by EMF. Note that, in order to access the factory class for
creating the token, this class is imported and this factory is stored as an
attribute in the two labels of that net at the top. The first label is an im-
port label following Java syntax; the second is an attribute definition label
following Java syntax. The other transition is bound to events remove and
removeToken. The place assigns itself as a parameter to the remove event.
In the code snippet for the action that is executed when the local behavior
participates in these two elements, the token (which will assign itself to the
event removeToken) is removed from the place.

2.1. PETRI NETS 35

f = fire(); r = remove(); a = add();

System.out.println("Transition " + self().getName() + " removing token from places:");

for (Place place: r.places) {

 System.out.print(place.getName() + " ");

}

System.out.println();

System.out.println("Transition " + self().getName() + " adding token to places:");

for (Place place: a.places) {

 System.out.print(place.getName() + " ");

}

System.out.println();

import PetriNets.Place;

Figure 2.5: Behaviour of a Transition

a = add();

r = remove();

Figure 2.6: of an Arc

a = add(places=self()); self().getToken().add(factory.createToken());

final PetriNetsFactory factory = PetriNetsFactory.eINSTANCE;

import PetriNets.PetriNetsFactory;

r = remove(places=self());

t = removeToken();
self().getToken().remove(t.token);

Figure 2.7: Behaviour of a Place

t = removeToken(token=self());

1

Figure 2.8: of a Token

36 CHAPTER 2. COORDINATION AND INTERACTION

Figure 2.8 shows the ECNO net for the local behaviour of the Token.
This is the only ECNO net in this example where the firing of the transition
is restricted. Actually the single token on the place makes sure that a
token can be removed only once – the very semantics of a token. In the
event binding, the token assigns itself to the token parameter of the event
removeToken, so that the place can actually remove it. Note that in this
semantics, the place is responsible for creating and removing the tokens.
If the token would remove itself, the models would be slightly simpler (see
[34]).

In Fig. 2.7, we can see that each place assigns itself to the remove resp.
add event. For defining the semantics of Petri nets, this would note be nec-
essary at all. We added these parameters in order to make the example a bit
more interesting. In Fig. 2.4, we can see the declaration of these parameters.
They are marked with an asterisk, which indicates that these are collective
parameters, which means that every participant of the interaction can assign
a value to this parameter in the event binding. And when the value is used,
it represents a collection of all the assigned values. In our example, these
values are used in the ECNO net for the transition (Fig. 2.5). In the action
of that net, the values assigned to the add event are accessed via a.places;
a is the variable to which the event add is assigned to in the event binding,
and places is the name of the parameter – as defined in the event type
definition. In the rather long code snippet, r.places and a.places are
used for accessing and iterating over all places that are involved in adding
or removing a token when the transition fires. Via self(), the action can
also access other attributes of the element – in our example, this is the used
to access and print out the name of the respective transition. All the rest is
basic Java code. Since the Jave code snippet of that action needs to refer to
the class Place, which is generated by EMF, the ECNO net needs to import
this class in the import label at the top.

In Fig. 2.7 and 2.8, we have seen how an event binding can assign a value
to the parameters of its events. This is done by referring to the name of
the parameter and some expression. Note that that expression might even
refer to other event parameters. In principle, any element participating in
an event can assign a parameter to an event. When the parameter is not
a collective parameter, however, the value assigned by different elements to
the same parameter of the same event must be the same, that is why we
call it an exclusive parameter. If two partners assign different values to the
same parameter, the interaction will not be valid. The parameter token of
event removeToken is such an exclusive parameter. Due to the structure of
our model, however, we can be sure that there will never be more than one
partner assigning a value to this parameter.

Together, the models for the local behaviour (Fig. 2.5–2.8) and for the
global behaviour (Fig. 2.4) define the semantics of P/T-systems. Figure 2.9
shows an example of one interaction that is possible in that Petri net in

2.1. PETRI NETS 37

the given marking. The interaction is shown as an octagon containing all
instances of events, the dashed lines showing the elements with which each
event is associated. In order not to clutter the diagram, we have left out
the parameters that are assigned to the different event instances. Note
that there is only one instance of a fire, add, and remove event – since this
same instance is propagated to all the elements. In contrast, there are two
instances of event removeToken, which are freshly created when each of the
two participating places encounters the remove event: The local behaviour
of the Place requires to synchronize the remove event with a removeToken
event. Executing the interaction shown in Fig. 2.9 corresponds to firing
transition t1 with the top-most token on place p1.

t1

t2

p1

p2

fire

p3

p4

remove add
removeToken

removeToken

add

Figure 2.9: Interaction: Firing transition t1

For the situation of Fig. 2.9, there would be one other interaction, which
would correspond to firing transition t1 with the other token on place p1.
Beyond these two interaction, there are no other valid interactions in this
situation.

2.1.3.3 Discussion

As mentioned above, the ECNO semantics from Sect. 2.1.3.2 has some sub-
tleties, which require some discussion. To this end, let us have a look at
some special situations in Petri nets: Figure 2.10 shows an interaction in
a Petri net with a loop, that is where a place is connected to a transitions
with two arcs in opposite directions. In that interaction, the place p1 is
involved in an add event as well as in a remove event. It depends a bit on
the particular kind of Petri net, whether the transition should be enabled
in this situation or not: In Elementary Net Systems [52], for example, tran-
sitions with loops would never fire; in P/T-systems, however, the transition
t1 would be able to fire. According to the ECNO semantics that we defined
above, the interaction shown in Fig. 2.10 is valid. But, this is possible only

38 CHAPTER 2. COORDINATION AND INTERACTION

t1
p1 fire

remove

add

removeToken

Figure 2.10: Interaction A transition with a loop

t1p1

fireremove add
removeToken

Figure 2.11: Illegal interaction: Transition with duplicate arcs

because the local behaviour formalized in ECNO nets for places allows par-
allel firing of transitions – if the transitions are enabled in parallel. In the
ECNO net for places (see Fig. 2.7), the transition associated with the add
event and the transition associated with the remove event can be fired in
parallel – this way, allowing the local behaviour of the place participating
in the add and remove event within the same interaction. Therefore, the
above semantics formalizes the semantics of P/T-systems rather than the
semantics of Elementary Net Systems.

Another situation, which requires some more discussion is shown in
Fig. 2.11. In this Petri net, there are two arcs from place p1 to transi-
tion t1. The first question is, whether this is a legal Petri net; if it is legal,
the second question is, what that would mean. In P/T-systems, multiple
arcs between the same elements would be allowed and their meaning would
be that actually each arc would require to consume one token from the re-
spective place. In the situation shown in Fig. 2.11, however, the interaction
consumes only one token. But, we will see in a minute that this interaction
is actually illegal. The reason is that the remove event for place is a so-
called counting event type for the place, which is indicated by enclosing the
event name in the corresponding coordination set between two plus signs
(see Fig. 2.4). This means that the place needs to participate in that event
as many times as this is required by the arcs. In the situation of Fig. 2.11,
there are two arcs starting at the place and both of these arcs participate in
the remove event (indicated by the dashed lines). Therefore, the place itself

2.1. PETRI NETS 39

t1p1

fireremove add

removeToken
removeToken

Figure 2.12: Legal interaction: Transition with duplicate arcs

would need to participate twice in the remove event. And since removeToken
is a counting event type for place, it would also need to participate twice in a
removeToken event. This would also require two tokens to participate in the
removeToken event – or one token to participate twice in the removeToken
event. The local behaviour of a token (see Fig. 2.8), however, does not allow
the same token to participate twice in any event. Therefore, the interaction
shown in Fig. 2.11 is invalid. But it is invalid only since the events remove
and removeToken were made counting event types of elements Place and To-
ken. If there had not been counting event types in the ECNO coordination
diagram, the interaction from Fig. 2.11 would be legal – effectively ignoring
duplicate arcs.

With the counting events, however, a legal interaction would require two
tokens to be consumed from the place when transition is fired. This is shown
in Fig. 2.12. The important thing here is that place p1 is associated with
the remove event twice. And, therefore, the place needs to associated twice
with some removeToken events; and due to the local behaviour of tokens,
this need to be two different tokens.

For our Petri net semantics, the firing of a Petri net transition corre-
sponds to a legal interaction in which an element of type Transition par-
ticipates in an event fire. The ECNO semantics has some interactions in
which no transition participates: for example, one token participating in
a removeToken event only would make a legal interaction. In the ECNO,
we express the interactions that are supposed to happen or are meaningful
by distinguishing some elements and some events as GUI events3: In our
example, Transition is the only GUI element type, and fire is the only GUI
event. Therefore, the token cannot participate in an interaction alone – it
needs to be triggered by a fire event on a Transition.

A related issue is that the local and global behaviour of ECNO define
which interactions are possible in a given situation. It does not define which
interactions will actually happen. This is left to external controllers; in our
example, the external controller is the user who controls which interactions

3Note that the name and the concept of GUI events might change in future versions
of ECNO.

40 CHAPTER 2. COORDINATION AND INTERACTION

should executed via the GUI panel. But, these controllers could also be
programmed. The idea of defining what can happen, but not defining what
must happen is in line with many notations for modelling concurrent or
distributed systems – not least, this is in line with Petri nets. Petri nets
define which transitions could fire and what happens when they fire; Petri
nets do not define which transition must fire. ECNO’s concept of interactions
exactly reflects this idea. What must happen can be defined on top the
models – in ECNO, this is done by so-called controllers (see Chapter 5 for
details).

What is more, the level of atomicity of firing a transition is exactly
reflected by the level of atomicity of the respective interaction representing
the transition firing. This shows that ECNO allows us to capture the notion
of atomicity explicitly – but, in a much more flexible and dynamic way than
Petri nets.

2.2 ECNO concepts

In this section, we discuss the concepts of the ECNO modelling notation
as well as their meaning in more detail. The meaning of ECNO is defined
in terms of what legal interactions are in any given situation, and what
happens when a legal interaction is executed in a situation.

Remember that we discuss the core concepts of ECNO here only. The
discussion of the concepts of inheritance for element types as well as for
event types is deferred to Chapt. 4.

2.2.1 Concepts from object-orientation

Since ECNO is based on object-oriented modelling, we briefly rephrase the
concepts of object-orientation that ECNO builds on. This, basically, are a
subset of UML class diagrams for the models, and UML object diagrams for
the dynamic changes. Concerning terminology, we stick mostly to the terms
of EMF [8] since this is the default technology for ECNO.

Note that object diagrams represent the state of a model at runtime;
therefore, they are also called runtime model or computation model.

The main modelling concepts are classes and references from one class to
another. The computation model defines which configurations correspond to
a class diagram with its classes and references at runtime. This is captured
by an object diagram, which consists of objects and links between the objects
– an object diagram is also called an instance of the class diagram. Each
object has a class as its type – and the object is called an instance of that
type. Also each link from one object to another object has a type, which is
a reference between the types of the respective objects.

In object-orientation, and specifically in UML, MOF and EMF, refer-
ences have multiplicities, which give a lower and upper bound for how many

2.2. ECNO CONCEPTS 41

links of that kind of reference may exist for a specific object. The ECNO
relies on the underlying semantics of multiplicities of the underlying object-
oriented technology. But, it does not refer to or exploit the multiplicities
explicitly; for any given object in a given object diagram and for any refer-
ence, ECNO assumes that the object has a set of links corresponding to that
reference. In some cases, this set might be required to be a singleton set by
the multiplicities in the object-oriented model – but ECNO deals with it as
any other set in its semantics.

In class diagrams, classes can have attributes too. As for multiplicities,
ECNO does not explicitly exploit attributes; it just assumes that the at-
tributes are there, and that each object of some class that has an attribute
has associated a value with that attribute in the respective object diagrams.
Likewise, classes can have methods. Like attributes, ECNO does not make
explicit use of these methods at all. But, the parameter assignments, condi-
tions, and actions, in the local behaviour of elements may make use of these
methods in their Java code snippets.

With our focus on class diagrams as primary object-oriented model,
object-orientation is clearly biased towards structural aspects. This way,
we deprive objects of a concept of behaviour in their own right. Classically,
behaviour would be considered to be one of the defining characteristics of
objects [6]. The reason for our non-traditional and structural presentation
of object-orientation is that we want to put the limelight on the new way in
which behaviour is incorporated on top of object-oriented models by solely
attributing behaviour to elements and not to objects.

We assume that readers are familiar to these notions and in particular to
the relation between class diagrams and object diagrams as their instances.
Therefore, we do not go into more details here. For an example, you might
have a look at the class diagram from Fig. 1.1 and an example of one instance
in Fig. 1.2 again (see page 5 in Sect. 1.1).

Another concept which we adopt from object-orientation are packages,
which basically provide a namespace in which “things” are defined. We
assume that each “thing” that is defined in a namespace has a name and
that each name is unique within the namespace. For now, we use the concept
of packages very loosely. We will come back to the concepts of packages
later in the context of tooling, and when splitting up models and composing
models from different parts, which is more of a technical issue.

2.2.2 Events

Now, let us have a closer look at the ECNO concepts on top of object-
orientation. We start with discussing the concepts of events. Similar to
classes and their instances, we distinguish event types and event instances.
The event type is what is defined in the model, the event instance is its
occurrence or participation in an interaction. Similar to the relation between

42 CHAPTER 2. COORDINATION AND INTERACTION

objects and classes, each event instance is associated with an event type.
Note that we sometimes use the term event, when it is clear from the context
whether we refer to a type or an instance.

An event type is defined in the scope of an ECNO package, with a
name that is unique in the scope of the package. An event type can have
parameters; each parameter of an event type must have a name and a type,
which refers to a class or data type from the object-oriented model. The
name of each parameter must be unique within the event type.

In the computation model, the event instance might have an associated
value for each parameter. In order to distinguish between the parameter of
an event type and the associated value in the event instance, we call the
parameter of the event type a formal parameter, and we call the value asso-
ciated with the formal parameter in an event instance the actual parameter
– following classical programming languages terminology [3]. Note that it
is possible that some event instance does not have a value for some of its
formal parameters.

Events are used to coordinate and synchronize different elements that
are supposed to participate in an interaction. The event parameters are
used by the different elements to share or exchange some values during the
interaction in a controlled way. Typically, the actual parameter is assigned
by one partner of the interaction and is used by the others (we will see
in Sect. 2.2.4 how the parameters can be assigned and used). In contrast
to method invocation where the caller provides the actual parameters and
the callee uses them, the contribution of actual parameters and their use is
completely symmetric among all participants in an interaction. In principle,
any partner could contributed parameters to an event, and all the partners
sharing the event can used the value. There is not caller or callee, there are
only participants in an interaction – we come back to that when discussing
interactions in more detail in Sect. 2.2.6. It is even possible that two part-
ners contribute a value to the same formal parameter of an event; in that
case, however, the respective interaction is legal only, if both partners con-
tribute the same value – in the sense of the equal() method. At least this
applies to the default kind of parameters of an event, which we call exclusive
parameters. In our Petri net example of Sect. 2.1.3.2, the removeToken event
has an exclusive parameter token, which is contributed by the token and
used by the place to actually remove the resp. token from the place.

The other kind of parameters are called collective parameters. For this
kind of parameter, every participant of an interaction can contribute a value
to this formal parameter – but each participant can contribute at most one
value. The value of the actual parameter, when accessed by a participant of
the interaction, will be a collection of all the values that where contributed
to it by some participant of the interaction. In our Petri net example, the
parameter places of both, the add and the remove event, are collective
parameters; they are used to collect all the places that participate in the

2.2. ECNO CONCEPTS 43

add event (places of the postset) and the remove (places of the preset).
In the event type declaration in the coordination diagrams, the collective
parameters, are indicated with an asterisk as decoration (see Fig. 2.4).

In the coordination diagrams, the declaration of event types looks very
similar to the declaration of classes in class diagrams, with the parame-
ters represented similar to attributes. But, we chose rounded rectangles for
representing event types, and do not call the parameters attributes. The
reason is that the role of event types and event instances is fundamentally
different from the role of classes and objects (or later of element types and
element instances). Event instances are volatile in nature; they live for the
duration of the execution of an interaction only, which is atomic and – at
least conceptually – instantaneous. Event instances do not have any mean-
ing outside an interaction and between different interactions. On the one
side, they play a similar role as actions in process algebras for synchronizing
different partners; on the other side, they allow to pass parameters between
different partners, somewhat similar to methods, but not quite like methods
due to the symmetric nature of events as discussed above.

2.2.3 Elements

The other new concept of ECNO are elements, or more specifically element
types and element instances, which we call elements for short. The rela-
tion between element types and element instances is similar to the relation
between classes and objects.

The more interesting question is what is an element type as compared
to a class? Basically, an element type extends a class by two things. First,
elements have a life cycle, which means that element types must have a
model for the life cycle or the local behaviour. Second, the life cycle of the
element is defined in the way the element participates in events. To this end,
each element type needs to define the event types, its life cycle is concerned
in.

Section 2.2.4 discusses the concepts for defining the life cycle of elements
in more detail. So, let us discuss how element types define the event types
their life cycle is involved in. Actually, this is done indirectly by coordination
sets of the element type, which refer to event types. In the example of
Fig. 2.4, the coordination sets are shown as rectangles that carry a name of
some event type. As their name indicates, coordination sets play a role in
coordinating the participation of different elements in the respective event.
This aspect will be discussed later in Sect. 2.2.5. For now, the set of all
event types that occur in some coordination set of an element type defines
the set of event types this element type is involved in.

One more subtle issue of an element type is the definition of which event
types should be considered the non-counting event types and which should
be considered to be the counting event types. If an element is required to

44 CHAPTER 2. COORDINATION AND INTERACTION

participate in a non-counting event, it will participate in that event exactly
once, no matter how many other elements require it to participate in an
event of that type. If an element is required to participate in a counting
event, it will participate in that event as many times as it is required to
by other elements. The details are discussed in Sect. 2.2.6 along with the
definition of legal interactions.

The counting events are enclosed between two plus symbols in the re-
spective coordination sets of the element type. Note that being a counting
event or not, is a property of the element type and not of a particular coor-
dination set. The coordination set is just where this information is shown
in the graphical representation of coordination diagrams.

2.2.4 Local behaviour (life cycle)

As discussed above, the life cycle or local behaviour is one of the distin-
guishing features of an element. In this section, we discuss the concepts for
modelling the local behaviour. We discuss the concepts based on our exam-
ples, which used ECNO nets; but, the underlying concepts are independent
from Petri nets. Therefore, we explain the concepts used for modelling the
local behaviour independently from Petri nets. Only in the end, we come
back to ECNO nets in order to provide a concrete notation for these con-
cepts.

Basically, the local behaviour defines, for a given object in some object
diagram and a given state of the local behaviour, which choices are possible
for that element. To this end, the local behaviour has a notion of state. We
call an object diagram together with all the local states for each element a
situation. And the local behaviour of an element would also define an initial
state for each element.

For an element in a given situation, a choice for that element defines,
which event types are involved in the choice. The choice also defines which
values are assigned to the parameters of the events of the different types;
these values may depend on the current state of the element, the values
of its attributes and references, and even on values assigned to some of
the other (exclusive) parameters of the event by other participants already.
Which event types are involved in a choice and which values are assigned
to their parameters is defined by an event binding. In addition, a choice
might depend on some additional conditions, which may relate the values
of the event parameters and the attributes and references of the element.
The event binding and the condition of a choice define whether the choice is
enabled or possible in a given situation. In addition, a choice defines what
happens when the interaction with this participant and this choice eventually
is executed, which is defined by the choice’s action. The action might change
the state of the element, the values of its attributes and references based on
the local values and the parameters of the involved events. Dependent on the

2.2. ECNO CONCEPTS 45

changes in the object diagram and the changed state, other choices might
become enabled or disabled for the element.

All this might sound a bit abstract. Therefore, we discuss how these
concepts are represented in ECNO nets. In ECNO nets, the state is the
current marking of the ECNO net and the initial state is the initial marking
of the ECNO net. All ECNO nets of our example from Sect. 2.1.3 except
for the ECNO net for Token have no places; therefore, they have a single
possible state only, which never changes. The ECNO net for Token, which is
shown in Fig. 2.8, has a place with one token on it, initially. So, this ECNO
net has more than one state. Technically, its state space is infinite (there
could be an arbitrary number of tokens on the place); but there are only
two reachable states – zero or one tokens on the place. This way, it is made
sure that the transition bound to removeToken can fire only once. Actually,
each enabled transition of an ECNO net is a possible choice in the given
state (marking). The label t = removeToken(token=self()); attached
to this transition is the event binding : In this example, the choice refers to
one event type only: removeToken; the particular instance of this event is
available in the context of this choice under the name t, which is expressed
by the assignment. In this example, however, it is not used anywhere –
but, the assignment needs to be there for syntactical reasons anyway. The
event binding t = removeToken(token=self()); also indicates how the
choice contributes a value to the parameter token of the event type remove-
Token by an assignment referring to the name of the parameter: token. In
general, there can be a comma-separated list of any number of such assign-
ments. On the right-hand side of the assignment can be any Java expression.
The expression self() refers to the element itself, which technically is the
object underlying the element. From there, one could access all the objects
(elements) attributes and references to compute some value. In principle,
the expression could navigate even further, but we recommend to use “local
values” of the element itself only when calculating parameter values. In ad-
dition to local values of the element itself, the expression could also access
values of the event itself or (if there is more than one event in the event
binding) of other events bound in this event binding. In our example, this
could for example be t.token, which would assign the parameter token

to itself. In this case, nothing would be assigned at all to this parameter.
Sometimes, it makes sense to assign a value of one parameter to another –
as long as there are no cyclic dependencies these kind of assignments will
be properly resolved by the ECNO engine. In case of cycles, the respective
parameters are not assigned any value. Note however, that collective pa-
rameters of events should not be used in expressions that calculate values
of other parameters4. We will see some other examples of expressions that

4It is syntactically possible to use collective parameters when computing values of other
parameters. This might, however, give undesired and non-deterministic effects. Therefore,

46 CHAPTER 2. COORDINATION AND INTERACTION

use event parameters shortly. In the example of Fig. 2.8, there is no explicit
action attached to the transition. Anyway, when the choice corresponding
to the transition is executed, the state of the element changes: the token is
removed. This part of the action is implicit in the ECNO net. If changes
in the object itself or in its links are necessary, this would need to be ex-
pressed in an explicit action attached to the transition, with a code snippet
manipulating the object itself.

Fig. 2.7 shows an ECNO net with explicit actions, which change the
object itself. The action of the top transition creates a new token and adds
it to the place. The action of the bottom transition deletes the token, which
is passed to the removeToken event as a parameter by another participant of
the interaction: the token. The event is accessed by the name t to which it
is assigned in the event binding of that transition, and the value assigned to
it is accessed from there by the name of the parameter: t.token. This is the
way how parameters can be accessed in general: in parameter assignments,
in conditions, and in actions. Note that in the case of a collective parameter,
the Java type of the respective expression is a Java collection over the type
of the parameter.

When the Java snippets for parameter values, conditions, or actions need
to refer to some classes, it is convenient to import these classes explicitly
to the ECNO net by import statements. Likewise, we sometimes need to
access some fixed values. To this end, ECNO nets allow us to define local
attributes. Examples of this are shown in Fig. 2.5 and 2.7. Note that
you should make sure that these attributes are constants only – otherwise
ECNO’s mechanism for saving and loading the state of an ECNO application
might loose some information.

Fig. 2.5 and 2.7 show examples with event bindings with more than one
event type. Generally, an event binding can have any number of events.
Note that the order of the events in the event binding does not matter at
all.

Note that some transitions in our examples are enabled concurrently
to each other and can be fired in parallel. In our example of the Petri net
semantics, this is exploited for properly capturing the semantics of loops (see
discussion in Sect. 2.1.3.3). It was even necessary that the same transition
could fire in parallel to itself; this was needed for properly dealing with
multiple arcs between the same nodes. In general, the local behaviour of
an element type might allow parallel enabledness and execution of many
choices in a given situation.

this should be avoided.

2.2. ECNO CONCEPTS 47

2.2.5 Coordination

At last, we come to the core concept of ECNO: the coordination of events
among different elements, which defines the global behaviour of the system.
Basically, this is expressed by coordination annotations, which are associated
with the references between element types. A coordination annotation says
which other elements need to participate in an event, when an element
participates in an event of some type.

Technically, the coordination is slightly more involved in order to increase
the expressive power of coordination: As we have seen before, each element
has coordination sets, each of which is associated with some event type. Note
that there can be more than one coordination set for the same element type
and for the same event type. Each coordination set in turn can be associated
with any number (including 0) of coordination annotations, which refer to an
event type, and are associated with a reference of the element type and have
a coordination quantifier : ONE or ALL (for examples, see the coordination
diagrams from Fig. 1.6 and Fig. 2.4).

The meaning of this is as follows: If an element el of some type t par-
ticipates in an event ev of some type et, then one of the coordination sets c
of the element type t for event type et is selected. For this selected coordi-
nation set all the coordination annotations associated with the coordination
set c must be met for the element el and event ev. By allowing more than
one coordination set for the same event type for an element, we can model
a choice of different coordination annotations that need to be followed up
together for that event type. This allows us to formulate disjunctions of
conjunctions of coordination requirements for each event type.

We still need to define what it means that a coordination annotation is
met for an element el and event ev. Let us assume that the coordination
annotation is associated with some reference r and L is the set of all the
links of element el with respect to this reference r in the current situation.
If the coordination annotation has qualifier ONE, one link l ∈ L must be
associated with event ev, too; if the coordination annotation has qualifier
ALL, all links l ∈ L must be associated with event ev, too.

When a link l is associated with an event ev, this in turn requires that
the element to which the link points must participate in the event ev, too.

Note that the set of coordination annotations associated with a coordi-
nation set may be empty (in our example, the coordination set of the event
removeToken of the Token is empty). If such a coordination set is selected for
an element, this means that there are no additional requirements for further
elements to participate in the respective event.

In our example, we have seen that, sometimes, a reference of the class
diagram is restricted to some subtype in the respective coordination dia-
gram: For example, there is a reference target from Arc to Node in the
class diagram from Fig. 2.3; in the coordination diagram of Fig. 2.4, the co-

48 CHAPTER 2. COORDINATION AND INTERACTION

ordination annotation add->ALL is attached to the reference target, but the
element type it is pointing to is not Node, but one of its subclasses: Place.
In that case, it is required only that all the links pointing to an object of
type Place are associated with the respective event – implicitly restricting
the set of links to the ones ending at an object that implements the respec-
tive subclass. In order to make the user aware of this implicit restriction,
the name of such restricted references is shown in parentheses in the ECNO
coordination diagram.

Note that coordination sets can be assigned a priority. If there are two
or more coordination sets with the same event type for an element type,
interactions including a coordination set with higher priority (for the same
element) take priority over interactions in which the lower priority coordi-
nation set was selected for meeting the coordination requirements of the
element.

For non-counting event types of an element type, there is at most one
event for every type associated with each element that participates in an
interaction. For counting event types of an element type, there can be more
than one event of the same event type associated with the element. In fact,
the same event can be associated with the same element more than once.
The number of times an element should be associated with an event of the
respective type depends on the number of incoming “triggers”: each link
associated with an event counts as a trigger for the element the link points
to. But also the local behaviour can “trigger” some events: if based on a
trigger for another event type, a choice is associated with with the element,
and if this choice requires an additional event type this is counted as a
“trigger”, too. For example, in the local behaviour for the Place shown in
Fig. 2.7, the event type remove triggers the transition with the event binding
for event types remove and removeToken. Since this choice was triggered by
a remove event, this is counted as an additional trigger for the other event
removeToken. This way, the number of remove events and the number of
removeToken events in which a Place is participating in is the same.

This idea of counting “triggers” is the reason why counting event types
of an element type were called parallel trigger event types in some early
publications on ECNO.

2.2.6 Interaction

In Sect. 2.2.5, we have discussed the main idea of the semantics of ECNO’s
coordination annotations. In this section, we will discuss some of the under-
lying concepts in more detail and make some of these runtime concepts more
explicit – without repeating what was said earlier. Later in Chapter 3 we
formalize a core fragment of ECNO and its semantics by formal definition.
Here the focus is on the concepts of interactions, as what is often called a
computation model or runtime model of a notation.

2.2. ECNO CONCEPTS 49

As mentioned earlier, in a given situation, the models for global and
local behaviour of ECNO define which interactions are valid or enabled in
that situation. First, we need to clarify what a situation is. It consists
of all the parts, which come from object-orientation, and are captured in
an object diagram, with its objects, associated values for attributes and
the links between objects. In addition, a situation associates a state of the
life cycle with each element (the objects which exhibit behaviour in our
setting). This way, the actual state of an element consists of the values for
its attributes, its links to other objects plus the state of its life cycle or local
behaviour.

In such a situation, an interaction consists of a set of elements, which
are associated with some events of some type, where the same events may
be shared among different elements. And each event is associated with some
values for its parameters (where some parameters might be undefined). In
addition, each element is associated with one or more choices, which are
enabled in parallel for that element in the given situation. Each choice is
associated with the events of the respective type according to its event bind-
ing, where the events in turn must be also be associated with the respective
element.

Figure 2.9 on page 37 illustrates such an interaction in our Petri net
example: the association of events with elements is shown by dashed lines,
the association with the choices, however, is left implicit in this figure.

The events and choices associated with the different elements must be in
such a way that all the requirements of the local and global behaviour are
met. This in particular means:

1. The choices associated with an element are enabled in the given situ-
ation in parallel – as defined by the local behaviour.

2. The values assigned to the parameters are compatible with the param-
eter assignment of the event binding of every choice.

3. The conditions of each choice evaluate to true (in the given situation
and the values of the event parameters).

4. For each element, the coordination conditions as defined by the co-
ordination sets and the coordination annotations (see Sect. 2.2.5) for
each event that is associated with the element are met.

Moreover, we require that the choices associated with the interaction and
its elements are minimal, in order to guarantee that no unsolicited elements
or events participate in an interaction. An event is shared by two elements
only, if this was explicitly required by the coordination annotations; other-
wise, the events are different – even if they have the same type. Moreover, if
events are shared between different elements, we require that this is actually

50 CHAPTER 2. COORDINATION AND INTERACTION

due to a chain of coordination annotations. The details are a bit technical
and are formalized in Chapter 3.

The execution of an interaction, is quite simple: Basically, this comprises
executing the action of every choice that is associated with the interaction in
an arbitrary order. This could result in a non-deterministic outcome when
an interaction is executed; we will discuss some guidelines later in Sect. 2.2.7
that guarantee a deterministic outcome. The execution of an interaction will
typically change the situation, and thus interactions that were valid before
might not be valid afterwards; and new interactions might become possible.
Of course some interactions that were possible before might still be possible
after. This applies to all interactions that do not have any “overlap” with
the executed interaction.

Note that each situation is finite, i. e. consists of finitely many objects
and elements only. This implies that there are only finitely many (even
though it might be terribly many) possible candidates for interactions as
long as there are no counting event types around. The argument for this is
that each element can be associated with at most one event for of each type.
Therefore, the ECNO engine will always terminate when computing possible
interactions in a given situation, if there are no counting event types in the
coordination diagram. As soon as there are counting event types for some
elements, this is no longer true, since the same event type might be bound
to the same element an arbitrary number of times. Therefore, for models
with counting events, great care must be taken so that the computation of
possible interaction will always terminate. For the coordination diagram
for the semantics of Petri nets shown in Fig. 2.4, there are no termination
problems, since the coordination structure is acyclic.

Conceptually, an interaction is represented as a set of elements, with
each element being associated with some events and choices. In order to
make it easier to formalize legal interaction, we also associate some other
parts with events. For example, for an element associated with an event, we
also associate the chosen coordination set with the event. And also the links
that we need to follow for an element for a given coordination annotation
are associated with the respective event. This helps keeping track of all
requirements in the mathematical definition, but also in the understanding
of interactions. Moreover, this is also the main idea of the algorithm for
systematically computing all possible interactions in the ECNO engine.

2.2.7 Discussion

In this section, we have discussed all the concepts of ECNO except for
inheritance. We have discussed what possible interactions are and what
happens when they are executed. Some of the more subtle details will be
filled in later when we formalize the semantics of ECNO.

Some of the main rationals behind the design of ECNO was that it should

2.2. ECNO CONCEPTS 51

be possible to fully automatically compute all possible interactions in a given
situation, which is the job of the ECNO execution engine. As long as there
are no counting event types, this will always succeed; in the presence of
counting event types, some care needs to be taken in order to guarantee
termination. One sufficient condition is that the coordination annotations
are acyclic; more sophisticated criteria are still to be developed.

An other and even more important rational was that the effect of an
interaction in a given situation is deterministic, which means that, when
executed, the resulting situation does not depend on the order in which the
different choices of the elements are executed. As long as the actions of
each element type make local changes only, and as long as each element
is associated with at most one choice, this is obviously true. For life cycles
that allow parallel behaviour (multiple parallel choices), the modeller himself
needs to take care that the order of the execution of the different actions
does not make any difference in the result. For our example, this is actually
true.

As discussed earlier, the semantics of ECNO defines which interactions
are possible in a given situation. It does not define which interactions must
be executed in that situation. This choice is left to controllers, which can
(automatically) be attached to the elements of an ECNO application. In
most of our technical examples, these controllers are buttons which are
shown in a default GUI for each GUI element and each GUI event type.
Then, it is actually the user who chooses which interaction is executed by
pressing the respective buttons. For more sophisticated applications, how-
ever, such controllers can be programmed using the ECNO programming
framework, which will be discussed in Chapter 5.

Together with the rational that the execution of each interaction is deter-
ministic, the idea of controllers is that there is no non-determinism resolved
in the ECNO engine itself. All the non-determinism of an ECNO applica-
tion is controlled by the end-user or by some programmed controllers, which
chose which of the currently enabled interactions should be executed.

An other important rational of ECNO is that its interactions are exe-
cuted in a transactional way, more concretely according to the ACID prin-
ciple [13]:

• The execution of the interaction is atomic. This means that either
all the actions of all the choices associated with the interaction are
executed or none of them are executed.

• The execution of the interaction results in a consistent situation again,
i. e. not violating any of the conditions imposed by the class diagram
(e. g. by the multiplicities of references) or some additional OCL con-
straints or programmed constraints. In case the execution of the inter-
action violates a constraint, the interaction should actually be undone
or rolled back.

52 CHAPTER 2. COORDINATION AND INTERACTION

This consistency condition cannot be met in general. But, when the
ECNO engine is run as an Eclipse application (with the ECNO: Engine
registry view), interactions violating any constraints will be automat-
ically undone5.

• The execution of the interactions happens in isolation, which means
it appears as if all interactions were executed in some sequence one
after each other, even if they were executed concurrently. The ECNO
engine achieves this by a locking mechanism that acquires locks for all
elements that are involved in an interaction.

In order to make sure that this locking mechanism guarantees isolation,
it is important that all conditions and actions refer to data local to
the element only. But up to now, this requirement is neither checked
nor enforced by ECNO. It is a recommendation only.

• The changes made by an interaction are durable, which means: if
the ECNO application crashes for example due to a power outage,
the application can be resumed from that last successfully executed
interaction on.

The ECNO engine does not fully support durability yet, since this
would require the integration with some database system, which is still
future work. Implementing the integration with a database system is
mostly a technical issue, not a conceptual one.

The ECNO engine does support saving and loading the current situ-
ation, when it is running as an Eclipse application – as discussed in
Sect. 2.1.2.

Note that as long as all interactions are triggered by the user via the
GUI only, there is no concurrent execution of interactions, since everything
is sequentially executed in the GUI thread. But, with some own controllers,
interactions can be executed from separate threads; in that case, ECNO’s
concurrency control mechanisms will make sure that interactions are exe-
cuted atomically, isolated, and result in a consistent situation again. We
will see some examples of such controllers running in their own threads in
Chapter 5.

Another rational in the design of ECNO was to foster the separation of
coordination from computation. Therefore, ECNO provides a dedicated no-

5You might remember, that we had capacities in our Petri net model. If you now add
a capacity 1 to place pend1 and also add two tokens to idle1, you will realize that, when
you start playing the token game as discussed in Sect. 2.1.2, you can see such a role back:
If you click fire for transition req1 twice in a row, you will see that the second time will
have no effect – the reason is that the interaction is rolled back, since there are two tokens
on place pend1 which violates the capacity constraint for this place.

2.2. ECNO CONCEPTS 53

tation for coordination – which cannot be abused for defining computation6.
The coordination notation describes which partners should participate in an
interaction, so that the engine can actually do the coordination – with all the
benefits discussed above: among other things, the transactional execution
of interactions. This way, the programmer – or the modeller – is relieved
of thinking of all the technical details that would be necessary when pro-
gramming the coordination in a computation oriented language. In ECNO,
clearly, coordination diagrams are the major modelling notation for describ-
ing coordination; but also the local behaviour of an element is mostly about
coordination. Only the actions exhibit a clear computational characteristics.
We believe that this enforced separation of “stuff that is related to coordi-
nation” and “stuff that is related to computation” is a major contribution of
ECNO. Events seem to be the key to describing coordination, and the pro-
ponents of process algebras [21, 4, 41] – who used the term action for what
we call event – could say “told you so”. The use of events for coordination
is not new; what might be new in ECNO is, that a single interaction can
involve many different events of different types and a complex network of
involved elements – without losing the principle of interactions being atomic.
Therefore, we give events the same status as objects even though – or ac-
tually because – they are fundamentally different from objects. Events live
for an instant (the duration of the execution of an interaction) only.

We have seen above that coordinational behaviour can refer to computa-
tional behaviour by code snippets in the actions. Actually, it is also possible
to refer to coordinational behaviour from computational behaviour. This
is actually used to realize the controllers for interactions. But, we consider
this mostly a technical issue which allows us running interactions within tra-
ditional computation oriented setting; therefore, we defer a more detailed
discussed of this aspect to Chapter 5.

Another important contribution of ECNO is the clear separation of the
life cycle of an individual object or element and the global behaviour – the
global behaviour is coordination only, the local behaviour is a combination
of coordination and computation. Actions, basically, represent the compu-
tation part, and coordination is the mechanism for integrating the global
behaviour with the local behaviour – and, via the actions, coordination is
integrated with computation.

The actions of the local behaviour allow us also to integrate ECNO with
traditional object-oriented software. Moreover, the ECNO engine is fully
aware of changes that are made by some classical object-oriented parts of
the software, which might not even be aware of ECNO running on top of it.
The ECNO engine will properly update possible interactions at any time –

6Actually, we believe that, in most languages used in software development today, it is
the other way round: Computation-oriented languages – sometimes equipped with some
additional coordination-oriented features – are used for programming coordination.

54 CHAPTER 2. COORDINATION AND INTERACTION

independently of whether the changes come from ECNO or other parts of
the software. This way, purely object-oriented software can be step by step
extended with parts that are modelled in ECNO. We discuss some of the
underlying concepts in more detail in Chapter 5.

Chapter 3

Formal Semantics

In Chapter 2, we have discussed all concepts of ECNO except for inheritance,
and we have explained their meaning, in terms of valid interactions and their
execution. In this chapter, formalize this semantics. For the time being,
we formalize the semantics of a core fragment of ECNO with the focus on
the coordination. One reason for restricting the formalisation to the core
fragment of ECNO are time-limitations. Another reason is that restricting
to the core fragment helps us focusing on the essence of coordination – not
cluttering the semantics with all kinds of less important details and losing
track of some important concepts in the technical details of less important
concepts.

In a future version of this technical report, we might eventually add a
section with the full semantic of ECNO. Actually, one idea is to formalize
the full version of ECNO using the core fragment of ECNO.

3.1 Basic definitions

In this section, we introduce the basic notations from mathematics that we
need for the formalisation and introduce a simple definition of the concepts
of class diagrams and their instances, object diagrams which are underlying
the concepts of ECNO. But, we keep these definitions as simple as possible
– they are not meant as a formalisation of UML in any form.

3.1.1 Basic notation

Throughout the formalization, we use the usual notations from set theory.
We use ∅ to denote the empty set. For a given set A, we denote the set of
all subsets of A by 2A, which is called the power set of A.

A mapping f : A→ B is injective, if for all elements x, y ∈ A with x 6= y
also f(x) 6= f(y). For some mapping f : A → B and some subset A′ ⊆ A,
we denote the mapping f restricted to the elements of A′ by f |A′ .

55

56 CHAPTER 3. FORMAL SEMANTICS

3.1.2 Class diagrams and object diagrams

In this section, we formalize a simple version of class diagrams and object
diagrams. We keep this formalization as simple as possible, but powerful
enough to capture the important features of ECNO. Note that we do not
formalize attributes, nor do we formalize multiplicities, since they are not
relevant for ECNO – we assume that all references are of multiplicity many.
The underlying object-oriented technology will take care of modelling and
maintaining the correct multiplicities in the underlying object diagrams;
ECNO just builds on it.

Definition 3.1 (Class diagrams) A class diagram C = (C,R, s, t) con-
sists of two disjoint finite sets C and R and two mappings s : R → C and
t : R→ C.

The elements of C are called the classes of C and the elements of R are
called the references of C. For a reference r ∈ R, s(r) is called the source
class of the reference and t(r) is called the target class of the reference.

For formalizing object diagrams and, in particular, for making it easy to
define changes of an object diagram, we define a universe of possible objects
for each class of the class diagram; also for distinguishing different links
between object, we define a universe of link identifiers for each reference.
To this end, we define a universe U , which is indexed over C ∪ R, i. e.
U = (Ui)i∈C∪R, where all Ui are countably infinite and pairwise disjoint.
For a class c ∈ C, the set Uc represents all the possible candidates of objects
of type c. The universe of all possible objects is denoted by UC =

⋃
c∈C Uc.

As a shorthand notation, we define the mapping c : UC → C by c(o) = c if
o ∈ Uc. This way, c(o) denotes the class of object o.

A possible link can be defined as a triple l = (o1, u, o2), where u ∈ Ur

for some reference r ∈ R with o1 ∈ Us(r) and o2 ∈ Ut(r). Object o1 is the
source object and o2 is the target object of the link, and the condition makes
sure that the type of the source and target object are the type of the source
and target class of the reference, respectively. For the link l, we denote the
underlying reference r, the links type, by r(l).

Note that we cannot represent links as pairs of a source and target object
only, since there can be many different links between the same objects. To
distinguish different links we use the universe as a third – the middle –
component. Since we needed to introduce these unique identifiers anyway,
we sneak in the type of the links to these identifiers in a similar way to
the universe of objects for each class. This way some of the definitions
(in particular Def. 3.4 and Def. 3.7) become much simple, which helps us
focusing on the formalization of the coordination concepts.

The set of all possible links with respect to a class diagram and the given
universe of objects can then be defines as UL =

⋃
r∈R Us(r) × Ur × Ut(r).

3.2. FORMALIZATION OF THE CORE FRAGMENT OF ECNO 57

With these notions, we can now define object diagram as an instance
of a class diagram. We introduce a notion of states for objects already for
object diagrams. This caters for possible values of its attributes (which are
not formalized in our definition of class diagrams), but also for the state
of the local behaviours. This way, we technically do not need to make a
distinction between object diagrams and situations, which conceptually are
different. In order to associate states with objects, we introduce a countably
infinite set S of possible states, which represent the possible states for each
object in an object diagram or situation.

Technically, the possible states are globally defined and are the same
for all objects. Therefore, all objects and elements have the same state
space, technically. Since S is sufficiently large (countably infinite), the states
space of different element types can be made disjoint. Therefore, the global
definition of states is no conceptual restriction.

Definition 3.2 (Object diagrams) Let C = (C,R, s, t) be a class dia-
gram. An object diagram O = (O,L, σ) for class diagram C consists of a
finite set O ⊆ UC of objects, a finite set L ⊆ UL ∩ (O × U × O) of links,
and a mapping σ : O → S, which defines the state σ(o) of each object o in
that situation.

Note that the type (its class) of each object o ∈ O is indirectly defined
since the object is coming from the universe of objects; as defined earlier,
this class is denoted by c(o). Likewise, the reference associated with a link
l ∈ L was defined as r(l) for the universe of links. By definition, each object
diagram is finite, even though the universe of possible objects and links is
infinite. But object diagrams can be arbitrarily large.

3.2 Formalization of the core fragment of ECNO

In this section, we formalize the core fragment of ECNO, which concerns
the core modelling concepts of ECNO as well as their semantics. The core
fragment that we formalize here does not include

• coordination sets, (resp. we assume that there is exactly one coordi-
nation set for every event type of an element type),

• event parameters,

• counting event types,

• parallel choices (i. e. each element participating in an interaction is
associated with exactly one choice), and

• inheritance.

58 CHAPTER 3. FORMAL SEMANTICS

3.2.1 Formalisation of modelling concepts (syntax)

We start with formalizing the core modelling concepts of coordination dia-
grams. In the core fragment, a coordination diagram defines a set of event
types and adds coordination annotations to some references of the class dia-
gram. Implicitly this means that there is exactly one coordination set (which
we called default coordination set in some earlier versions of ECNO). But, if
there is only one coordination set, we do not need to formalize it – resulting
in a simpler definition.

We call a coordination diagram using the core modelling concepts only
a simple coordination diagram.

Definition 3.3 (Simple coordination diagram) Let C = (C,R, s, t) be
a class diagram. A simple coordination diagram Co = (Et,A) based on C
consists of a finite set Et of event types and a finite set A ⊆ Et× R ×M
of coordination annotations, where M = {ONE,ALL}.

For a coordination annotation (et, r,m) ∈ A, et refers to the event type,
r refers to the reference it is associated with, and m is its coordination
quantifier.

The local behaviour defines which choices are possible for a given object
in a given situation. And for a given choice, the local behaviour defines which
event types participate in it and how the execution of the choice eventually
changes the situation locally. The changes are described by defining a new
state for the object, and by defining which links that are deleted and which
links are created for the object, when the choice is executed in a given
situation.

In the definition of the behavior, the choice itself is a unique identifier
only. For that reason, we can define a universe of possible choices as a
countably infinite set X globally again. Since each local behaviour can use
it as it pleases, this global definition of possible choices does not impose any
conceptual restrictions.

Definition 3.4 (Local behaviour) Let Co = (Et,A) be a simple coordi-
nation diagram over a class diagram C = (C,R, s, t).

A local behaviour B = (ι, γ, ε, δ, α, τ) for a class c ∈ C consists of an
initial state ι ∈ S, and of mappings γ, ε, δ, α, and τ such that the following
conditions are met: for a given object diagram O = (O, σ, L) and any object
o ∈ O with c(o) = c, γ(O, o) is a finite subset of X, which is the set of
possible choices for o in this situation; for each x ∈ γ(O, o), ε(x) is a finite
subset of Et, which is the set of event types the choice x is participating in;
and δ(O, o, x) ∈ 2({o}×U×O)∩L is the set of links that are deleted when the
choice is executed, α(O, o, x) ∈ 2({o}×U×U)∩UL is a finite set of links added
when the choice is executed, and τ(O, o, x) ∈ S is the new state of the object.

3.2. FORMALIZATION OF THE CORE FRAGMENT OF ECNO 59

The local behaviour for a coordination diagram is defined as an C-indexed
family of behaviors (Bc)c∈C . We denote the behaviour for class c also by
Bc = (ιc, γc, εc, δc, αc, τc).

In the above formalisation, ι defines the initial state of the object; γ
defines, for a given situation, the possible choices for an object, based on
the context of the object (this is why γ takes the complete object diagram
as a parameter, actually γ should exploit the links local to the object only);
ε defines which event types are involved in a given choice; δ and α define
which links (local to the object) are deleted and created; finally, τ describes
how the state of the object changes.

Note that there is no way of deleting objects, which is in line with Java’s
semantics were inaccessible objects will eventually be garbage collected. But,
in our formalisation below, we do not formalize a garbage collection mech-
anism. Note that there is no explicit notion in the behaviour for creating
new objects; but if a link to an object that did not exists before is created,
this indirectly creates a new object.

3.2.2 Formalisation of meaning (semantics)

In this section, we formalize which interactions are possible in a given situ-
ation and how the execution of an interaction in a given situation changes
the situation. As mentioned earlier, situations are represented by object
diagrams in our formalisation (exploiting the fact that objects have states
in our formalization). In order to formalize interactions, we proceed in two
steps. The first step is formalizing the general structure of an interaction,
basically binding the participating elements to some events and choices –
we call this an interaction structure; in a second step, we formalize, which
of these general interaction structures are actually interactions in a given
situation, which we sometimes also call valid interactions.

In our formal definition of interaction structures, we add already some
basic local soundness conditions. The formalization of the actual coordi-
nation constraints, is deferred to a the definition of interactions (Def. 3.6).
We give the formal definition of interaction structures first, and discuss its
different parts in more detail right after the definition.

Definition 3.5 (Interaction structure) Let Co = (Et,A) be a simple co-
ordination diagram and (Bc)c∈C the local behaviours over a class diagram
C = (C,R, s, t), and let O = (O, σ, L) be an object diagram for class diagram
C (which is a situation for the coordination diagram Co.

An interaction structure S = (O′, L′, E, et, v, χ) for object diagram O
consists of a set O′ ⊆ O, a set L′ ⊆ L, a finite set E of eventd, a mapping
et : E → Et, and a mapping v : O′ ∪ L′ → 2E such that the following
conditions are met:

60 CHAPTER 3. FORMAL SEMANTICS

1. E =
⋃

o′∈O′ v(o′);

2. for each x ∈ O′ ∪ L′, the restriction et|v(x) is injective and v(x) 6= ∅;

3. for each link l = (o′, u, o′′) ∈ L′ and each e ∈ v(l), there exists an
m ∈ {ONE,ALL} such that (et(e), r(l),m) ∈ A;

4. for each element l = (o′, u, o′′) ∈ L′, we have o′ ∈ O′ and o′′ ∈ O′, and
v(l) ⊆ v(o′) and v(l) ⊆ v(o′′).

5. χ is a mapping χ : O′ → X, such that for each o′ ∈ O′, (χ(o′) ∈
γc(o′)(O, o′) and εc(o′)(χ(o′)) = v(o′).

In the above definition of interaction structure S = (O′, L′, E, et, v, χ),
the sets O′ represents the set of objects involved in the interaction; the set L′

represents the set of links that are involved in the interaction, by propagating
some events between two object according to some coordination annotation.
The set E is the set of all the events (event instances to be precise) that
are involved in the interaction, and, for each event e ∈ E, et(e) is the event
type of the event e. The mapping v says which events are associated with
each element and each link in the interaction structure. The conditions of
Def. 3.5 mean the following:

1. Guarantees that each event of the interaction structure is bound at
least to one object – events not bound to anything are meaningless in
an interaction.

2. Guarantees that all events bound to the same object or link have
different types (remember that, in the core fragment of ECNO, we do
not cover counting event types or parallel choices; therefore we do not
need different events of the same type being associated with the same
object or link); in addition, we require that all objects and links that
are part of an interaction structure are actually bound to an event.
Objects not involved in any event, cannot be part of an interaction.

3. Guarantees that a link is bound to an event only if there is a coordina-
tion annotation in the coordination diagram, which might require such
an event being bound to the link. Note that this definition does not
yet take into account the quantifiers of the coordination annotations.
This is covered in the definition of valid interactions.

4. Guarantees that for a link that is part of the interaction structure, the
source and target object are part of the interaction structure too, and
the events the link is bound to are also bound to the source and the
target object.

3.2. FORMALIZATION OF THE CORE FRAGMENT OF ECNO 61

5. Guarantees that the choice associated with an element is actually en-
abled in the given situation, and that the event types required by that
choice are identical to the set of event types required by that choice.

These requirements do not yet guarantee that an interaction structure is a
valid interaction. They are just some basic structurally necessary conditions.

We will formalize the constraints concerning the coordination annota-
tions below. In addition, we need to formalize that all objects involved
in an interaction somehow are connected, and that elements that are in-
volved in the same event are actually connected by some links associated
with the same event – in order not to “accidentally” identify two different
events which just happen to have the same type. In order to formalize these
and some other constraints on valid interactions, we need to introduce some
additional concepts and notations.

The first notation denotes the set of objects that are reachable from
an object o within an interaction structure, which is denoted by R(o) –
assuming that the interaction structure is fixed. For an interaction structure
S = (O′, L′, E, et, v, χ) and some object o ∈ O′, we define the set of objects
reachable from o in S as the smallest set R(o) such that

• o ∈ R(o)

• if o′ ∈ R(o) and (o′, u, o′′) ∈ L′, then o′′ ∈ R(o).

The second notation denotes the set of objects that are reachable from
an object o by navigating only those links of the interaction structure that
relate to a specific event e ∈ E, which we denote by R(o, e). This will
help us characterizing which events are actually allowed to be equal. For an
interaction structure S = (O′, L′, E, et, v, χ), some object o ∈ O′ and some
event e ∈ E, we define the objects that are connected with respect to event
e as the smallest set R(o, e) such that

• if e ∈ v(o) then o ∈ R(o, e)

• if there exists some link l = (o′, u, o′′) ∈ L′ with e ∈ v(l) and o′ ∈
R(o, e) or o′′ ∈ R(o, e) then we have o′, o′′ ∈ R(o, e).

A third notation denotes for an object o ∈ O and a coordination an-
notation a attached to a reference of that object the set of all links l(o, a)
that refer to this reference and are associated with an event of the respective
type. More formally, for a given object o ∈ O and a coordination annota-
tion a = (et, r,m) with s(r) = c(o), we define l(o, a) = {(o, u, o′) ∈ L′ | u ∈
Ur ∧ ∃e ∈ v(o, u, o′) : et(e) = et}.

At last, we define, for a given object o ∈ O and some reference r ∈ R, the
set of all links with respect to reference r that start at object o, which we
denote by l̂(o, r). More formally, we define l̂(o, r) = {(o, u, o′) ∈ L | u ∈ Ur}.

With these definitions and notations, we can now define what a (valid)
interaction in a given situation is.

62 CHAPTER 3. FORMAL SEMANTICS

Definition 3.6 (Interaction) Let Co = (Et,A) be a simple coordination
diagram and (Bc)c∈C the local behaviours over class diagram C = (C,R, s, t),
let O = (O, σ, L) be an object diagram for class diagram C and let S =
(O′, L′, E, et, v, χ) be an interaction structure.

The interaction structure S is an interaction of the simple coordination
diagram Co and the behaviours (Bc)c∈C for an element o ∈ O′ in the object
diagram O, if the following conditions are met:

1. All objects in S are reachable from o, i. e. R(o) = O′.

2. If, for any two objects o′, o′′ ∈ O′, there exists an event e ∈ E with
e ∈ v(o′) and e ∈ v(o′′), then we have R(o′, e) = R(o′′, e).

3. For each object o′ ∈ O′, each event e ∈ v(o′), and each coordination
annotation a = (et(e), r,m) with s(r) = c(o′), we have

• l(o′, a) = l̂(o′, r) if m = ALL and

• |l(o′, a)| = 1 if m = ONE

Let us briefly explain the conditions in the above definition:

1. Guarantees that all objects in the interaction can be reached transi-
tively by some links of the interaction, which makes sure that objects
that are part of the interaction are actually required to be there.

2. Guarantees that two objects that are associated with the same event
are actually required to share the same event by a chain of coordination
requirements.

3. Guarantees, for each event associated with an object, that each coordi-
nation annotation for that object and the respective event type is met.
This definition distinguishes the two different cases for coordination
quantifiers ALL and ONE.

At last, we need to define how an interaction is executed and, in partic-
ular, how its execution changes the object diagram. Basically, this means
applying all the changes made by the local behaviours of all participating
objects. Since the local behaviour is defined in such a way that the differ-
ent local behaviours cannot interfere with each other, the definition is quite
straight forward.

Definition 3.7 (Execution of an interaction) Let Co = (Et,A) be a
simple coordination diagram and (Bc)c∈C the local behaviours over C =
(C,R, s, t), let O = (O, σ, L) be an object diagram for class diagram C and
let I = (O′, L′, E, et, v, χ) be an interaction for some object o ∈ O′.

The interaction can be executed in O, which will result in a new object
diagram defined by O2 = (O2, σ2, L2), where

3.3. SUMMARY 63

1. O2 = O ∪ {o2 | (o1, u, o2) ∈ αc(o1)(O, o1, χ(o1)), o1 ∈ O′}

2. L2 = (L1 \
⋃

o′∈O′ δc(o′)(O, o′, χ(o′))) ∪
⋃

o′∈O′ αc(o′)(O, o′, χ(o′)))

3. σ2(o
′) = τc(o′)(O, o′, χ(o′)) for each o′ ∈ O′, σ2(o

′) = σ(o′) for each
o′ ∈ O \O′, and σ2(o

′) = ιc(o
′) for each o′ 6∈ O.

If an object diagram O2 is the result of executing an interaction I in an

object diagram O, we denote that by O I→ O2.

Let us briefly discuss the three points in the above definition:

1. Adds the new elements to the object diagram, which implicitly come in
by the added links (α) of the local behaviours of the different elements.

2. Removes the links that are supposed to be deleted (δ) by the different
local behaviours, and adds the links that are supposed to be added
(α) by the local behaviours of the different elements.

3. Sets the new state for each element that is involved in the interaction
according to the local behaviours (τ) of the element. For an element o′

that is part of the interaction, τc(o′) denotes the new state of object o′.
For each element that is not part of the interaction, the state remains
unchanged. For each element that is added by some local behaviour,
the state is set to the initial state according to the local behaviour (ι)
of the respective class.

Note that, due to our “trick” with the universes for objects of certain
classes and for identifiers for links, we do not need to take care of the types of
the added objects and the added links. They are implicitly contained in the
objects and links themselves and this way in the δ and α of the respective
local behaviours.

3.3 Summary

In this section, we have presented a first formalisation of the syntax and se-
mantics of the core fragment of ECNO. The core fragment covers the essence
of the coordinations and their meaning. In particular, the formalisation
makes explicit some subtleties of valid interaction: for example, elements
can only share an event, if there is a chain of coordination annotations be-
tween these elements; and there must be one root element from which all
coordination originates.

Up to now, we did not formalize some of the more advanced concepts
of ECNO such as coordination sets, counting events, and event parameters.
But, the definition of the core fragment, might give an idea already how
they could be formalized.

64 CHAPTER 3. FORMAL SEMANTICS

Ultimately, the formal definition of a semantics of a notation is of not
much use – unless we use it for some purpose. Eventually, we could exploit
the formal definition of the semantics for verification purposes. But, this is
left for future research.

Chapter 4

Inheritance

In the previous chapters, we have discussed all concepts of ECNO except for
the ones related to inheritance. We had deferred the discussion of inheritance
since, at its core, coordination is independent of inheritance and the concepts
of coordination are easier to understand when inheritance is not mixed in.
Moreover, the addition of inheritance introduces many subtle issues and
choices in the design of the ECNO modelling notation, which need to be
carefully discussed and explained. Therefore, we dedicate a complete chapter
to the discussion of the concepts of inheritance in ECNO.

One source of “subtle issues and design choices” is that there are many
different forms of inheritance on behaviour life cycles [55]. Moreover, there
is not only inheritance on classes or element types; we also need to consider
inheritance on event types. And it turns out, that we need to distinguish
between two different kinds of inheritance for event types, which we call
specialization and extension (see Sect. 4.2.2).

We start with introducing yet another example, which exploits some
forms of inheritance, and we use these examples to informally discuss inher-
itance in ECNO. Later, in Sect. 4.2, we give a more precise account of the
different forms of inheritance and their meaning and discuss some additional
constructs.

4.1 Example: Vending machine

Our example is the model of a vending machine. The example that we
present here has evolved from an example that we had used for discussing
an earlier version of ECNO [32, 33]; at that time, however, ECNO sup-
ported a limited form of inheritance. On the side, this example exhibits
another feature of ECNO, which is important for its practical use: pack-
ages for structuring ECNO models and building ECNO applications from
separate components. Note that we do not discuss the technical details
concerning packages in this chapter. We just discuss packages as far as we

65

66 CHAPTER 4. INHERITANCE

need to understand the example. For details on ECNO packages, we refer
to Chapter 5.

If you want have a look at the models in Eclipse, or if you want to run
the example, you need to import the following projects as source projects
to your workspace:

• dk.dtu.imm.se.ecno.examples.vendingmachine.split.part1

• dk.dtu.imm.se.ecno.examples.vendingmachine.split.part2

• dk.dtu.imm.se.ecno.examples.vendingmachine.split.part3

• dk.dtu.imm.se.ecno.examples.vendingmachine.split.part3.

runtime

The first three projects contain the different parts of the ECNO models;
the basic model from part1 is extended in two steps: part2 and part3.
The last project (with extension runtime) contains an instance of a vending
machine, which can be run as an ECNO application. It can be started by
right-clicking on the file “initial.behaviourstates” in folder “run” and then
selecting “ECNO → Start ECNO Engine”. Remember that the running
engine can be controlled and finished via the “ECNO: Engine registry” view.

4.1.1 Structural model

We start with explaining the structural model of the vending machine. In the
actual projects, the structural models are split up into three parts, too. Since
the structural model is not very big or complicated, however, we explain the
full model right away. This model is shown in Fig. 4.1. A VendingMachine
consists of different VendingMachineComponents. Note that, for technical
reasons, we made the Coins, which are inserted to the vending machine
also a VendingMachineComponent, though this conceptually is not true. We
explain the other real components next.

In the vending machine, there is a Panel, which serves as the front-end to
the customer on which the customer can press some buttons for interacting
with the machine. The Panel is attached to one ore more Controls. A Control
in turn is attached to one or more Slots, which hold and take control over
the Coins. And a Slot is attached to a Safe, where the coins will be passed
to when a beverage is dispensed. There are two references between Coin
and Slot. The reference slot from Coin to Slot represents the coins that can
be inserted to the slot by the customer. The reference from Slot to Coin
represents the coins that currently are inserted to the slot.

The Control is also attached to some Brewer, and there are two different
kinds of brewers, a CoffeeBrewer and a TeaBrewer. There is an Output, which
represents the place where the customer places a cup, to which the beverage
is dispensed.

4.1. EXAMPLE: VENDING MACHINE 67

Figure 4.1: Vending machine: Structural model (complete)

Before we continue discussing some more details of Fig. 4.1, let us have
a brief look at an instance or configuration of a vending machine. Figure 4.2
shows an instance of a vending machine with two coffee brewers and one tea
brewer, and with three coins that are ready to be inserted to the vending
machine. Note that the container object, an object of class VendingMachine,
containing all the objects is omitted from this object diagram in order not
to clutter the diagram.

:Slot

:Panel

:Control

:Coffee

:Output
:Safe

:Coin

:Tea

:Coffee

:Coin

:Coin

Figure 4.2: Vending machine: Instance

Note that, in the structural model of Fig. 4.1, different classes have differ-

68 CHAPTER 4. INHERITANCE

ent colours: the two classes VendingMachine and VendingMachineComponent
at the top are mostly of technical nature, which allows all components of
a vending machine being contained somewhere. We will not associate any
behaviour with them later in our ECNO models. The three classes Coin,
Panel, and Output shown in magenta, represent GUI elements in the ECNO
model. The other classes are internal.

Experienced modellers might also wonder why the class Brewer is not
made an abstract class (i. e. its name shown in italics in the diagram). This
is where we come back to the point that, in our projects, the models are
split up into different parts. The basic version (part1) contains all the classes
except for the CoffeeBrewer, the TeaBrewer and the Output. In order to allow
us to play around with this basic version, we made Brewer a concrete class, so
that we could have an instance of a brewer. But, this is just to demonstrate
that, at all stages of development, our models are executable. A vending
machine without a brewer would not be able to do anything reasonable.
In the second version (part2) the Output is added to the model. In the
full version (part3), all components shown in Fig. 4.1 are there, and this is
where inheritance comes in, since the behaviour of the brewers consists of
the general behaviour of the brewer plus the specific behaviour for coffee
and for tea brewers. We will come back to that later.

Note that there is also an inheritance relation between VendingMachine-
Component, which actually is abstract, and all the concrete classes for the
components. This inheritance however is structural only since VendingMa-
chineComponent as well as VendingMachine are classes only; they are not
element types in ECNO (therefore, they are shown in grey in this diagram).

4.1.2 ECNO models: Part 1

Next, we discuss part 1 of the ECNO models, which captures the basic part
of the vending machine. Figure 4.3 shows the coordination diagram for the
elements of part 1 including the main event types. The main event types
are insert, pass, return 1, reset, cancel, drink, and cup in. Note that there are
also some event types with “odd” names, yyy, bla, and blubs, which we skip
for now; we come back to them later.

Some of the event types have parameters with types that are either
basic data types like String2 or classes from the Ecore model. We explain
the purpose of the different parameters later, when we discuss the local
behaviour of the different types of elements.

First, let us have a look at the global behaviour which is represented by
the coordination annotations shown in Fig. 4.3. We start with the events,
which can be triggered by the user via the Panel. The panel is involved in

1Since return is a keyword of our target language Java, we added an underscore to
the name of this event in order to avoid syntax errors in the generated code.

2EString is the Ecore name for Java Strings.

4.1. EXAMPLE: VENDING MACHINE 69

Figure 4.3: Vending machine, part1: Coordination

70 CHAPTER 4. INHERITANCE

two types of events: drink and cancel. The drink event represents ordering
and brewing a drink – and the global behaviour will make sure that the
drink is paid for. The cancel event is for returning all inserted coins and
resetting all internal activities of the brewers. We start with explaining the
interactions that are triggered by a drink event: If a panel participates in
a drink event, the coordination annotation associated with the reference to
control requires that one control element participates in the drink event, too.
In turn, this control requires that one brewer participates in the drink event –
which will initiate the brewing of the drink in the respective brewer. There is
no additional requirement for the brewer concerning the drink event. We will
see later in the local behaviour of the Control that the control can participate
in a drink event only together with participating in a pass event. This pass
event represents the slot passing an inserted coin to the safe – representing
the payment of the drink. To achieve this, the Control requires that one Slot
participates in the pass event, and the coordination requirements for the
Slot make sure that exactly one Coin and one Safe participate in the pass
event, the local behaviour of which will actually transfer the inserted coin
from the slot to the safe. Altogether, if a panel participates in a drink event
– i. e. when the user presses the drink button on the panel – one brewer will
take care of brewing the drink and one coin will be passed from the slot to
the safe – all in the same interaction.

Similarly, the user can issue a cancel event at the panel. If the Panel
participates in a cancel event, the coordination annotation to Control requires
that all controls participate in the cancel event. The local behaviour of the
control will make sure that the cancel event is possible only together with a
reset event. This, in turn, requires that all brewers and all slots participate
in the reset event. The idea is that the reset event will clean the brewers
and the slot returns all inserted coins to the user. To achieve this, the local
behaviour of the Slot requires that a reset event is executed together with
a return event, which requires all inserted coins to participate and return
themselves to the user. We will discuss the local behaviour in more detail
later.

A last event that can be issued by a user is insert, which represents a
user inserting a coin to the slot. A coin can participate in an insert event
when it is close to a slot; then, one slot is required to participate, which will
take the coin (if it is not filled with too many coins already, which we will
discuss later).

The three kinds of interactions discussed above, characterize three dif-
ferent user scenarios3: the user inserting a coin, the user ordering the drink,
or the user pressing the cancel button. Most of these scenarios are described

3In part 2, there will actually be a forth one, which has to do with the user inserting
a cup to which the drink can be dispensed, which corresponds to the cup in event. But
for now, there is no way for the user to trigger this event. The resp. Output device will be
added in part 2 of the model.

4.1. EXAMPLE: VENDING MACHINE 71

by the coordination diagrams, but as you could see from the forward ref-
erences to the local behaviour, part of the coordination is coming from the
local behaviour.

In order to get the complete picture, let us discuss the local behaviour
of the different elements now. We start explaining the local behaviour of
the Control, which is shown in Fig. 4.4: There are two transitions, both of
which are always enabled. Both of them are bound to two event types in
order to synchronize them as already discussed above. The top transition
requires that the event pass and drink are always executed together – this
way making sure that dispensing a drink and paying it always go together.
In this event binding, no parameters are involved, and the action attached is
an output statement only, indicating the class of the brewer that is involved
– which is not interesting for now, but might be a bit more interesting once
we introduce different kinds of brewers in part 3 of the model.

The bottom transition of the local behaviour of Control also synchro-
nizes two different events: yyy and reset. yyy is one of the oddly named
events, which were defined in the coordination diagram of Fig. 4.3. So, let
us briefly explain it: the event type yyy is connected to the event type can-
cel with something that looks like an inheritance relation, but with a filled
arrow head. This indicates a special kind of inheritance on events, which
we call extension. Basically, this means that yyy is a cancel event, just with
an additional parameter, test in this case. As far as coordinations are con-
cerned, yyy is a cancel event – and cancel is called the base event type of
event extension of yyy. The only difference is that partners that are inter-
ested in the additional parameter could use yyy in order to contribute or to
access this additional parameters. We discuss this in much more detail later
in Sect. 4.2.2.2. Altogether, the bottom transition synchronizes the cancel
event (represented by its extension yyy in the net) with the event reset. It
also contributes some message to the parameter of the extension yyy. The
action does not do much: it prints out the value of the parameter of the yyy
event.

Figure 4.4: Behaviour of Control

72 CHAPTER 4. INHERITANCE

Figure 4.5 shows the life cycle of the brewer. Also here, an oddly named
is involved: bla, which is an extension of a drink event. Initially, a brewer is
in state ready, where it can do a reset or a drink event – represented by the
event extension bla. A drink event will bring the brewer to state brewing.
From the state brewing, the brewer could do a cup in even, which would
bring it back to state ready. But, for now there is no element that would
trigger a cup in for the brewer. Therefore, for now all brewers will be stuck
in state brewing after a drink event. The event binding for event bla has
a parameter, which shows a more complex from of parameter assignment:
n.base.brewer = self(). To understand this, we need to have a look at
the event types in Fig. 4.3 again. Event bla refers with name n to another
event extension blubs. This means that bla is not only an extension of event
bla, but also an extension of the other event extension blubs, which in turn
is an extension of drink. In general, an event extension extends exactly one
event type, but it can extend any number of other event extensions. In order
to refer to the parameters of other event extensions, the event extensions
that are extended, are referred to by name – n in our case. We will see
later that all the event extensions as well as the base event type from which
an event extension is derived must be on a single line of the event type
inheritance hierarchy. By using the name of an event derivation n in the
parameter assignment, we refer to the event extension blubs. With base, we
refer to its base event; and at last brewer refers to that parameter of the
drink. Of course, we could have directly used the drink event here; we used
these extensions only for discussing these concepts here. Also the action of
the transition bound to bla prints some information on the classes behind
the values attached to some of its parameters. Note that here the base and
other extended event types and extensions are accessed by methods n() or
base(); the reason for not using the parameter names directly here and use
method calls instead are some lazy initialisation mechanisms for the event
instances and their parameters, which we do not discuss here in more detail.

ready

1 brewing

d = bla(n.base.brewer= self());

cup = cup_in();

r = reset();

System.out.println("Test brewer access: " +

 d.n().base().brewer.eClass().getName() +

 "/" +

 d.base().brewer.eClass().getName());

Figure 4.5: Behaviour of Brewer

At last, we discuss the behaviour of the Coin and Slot which are the only
ones with real actions attached to them, which take care of inserting the
coin and transferring the coin from the slot to the safe. The ECNO nets

4.1. EXAMPLE: VENDING MACHINE 73

for these two element types are shown in Fig. 4.6 and Fig. 4.7. The life
cycle of a coin is shown in Fig. 4.6: A coin can be inserted and returned
an arbitrary number of times, but once an inserted coin is passed to the
safe, it remains there forever and cannot do anything anymore. In the event
binding for the insert event, the coin assigns itself to the coin parameter.
In the respective action, the coin removes itself from the slot it is close to
(since it will be in the slot now – see local behaviour of the Slot). The coin
also removes itself from the engine, which means that it will not be shown
on the GUI anymore. Note that the engine can be accessed by using the
predefined keyword engine in any behaviour. The action associated with
the return is the opposite. The coin adds itself to the attribute slot again,
since it is close to the slot again, when it is returned; and the coin will show
in the GUI again, which is achieved by engine.addElement(self()). For
the pass event, there is no action for the coin. But the coin assigns itself as
coin parameter – so that the safe could receive this coin.

Figure 4.6: Behaviour of Coin

The life cycle of a slot is shown in Fig. 4.7. The top transition represents
the insertion of a coin: In the event binding, the slot assigns itself to the
slot parameter; note that the condition associated with this transition makes
sure that a coin can be inserted only if there are less than two coins in the
slot already; the action assigns the coin (which comes from the coin param-
eter of the insert event) to the slot’s coin attribute. The middle transition
represents passing a coin on to the safe; again, the slot assigns itself to the
coin parameter, and in the action removes the coin from itself. The bottom
transition represents returning all the coins contained in a slot, which is
triggered by a reset event; the slot assigns itself to the slot parameter of the
return event, and in the action, deletes all coins that currently are contained
in the slot.

The attentive reader might have realized that we are still missing the
local behaviour for two element types: the Panel and the Safe. We do not
have models for them, because these elements have a default behaviour:
they can participate in any event at any time and they do not have any

74 CHAPTER 4. INHERITANCE

Figure 4.7: Behaviour of Slot

action. If not stated otherwise, this is the behaviour which is associated
with any element type. Note that this way, the Safe actually does nothing
at all; it actually does not even store the coins – they just vanish. And the
behaviour of the panel will actually come from the user by clicking on the
respective buttons. Since the local behaviour of the panel does not restrict
the behaviour, all interactions that are possible for some event of type drink
or cancel are shown as enabled buttons – if no such interaction is possible,
the resp. button is disabled.

4.1.3 ECNO models: Part 2

In part 1 of our model, there is no output device yet. Therefore, eventually
all brewers of the vending machine (part 1) will be stuck since they cannot
dispense the coffee. They are waiting for a cup in event forever after brewing
the first drink. Part 2 of the vending machine remedies this problem in that
it adds an Output element. The idea is that the user can put a cup in there,
to which the coffee is dispensed, and he can remove the cup afterwards,
which will be reflected by the the event type cup in and cup out.

Figure 4.8 shows the ECNO package for part 2 of the model, where the
element type Output and the event type cup out are new. The element type
Output is a GUI element and the event types cup in and cup out are its GUI
events, which means that the user can trigger these events here. The Output
has a reference to a Brewer, which was defined in part 1 already. The small
arrow icon in the top right of the element type Brewer indicates that this
element type is imported from an other package. Note that also the event
type cup in is imported from a different package by such an icon; only the
event type cup out is new here. Note that we need to import the cup in
event to this package since the local behaviour of the element type Output
of this package refers to it; if we did not import it, the local behaviour would
not be able to resolve this event type.

4.1. EXAMPLE: VENDING MACHINE 75

There is not a lot of coordination going on in this part. The only required
coordination in the global behaviour says that if an Output element is in-
volved in a cup in event, then there needs to be one Brewer that participates
in it. This will be the brewer that dispenses the drink to the cup.

Figure 4.8: Vending machine, part2: Coordination

Figure 4.9 shows the local behaviour of the Output element: it consists
of a cyclic succession of cup in and cup out events. But cup out is an event
that is local to the Output, which is not coordinated with other elements
(see Fig. 4.8).

no cup 1 cup

cup = cup_in();

cup = cup_out();

Figure 4.9: Behaviour of Output

4.1.4 ECNO models: Part 3

In part 3 of the model, we come to some more interesting concepts, where
we actually specialize the brewers to two different kinds: we introduce a
CoffeeBrewer and a TeaBrewer, which inherit from Brewer. Note that we
had seen that in the Ecore diagram in Fig. 4.1 already; but in Fig. 4.10,
this inheritance is also included to a coordination diagram, with the effect
that the life cycle or local behaviour of a CoffeeBrewer consists of two parts:
the local behaviour associated with the Brewer as discussed in Fig. 4.5 and
the local behaviour associated with the CoffeeBrewer, which is shown in
Fig. 4.11, and is discussed shortly. Similarly, the behaviour of a TeaBrewer
consists of the behaviour of the original Brewer and the TeaBrewer.

Before discussing the local behaviour of the brewers and the notion of be-
haviour inheritance, let us discuss the additional event types that are shown
in the coordination diagram of Fig. 4.10: There are two new event types,

76 CHAPTER 4. INHERITANCE

coffee and tea, both of which are derived from the event drink from part 1,
which is imported to this package. Note that the relation to event type drink
is graphically represented by the usual arrow for inheritance in UML; and
we say that event types coffee and tea specialize the event type drink. In
contrast to event extensions, which we had seen earlier already, event types
coffee and tea are new event types, both of which are compatible with drink.
But coffee and tea are different and are not compatible with each other –
an event cannot be a coffee event and a tea event at the same time. In our
example, the coffee event and the tea event also have different parameters,
but this is not what makes them incompatible (different extensions of the
same event with different parameters are compatible). In Sect. 4.2.2, we dis-
cuss some more details of the rational behind the concepts of specialization
and extensions of events. What is important for now is that the coffee and
tea events should be different, and even if some specializations are added
in later additions to the project, they are supposed to remain different (for
this reason we do not allow multiple inheritance on event types).

Figure 4.10: Vending machine, part3: Coordination

The life cycle of the CoffeeBrewer and the TeaBrewer are shown in Fig. 4.11
and 4.12, respectively. These behaviours are actually quite simple, since
most of the local behaviour is inherited from the life cycle of the Brewer.
The choices for all event types not mentioned in this behaviour are the ones
of the Brewer. There is, however, one minor twist for both: The CoffeeBrewer
has a transition with an event binding for coffee; since coffee inherits from
drink, this is the choice taken when the CoffeeBrewer is asked to participate
in a drink – of course this transition will be taken together with the transi-
tion bound to drink in the life cycle of the Brewer as shown in Fig. 4.5. This
way, the CoffeeBrewer can actually not “do” an unspecific drink event, since
the local behaviour of the CoffeeBrewer enforces it to “do” a coffee event;
and it could definitely not be a tea event, since the tea event would not be
compatible to the event that is required to happen – the coffee event.

The local behaviour for the TeaBrewer is basically the same, except that
it requires the drink event to be the more specific tea event.

The interesting thing now is that, if an interaction is computed with a
drink event from the panel of the vending machine, due to the coordinations,
it will require a CoffeeBrewer or a TeaBrewer to participate: the CoffeeBrewer

4.1. EXAMPLE: VENDING MACHINE 77

Figure 4.11: Behaviour of CoffeeBrewer

Figure 4.12: Behaviour of TeaBrewer

resp. TeaBrewer will turn this event into a coffee or tea event respectively.
Resulting in different interactions, and once the “drink” button on the GUI
gets enabled, it will actually show the type of the more specific event. This
way, magically events turn out to be of the right type, and the panel does not
even need to know which kind of event types are extending the drink event.
Of course, it could happen that different parts of the interactions would
require to turn the same event into different incompatible event types. In
that case, the respective interaction is invalid.

Of course, the extended life cycle of an element type does not need to
be that simple. It can also add additional restrictions on other events. The
overall behaviour of an element would be all the life cycles of the element type
hierarchy synchronized with each other and events appropriately specialized.
An element type that inherits from another element type could also have
event types that did not occur in the super types at all, in that case, the
super type would not be involved in that part of the behaviour.

Note that this form of inheritance on the one hand side restricts the
local behaviour for the element for the event types that already existed
in the super type. But, since there can be also new event types that did
not exists in the element’s super type, there can be also some additional
behaviour. Moreover, ECNO nets have some additional concepts, which
allow us to override or even completely ignore behaviour of the super types.
We discuss this in a the variation of part 3 below.

4.1.5 ECNO models: Part 3 (variation)

In order to discuss some more concepts and effects that have to do with
inheritance, we discuss a variation of the model of part 3 that we have dis-
cussed in Sec. 4.1.4. Note that the variations are mostly of technical nature
just to make our point and explain some additional features of inheritance
in ENCO.

Figure 4.13 shows the coordination diagram of the variation of part 3. In

78 CHAPTER 4. INHERITANCE

addition to the earlier version of Fig. 4.10, the cup in, reset, and cancel event
are imported, so that they can be used in the ECNO nets for CoffeeBrewer
and TeaBrewer, and there is another new event kick which inherits from the
cancel event. This kick event represent kicking the vending machine, for
making the tea brewer actually brew the tea; in the model for the local
behaviour of the tea brewer, we build in a flaw that will require the user to
kick4 the vending machine in order to proceed.

Figure 4.13: Vending machine, part3 (variation): Coordination

The more interesting changes and additional features are in the local
behaviours of the CoffeeBrewer and the TeaBrewer. We start with the Cof-
feeBrewer since it is slightly simpler. The local behaviour of this variant of
the CoffeeBrewer is shown in Fig. 4.14. The coffee now has an action, which
is parent.drop(); this action results in dropping the action that would be
executed for the choice of the super element types that is involved with this
event. Note that dropping the action of the super element type means, that
neither the Petri net transition fires nor its Java action is executed, but the
parameters contributed by the choice of the super element type – if there
were any – remain available.

c = coffee(strength=1); # cup = cup_in();

parent.drop();

1

Figure 4.14: Variant behaviour of CoffeeBrewer

Note that due to dropping the parent action, the net of the parent Brewer
(see Fig. 4.5) would still expect a coffee event, whereas the net of the Cof-
feeBrewer would be ready for the cup in event already. And this would block

4A phenomenon, which I learned about from American movies.

4.1. EXAMPLE: VENDING MACHINE 79

the CoffeeBrewer forever since the different parts of its local behaviour in
the type hierarchy are in an incompatible state. First and foremost, this
should show that dropping the behaviour of the parent should be done with
great care. Second, we show how to work around this problem with another
feature, which completely ignores or overrides the behaviour of all its super
element types. This is indicated in the event binding of the choice reps.
the transition representing it. A hash sign “#” in front of the event bind-
ing indicates that, when the element takes this choice, all the behaviours
and possible choices of the super types are completely ignored. In the local
behaviour of the CoffeeBrewer shown in Fig. 4.14, we use this in the event
binding for cup in; this way, we can resolve the problem of the net of the
super element type being in a state where cup in would not be possible.
And, after executing it, both nets would be in a compatible state again,
both could execute a coffee event again.

At this point, we would like to point out another important feature
related to inherited behaviour: The Brewer can also be involved in a reset
event, which is possible only when the net is in the initial state. Now,
the local behaviour for the CoffeeBrewer does not refer to the reset in any
binding. Therefore, the CoffeeBrewer does not contribute to the reset in any
way – but it does not restrict it either. It would be the same as for the
Brewer. Due to the parent.drop() action, which we had discussed above,
the net for the Brewer would never leave the initial state. Therefore, the
CoffeeBrewer will always be able to participate in a reset event – in contrast
to a Brewer and the TeaBrewer, which we discuss later.

Note that, by default, the actions of the different choices in the type
hierarchy of an element are executed bottom up: The action of the choice
of the most specific element type is executed first, and then sequentially the
actions up the hierarchy are executed, unless one of the actions explicitly
requires dropping the parent’s behaviour with a parent.drop() instruction
in the action. In some actions, we might want to execute the actions in a
different order. To this end, an action can executed parent.execute() at
any point; this initiates the execution of all actions of the parent (and its
ancestors) at this point; and after that command, the action can be sure that
all ancestors actions in the type hierarchy have been executed or dropped
– if some of the ancestor decides to drop its parent’s behaviour. Anyway
after a parent.execute() an action would be sure that no actions of the
ancestors would be executed later anymore. Technically, ECNO nets do not
prevent an action to call both, parent.drop() and parent.executed();
the action could even issue these commands several times. It is the first call,
that actually determines what would be done – all later calls in an action
do not have any effect. By using parent.drop() and parent.executed()

the actions have control over which of the parents action should be executed
and when. But, the control of this execution order is with the sub-types – a
super type does not have any influence on whether and when it is executed

80 CHAPTER 4. INHERITANCE

by the behaviour of its sub-types.

Next, let us discuss a variation of the local behaviour of the TeaBrewer,
which is shown in Fig. 4.15. Basically, the tea brewer requires an additional
event kick to happen between a tea event and a cup in event – representing
the flawed tea brewer that needs a kick to continue brewing. The brewer,
however, is not a GUI element type and thus would not be visible to the
user – the user could not kick it. That is why we choose to specialize the kick
event from the cancel event. This way, it would be visible at the panel as
a specialized cancel event – and at the same time we require the TeaBrewer
to participate in a reset event. Since we want the reset event to participate
in this choice, this choice needs to ignore (indicated by the leading hash
sign “#” in this event binding) the possible behaviour of the super type
– the reset event would not be enabled in the Brewer at that point. But
this does not do any harm, since this reset event at this point is completely
independent of the Brewer. Once the TeaBrewer was involved in a kick event
(along with the reset event), it would be ready for cup in.

Figure 4.15: Variant behaviour of TeaBrewer

There is one last subtle issue in the behaviour of the TeaBrewer: the
transition bound to the reset event. Such a transition was not needed in the
local behaviour of the CoffeeBrewer. In contrast to the CoffeeBrewer, how-
ever, the TeaBrewer refers to the reset event in one of its binding. Therefore,
it would be only enabled when these transitions are enabled. But, the reset
event should also be possible when the Brewer is in its state ready. The
transition bound to reset only in the TeaBrewer make this possible.

This shows that you need to be very careful about any events of the
super types. As soon as you refer to an event type in the local behaviour at
all, you have full responsibility not to restrict it further than necessary. In
our case, this is achieved by a completely detached transition bound to this
event – which leaves the full control of such a single event to the behaviour
of the element’s super type.

4.2. CONCEPTS OF INHERITANCE 81

4.2 Concepts of inheritance

The example in Sect. 4.1 covered the most important concepts of inheri-
tance already, and we have loosely explained the most important concepts
of inheritance.

In this section, we discuss the concepts of inheritance more systematically
and in more detail. In Sect. 4.2.1, we discuss inheritance on elements and
how it affects their behaviour. Therefore, we call this behavior inheritance.
In Sect. 4.2.2, we discuss inheritance on event types – more specifically, we
discuss specialisation and extension of event types.

In many ways, ECNO and its inheritance mechanisms on event types
resemble concepts of aspect-orientation [28, 40] and subject-orientation [19].
The relation to aspect-orientation and how the way of aspect- and subject-
oriented thinking has influenced some design choices of the ECNO is dis-
cussed in Sect. 4.2.3.

4.2.1 Behaviour inheritance

In this section, we discuss the effect of inheritance on element types on the
behaviour of elements. This mostly affects the local behaviour of an element,
but could also affect the coordination among different elements.

In ECNO, inheritance on element types is represented by the fact that
each element type can have one other element type as a super type. ECNO
supports only single inheritance on element types, which means that one ele-
ment type can have at most one (direct) super element type. While multiple
inheritance on element types could make sense and could probably given a
reasonable semantics in ECNO, it complicates the definition of inheritance
a lot (see Sect. 4.2.1.4 for some more details). Therefore, the current version
of ECNO does not support multiple inheritance on element types. ECNO,
however, works together with underlying object-oriented technologies sup-
porting multiple inheritance. In addition to each element type having at
most one direct super type, there are two other requirements: the inheri-
tance relation on element types must be acyclic5, and that the underlying
class of the super element type must be a direct or indirect super class of the
class underlying the element type itself. Note that ECNO allows jumping
over some super classes of the object-oriented model. The classes that are
jumped over, would not contribute to ECNO’s behaviour.

Graphically, the inheritance relation is represented in ECNO coordina-
tion diagrams in the same way as inheritance in UML class diagrams (see
Fig. 4.10). The more interesting question is how the inheritance on element
types affects the behaviour of the respective element type, which concerns
the coordinations as well as the local behaviour.

5Actually, this requirement carries over from the object-oriented technology.

82 CHAPTER 4. INHERITANCE

4.2.1.1 Local behaviour

We start explaining the local behaviour of an element of type tn, which
inherits directly from element type tn−1 and indirectly from element types
tn−2, . . . , t1. The element would have a local behaviour for each type t1, . . . , tn.
The overall local behaviour would, basically, be as follows: When the ele-
ment participates in an event of type e, basically, each type ti would be
required to make a choice ci which is compatible with the local behaviour
for type ti. We call these the ci the stack of choices of the element.

But, as we have seen before, a choices ci for an element type ti might
require the participation of some additional events. For each of these addi-
tional events ek, each choice ci of the stack would need to contain this event
ek, too – except in the following three cases:

1. The local behaviour for type ti does not refer to the event type of ek
at all.

2. None of the element types t1, . . . ti do have a coordination set for the
event type of ek.

3. If the choice on level ti explicitly requires to ignore (cut off) the local
behaviour of the super types, the choice for all levels above are empty
choices.

The first condition allows an element type ti not being involved in some
types of events. In our example, of Sect. 4.1.4, we have seen that the local
behaviour of the coffee and tea brewer were not involved in the reset and
cup in event at all. Therefore, this was left to the local behaviour of the
Brewer; the local behaviour of the CoffeeBrewer or the TeaBrewer were not
involved in the reset events at all.

The second condition says that, if an event type is defined for the first
time for the element type ti+1 in the element type hierarchy by defining a
coordination set for that event type for that element type, all the element
types above do not need to participate in that event type.

The third condition deals with the case that a sub-type explicitly cuts
off the local behaviour of its super types, which is discussed in more detail
in Sect. 4.2.1.2.

Up to this point, we have discussed local behaviour that is not parallel.
As we had mentioned earlier (see Sect. 2.2.4), it is possible that the local
behaviour of an element type can participate in more than one choice at the
same time. We called that parallel behaviour. This is also possible when
element types inherit from each other. In that case, ECNO requires that for
each parallel choice there is a stack of choices, meeting the rules above, and
on each level all the choices are possible to be executed in parallel according
to the model. In a way, inheritance on local behaviour and parallel behaviour
are orthogonal to each other.

4.2. CONCEPTS OF INHERITANCE 83

4.2.1.2 Explicit control of participation of super types

In the variant of Part 3 of our example in Sect. 4.1.5, we have seen that
ECNO provides some explicit mechanisms for controlling whether, how, and
when the super type of en element type should be involved in the local
behaviour. The choice on each level controls in which way to involve or not
to involve the higher levels.

Basically, there are two different mechanisms for a choice to control
the participation of the local behaviour of the higher levels in the ancestor
hierarchy:

1. The choice can require to completely ignore the local behaviour of all
the super types of the element type. In ECNO nets, this is indicated
by the hash sign (see Fig. 4.14 for an example) in front of the respective
event binding.

2. The choice can allow to synchronize with the local behaviour of the
super types. In that case, the choice will only be possible if also the
super types can participate in it. But in its action, the choice can
execute a parent.drop() command, to the effect that the actions of
the choices of the super types are never executed. This way, the local
behaviour of the super type does not contribute any changes; but it
contributes parameters and its synchronisations.

When a choice of an element type with inheritance is executed, this
means for each choice in the stack of choices each action is executed, starting
from the lowest element in the inheritance hierarchy up to the highest. This
order can, however, be changed by the actions that are lower in the type
hierarchy: By calling parent.execute(), they can make sure that, at this
point, all the behaviour of the stack above it are executed – the detailed
order controlled by the resp. actions on the higher levels. Note that if
parent.execute() and parent.drop() occur in an action, or if they occur
several times, only the first time invoking these commands will have an effect;
all further calls are ignored.

In general, ignoring or dropping the local behaviour of the super types
should be used with great care, since it easily results in the life cycles on
the different levels being “out of synch”, which might result in unexpected
behaviour or, more likely, in no possible behaviour at all after that point. In
our example of Sect. 4.1.5, we actually needed to take some extra measures
to work around blocking the overall local behaviour of the CoffeeBrewer and
the TeaBrewer.

4.2.1.3 Extending coordinations

Up to now, we have discussed inheritance on element types and the resulting
local behaviour for elements of the respective type. Inheritance on element

84 CHAPTER 4. INHERITANCE

types can have an effect on the coordination with other elements too. The
derived element type can have additional coordination sets for some events.
Here, we briefly discuss the effect of these additional coordination sets.

Basically, there are two possibilities: The coordination set could refer
to an event type for which no coordination set existed in the super element
types. In this case, the super types are not concerned in this event type at
all; and the new coordination set or the new coordination sets define the
coordination for this new element.

The second possibility is that the element type has a coordination set
for an event type for which the super element types had a coordination set
already. In this case, this new coordination set, adds one additional choice
of coordination for this element.Therefore, this extends the possible inter-
actions for this element, since the coordination for an element and a given
event has the choice between all the coordination sets that are associated
with the event’s type. Effectively, the element type has all the coordination
set of all its super types.

Note that the basic mechanisms of inheritance restricts the local be-
haviour of the element. This does not apply to coordination when adding
coordination sets in the type hierarchy. Therefore, the way we deal with
additional coordination sets is debatable. We will discuss some alternatives
and possible extensions in Sect. 4.2.1.4 below. For the current version of
ECNO, we stick with this simple semantics, since in most of our examples,
derived element types do not have additional coordination sets at all; when
they exists, they refer to new event types. Therefore, we deemed that this
was a less important issue.

4.2.1.4 Discussion and possible extensions

In the previous sections, we have discussed inheritance on element types
and what inheritance means for the behaviour of the elements. As discussed
above, some things could have been defined a bit more general or given a
slightly different semantics. In this section, we briefly discuss some of the
alternative choices or generalisations.

Up to now, ECNO does not allow multiple inheritance. Technically, it
would not have been difficult to implement multiple inheritance: instead of a
stack of choices for the different behaviours of the element types an element
inherits from, we would need to maintain a network of such choices. The
reason, ECNO does not support multiple inheritance is a conceptual one: As
discussed earlier (see Sect. 2.2.7), the execution of an interaction should be
deterministic (under the mild assumptions that each local behavior makes
local changes only). As soon as we introduce multiple inheritance and allow
commands dropping or executing the behaviour of the parents as discussed
in Sect. 4.2.1.2, interactions would not be deterministic any more: to see this,
let us have a look at a simple example, with four element type A, B, C, and D,

4.2. CONCEPTS OF INHERITANCE 85

where B and C inherit from A and C, and where D inherits from both B and
C. Now let us assume that each of these element types have a local behaviour
for some event type e, each of which has some visible effect. Furthermore,
assume that the action of B drops the behaviour of its parent, whereas C
would require to execute the behavior of its parent in the first place. In that
case, B and C could not both have their way. Second, it would depend on the
order in which the local choices of B and C are executed whether the choice
for A is executed or not. Of course determinism, could still be achieved by
introducing some order in which the actions of B and C are supposed to be
executed. The question, however, would be where this order would come
from, and defining such an order explicitly might be very confusing for a
modeller. And this would still leave the problem that B and C cannot not
both get their way (dropping the parent’s choice or not). Of course, this
concrete problem could also be resolved by removing the feature to drop the
parent’s choices from ECNO. But, this would still leave the problem that
the choices of B and C are executed in an arbitrary order. The easiest and
clearest way to make sure that the execution of interactions are deterministic
was excluding multiple inheritance on element types from ECNO. Only very
compelling reasons – i. e. examples that could not adequately be modelled
without multiple inheritance – could result in extending ECNO supporting
multiple inheritance on element types.

We had also seen that, if a derived element type introduces a new co-
ordination set for an event type that exists in a super class, this introduces
a completely new choice of coordinations. This is in contrast to what we
expect from a derived element type: it should specialize behaviour and not
extend it (at least in the standard cases). In all of our examples, however
there was no need to add this kind of new coordination set. We needed
to add coordination sets only for event types that were added for this el-
ement type at this level. We could have restricted ECNO in such away,
that element types can add coordination sets for new event types only; but
this appeared to be too restrictive. One possibility of avoiding the above
problem would be that a coordination set of an element is derived from a
coordination set of its super types. This way, an existing coordination set
is extended by an additional choice. For a definite decision, we would need
more and more realistic examples.

Another decision we had taken for the local behaviour of an element
type was that event types that do not occur in any event binding are ig-
nored, and the behaviour on that level does not need to participate in that
event. An other design choice would have been that such an event is always
blocked. For either of these two semantic choices, the models of the local
behaviour could always be changed in order to obtain the desired behaviour
with the choice of the respective semantics. Therefore, this design choice
is about convenient and intuitive models only. We had the feeling that, in
our examples, ignoring event types that are not mentioned at all gives in

86 CHAPTER 4. INHERITANCE

the local behaviour result in more “natural” models (ECNO nets) – but a
definite answer to which of these choices is more appropriate require more
research and larger case studies.

4.2.2 Event inheritance

In this section, we discuss inheritance for event types. In particular, we
motivate why we need to have two different kinds of inheritance for event
types, which we call specialization and extension of event types.

4.2.2.1 Event specialization

We start with discussing the notion of specialization of an event type. In
our example, we have seen in Fig. 4.10 that the event types tea and coffee
specialize the event type drink. This way, the event of preparing some drink
is specialized to the event of brewing a coffee or to brewing a tea.

Through a specialization, an event type can be equipped with an ad-
ditional parameter, which, in our example, was the strength for the coffee
event type and the name of the sort for the tea event type. More importantly,
however, two different specializations of an event type are not compatible,
which means an event cannot be of these two types at the same time. An
event of type coffee cannot be of type tea at the same time – surely at least
tea enthusiasts would agree to that. But of course, an event of type coffee is
of type drink at the same time. When expecting an event of type drink, the
actual event might be of a more specific type coffee or tea – but not both at
the same time.

The idea is that specialization makes things more specific, and differ-
ent specializations make things different and incompatible. For that reason,
ECNO does not allow multiple inheritance with respect to specialization.
With respect to specialization, each event type has at most one super event
type. Of course, there can be indirect ancestors in the specialization hierar-
chy. Two event types are compatible if one of the event types is an ancestor
of the other in the specialization hierarchy.

If we allowed multiple inheritance – or multiple specialization – on event
types, it would be possible to make coffee and tea compatible by adding a
new event type, say confusion specializing both of them. This way, later
additions to a model of our vending machine could make things compatible,
which were assumed to be incompatible in the basic model. In the least,
this would introduce a lot of confusion. Therefore, ECNO does not support
multiple specialization on event types.

Of course, there are situations when things should not become incom-
patible when extending them in different ways. This is why there is a second
notion of inheritance on event types, which is discussed later in Sect. 4.2.2.2.

First, let us discuss the effect of specialization on the behaviour, i. e.

4.2. CONCEPTS OF INHERITANCE 87

its effect on the coordination and the local behaviour. The idea is simple:
whenever a condition of a coordination annotation or a synchronisation in
the local behaviour is checked for an event of some type t1, it is checked
whether the event type t2 of the condition is compatible with event type
t1 and whether t1 is at least as specific as t2. This way, the most specific
event type in the coordination conditions defines the actual event type of the
event. Note that this might rule out some interactions: for example, if one
partner’s condition would imply the event to be a coffee event and another
condition would require the same event to be a tea event, this would not be
a legal interaction.

The current version of ECNO has one important restriction concerning
event bindings or the types of the events involved in a choice, though: The
event types of each event binding or choice must have different top-level
event types. For an event type, its associated top-level event type is the top-
most ancestor in the event type hierarchy. In our vending machine example,
this excludes an event binding synchronizing a coffee and a tea event in the
local behaviour for an element type.

Without this restriction, the semantics of ECNO together with inheri-
tance would be very complicated, and there would be many design choices,
the resolution of which would look a bit arbitrary – at the current stage.
Moreover, implementing the ECNO engine in a half-way efficient way would
have been very tricky. Therefore, ECNO makes this assumption. Since there
are relatively simple ways (a kind of design patterns for using ECNO) to
indirectly synchronize event types that have the same top-level event types,
this restriction does not reduce the expressive power of ECNO – removing
the assumption is syntactic sugar and, therefore, not worth the extra effort
at the current stage.

Since all event types involved in an event binding or choice must have
different top-level event types, ECNO does not have a built-in unique top-
level element, which would correspond to the top-level class Object in Java.
Each event type that does not explicitly refer to a super event type is a top-
level event type and all top-level event types are incompatible to each other.

4.2.2.2 Event extensions

In the previous section, we have seen that two different specializations of
the same event type will always be incompatible. In some cases, however,
different parts of an interaction might want to extend an event in different
ways, just to contribute parameters that are necessary for their purpose.
But, they do not want to make the actual event type different. To this
end, ECNO supports another notion of inheritance, which we call event type
extension or, for short, event extension.

An event extension does not define a new event type – it just extends an
existing one. From the point of view of coordination and synchronisation,

88 CHAPTER 4. INHERITANCE

an event extension behaves as the event type it extends; we call this event
type the event extension’s base event type. The only difference is that the
extended event type carries some additional parameters, which are ignored
by partners using the base event type or other extensions of it.

In Fig. 4.3 on page 69, we have seen examples of event extensions already:
yyy, bla, and blubs. The strange names should help emphasizing that these
extensions are not event types in their own right. The event type extension
yyy still represents a cancel event, and bla and blubs still represent a drink
event. In a way, an extension is like an addition to the original event type;
therefore, the base event type of an event extension is graphically represented
by a inheritance relation with a filled arrow head (see Fig. 4.3), where the
filled arrow head should resemble the filled diamond of a composition.

Note that an event extension must refer to exactly one base type. But an
extension can further extend any number of other event extensions. These
are graphically represented by arrows, which resemble a reference in class
diagrams; since an event extension can extend more than one other event ex-
tension, these references carry a name, which can be used for referring to the
parameters defined in the respective event extension. In order to uniquely
identify the respective extensions (see more details in Sect. 4.2.2.3), the
names of these references of an event extension to the extended extensions
need to be different. Moreover, the base event types of the extended ex-
tensions must be the base event type of the extension itself or one of its
ancestors.

As said above, concerning coordination and synchronisation, event type
extensions do behave as their base event type. The added value is that
they allow to contribute new parameters and to use these parameters in the
expressions of parameter assignments, conditions and actions. This will be
discussed in more detail in Sect. 4.2.2.3 below.

The idea of event type extensions, where one extension is not in con-
flict with other extensions, is very similar to the idea of subject- or aspect-
orientation: Basically, an event type extension can be considered as one
aspect of the event type not conflicting with other aspects for the same
event. We will come back to that in Sect. 4.2.3.

4.2.2.3 Assigning and using parameters in ECNO nets

In the previous subsection, we have discussed the different forms of inher-
itance for events. The two mechanisms of specialization and extension, in
particular, allow the definition of parameters for event types and event type
extensions. These parameters can be contributed and used in the local be-
haviour of the respective elements, which is defined by the possible choices.
As stated earlier, there are different ways of defining the local behaviour for
element types. But, the main notation used for modelling local behaviour
in this technical report are ECNO nets. In this section, we discuss how a

4.2. CONCEPTS OF INHERITANCE 89

choice can contribute parameters to an event, and how these event param-
eters can be used in expressions, conditions and actions of a choice – using
the concrete syntax of ECNO nets.

The basic mechanisms have been discussed already in Sect. 2.2.4 in the
absence of inheritance. Therefore, we focus on the additional mechanisms
concerning inheritance on event types. For completeness sake, however, we
start with the basic mechanisms anyway.

We start with the mechanisms for assigning an actual parameter to an
event, which is done in the event binding. Let us have a look at the the
example from Fig. 4.5 on page 72 again. The event binding in this exam-
ple read: d = bla(n.base.brewer = self()); This binding refers to the
event extension bla, with the base event type drink. In parentheses behind
the event bla, there is one parameter assignment, where the left-hand side
refers to a formal parameter of the event and the right-hand side refers to
some expression; the expression, would evaluate to some value, which during
the event binding is assigned to the respective parameter. In general, there
could be any number of such parameter assignments for each event in such
an event binding, which are separated by commas.

First let us discuss the left-hand side of the assignment, which refers to
a formal parameter of the event. In our earlier examples from Sect. 2.2.4,
this was just a name of a parameter of the respective event type. Now,
we use the dot notation along with some additional keywords to denote
specific formal parameters. In our above example n.base.brewer refers
to the event extension with name n, which bla extends (see Fig. 4.3 on
page 69). In this example, this refers to extension blubs; base is actually
a keyword, which refers to the base event type of extension blubs, which is
event type drink. At last brewer refers to the formal parameter brewer of
the event drink. So, this is the parameter to which the value on the right-
hand side of the parameter assignment will be assigned. Basically, ECNO
uses the dot notation of object-orientation to navigate to the respective
formal parameter. The last sections in such a qualified name is always
a name of a parameter of the respective event type; the sections before
navigate to respective event type or event type extension staring from the
type of the event – using some names of the respective extensions or one
of the two keyword base and super: For an event type extension, base
refers to the respective base event type; for an event type, super refers to
its super event type.

Note that explicitly navigating to the super event type by super is nec-
essary only in the case of parameter shadowing (masking): i. e. when a
specializing event type defines a parameter with the same name as one of
its super types. In that case, name refers to the parameter of the event type
itself and super.name to the parameter of the super type of the event with
that name.

The actual parameters of all the events of an event binding can be ac-

90 CHAPTER 4. INHERITANCE

cessed in a similar way. The event itself is accessed by the name it is assigned
to, which, in the above example, would be d. From there, the name of the
parameter can be used to access the value – if there was no parameter
assigned, the value would be null. The navigation to the base type, su-
per type, and the extensions, however is slightly different: This navigation
is done by method calls base(), super_() and name() on the respective
event, respectively, if name is the name of the respective extension. In the
example of the brewer from Fig. 4.5, the expressions d.n().base().brewer
and d.base().brewer are used to access the value of the parameter brewer
of the drink event. Note that, in this example, both references actually refer
to the same parameter.

Note also that the method for accessing the super type of an event is
super_() and not super() since super is a keyword of Java. As for the
navigation in the assignment, super_() would be needed only when the
super and sub-type define parameters with the same name (shadowing/-
masking).

The navigation in expressions via method calls instead of merely using
their name has efficiency reasons; this way, parameters of extensions that are
not accessed do not need to be prepared for access. The respective method
calls implement a lazy access mechanism – making the actual value accessible
the first time when this method is called. This way, the code generator for
ECNO nets, basically, does not need to parse the code snippets of the ECNO
nets at all. The code snippets of ECNO nets are, basically, copied to the
generated code.

Note that, in earlier versions of ECNO, parameters were not assigned by
referring to their name, but by providing them in a specific order. In the
context of specialization and extensions, however, there is no canonical order
on the parameters of an event anymore. Therefore, the explicit reference to
formal parameters was introduced; this has the nice side effect that an event
binding of ECNO nets needs to mention only those parameters of an event
that it contributes to, which typically is only one ore two. The current
version of ECNO, however, provides a compatibility mode which still uses
the variable order. This can be used if the local behaviour does not refer to
event type extensions. But, we do not discuss the details here and discourage
using this outdated syntax, since it will eventually be removed from ECNO.

4.2.3 ECNO and aspect- and subject-orientation

In this chapter, we have introduced notions of inheritance for element types
and event types. And, at least on a first glance, the notions of inheritance
on element types and event types seem to be different. For event types
there are two different notions of inheritance, specialization and extension,
whereas for element types, there is only one notion of inheritance.

In this section, we discuss this mismatch a in more detail. We start with

4.2. CONCEPTS OF INHERITANCE 91

the discussion of inheritance on event types again. Basically, a specialisation
of an event type makes the event type more specific and two specializations
of an event are different or incompatible. This is why multiple inheritance
does not make much sense, since multiple inheritance would make things
that supposedly were different equal again. By contrast, event type exten-
sions add additional information or structure to the type, without making
it incompatible with other extensions of the original event type or even spe-
cializations of the event type. Therefore, event extensions are very much
in the spirit of subject-orientation, where different “subjects” could have
different perceptions of an object [19]. In terms of aspect-orientation, the
extensions could be considered to be an aspect of the original concept.

Now, the question is: Don’t we need these two analogous concepts of
inheritance also for element types. And the answer is: yes we do need
them. And actually, we can easily express both of these notions: inheritance
on element types is actually specialisation. So where is extension then?
An extension can be realized by a composition relation (remember that
we used a filled inheritance arrow for graphically representing event type
extensions, in order to stress its similarity to compositions), which adds
the additional information to the original object. Of course, this requires a
slight overhead for properly maintaining this structure and for accessing the
additional information by explicitly navigating to the compositions. But,
this is syntactic sugar only. Actually, in the early precursor of ECNO that
we used in an ad-hoc way to distill the essence of business process modelling
(AMFIBIA) [2], we had an explicit aspect-of relation that explicitly reflected
extensions of element types. When distilling the essence for ECNO, it turned
out that this was, basically, a composition – used in a specific pattern. Since
ECNO is about distilling the essence of coordination, we decided not to make
this kind of relation an explicit concept anymore.

This, however, leaves the question: Why do we need the two different
concepts of inheritance on event types then? The answer is quite simple: on
event types, we do not have compositions and there are no explicit means
for manipulating and building up complex events. And since events are
supposed to be volatile and not supposed to be explicitly manipulated, it
would not be in the spirit of events to add such mechanisms. Such mecha-
nisms would change the nature of events and turn them into objects. The
only way to build up events are parameter assignments in event binding
which exploits the event type system to make their values available to the
right partners. In a way, event type extensions can be considered to be a
very controlled way of building up compositions of events and for accessing
parameters of these components in a convenient way.

92 CHAPTER 4. INHERITANCE

Chapter 5

Using the ECNO Tool

In the previous chapters, we have discussed the motivation, concepts, and
the notation of ECNO for modelling the behaviour of systems on top of
structural object-oriented models. Though we have used examples that are
deployed together with the released ECNO Tool for explaining the features,
the focus was not on the use of ECNO Tools, its editors for the different
kinds of models and configuration files or the code generator. And we did
not discuss the programming framework for extending the ECNO GUI or
for implementing a new one.

In this chapter, we discuss more details on how to use the ECNO Tool
and how to used the programming framework of ECNO. Moreover, we give
a brief overview on the architecture and design of the ECNO Engine, so as
to better understand how to properly use the ECNO Engine. A detailed
discussion of the internal implementation of the ECNO Tool, however, is
beyond the scope of this technical report.

Section 1.3 gave quick overview of how to use the ECNO Tool already.
But, in order to be self-contained, we will repeat all the necessary steps in
this chapter – and adding more details, which are for example needed to
build up applications from different Ecore and ECNO packages, which, in
particular, requires to import types from one package to another.

Concerning the modelling tools and code generation, we restrict our
discussion to ECNO coordination diagrams on top of Ecore models and to
ECNO Nets for the local behaviour. But, we will give a brief introduction
on how local behaviour could be manually programmed in Sect. 5.5.4. For
more information on how to obtain and install the ECNO Tool, we refer to
Appendix B.

5.1 Creating models and instances

We start with discussing how to create the actual models with EMF and
the ECNO Tool.

93

94 CHAPTER 5. USING THE ECNO TOOL

5.1.1 Ecore models

As mentioned above, the ECNO models that we discuss here are based on
Ecore models. Therefore, we briefly explain how to create and edit Ecore
models first. Concerning the Ecore models, there is nothing specific to
ECNO at all. Therefore, we refer to the EMF book [8] and the online docu-
mentation of Ecore Tools (http://wiki.eclipse.org/Ecore_Tools)
for more detailed information.

Concerning the configuration of the code generation from Ecore models
via the so-called gen model, ECNO makes some assumptions, which are
discussed in Sect. 5.2.1.

There are no specific requirements from ECNO’s side which editor you
should use for creating your Ecore models. If you are new to EMF, we
suggest to use the “Diagram Editor for Ecore”, which will part of your
Eclipse if you follow the installation instructions of Appendix B.1.

Typically, you would first create a new EMF project with the “Empty
EMF Project” wizard. This creates a new project in your Eclipse workspace,
which is properly set up for using EMF models and for generating code from
these models. For some minor usability issues1 concerning the EMF code
generator, we strongly2 recommend that you start with creating the Ecore
models, and generate the code from them before generating code with ECNO
Tools.

In the EMF project created by the “Empty EMF Project” wizard, you
will find a folder called “model”, which is where the new Ecore model should
go. You can create such a model with the “Ecore Diagram” wizard (in
category “Ecore Tools”), which will create two files. The file name with
the extension “.ecore” is the actual Ecore model, whereas the file with ex-
tension “.ecorediag” is the diagram information, which stores the layout
information such as size, positions, and colours of the different model el-
ements in the diagram. Once you create such a diagram, the wizard will
automatically open it with the “Ecore Diagram Editing” tool. The use
of this editor is mostly straight-forward, and we do not explain it here.
For more information, see the online documentation for Ecore Tools at
http://wiki.eclipse.org/Ecore_Tools.

One important feature that you will need for building ECNO applications
from different packages, is the feature that allows you to import classes and
data types from other Ecore models. This can be done as follows: If you
have opened the diagram you would like to import to, you would choose
“Create Shortcut...” by right-clicking in the canvas of the diagram and
selecting “Create Shortcut...”; in the opened “Select model element” dialog,

1If a file “plugin.xml” exists in a project already, the package extension of the generated
code will not be added to the “plugin.xml”. In these cases, the extension would need to
be added manually to the “plugin.xml”, which is a bit tricky for people new to EMF.

2Unless you have much experience with using EMF, always follow this recommendation.

5.1. CREATING MODELS AND INSTANCES 95

you are now presented with a browser that allows you browsing the projects
and models in your workspace. Use this browser for navigating to the class
that you would like to import and select it. Then, this class will be shown in
your diagram with the usual graphical representation for classes, but with
an additional “import icon” in the top-right corner, which should remind
you that this is an imported class.

You can then add references to this imported class, and you can also
inherit from this imported class. In principle, it would also be possible to
add some features (attributes, references, or inheritance relations) to the
imported class. Since this actually changes the model from which this class
is imported, you should NOT do this, unless you know exactly what you are
doing.

5.1.2 ECNO coordination diagrams

Next, we explain how to create and edit coordination diagrams on top of
Ecore models with the editor of the ECNO Tool. These ECNO models could
be created anywhere – they could even be created in a project different from
the one where the Ecore model resides in. But, for small projects, the ECNO
models could go to the “model” folder of the EMF project, as created in
Sect. 5.1.1.

Note that we do not bother to explain the standard features like opening
a diagram with the editor, using the undo/redo features, or saving diagrams.
The ECNO coordination diagram editor, follows the standard principles for
Eclipse editors – mostly, because, it is a graphical editor generated using
GMF [14]. The focus of the following discussion is on issues that are specific
to ECNO and some of the advanced features of the editor.

5.1.2.1 Creating and setting up ECNO coordination diagrams

In order to create a new ECNO Coordination diagram, you can use the
“ECNO Coordination Diagram” wizard. Similar to Ecore Tools, this will
create two files: the file with extension “.ecno” is the actual ECNO model,
the file with extension “ecno diagram” contains the diagram information.
The use of the “ECNO Coordination Diagram Editor” is similar to the use
of the editor for Ecore diagrams. There are some specialities, however, which
we discuss below.

First of all, each ECNO coordination diagram has an underlying Ecore
model, which we recommend to set first. In an ECNO coordination diagram
which is opened in the graphical editor, right-click in the canvas and select
“Load Resource...”; in the “Load Resource” dialog that then opens, select
“Browse Workspace” and in the opened “File Selection” dialog, select the
Ecore model file. Note that this does not make this model the underlying
Ecore model yet; this makes the Ecore model known to the editor. Now,

96 CHAPTER 5. USING THE ECNO TOOL

you can go to the editor’s properties view and click on the drop-down menu
for “EPackage”. Here you should see the name of the Ecore model you have
loaded before (maybe, you can see some others too). By selecting an Ecore
package here, you make this package the underlying Ecore package of the
ECNO model. The “ECNO Coordination Diagram editor” will – if it was
empty before – create element types for each of the underlying classes of the
Ecore model, along with the references and inheritance relations between
them. If some of these classes should not be associated with element types,
because they do not have local behaviour and should not be part of any
coordination, you can safely delete them3. In the same way, you can delete
ECNO references and inheritance relations between element types from the
diagram, if they are not relevant for the behaviour. Before you continue with
editing the model and adding coordinations, make sure that you give the
ECNO model a unique URI, which the ECNO engine will use for loading the
plugged in packages dynamically. These URIs do not play a role as long as
you run single ECNO packages as Java applications; once you start running
ECNO packages as Eclipse applications, these URIs are very important, since
models are plugged in to Eclipse with this URI and loaded dynamically by
the ECNO engine by referring to this URI.

5.1.2.2 Adding event types

Note that, initially, there will not be any event types in the coordination
diagrams because the Ecore model does not give any clue which event types
there should be. This is completely up to ECNO coordination diagrams.
Event types can be easily added by using the ECNO Diagram editor’s re-
spective tool and, then, placing the event type somewhere on the canvas.
You also need to give the event type a name that is unique within the dia-
gram resp. package.

You can also add parameter to an event type. To this end, select the
respective tool in the editor and, then, click in the parameter compartment
of the respective event type. You can add the name directly by clicking on
the parameter; the parameters type must be set by selecting the parameter,
and then changing the value of EType in the properties view. The type
can be selected from a drop down menu, which shows all classes and data
types of the underlying Ecore model as well as standard data types of Ecore.
If you want to select an other data type, you need to load the respective
resource by the Editors standard “Load Resource...” mechanism.

In the properties view, you can specify whether the parameter should be
a collective parameter or not. By default, a parameter will be not collective
(exclusive). If you set the collective property of a parameter to true in the
properties view, the respective parameter will be decorated with a trailing

3If you should realize that you need to make them element types later, the editor
provides you with means for adding them again, which is discussed in Sect. 5.1.2.4.

5.1. CREATING MODELS AND INSTANCES 97

start, in order to show in the diagram that the parameter is collective.
Note that the other properties do not have any meaning in ECNO; they are
inherited from the Ecore meta model, since ECNO re-uses these concepts as
far as possible (see Sect. 5.6), but do not have a meaning for event parameters
of ECNO.

5.1.2.3 Adding coordinations

Once you have added some event types, you can start adding coordinations.
To this end, you would first create some coordination sets for element types
by using the respective tool of the editor. Note that each coordination set
needs to be associated with an event type, its trigger event. This is done
in the properties view, where you can select one of the event types that are
defined in this diagram. Note that you must select an event type from the
diagram itself. You can also change the coordination sets priority.

Then, you can start adding coordination annotations. Note that the
respective tool is called “synchronisation”, since it actually associates a ref-
erence with a coordination set. Such a synchronisation is created by selecting
the respective tool, and then dragging the mouse from a reference to the re-
spective coordination set. Note that the synchronisation must run between
a coordination set of an element type and a reference which is owned by
that element type4. Moreover, the synchronisation needs to be explicitly
associated with an event type; typically, it is the same as the trigger event
type of the coordination set. When you have selected a synchronisation, you
can also change its quantifier between “ONE” and “ALL”.

5.1.2.4 Adding element types and references

As discussed in Sect. 5.1.2.1, the coordination diagram editor automatically
creates element types for each of the classes of the underlying Ecore models,
when you select the underlying Ecore model (for a still empty coordination
diagram). And typically you would delete some of these element types and
references only.

At some point later, it might happen that you would like to turn a class
into an element type or that you would like to add a coordination annotation
to a reference that you had deleted in the initial setup. In order to do that,
the coordination diagram allows you to add element types and references to
the coordination diagram explicitly: just use the respective tools from the
tool palette of the editor for this purpose. The newly created element types
and also the references will, however, not be automatically be attached to
some class or reference of the underlying Ecore model. You need to attach
the element type or the reference to the underlying class or reference in
the Ecore model manually: this is done by selecting the element type or

4This constraint is not yet checked by the editor.

98 CHAPTER 5. USING THE ECNO TOOL

reference, and then changing the EClass or EReference attribute to the one
it should be. Note that the editor does not validate the correctness of a
Ecore reference that you choose for a ECNO reference, which must be a
reference between the underlying classes of the respective element types.
Therefore, you need to make sure that this is the case yourself5.

Note that you cannot change the name of an element type or the name
of the reference in the coordination diagram editor. The name of an element
type is derived from the name of the underlying class in the Ecore model.

5.1.2.5 Subtyping of references

Note that you are allowed to add a reference between two element types
so that the target element type of the ECNO reference, actually refers to
a subtype of the target class of the corresponding reference in the Ecore
model. We have seen two examples of such references in the coordination
diagram for Petri nets in Fig. 2.4 on page 33: the references source and
target in the coordination diagram refer to the Place element type, whereas
these references refer to the class Node in the underlying Ecore model.

We call such a use of an ECNO reference sub-typing of a reference, since
it does not refer to all the corresponding links of the Ecore model, but just
to the ones that end at objects of the respective type (Place in our example).
And the coordination annotations refer to the links going to elements of this
type only. In order to warn you about this, the coordination diagram shows
such sub-typed references in parentheses.

5.1.2.6 Importing types

In the example in Sect. 4.1, we have seen that an ECNO model can be built
up from different packages. In order to establish relations between different
packages, it is necessary to import element types of one package to another
one. ECNO provides a very general mechanism for importing element and
event types from other ECNO packages, even if they use different underlying
object-oriented technologies. But, it is easiest to import types from ECNO
models that have underlying Ecore models, and we explain this mechanism
here.

In order to import an element type form another package, you would first
create an element type with the element type creation tool (as discussed in
Sect. 5.1.2.4). Then you would select this new element type and, in that
properties view, select for the “Import” property the element type, which
should be imported. Note that it might be necessary that you load the
respective ECNO model as a resource as discussed in Sect. 5.1.2.1. Note that

5Eventually, there will be a validation feature in the coordination diagram editor for
this purpose.

5.1. CREATING MODELS AND INSTANCES 99

an imported element type will get a decoration, which graphically indicates
that the element type is imported.

Importing event types, basically, works in the same way: you create a
new event type, set a reference to the event type that is imported, and
give the imported event type a name, which it is referred to in this new
package. Note that all references to these event type – including the use in
the respective ECNO nets – needs to refer to this type name, not the name
withing the original package from which it is imported.

After setting these imports, you need to do a last step: Right-click into
the canvas of the coordination diagram and select “ECNO→Resolve im-
ported elements and types”. This will set the attributes “Package URI” and
“Type Name” for all the imported element and event types. And this is
the actual information used by the ECNO engine for resolving cross refer-
ences between different packages. Only after resolving the imported types,
the names of the element types will properly show in the diagram. The
“Import” property is just a matter of convenience so that you do not need
to remember and explicitly edit long package URIs manually. You can just
select the respective element or event type that is imported.

Note that an imported event type can actually be given a name that is
different from the the event type type that is imported. This allows you
to avoid name clashes of event types that you define in your package with
names that are imported. Note that all references to these event type within
this package – including the use in the respective ECNO nets for the local
behaviour – must be via this name given to the imported event type; the
name of the event type in the original package does not have any meaning
within this package. But, as long as there are no name clashes, you can of
course give the same name to an imported event type as the one it had in
the package from which it was imported.

5.1.3 ECNO nets

In this section, we discuss how to create and edit ECNO nets. The ECNO
net editor is implemented as an extension of the ePNK [31]. Therefore,
creating and editing ECNO nets follows the general principles and steps of
the ePNK, which are discussed in Chapter 3 “User’s guide” of the ePNK
user’s and developer’s guide [35]. Therefore, we give a rough overview of the
main steps only with the focus on the specific steps and the extensions that
are relevant for ECNO nets.

The ePNK, uses the Petri Net Markup Language (PNML) [23, 20] as
format for all kinds of Petri nets. A single PNML file can contain several
Petri nets. For a single ECNO package, all ECNO nets for the local be-
haviour of elements for that package must be contained in a single PNML
document. For creating a new PNML document, you can use the wizard
for PNML documents (“New→Other...”), which you can find in category

100 CHAPTER 5. USING THE ECNO TOOL

“ePNK”; using “PNML” in the filter in the “Select a wizard” dialog should
direct you to the PNML Documents wizard. This will create a file with ex-
tension “.pnml”. When you create the PNML document, the PNML editor
will open right away. Later, you can use the PNML Editor (default editor
for PNML files) for opening PNML files.

The PNML Editor is a tree-based editor. When newly created, the
document contains an empty document (top-level element) only. When you
right-click on this document (Petri Net Doc) and select “New Child”, you
will have the option “Petri Net (http://se.imm.dtu.dk/ecnonet)”,
which will create a new ECNO net. On this newly created ECNO net,
you should create a name (“New Child→Name”), which you then can edit
in the properties window. Note that the name should be the same as the
corresponding Element in the ECNO coordination diagram. On the ECNO
net, you should also create a new page (“New Child→Page”).

By double-clicking on that page (alternatively you can select the page
and select “ePNK→Start GMF Editor on Page”) you can open the graphical
editor of the ePNK on that page6. In this graphical editor, you can then
draw the graphical structure of the ECNO net by using the tools for places,
transitions and arcs. Note that the tree editor will still remain open; and
you need to save the net from the tab of the tree editor.

Adding names for places and transitions and event bindings, conditions,
and actions for transitions is done by using labels. You would first create
a “Label”; then you would choose the “Link label” tool and drag it from
the new label to the resp. place or transition; then you will be prompted to
choose the kind of label it is supposed to be (dependent on the still available
options). Then, by clicking on the label you can edit it. If for some reason,
you forgot which label was of which kind, you can click on it; then the
properties view will show you which kind of label it is.

Note that you can also add some import and attribute labels to a page
of an ECNO net. To this end, you would select the “Page Label” tool.
Once you click to the position, where the label should be, you will be asked
which kind of label it should be (import or attribute). If you select an
attribute, make sure to make constant attributes (Java keyword final), since
non-constant attributes would compromise saving and loading the state of
an ECNO application.

In the end, you should select the tab for the tree editor of the PNML
document again and save the file. It would be a good idea to double-click on
the top-level element “Petri Net Doc”, which will add unique identifiers to
all elements of your net7. Note that, in the same top-level element, you can

6The first time, you open the graphical editor you will be asked to confirm that you
are sure; the reason is that opening the graphical editor for the first time will prevent to
undo this and all previous actions.

7This is not strictly necessary, but it is recommended since PNML documents without
these unique ids are not conformant to ISO/IEC 15909-2.

5.1. CREATING MODELS AND INSTANCES 101

– actually you must – add all the other ECNO nets for the package. This
works as discussed above.

Note that you can split up a single ECNO net into different pages, if you
have larger ECNO nets for the local behaviour of the elements. Splitting up
larger nets follows the principle of the PNML and the ePNK using pages and
reference nodes. But we do not discuss the details here. Typically, ECNO
nets should be small enough to fit to a single page.

5.1.4 Creating instances

In order to create an ECNO application, we need to create an actual instance
of the Ecore model, which defines the start configuration of the ECNO ap-
plication. There are two different ways to create an instance, both of which
are independent of ECNO; they are EMF concepts.

The first way of creating an instance of an Ecore model is creating a
so-called dynamic instance. In order to create a dynamic instance, open an
Ecore model with the tree editor and select the class, which should serve
as the container for all the other objects – in our examples, this would be
the classes Setting, the class Petrinet, or the class VendingMachine. When
you have selected the container class, right-click and select “Create Dynamic
Instance...” from the pop-up menu. In the opened “Dynamic Model” dialog,
select a folder and a name for the file (make sure to keep the proposed
extension “.xmi”) to which this dynamic instance should be saved and, then,
finish the dialog. Then, a tree editor with an instance of the container class
will open, and you can add new child elements to this container, as usual
for the EMF tree editors; you can also change attributes and references
between different elements in the properties view. Also saving the file works
as usual for EMF tree editors. If you want to open such an file later, you
can open it with the “Sample Reflective Ecore Model Editor...”. Note that
you can create these dynamic instances without having generated code for
the editor from the Ecore model. Therefore, dynamic instances would be
used for creating instances when you want to run ECNO applications as
Java applications.

The second way, of creating an instance of an Ecore model would be
generating the code for the EMF tree editor (or a GMF editor) and starting
the Eclipse runtime workbench and using the generated editor in this run-
time workbench for creating and editing the instance. This is done as usual
in EMF, and is not discussed here. But, we will briefly come back to this
when we discuss how to set up and run an ECNO application as an Eclipse
application in Sect. 5.4.1.

102 CHAPTER 5. USING THE ECNO TOOL

5.2 Code generation

When we have all Ecore and ECNO models as well as the start configuration
of the ECNO application in place, we can start generating the code. Gen-
erating the code, requires some extra information such as qualified package
names as well as a name for the class that represents the ECNO package.
For EMF, this additional information comes from the so-called EMF gen
model. For ECNO, there are similar gen models.

In this section, we discuss how to create these gen models and the mean-
ing of the different properties of these gen models. Moreover, we discuss
how to generate the Ecore and the ECNO code from these gen models and
how the generated code looks like.

5.2.1 Ecore model code

As discussed in Sect. 5.1.1, before any ECNO code is generated, the code
for the Ecore model should be generated.

The steps for creating the EMF gen model and for generating the code
for the Ecore model follow the standard steps of EMF [8]. Therefore, we go
through these steps quickly. For an Ecore model, an Ecore gen model can be
generated by selecting the file containing the Ecore model, and then selecting
“New→Other...”, and in the then opened “Select a wizard” dialog, selecting
the “EMF Generator Model” wizard, and following through this dialog. In
principle, you would not need to change anything in this generator model;
but, it might be a good idea to change at least the base package property
of the EMF package, so that the generated Java packages are not placed at
the top-level.

From the open EMF gen model, you can generated the Java code for
the model code, the edit code, and the editor code by a pop-up menu. If
you want to run your ECNO application as a Java application only, it is
actually enough, if you create the model code – you will not need the edit
and editor code. In case you want to run the ECNO application as an Eclipse
application, you need to generate the edit code and the editor code too. We
come back to that in Sect. 5.4.

5.2.2 ECNO model code

Next, we discuss how to generate the code from the ECNO models, the
coordination diagram as well as the ECNO nets. Similar to EMF, some more
technical information such as qualified package names, class names, and
some additional information for configuring the code generation from ECNO
models need to provided in an ECNO gen model. The ECNO gen model,
in addition, combines a coordination diagram with the PNML document
containing the ECNO nets with the local behaviour for the element types of

5.2. CODE GENERATION 103

the coordination diagram. Together, a coordination diagram and the PNML
document for the ECNO nets represent an ECNO package, which in turn is
based on an Ecore or EMF package.

5.2.2.1 ECNO gen model

Let us briefly discuss how to create and edit an ECNO gen model and what
the different properties mean. Actually, an ECNO gen model contains a
single object only, which has several attributes.

An ECNO gen model can be created by a wizard (“New→Others...”)
which is called “Ecnogen Model” and there is a corresponding EMF tree-
editor for ECNO gen models. The attributes of the ECNO gen models are
the following:

Ecno Model The reference to the ECNO coordination model.

Behaviour Model The reference to the PNML Document that contains all
the ECNO nets with the local behaviour of each element type (note
that element types for which no behaviour is defined will have a simple
default behaviour). The Petri nets in this PNML document should all
be ECNO nets, and the name of the net should be the name of the
element type it is defining the local behaviour for.

Emf Gen Model The reference to the EMF Generator model, from which
the model from the Ecore model was generated; it is possible to provide
a reference to several EMF Gen models here, in case different ECNO
packages and Ecore packages are used. The first reference, however,
should be the one to the EMF generator model for the Ecore model
underlying the ECNO coordination model above.

Model Class Name The name of the generated class that represents the
ECNO coordination model.

Automata Factory Class Name The name of the factory class, which
will be created by the code generator. This factory class is used by
the ECNO engine for creating the local behaviour for new elements
that have an element type that is defined in this package.

PackageAdapter Factory Class Name (optional) If the ECNO model
should be registered as an extension with Eclipse, this is the name of
the respective factory class. This is not relevant, if the generated
code is run as Java application only; it should be set, however, when
the ECNO model should be run as an Eclipse application, which is
discussed in Sect. 5.4.

Base Path ECNO Automata The base package (path) to which all the
code for the automata for the local behaviour is generated.

104 CHAPTER 5. USING THE ECNO TOOL

Base Path ECNO Events The base package (path) to which the code
for the events (actually the event values class) is generated. These
classes provide the access to the values of the involved events in event
bindings, in conditions, and in actions at runtime.

Base Path Model Class The base package (path) to which the class rep-
resenting the coordination diagram is generated.

Required (optional) An ECNO model may refer to other ECNO models.
In order for the code generator to refer to the generated code for these
projects, the code generator needs to know the ECNO gen models for
these ECNO models. The attribute required refers to the ECNO gen
models of packages that are referenced in ECNO model. The name
“required” has historic reasons.

Note that before you can set or add a reference to other models (PNML,
ECNO coordination diagram, EMF gen model, etc.) you need to load that
resource to the editor. You can do that by a right-click and then selecting
“Load Resource...” and then selecting the resp. resource from the workspace.

5.2.2.2 The Generated model code

Once you have created the ECNO gen model, generating the code for the
ECNO package is easy. In the ECNO gen model, right-click on the gen
model element, and select “ECNO→Generate ECNO Package Code”. This
will start several Eclipse jobs that run in the background. Should you get
some error messages indicating that some classes could not be found, it
might help to delete the project .JETEmitters from your workspace (you
will find it if you open the “Navigator”).

Here, we do not discuss the details of the generated code. But, we give
a brief overview of different packages and classes that are generated and
their purpose. In addition to the Java packages created by the EMF code
generator, the ECNO code generator creates four different Java packages,
which correspond to the three paths given in the ECNO gen model:

Local behaviour package In this package, there is a class for each ECNO
net, which represents the local behaviour for each element type of the
package. The names of these classes are the same as the correspond-
ing element type8. In addition, there is a class representing a so-called
EMFBehaviourAdapter, which knows for which EMF classes there ex-
ists a local behaviour, and which provides methods for creating new
instances of the local behaviour, when the ECNO engine encounters
new objects, which correspond to an element type. This class is used

8Since the names are the same, the qualified package name must be different from the
corresponding EMF model package.

5.2. CODE GENERATION 105

by the EMFPackageAdapter, which is also generated by the ECNO
code generated. This PackageAdapter will be registered with an En-
gine running this package.

Package adapter package This package contains the class package adap-
ter, which we had mentioned above. The PackageAdapter, is a pro-
grammatic description of the underlying ECNO coordination diagram.
It knows, which element types there are, which local behaviour these
types have, as well as the event types and the coordinations between
the element types. These PackageAdapters are registered with the
ECNO engine and will be used by the ECNO engine to compute the
possible interactions, and to initialize the local behaviour of newly
encountered element instances.

If the ECNO gen model is configured to plugin the ECNO package
as an extension to Eclipse, the package adapter package contains an-
other class which is called a PackageAdapterFacory. This is actu-
ally the case, if the name for the PackageAdaptorFactory in the
ECNO gen model is not empty. And the name given there will be the
name of the generated class for the PackageAdaptorFactory. This
PackageAdaptorFactory is used by the ECNO engine to create a
new PackageAdapter for this package, when the ECNO application
is running as an Eclipse application and configured to use this package
(which is discussed in Sect. 5.4).

Events package For each event type and event type extension that de-
fine at least one parameter, the ECNO code generator generates a
class that represent the values of the parameters of an instance of the
event. These so-called event value classes are generated in this pack-
age. These classes have the same name as the respective event types
and event type extensions – but staring with a capital letter.

In addition to generating the classes that we discussed above, the ECNO
code generator will also configure the project, if the ECNO gen model is con-
figured to create a PackageAdaptorFactory. In that case, the packages for
the events and for the package adapter are exported (added to the “MAN-
IFEST.MF” file of the Eclipse project) and an extension referring to the
PackageAdaptorFactory is added to the “plugin.xml” file of the project.

5.2.3 ECNO as Java applications

As discussed above, there are two ways of running the code generated from
ECNO models. The simple way is running the code as Java application.
When run as a Java application, the application always starts in the same
state, which is defined as an instance of an EMF model as discussed in

106 CHAPTER 5. USING THE ECNO TOOL

Sect. 5.1.4. If you want to save a state of an application, you need to run it
as Eclipse application, which is discussed in Sect. 5.4.

Starting an ECNO model as a Java application requires to generate code
for the instance to be started. In this section, we discuss how to do this.
Similar to the ECNO gen model, we need to create an ECNO instance gen
model first, from which the code for the Java application will be generated.
The ECNO instance gen model can be created by the “Ecnoinstancegen
Model” wizard. Like for the ECNO gen model, the ECNO instance gen
model contains one element only, which can be edited with a simple EMF
tree-editor. The ECNO Instance Gen Model element has four attributes:

Instance This refers to initial configuration, which is an instance of an
EMF model as discussed in Sect. 5.1.4.

Instance Class Name This is the name of the class, which represents the
initial configuration, and which is the Java application (with a static
main method so that it can be started as Java application).

Base Path ECNO Instance This is the qualified name of the package to
which the Java application is generated.

Ecno Gen model This is the ECNO gen model of the ECNO model, which
should be used for the ECNO application (indirectly, this is referring
to the actual ECNO models).

From this ECNO instance gen model, the code for the Java application
can be generated: “ECNO→Generate ECNO Instance Code”. This will
generate one class, which represents the initial configuration of the ECNO
application; running this Java class as Java application will start the ECNO
application.

Note that the generated Java application will always start the ECNO
application with the simple default GUI (see Sect. 5.3). If you want to
change that, you would need to change the code manually. Since Java ap-
plications, are more for experimentation, there is no way to configure the
code generation to start with own GUIs. This is possible for ECNO applica-
tions that run as Eclipse applications, which would be used in more realistic
applications anyway.

5.3 ECNO GUI

The default GUI for ECNO applications mainly serves the purpose of quickly
getting some application running and playing around with it. For all explic-
itly registered elements (the ones added to the engine by the addElement()
method) the default GUI will show a panel, which for every GUI event type
of that element type will show a button. The button for an event type will

5.4. ECNO ECLIPSE APPLICATION 107

be enabled, when there is an interaction for that element with the respective
event type enabled. Otherwise, the button will be disabled. Pressing the
button will execute the enabled interaction.

Note that this default GUI is not supposed to be the GUI of final appli-
cations. In Sect. 5.5.2, we will discuss how to implement customized GUIs
based on ECNOs Element Event Controllers.

Since the main purpose of default ECNO GUI is playing and experiment-
ing with ECNO applications, it provides some additional features. First of
all, when hoovering over an enabled button, a tool tip will open which
shows the underlying enabled interaction: the participating elements with
the events they are involved in, and for each event, the parameters are given.
This might help, to understand for an ECNO application which interactions
are enabled.

Another important feature of the default GUI is that it shows when
more than one interaction for an element and event type are possible. This
will be indicated by an asterisk (*) decorating the respective button. Then
the user can iterate through the different possible interactions for that ele-
ment and event type, by clicking the mouse button in combination with the
“SHIFT” key; when the last possible interaction is reached, the decoration
will change to an exclamation mark. By pressing a button together with
the “CONTROL” key, the button can be re-initialized so that the iteration
through all interactions starts from the first possibility again.

Together with the tool tip indicating the possible interaction, this pro-
vides a simple tool for seeing all the available interactions. In ECNO appli-
cations that run as Eclipse applications, the user might even undo and redo
interactions (see Sect. 5.4), which should make it even easier to analyse the
behaviour of an ECNO application.

5.4 ECNO Eclipse application

For more realistic ECNO applications, we would not want to start them
in the same state every time. Rather, we would like to save the state in
which they are, when we shut them down; and when we start them again,
we would like to start them in the state in which they were shut down.
This functionality is not available when ECNO applications are run as Java
applications. But, when we run ECNO applications as Eclipse applications,
we can save the state of an ECNO application and start the application
in that state again. In addition, there are some other features such as
undo and redo and some statistics of computation times available when
an ECNO application is run as an Eclipse application. All this additional
functionality will be available via the “ECNO Engine registry” view, which
gives an overview of all running ECNO engines and a way to control these
engines. We explain the “ECNO Engine registry” in Sect. 5.4.2.

108 CHAPTER 5. USING THE ECNO TOOL

5.4.1 Setting up a configuration

Before discussing the “ECNO Engine registry”, we need to explain how to
create a start configuration for an ECNO application. Similar to an ECNO
application that runs as a Java application, the start configuration needs an
instance model, which defines the elements that are initially there and how
they are related. In addition, the start configuration needs to define which
ECNO packages it should use, and the start configuration can define which
GUI and which controllers the ECNO engine should used.

We use the Petri net example (project APetriNetEditorIn15Minutes.
runtime) from Sect. 2.1.2 again to discuss the main concepts of configura-
tions. We use the configuration “a net.behaviourstates” from the “run”
folder of that project as an example. The extension “.behaviourstates” re-
sults from the main purpose of this file, which we will explain in more detail
later: it is used to save the states of the local behaviour of each element.
The reason is that normal EMF instance files can only save the information
that is represented in the Ecore model; therefore, the states of the local
behaviour need to be saved somewhere else: in this configuration file. We
will discuss some details later.

For setting up a start configuration, we need only a few concepts of all
the features of “behaviour states” files. The top-level element, “Behaviour
States” is a container which contains the behaviour states of some elements.
The “Behaviour States” element has a single9 property “Packages”, which
refers to the unique identifiers of all the ECNO packages that this ECNO
application is using. Note that the ECNO packages that these unique iden-
tifiers refer to must be plugged in to Eclipse for the ECNO engine to run
properly from that start configuration.

The “Behaviour States” element can contain several elements “Behaviour
State”. Each “Behaviour State” element that is contained in the top-level
element, refers to an element (which typically will be a reference to an
element in some instance file) and it contains the state of the local behaviour
of that element. The implementation of the state depends on the used
technology and the implementation for the local behaviour. In our case,
it will be “PT Net States”, which represent the current marking of the
ECNO net. For easing the setup of a start configuration, there are some
special states implemented. The first is called “Default State”, which would
initialize the local behaviour of the respective element type in its default
state as defined in the local behaviour. For an ECNO Net, this would be
the initial marking. For large start configurations, however, it would still be
very tedious to set up such a start configuration manually. Therefore, there
is another special stated called “Default Container”. This will initialize all

9There is one other attribute “Added”, which defines which elements are currently
added to the ECNO engine. This however, is more relevant for saving the state of an
ECNO application than for defining the start configuration.

5.4. ECNO ECLIPSE APPLICATION 109

the elements that are contained – directly or indirectly – in this element
with their default states. In our Petri net example, there is only a single
“Element Behaviour State” in the configuration, which refers to the Petri
net itself, and the element’s behaviour is “Default Container”; this has the
effect that the container as well as all the elements contained in it will be
initialized in their initial state. Note that this, on the side, will have the
effect that the element that are GUI element types will also be added to
the ECNO Engine (and this way to the GUI). Therefore, there is typically
no need to “Add” elements to the top-level element of the configuration
explicitly.

The top-level “Behaviour States” element can contain one other kind of
element, which is called “Controller Configurator”. The “Controller Con-
figurator” refers to the URI of a plugged in Controller Configurator, which
will take care of setting up the GUI for this ECNO application and some
other Engine Controllers. We discuss the details of how to program and to
plug in such Controller Configurators in Sect. 5.5.2.5. For now, it should
be sufficient that they set up the GUI. If there is no such configurator, the
ECNO Engine will start up with the standard GUI. The Controller Config-
urators might also have some state information, which they need in order
to properly start up and to save the current state of the controller. To this
end, the “Controller Configurator” can refer to some object. In the case of
our Petri net example, this object is the Petri net diagram, since the Con-
troller Configurator that we use here configures the GUI in such a way that
it shows the current state of the Petri net in the GMF editor.

As discussed above, the states of an element refer to an element. These
elements and the relation between them would typically be stored in a differ-
ent file, which is an instance of some EMF model. Since we are now running
ECNO as an Eclipse application, the EMF code and the code generated from
the ECNO packages would be plugged in to Eclipse or we would run Eclipse
as a runtime workbench. Therefore, we can use the Eclipse tree editor or a
generated GMF editor for creating and editing these instances. We would
not need to use the editor for dynamic instances of Ecore models any more.

A new configuration file can be created by “New→Other...” and then se-
lecting “Behaviourstates Model”. The reference to the instance model would
be created in the “Behaviour State” elements via the “Element” property.
In order to set this reference, we would need to add the file with the instance
model by loading it as a resource to the EMF tree editor as usual.

This should be enough information for setting up a first start configu-
ration for an ECNO application. We will discuss below how to start and
control an ECNO application from there. When we start an application from
such a configuration file, and the state of the application is saved later, this
will be saved in the same file it was started from. This will add much more
information to this file, which represents the current state for each element
individually, and orphaned elements (elements that are not contained in any

110 CHAPTER 5. USING THE ECNO TOOL

resource) will be added to this file too. We do not discuss the details here.
Since saving the state of an ECNO application will overwrite the original
start configuration, you would probably like to make copies of the configu-
ration file and all the instance files it is referring to in a different directory,
so that you do not loose the original start configuration. Eventually, the
ECNO Tool might also provide a means for automatically setting up a new
start configuration file from some configuration information. For now, you
need to do that manually – and, in order not to loose that information, you
should save it together with the instance in a separate folder.

5.4.2 Running a configuration

Once your have a start configuration, you can start an ECNO application
from it – assuming that all the ECNO packages the top-level element is
referring to are properly plugged in to Eclipse.

In order to start an ECNO application, you would select the file with
the start configuration in an Eclipse resource browser, right-click on it and
select “ECNO→Start ECNO Engine”. Note that you should make sure that
the configuration itself as well as any of the instances it is referring to are
not open in any editor at that time.

We had seen an example of an ECNO application running as an Eclipse
application in Fig. 2.2 on page 30 in Sect. 2.1.2 already. Note that, in that
example, the graphical editor for the instance is open; the reason is that it
is opened as part of the GUI of that ECNO application. But, this editor
should not be open before the ECNO application is started.

You can start any number of ECNO Engines at the same time, but you
should not start it from the same configuration or instance (since the state
of the two different ECNO applications will be saved to the same files and
you will loose information of one of the running applications). The ECNO
Engines can be controlled via the “ECNO: Engine registry” view, which can
be opened via Eclipse’s “Window” menu (“Show View→Other...”). Fig-
ure 2.2 on page 30 shows a screenshot of an ECNO application running
as an Eclipse application, and the view at the button shows the “ECNO:
Engine registry”. The currently running ECNO applications are shown in
rows, and the rows can be selected by clicking on them. The buttons for
the “ECNO: Engine registry” view refer to the selected row – except for
the “Delete” button, which refers to the checked (checkboxes in the front of
every row). The “Delete” button will shut down all checked ECNO Engines.
For each row resp. running engine, the “Engine name” can be freely chosen
and changed by the user; the “Resouce name/path” shows the configuration
from which the ECNO engine was started – and to which the state is saved,
when the “Save” button is pressed.

For a selected ECNO engine, the “Back” and “Forward” button will
undo and redo the last executed interaction of the engine. This is mostly

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 111

relevant for experimenting with ECNO applications; using them can actu-
ally be a bit tricky, once interactions are executed automatically in a quick
succession by some automatic controllers (see Sect. 5.5.3). The “Rubber”
button between the “Back” and “Forward” button can be used to clear the
history of executed interactions, which will, of course, prevent to undo and
redo them.

Further to the right, there is a “Save” button, which will save the current
state of the ECNO application. If the state of the ECNO application is
saved, it will start from exactly this configuration the next time it is started
from the configuration. Remember that ECNO is not fixed to using EMF
as underlying technology for the structural models; the implementation of
the undo and save mechanism, however, is dependent on the underlying
technology; also the save mechanism depends on whether the underlying
technology supports it. Therefore, the undo/redo mechanism as well as the
save mechanism might be disabled, if the underlying technology supports
them. For all the examples of this report, however, the undo/redo and save
mechanisms work since they are all based on the EMF technology.

The last button is the “Information” button. This will open a dialog
with some statistical information on the run ECNO application and the
currently registered elements. Note that elements of an ECNO application
will be garbage collected automatically, when they are no longer in use. But,
the undo/redo history might keep elements from being garbage collected; so,
if you want to have a more accurate picture of the current situation, you
should clear the history of interactions by pressing the “Rubber” button10.

5.5 Programming with the ECNO Framework

As we have seen in Sect. 5.2, we can generate a complete application from
ECNO models. By default, this application will run with a simple ECNO
GUI, which was discussed in Sect. 5.3. This GUI can be used for testing
an ECNO model and for experimenting with ECNO; for real applications,
however, this GUI is not good enough. Therefore, the ECNO programming
framework provides means to program customized GUIs.

Though, programming a customized GUI is probably the most important
use of the ECNO programming framework right now, the ECNO program-
ming framework also provides mechanisms for computing and executing in-
teractions programmatically (part of which will be used when programming
GUIs), and it provides mechanisms for programming the local behaviour of
elements. Though we would not advocate programming the local behaviour

10Note that customized GUIs might also be responsible for keeping references to out-
dated elements which are no longer referenced in the ECNO engine itself. This happens
for example, if in our Petri net example, where the graphical editor for Petri nets, which
is part of the GUI to show the token game, keeps references to all elements. This is why,
in the Petri nets example, the statistics of current elements is not accurate.

112 CHAPTER 5. USING THE ECNO TOOL

of elements manually, this interface can be used to generate code for local
behaviour from other models than ECNO nets. Actually, it is even possible
to programme class diagrams and the coordination on top of them manually.

In this section, we discuss how to compute and execute legal interactions
of an ECNO application (Sect. 5.5.1), and how to program GUIs on top of
these mechanisms (Sect. 5.5.2). In addition, we discuss how to change the el-
ements of an ECNO application and their relation programmatically outside
interactions without compromising ECNO’s mechanism for transactionality
(Sect. 5.5.3); and we discuss how to automatically execute interactions when
the become enabled. In addition, we give a brief overview on some advanced
features (Sect. 5.5.4), which will not be discussed in detail.

5.5.1 Computing and executing interactions

We start with explaining how to compute and execute the interactions of an
ECNO application programmatically. To this end, we assume that we have
access to the instance of the ECNO engine which is running the ECNO ap-
plication, and some element and some eventType. We will see in Sect. 5.5.2
how this information would be typically passed on to element controllers
which are automatically installed by Engine Controllers and how types can
be looked up in the ECNO package adapter (see Sect. 5.6 for some more
details). For now, we just assume that we have this information available.

A call engine.getInteractions(element, eventType) computes all
the possible interactions for the given element that involve an event with
the respective type. Actually, the result is a Java iterator, which would
return all possible interaction one after each other. This iterator is called
InteractionIterator. With the usual operations such as hasNext() and
next(), we can find out whether there are possible interactions and obtain
the next Interaction. Once we get hold of an interaction, we can execute
it by calling its execute() method.

Note that the ECNO engine and the execution of interactions is im-
plemented in such a way that it is thread-safe, even when interactions are
computed and executed concurrently in different threads. In particular, in-
teractions will be executed only if the interaction is still valid at the time
when it is executed, and if it is executed it will be executed atomically
(completely) and in isolation (without the execution of other interactions
interfering). And when run as Eclipse application with Ecore models, the
ECNO engine also guarantees consistency after the execution of an inter-
action (only if the execution of the interaction does not violate any of the
models’ constraints, the interaction is executed – otherwise the interaction
will be rolled back). This guarantees transactionality respecting the A, C,
and I of the ACID-principle [13] – the “D” for durability is not yet fully
supported, though; there is only a very basic mechanism for explicitly saving
the state of an ECNO application.

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 113

Since interactions can be executed from different threads, it can well
happen that an interaction that was returned by the interaction iterator
will become invalid before its is actually executed. There are three mech-
anisms that help dealing with this situation. First, the interaction has an
isValid() method, which returns true, if the interaction is still valid at
the time when the method isValid() is called. It is a good idea to call
this method before actually executing an interaction – in particular when
some time has elapsed since the interaction was computed. Second, we can
register some invalidation listeners with an interaction and even with an
interaction iterator, which is called when an interaction becomes invalid or
when the interaction iterator becomes invalid, which means that one of its
interactions becomes invalid. This mechanism is discussed in Sect. 5.5.2
since this is at the core of building GUIs for ECNO. Both of the above
mechanisms, however, are not enough to make sure that the execute()

method is invoked on valid interactions only in a multi-threaded setting: It
can happen that the interaction becomes invalid, just when the execute()

method is called. If this happens, the execute() method will raise an
InvalidStateException. If this happens, the interaction will not have
executed – not even partially (atomicity). The InvalidStateException

is a runtime exception. Therefore, applications are not required to catch it.
But, at least in a multi-threaded setting, it is highly recommended to catch
these exceptions and properly react to it. Note that also the next() and
hasNext() methods of the interaction iterator might throw an exception
InvalidStateException, when the iterator becomes invalid.

With calling engine.getInteractions(element, eventType) all in-
teractions for the given element in which at least one event of the given event
type is involved are computed. Sometimes, we would like to compute inter-
actions in which the event has some parameters set to some specific values.
To this end, the engine can be called with a specific even with this param-
eter set: engine.getInteractions(element, event). We will discuss
how to create an event of a specific type and how to set its parameters in
Sect. 5.5.2 below.

As long as all the changes of an application are made by executing in-
teractions only, the ECNO engine guarantees the transactionality of their
execution. In some applications, we might want to make some changes on
the elements and their links by programming these changes using the API of
the underlying Ecore or object-oriented model. In order to maintain trans-
actionallity, the elements on which the changes are made programmatically
need to be locked explicitly. This is discussed in Sect. 5.5.3 where we explain
some issues of ECNO that concern multi-threaded programming.

114 CHAPTER 5. USING THE ECNO TOOL

5.5.2 Customized controllers and GUIs

In our workers example, which we had used in the first informal introduction
to ECNO in Sect. 1.1, we had discussed the simple default GUI of ECNO
applications in Figures 1.10–1.12 on page 21. This default GUI for ECNO
is good enough for experimenting with ECNO. For more realistic ECNO
applications, however, we would need more; the GUI should look more fancy,
and there should be other ways to interact with the application than pressing
buttons.

In this section, we show how to equip ECNO applications with more
advanced GUIs. To this end, we discuss how to implement a GUI for the
workers example that resembles a work list in workflow management. Fig-
ure 5.1 shows how this GUI looks like: in particular, it shows the possible
actions from a single worker’s perspective, which shows all possible jobs the
worker could be participating in right now; moreover, it allows the worker
to enter some text, which is used in the ECNO application (as the name for
the newly created job).

Figure 5.1: Worklist GUI for workers example

5.5.2.1 The workers example and its GUI

Before explaining how to programme this GUI and the underlying concepts
of ECNO, let us briefly discuss the GUI from Fig. 5.1. Remember that the
workers example was about modelling workers that arrive and depart from
work together; when at work, there are jobs that they can do. Each of the
jobs requires different workers to participate in the job when it is executed.
In addition to the example from Sect. 1.1, we slightly extended the example
so that jobs have a name. Similar to the model from Sect. 1.1, the actual
“work” of the job consists of creating the a new job that requires the same
workers as the job itself; in our extended version, the new job gets a new
name; this name is provided as a parameter of the event, which is provided
by the worker initiating the job via the text field in his GUI (work list). In

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 115

order to make the example slightly more interesting, we also add a condition
that this name must have at least six characters (in the ECNO model, this
condition is a part of the local behaviour of the job).

The GUI shown in Fig. 5.1 consist of four main parts, which we call
panels. The top-most panel allows the user to create another instance of the
GUI attached to the same application; this way, it is possible to see several
work lists for different workers at the same time. Note that, once started,
these different GUIs are completely independent of each other and are able to
show the state of the workers application from the perspective of the chosen
worker. The “Select a worker” panel allows to select the worker for which
the possible jobs and possible actions should be shown. The possible jobs
(work items) for the selected worker are shown in the “Select a work item”
panel. This panel consists of three parts: a text input field in which the
name of the new job to be created can be entered, a drop down menu from
which one of the currently possible jobs can be selected; in the example from
Fig. 5.1, this drop down menu is empty, since the chosen worker “ali” has not
yet arrived at work. The last panel shows the “arrive” and “depart” actions,
which indicate that the worker arrives or departs from work (remember that
the workers “ali” and “bert” as well as the workers “cleo” and “dan” share
a car and, therefore, arrive and depart together).

Figure 5.2 shows the same worklist GUI after all workers have arrived
and “dan” was selected as the worker. It shows that “dan” can take part in
three different jobs – shown in the drop down menu. Pressing the “doJob”
button would execute the selected job, which creates a new job with the
name “Some name” – the value currently provided in the text input field.
Note that, if we entered a name shorter than six characters to the text input
field, the drop down menu would be empty and the “doJob” button would
not be enabled since the ECNO model requires the name of the new job to
be at least six characters long.

Figure 5.2: Worklist GUI after all workers arrived

We do not discuss the details of the extended ECNO models for the

116 CHAPTER 5. USING THE ECNO TOOL

Listing 5.1: Use of ElementButtonPanel

workerPanel = new ElementButtonPanel(engine, null, selected);
this.add(workerPanel);
this.setVisible(true);

workers example here; as compared to the models discussed in Sect. 1.1,
there are only a few minor changes. If you want to have a look at the ex-
tended models, you will find them in the project dk.dtu.imm.se.ecno.

example.workers.worklistgui, which is deployed as one of the example
projects11 together with ECNO. You can start this application by start-
ing the class SettingWorkersGUI in the package dk.dtu.imm.se.ecno.

examples.workers.instances as a Java application.

5.5.2.2 Using GUI elements from the ECNO framework

The implementation of the customized GUI can be found in the package
dk.dtu.imm.se.ecno.examples.workers.gui, where the main class is
WorkersGUI. We start explaining some of the simpler parts of that GUI,
which directly use some of the GUI elements provided by the ECNO frame-
work. In our example, this applies to the panel with the arrive and depart
buttons for the selected worker at the buttom of the GUI (see Fig. 5.1 and
Fig. 5.2). This panel is implemented by the class ElementButtonPanel,
which is instantiated with some element of the ECNO application, and will
have one button for each of the GUI event types in which the chosen element
can be involved in.

The use of this ElementButtonPanel can be seen in the implementa-
tion of the updateSelectedWorker() method of the class WorkersGUI.
This method is called, whenever the user selects another Worker in the
GUI’s “Select a worker” panel. Listing 5.1 shows the relevant part of the
updateSelectedWorker() method; it creates the respective panel for the
selected worker. In this context, this is the WorkersGUI, which ex-
tends the Swing JFrame class. As mentioned earlier, the class Element

ButtonPanel comes from the ECNO Framework and extends the Swing
JPanel; it is instantiated with the engine and the selected element
– the worker in our example. In our example, the middle parameter is
null; generally, this parameter can be used to provide an implementation
IPresentationUtil, which would define custom labels for the panel itself,

11Note that this plugin project does not have a plugin.xml file! We deleted the
plugin.xml that was generated by the EMF generator in this project since we use
this example as a Java applications only – and not as a Eclipse application. The
extensions from plugin.xml would conflict with the project from the introduction
“dk.dtu.imm.se.ecno.example.workers” since it uses the same Ecore model with some ex-
tensions without using another namespace URI.

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 117

the buttons on it, and the tool-tips when the mouse is hoovering over the
buttons. In our simple example, the default labels are fine; therefore, we
do not provide an IPresentationUtil to the panel. As any Swing panel,
the ElementButtonPanel can be added and removed from other Swing
elements. But, we do not discuss the details here.

Once initialized, the ElementButtonPanel takes care of updating the
possible interactions for the element and and the respective events, and the
buttons associated with the respective event types update their enabledness
fully automatically dependent on whether there is an interaction enabled
for the element and the respective event type. We do not need to program
anything for that.

In order to get an idea of what is going on behind the scenes and the
interfaces of the ECNO framework making this mechanism work, we discuss
some of the main concepts and classes underlying this mechanism anyway.
The respective classes can be found in the ECNO core project dk.dtu.imm.
se.ecno.core in the packages dk.dtu.imm.se.ecno.gui and dk.dtu.

imm.se.ecno.engine. The actual buttons on the ElementButtonPanel

are implemented by the class ElementEventButton, which are initialized
with an engine, a presentation utility (optional), and an element and an
event type. Then ElementEventButton will take care of tracking whether
there are enabled interactions for the given element and event type, and
update the enabledness of this button respectively. If the user presses
the enabled button, the currently selected12 interaction is executed. For
properly updating the buttons when the possible interactions change, the
ElementEventButton is derived from another class of the ECNO Frame-
work, which is called ElementEventController; this class has all the in-
frastructure to register with the engine, and receive notifications when pos-
sible interactions change. To this end, the ElementEventController reg-
isters a so-called IInvalidationListener to the engine; but we do not
explain the details here.

The class ElementEventController has also some methods that can
be overridden by extending classes. For example, the method getEvent()

can be overridden to add some pre-defined parameters to the event for which
the interactions should be computed. This way, only those interactions are
computed in which the event takes these parameters.

We will see how to use some of the above mechanisms in the following
sub-section.

12Remember that, if there is more than one enabled interaction for the element and
event type, the user can iterate through all the possible interactions, by using the SHIFT-
and CTRL-key while pressing the mouse buttons.

118 CHAPTER 5. USING THE ECNO TOOL

5.5.2.3 Programming GUI elements

The main function of GUI elements is to properly update when the possi-
ble interactions change and to execute the resp. interaction when the user
request it by some gesture (typically a mouse-click) at the GUI. The ECNO
framework provides a mechanism which notifies some listeners, when an in-
teraction becomes invalid or when the possible interactions that were com-
puted by an interaction iterator do change. Note that this mechanism does
not only issue notifications when interactions become invalid, but also issues
a notification when new interactions become available.

The main interface is IInvalidationListener, which we explain in
some more detail in this section. We do this by discussing the implemen-
tation of “Select a work item” panel (see Fig. 5.1 and Fig. 5.2). On the
side, we explain how the ECNO Engine can compute interactions not only
for a given event type, but it can compute interactions for a specific event
with some preset parameters. In our case, the parameter is the name of the
new job that should be created when the job is executed, where the name is
passed as a parameter to the doJob event; remember that the ECNO model
requires this name to be longer than 5 characters. Therefore, these interac-
tions are possible only when the required workers are available and the user
has entered a name to the text field that is more that 5 characters long.

Listings 5.2 to 5.5, show the most relevant parts of the class Worklist
Panel which implement the “Select a work item” panel. We discuss these
parts below.

Listing 5.2 shows the attributes that are used by class WorklistPanel.
The attribute engine refers to the ECNO engine in which this GUI is run-
ning, and attribute gui refers to the WorkersGUI, which hosts the worklist
panel. The attributes textField, jobsComboBox, and button represent
the three widgets that are placed on the worklist panel, which are using the
respective Swing classes. The attribute buttonListener is a class that will
be associated with the doJob button in order to execute the selected job,
when the button is pressed.

The most important attributes for our discussion here, are the last
four attributes: The attribute iterator represents the interaction iterator,
which keeps the possible interactions (representing executable jobs) for the
worklist panel in the current situation. The attributes doJob, jobParam,
and nameParam are referring to the ECNO meta model classes; they are
initialized such that doJob points to the doJob event type of the ECNO
model of the workers example, and jobParam and nameParam refer to the
respective parameters job and name of that event type. We will discuss how
these attributes are initialized shortly (see lines 7–19 in Listing 5.3).

Listing 5.3 shows an excerpt of the constructor of the class Worklist

Panel. First, we discuss lines 7–19, which initializes the attributes for the
doJob event type and its parameters. They are basically looked up from

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 119

Listing 5.2: Attributes of WorklistPanel

final ExecutionEngine engine;
final WorkersGUI gui;

private JTextField textField;
5 private JComboBox<InteractionItem> jobsComboBox;

private JButton button;

private ActionListener buttonListener;

10 private InteractionIterator iterator;

private EventType doJob;
private IFormalParameter jobParam;
private IFormalParameter nameParam;

the package with the ECNO model of the workers example; like in the EMF
technology, an ECNO package is translated to a Java class, which repre-
sents this package and allows to look up and access its element types and
event types. At first, all event types that are defined in the package are ob-
tained and assigned to variable events. If there is an event type with name
“doJob”, this event type is assigned to the attribute doJob; likewise the pa-
rameters are looked up in this event type and assigned to the resp. attribute
(note that we exploit the order in which these parameters are defined in the
doJob event here to access the resp. parameter).

There are two other things, which need to be done in the constructor
of the class WorklistPanel. First, we need to make sure that the possible
interactions are recomputed whenever the user changes the text field that
provides the name of the new job (leaving it to the model of the workers
example whether the name would be legal or not). The actual update of
the possible interaction is done in method update(), which is discussed
below (see Listing 5.4). But, we need to make sure that this update() is
called, whenever the user makes a change; to this end, we install an action
listener to the text field, which calls the update() method in lines 26–30
of Listing 5.3. Another action listener (lines 40–43) makes sure that the
current selected interaction is executed, when the doJob button is pressed.
This action listener calls the execute() method which is discussed later
(see Listing 5.5).

The most involved method of the WorklistPanel is the update()

method. The implementation is shown in Listing 5.4. In this method, the
current interaction iterator is maintained and registered with the ECNO
engine so that the worklist panel is notified and properly updated when jobs
become available or unavailable. The reason why this method is a bit more

120 CHAPTER 5. USING THE ECNO TOOL

Listing 5.3: Constructor of WorklistPanel

public WorklistPanel(ExecutionEngine engine,
WorkersGUI gui, WorkersModel model) {

super();
this.engine = engine;

5 this.gui = gui;

doJob = null;
List<EventType> events = model.getNamespace().getEventTypes();
for (EventType type: events) {

10 if ("doJob".equals(type.getName())) {
doJob = type;
break;

} }
if (doJob != null) {

15 jobParam = doJob.getFormalParametersList().get(0);
nameParam = doJob.getFormalParametersList().get(2);

} else {
throw new RuntimeException("DoJob event type not available");

}
20

...

textField = new JTextField();
textField.setText("Some name");

25

textField.addActionListener(
new ActionListener() {
public void actionPerformed(ActionEvent arg) {
WorklistPanel.this.update();

30 } });

/* Add some other listeners for textfield update (mouse and focus) */
this.add(textField);

35 jobsComboBox = new WideComboBox<InteractionItem>();
this.add(jobsComboBox);

button= new JButton();
button.setText("DoJob");

40 buttonListener = new ActionListener() {
public void actionPerformed(ActionEvent arg) {
WorklistPanel.this.execute();

} };
button.addActionListener(buttonListener);

45 this.add(button);
}

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 121

Listing 5.4: Update of WorklistPanel

void update () {
if (enterUpdate()) {
do {
jobsComboBox.removeAllItems();

5 Worker worklist = gui.getSelectedWorker();
if (worklist != null) {
if (iterator != null) iterator.unregisterListener(this);
List<InteractionItem> interactions =
new ArrayList<InteractionItem>();

10 boolean success = false;
do {
Event event = engine.createInstance(doJob);
if (event != null) {
Parameter param = event.getParameter(nameParam);

15 if (param != null) param.setValue(textField.getText());
iterator = engine.getInteractions(worklist, event);

}
success = true;
try {

20 iterator.registerListener(this);
while (iterator.hasNext()) {
Interaction interaction = iterator.next();
IChoice choice = interaction.getElementsChoice(worklist);
event = choice.getEvent(doJob);

25 Parameter jobP = event.getParameter(jobParam);
if (jobP != null) {
Object job = jobP.getValue();
if (job instanceof Job) interactions.add(

new InteractionItem(interaction, (Job) job));
30 } }

} catch (InvalidStateException e) {
iterator.unregisterListener(this);
iterator.dispose();
success = false;

35 }
} while (!success);
for (InteractionItem item: interactions)
jobsComboBox.addItem(item);

if (!interactions.isEmpty()) {
40 button.setEnabled(true);

jobsComboBox.setSelectedIndex(0);
} else {
button.setEnabled(false);

} }
45 } while (!leaveUpdate());

} }

122 CHAPTER 5. USING THE ECNO TOOL

complicated is that this method will be called whenever possible interactions
of the current interaction iterator change; and this can, in principle, hap-
pen concurrently to updating the possible interactions; and it can happen
that while updating the interaction iterator “realized” that it has become
invalid. The update() method needs to take care of these situations and
a combination of them – using some of the infrastructure that the ECNO
framework provides for this purpose.

Let us discuss some aspects of that implementation here. We start with
the part taking care of maintaining and updating the possible interactions.
First, in line 7 of Listing 5.4, the GUI unregisters as listener from the current
interaction iterator, because the interaction iterator is about to be recom-
puted and updates from the outdated one are no longer relevant. Then
(line 8), an empty list with new interactions items is created; these interac-
tion items represent an interaction, but in such a way that these elements
can be used as items of a ComboBox. Then (line 11–15), a new instance of
a doJob event is created via the engine using the doJob attribute, and the
name parameter of that event is set to the current value of the text input
field of the panel. Then (line 16), an iterator for the current worker (variable
worklist) and the event is created; and (line 20) the panel is added as a
listener to this new interaction iterator.

Then (lines 21–30), the interaction iterator is used to fill the list of
interaction items by iterating over the interaction iterator. Note that by
concurrent changes, the interaction iterator might become invalid any time,
in which case it would raise an exception when used. Therefore, this part of
the computation is included in a try-catch block and a do-while loop, which
takes care of this. If such an exception happens, the current interaction
iterator is properly disposed of, and the current computation is marked as
not successful – and the computation is started over again (line 36).

In the end (lines 37–43), the combo box is updated with the interaction
items and the enabledness of the doJob button is set according to whether
there is at least one job or not.

Note that all this computation is embedded into an if-statement with
condition enterUpdate() (line 2) and a do-while loop (line 3–45) with con-
dition !leaveUpdate(). This makes sure that the update is active only
once at the same time; if another update is active already for this panel, the
update finishes right away; in that case the condition !leaveUpdate() will
make sure that the already running update is repeated in the end, since the
current computation was overtaken by a later update. The enterUpdate()
and leaveUpdate() are implemented using standard concurrent program-
ming techniques in order to make them atomic; but, we do not discuss the
details here.

At last, we discuss how to actually execute a job or the respective in-
teraction, when the doJob button is pressed. This is implemented in the
execute() method, which is shown in Listing 5.5. This code is quite sim-

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 123

Listing 5.5: Execute of WorklistPanel

void execute() {
Object selected = jobsComboBox.getSelectedItem();
if (selected instanceof InteractionItem) {
Interaction interaction = ((InteractionItem) selected).interaction;

5 if (interaction.isValid()) {
try {
interaction.execute();

} catch (InvalidStateException e) { }
}

10 }
}

ple, basically calling the execute() method on the interaction (accessed
from the currently selected InteractionItem). Again, due to concur-
rent behaviour the interaction might actually have become invalid when
execute() is called; therefore, we explicitly check for its validity; but even
then, it might happen that it becomes invalid right after that; therefore, we
need to embed the call of the execute() method on an interaction into a
try catch block. If the execute() returns without exception, we can be sure
that the interaction was executed successfully; if the exception is raised, we
can be sure that it was not executed at all (see Sect. 5.5.3).

Note that we do not need to initiate any update on the GUI in the
execute() method. This will be taken care of indirectly by the ECNO
engine. If some changes of the executed interaction change the possible
interactions, the ECNO engine will notify the GUI, since the GUI had reg-
istered itself with the engine for notification.

5.5.2.4 Engine controllers

In our workers example, there are two panels which are element controllers,
the “Select a work item” panel and the panel for “arrive” and “depart”.
An element controller is installed on one element, and typically has one or
more listener installed, which notify it when the set of possible interactions
changes.

In our case, these element controllers are installed explicitly on a worker
when the worker is selected. In some ECNO applications, however, such ele-
ment controllers should be installed automatically when elements are added
to the engine or when the engine, becomes aware of new elements while
computing interactions. For example, the generic ECNO GUI shows an Ele-
mentEventPanel for all the elements that are explicitly added to the engine.
This is achieved by installing a engine controllers with an ECNO engine,
which must implement the IController interface.

124 CHAPTER 5. USING THE ECNO TOOL

Listing 5.6: The IController interface

public interface IController {

public void addElement(Object element);

5 public void removeElement(Object element);

public void elementEncountered(Object element);

public void dispose();
10

}

This interface is shown in Listing 5.6. An implementation of these meth-
ods will allow the controller to install new element controllers when elements
are explicitly added to the engine or when new elements are encountered
while computing enabled interactions. It is completely up to these engine
controllers what they do in these situations; but typically, they would install
some element controllers on some of the elements – or remove them.

Any number of engine controllers may be installed with the ECNO en-
gine. It is also possible that engine controllers remove themselves from the
engine when they are no longer needed. When the engine terminates, and
the engine controller is still installed, the engine will call its dispose()

method. Actually, the ECNO engine terminates13 when the last controller
is removed from the engine.

Typically, the GUIs for an ECNO application will register itself as an
engine controller. Our WorkersGUI as well as the default ECNOGUI, both
register themselves as engine controllers (in their constructor). But, it is
possible that GUIs are not engine controllers, and there might be engine
controllers that are not GUIs. One example would be an engine controller
that installs an element controller that automatically issue the execution of
some interactions when they become enabled.

The engine controllers can be either installed programmatically or via
a configuration, which depends on whether the ECNO application is run
as a Java application or an Eclipse application. This is discussed in the
following section. It is possible to install or remove new engine controllers to
a running engine at any time. In our workers example, the user pressing the
“New worklist panel” will create a new Worklist GUI, which then is added

13Note that when an ECNO application is running as Eclipse application, the ECNO
engine view will always be installed as an engine controller; therefore, the ECNO appli-
cations running as Eclipse applications terminate only upon an explicit request from the
application itself or when the user presses the close button for an application in the ECNO
engine view.

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 125

Listing 5.7: The main method of class SettingWorkersGUI

public static void main(String[] args) {
ExecutionEngine engine = ExecutionEngine.createNewInstance();
WorkersModel model = WorkersModel.getModel(engine);
engine.addPackageAdapter(model);

5 if (!engine.resolveNamespaceImports()) {
System.err.println("Package imports could not be resolved");

}
new WorkersGUI(engine, model);
Setting instance = new Setting();

10 // Note: to create an instance from here, I made the method
// createInstance in the automatically generated class
// Setting visible for the package.
instance.createInstance(engine);

}

to the ECNO engine; pressing the “Close window” icon of that window, will
terminate the Worklist GUI and remove it as a engine controller from the
ECNO engine.

5.5.2.5 Configuring ECNO applications

When an ECNO application is started, some engine controllers must be
initially installed with the ECNO engine. We call the initialisation of the
controllers of an ECNO application the configuration of the ECNO appli-
cation. By default, an ECNO application will start up the standard ECNO
GUI, which is an ECNO engine controller. In many cases, however, we need
to install some specific engine controllers for an application. In particular,
this applies when an ECNO application should run with a custom-made
GUI.

In this section, we discuss how to configure an ECNO application. Ac-
tually the way of configuring an ECNO application depends on whether we
run the ECNO application as a Java application or whether we run it as an
Eclipse application.

Configuring Java applications We start explaining how to configure
an ECNO Java application. In this case, the class generated for the in-
stance needs to be modified manually14, adding some code that starts up
and installs the initial engine controllers programmatically.

14In the future, we might introduce a way to do that in a more elegant way. But, since
running ECNO as a Java application will probably be the exception, this does not have
high priority.

126 CHAPTER 5. USING THE ECNO TOOL

In order to explain how to do this, let us have a look at our workers ex-
ample again. Listing 5.7 shows an excerpt of the class SettingWorkersGUI
in the package dk.dtu.imm.se.ecno.examples.workers.instances of
the project dk.dtu.imm.se.ecno.examples.workers.worklistgui. The
class SettingWorkersGUI is manually written, but it is similar to the au-
tomatically generated class Setting from the same package. Listing 5.7
shows the main() method, which is very similar to the one in the automat-
ically generated class Setting; the only difference is in line 8, where the
WorkersGUI is started up instead of the standard ECNOGUI. Note that the
constructor of the class WorkersGUI takes care of registering itself with the
engine; therefore, there is no code in the main() method that would regis-
ter the WorkersGUI with the engine. Note also that we made the private
method createInstance() of the automatically generated class Setting

accessible for the package, so that we could use this method here for actually
creating the setting.

On the side, you can see in line 2 of Listing 5.7 how to obtain an
ECNO model and how to register it with the engine by calling the static
getModel() method of the class WorkerModel, which represents the ECNO
model for workers. Note that this methods is called with an instance of an
engine as a parameter, which makes it possible to use the same model with
different ECNO engines. The relevant ECNO models need to be registered
with the ECNO engine before the actual instance of the model is loaded or
created in the engine.

Configuring an Eclipse applications For ECNO Eclipse applications
the configuration is done in two steps. First, the ECNO application needs to
implement some controller configurator and to register it as an extensions to
Eclipse. Then, the actual configuration is defined in a start configuration as
discussed in Sect. 5.4.1 already – referring to the controller configurator that
was defined in the first step. Here, we discuss how to implement a controller
configurator. Since our workers example is an ECNO Java application only,
we need to use another example here: the Petri net example, in which the
GUI is set up to work with the graphical editor of the Petri net so that the
token game is shown as tokens in the graphical editor, which we had used
in Chapter 2; the use of the example was explained in Sect. 2.1.2.

Here, we use this example to discuss how to implement a controller
configurator, how to plug it in to Eclipse, and how to create a start con-
figuration. The code for this example can be found in the project APetriNet
EditorIn15Minutes.ecno.gui in the only package dk.dtu.imm.se.ecno.
example.petrinets.gui.

Listing 5.8 shows the main part of the implementation of the Petrinet

GUIConfigurator. In order to be used as a controller configurator later,
this class must implement the interface IControllerConfigurator. The

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 127

Listing 5.8: Implementation of the PetrinetGUIConfigurator

public void initializeControllers(ExecutionEngine engine,
ControllerState state) {

this.engine = engine;
if (state instanceof ObjectReference) {

5 EObject object = ((ObjectReference) state).getObject();
if (object instanceof Diagram) {
diagram = (Diagram) object;
EObject element = diagram.getElement();
if (element instanceof PetriNet) {

10 petrinet = (PetriNet) element;
listener = new PetrinetContentListener(engine);
petrinet.eAdapters().add(listener);

}
ResourceSet resourceSet = object.eResource().getResourceSet();

15 IOperationHistory operationHistory = OperationHistoryFactory.
getOperationHistory();

domain = GMFEditingDomainFactory.getInstance().
createEditingDomain(resourceSet, operationHistory);

domain.setID("APetriNetEditorIn15Minutes.diagram.EditingDomain");
20 try {

editor = PetriNetDiagramEditorUtil.
openDiagram(diagram, operationHistory);

} catch (PartInitException e) {
e.printStackTrace();

25 } } }
new ECNOGUI(engine);
engine.addController(this);

}

interface IControllerConfigurator has one method initializeControl

lers(), which takes two parameters: the engine which it is supposed to
configure, and some state object (which is provided by the start configu-
ration and is discuss later). In the implementation of the PetrinetGUI

Configurator, this state object is assumed to refer to the Petri net dia-
gram corrsponding to the underlying Petri net of the simulation, so that
the GUI can be started with this diagram to graphically visualize the token
game.

Basically, programming the set up of the configuration follows the same
structure as we have seen for Java applications. Let us briefly discuss
the method initializeControllers() shown in Listing 5.8. First, the
engine is stored for future reference, since this controller configurator will
later also serve as an engine controller. Then, the state object is extracted,
checked whether it is an ObjectReference which is a type from ECNO,
which allows the state to refer to any other EMF object in any resource.

128 CHAPTER 5. USING THE ECNO TOOL

Then, it is checked, whether this object is a Diagram object, which is a
class from the GMF framework representing diagrams. For this diagram,
the underlying model element is extracted and it is checked whether it is a
Petri net. If it is, a PetrinetContentsListener is installed, which takes
care of adding and removing transitions that are added to or removed from
the diagram also to the ECNO engine, so that the ECNO engine and the
controllers registered with it become aware of these added or removed ele-
ments. The implementation of this class is straight forward, and we do not
discuss this here.

The most important part is starting up the GMF editor with the dia-
gram. In order to integrate the command stack resp. operation history of
the GMF editor with the command stack of the ECNO engine, we need to
properly set up the domain with a specifically created operation history and
then open the diagram, with the PetriNetDiagramEditorUtil, which is a
utility class that was generated by GMF. Note that we also needed to make
some manual changes to the automatically generated GMF editor, since nor-
mally the editor can be opened with an input file only. Here, we start it
directly with a diagram object. But, we do not discuss these details here,
since this is very specific for the GMF technology, which is not our focus
here.

In the end, the default ECNO GUI is instantiated and installed as an
engine controller, and the controller configurator installs itself an engine
controller – implementing the interface IController. Actually, the Petrinet
GUIConfigurator does not do much as an engine controller; the only im-
plemented method is dispose(), which properly takes down the graphical
editor when the ECNO engine is shutting down and removes the listener
from the Petri net. But, we do not discuss the details here either.

In essence, the method initializeControllers() is used to install
some engine controllers on the engine and can start some other parts of the
software, such as the graphical Petri net editor in our case. For properly
doing this, the configurator can also use some additional information, which
is provided in the start configuration; in our example, this is the diagram
for which the graphical editor should be started.

As mentioned before, it depends on the start configuration which con-
troller configurator is used when the ECNO application is started. The
configuration will do this by referring to a unique URI under which the
controller configurator is registered with the Eclipse. To this end, we need
to plug in our PetrinetGUIConfigurator to Eclipse, for which ECNO
provides a specific extension point. As usual in Eclipse, declaring such an
extension is done in the project’s “plugin.xml” file. Listing 5.9 shows the
part of the plugin.xml file in which the class PetrinetGUIConfigurator
is plugged in as a controller configurator extension with the URI APetriNet
EditorIn15Minutes.Simulator.GUI. The class attribute refers to the
class PetrinetGUIConfigurator with its fully qualified name, and the uri

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 129

Listing 5.9: Plugging in PetrinetGUIConfigurator to Eclipse

<extension
point="dk.dtu.imm.se.ecno.eclipse.engine_controller_configurator">

<configurator
class=

5 "dk.dtu.imm.se.ecno.example.petrinets.gui.PetrinetGUIConfigurator"
uri="APetriNetEditorIn15Minutes.Simulator.GUI">

</configurator>
</extension>

Listing 5.10: Start configuration a_net.behaviourstates

<behaviourstates:BehaviourStates
xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xmlns:behaviourstates=
"http://ecno.se.imm.dtu.dk/ecno/save/bahaviourstates">

<states>
<state xsi:type="behaviourstates:DefaultContainer"/>
<element href="a_net.petrinets#/"/>

10 </states>
<controllerConfig uri="APetriNetEditorIn15Minutes.Simulator.GUI">
<state xsi:type="behaviourstates:ObjectReference">
<object href="a_net.petrinets_diagram#_5khEse7qEeK8p9ZDqdJC5A"/>

</state>
15 </controllerConfig>

<packages>PetriNets.ECNO</packages>
</behaviourstates:BehaviourStates>

is the unique URI, we choose for this plugged in controller configurator.

At last, let us have a brief look at how to refer to such a controller
configurator in a start configuration. In Sect. 5.4.1, we have seen already
how to start an ECNO Eclipse application from such an start configuration.
You find examples in the project APetriNetEditorIn15Minutes.runtime
in folder “run”. For example, there is “a net.behaviourstates”. We can start
the application as described earlier in Sect. 5.4.2, by right-clicking on this
start configuration and selecting “ECNO → Start ECNO Engine”.

Here, we have a brief look into this start configuration. The start con-
figuration can be opened and edited in the EMF tree editor. For discussing
the contents of the start configuration, however, it is easier to have a look
at its XML representation, which is shown in Listing 5.10. The first element
refers to the actual Petri net and says that all the elements contained in it

130 CHAPTER 5. USING THE ECNO TOOL

will start in the initial state of the element types behaviour (therefore it is
called a default container). The Petri net that the states element refers to is
the top-level element in the file “a net.petrinets” – the Petri net contained
in the file.

After the states, the controller configurator that should be used for set-
ting up the initial configuration is defined. This refers to the unique URI
APetriNetEditorIn15Minutes.Simulator.GUI of the controller con-
figurator that we have implemented and plugged in above. And the state
object passed to the configurator is the diagram element of the file “a net.
petrinets diagram”. Note that there is a last element in this start con-
figuration, which is called “packages”. This tells the ECNO engine which
ECNO packages it should load – here, the ECNO package for PetriNets is re-
quired. Note that the ECNO code generation will plugin an ECNO package
to Eclipse when the code is generated fully automatically, provided that the
gen model has the attribute “PackageAdapter Factory Class Name” set in
the ECNO gen model. Therefore, we can refer to the packages URI without
explicitly declaring this extension – the ECNO code generator takes care of
that.

If you have a look into the source code of the project APetriNetEditor
In15Minutes.ecno.gui, which we used in this example, you will find two
additional classes: class FireTransitionController and class Petrinet
GUIConfiguratorWithAutoFire. These are not relevant for our discussion
here, but we will use them later for discussing how to automatically fire en-
abled transitions – or more generally, how to automatically execute enabled
interactions, which will be discussed in Sect. 5.5.3

5.5.2.6 Future plans: A DSL for Customized GUI

In the sections above, we have discussed the mechanisms that can be used
for programming specific GUIs for specific ECNO applications; in particu-
lar, we have discussed engine controllers, element controllers, and interaction
listeners as the core mechanisms that can be used for that purpose. Pro-
gramming such GUIs is still a bit technical, but should not be difficult at
all when following the basic principles discussed in this section.

Anyway, the need of programming a GUI seems to be an anachronism, in
particular in the context of the ECNO approach with the focus on modelling
software. Therefore, we plan to implement a notation that will allow us to
model GUIs for ECNO applications from which the program code for the
GUI can then be generated fully automatically. But, this is a long-term plan
since this is not the main concern of the research on ECNO.

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 131

5.5.3 Transactions and automatic controllers

As mentioned earlier, the ECNO engine makes sure that interactions are
computed and executed in a thread-safe way, and controllers computing
interactions are automatically notified, when possible interactions change.
And, as long as all behaviour is coming from the ECNO models, the interac-
tions of an ECNO application are executed in a transactional way (following
the ACID principle as discussed in Sect. 5.5.1). If changes are made from
other parts of the software, some extra measures need to be taken in order
to make sure that transactionality is not compromised.

In this section, we briefly discuss how other parts of the software can
make changes in such a way that transactionality of the interactions and
the other changes are maintained. Moreover, we discuss how to implement
element controllers that automatically execute an interaction on an element,
when it becomes enabled.

5.5.3.1 Transaction management

An ECNO application will smoothly work together with other software
which makes its changes on the objects underlying the ECNO application
directly – without using the ECNO framework. All ECNO controllers will be
properly updated when possible interactions change15 due to such changes.
In order to obtain transactionality, however, changes made outside an inter-
action need to be explicitly made transactions.

To this end, the ECNO engine is run with a transaction manager; the
type of the transaction manager depends on the configuration of the ECNO
engine. The transaction manager, can be obtained from the running ECNO
engine and can then be used for starting and finishing a transaction. And the
transaction can, dependent on the type of the transaction manager, be used
to lock all the elements that are used and changed within the cope of the
transaction. Up to now, the ECNO engine runs with a default transaction
manager which uses a very simple locking mechanism.

In the following, we discuss the main functions for obtaining and using
the transaction manager of the ECNO engine:

• Form an ECNO engine, its TransactionManager can be obtained
by calling engine.getTransactionManager().

• A transactionManager obtained this way can then be used to create
a new transaction by transaction = transactionManager.start

Transaction();

• It depends on the configuration of the engine, which kind of transaction
is returned. In the standard configuration, the transaction is of

15Actually, this depends a bit on the on the underlying OO-technology. But for EMF,
the updates are fully supported.

132 CHAPTER 5. USING THE ECNO TOOL

kind LockingTransaction. In that case, by casting the transaction
to LockingTransaction can be used to lock some objects by calling
transaction.lock(objects), where objects is the Set of objects to
be locked. For a LockingTransaction, all objects that are involved
(read and write) during the transaction must be locked in a single go
before the actual changes are made.

• After the transaction is started and the involved objects are locked,
the programme can make any change on the locked objects. Once
all changes are made, the transaction should be terminated by calling
transactionManager.stopTransaction(transaction).

Note that the transaction manager might raise some exceptions, when
the engine is terminated while a transaction is still running. And the lock
operation might cause the current thread to wait until the locks for all the re-
quired objects could be acquired. The default locking transactions will raise
an exception if the lock() operation is called twice for the same transac-
tion. The locking mechanism will, however, never block the system forever,
if the application makes sure that all transactions that have acquired a lock
will eventually be stopped as discussed above. Generally, it is recommended
that transactions should run fast, once the locks are acquired.

Up to now, the ECNO framework provides this simple transaction man-
ager only. This is mostly used as a proof of concept and for completeness
sake. In the future, the ECNO framework might be equipped with some
more advanced and flexible transaction managers – driven by concrete needs
for some applications.

Note that it is recommended to use transactions for all kinds of changes
that are made outside interactions, even when the application itself does not
require transactional execution. The reason for this recommendation are
efficiency considerations: any individual change of some element for which
some controllers are installed might cause the re-computation of all possible
interactions in which this element might be involved; this causes a lot of
computations for every single change of an object; if these changes are made
under the control of a transaction, the possible interactions are re-computed
only once, viz. when the transaction is finished after all the changes have
been made. This can reduce the number of necessary re-computations of
possible interactions significantly and, this way, performance is increased.

5.5.3.2 Automatic execution of interactions

Next, we briefly show how to implement an element controller that auto-
matically executes interactions once they become enabled. To this end, we
continue our Petri net example and add an element controller that auto-
matically fires an enabled transition with some random delay (with nega-

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 133

tive exponential distribution16). The code for this example can be found in
the package dk.dtu.imm.se.ecno.examples.workers.instances of the
project dk.dtu.imm.se.ecno.examples.workers.worklistgui. Here
we discuss the element controller FireTransitionController, which is
responsible for computing the enabled interactions and for executing them.
This element controller is automatically installed for each transition by the
engine controller PetrinetGUIConfiguratorWithAutoFire, which also is
a controller configurator. But we do not discuss the class PetrinetGUI

ConfiguratorWithAutoFire here, since we have discussed engine con-
trollers and controller configurators in Sect. 5.5.2 already.

Listing 5.11 shows the main parts of the FireTransitionController,
which is the element controller for transitions and responsible for computing
and initiating the execution of possible interactions for fire events on transi-
tions. This controller is instantiated with the execution engine, a transition
and the event type as a parameter – in our example the event type will be
the fire event. Most of the behaviour of this element controller is inherited
from the ElementEventController from the ECNO framework. The only
change is overriding the setEnabled() method. If this method is called
with the enabled parameter set to true, the corresponding interaction is
obtained – by an attribute from the super class ElementEventController;
if the interaction is not null, a thread is created in which this interaction
will eventually be executed. This thread is called FireTransitionThread

and is discussed below; it takes three parameters: the engine, the interaction,
and the firing rate (number of executions per second, here we choose rate
1.0/s). Note that it is very important not to call interaction.execute()
directly in the setEnabled() method of the element controller since this
would result in an infinite loop of updating interactions and executing them.
So, even if the interaction is supposed to be executed immediately, this exe-
cution must be delegated to another thread – either a newly created one or
some worker thread17. After creating the new thread, the thread is started
right away.

Listing 5.12 shows the implementation of the class FireTransition

Thread. The constructor is used only for storing the thread’s parameters,
the engine, the interaction, as well as the execution rate. The main part of

16We use (negative) exponential distribution since it is memoryless. Though this does
not matter too much for our toy simulator, being memoryless has a theoretically appealing
property: The ECNO framework sometimes invalidates interactions that actually are still
valid; in that case, a completely identical interaction is computed again, and our controller
will start its execution with a random delay again. Since the distribution for the execution
delay is memoryless, it does not make any difference that we recompute an identical
interaction and start it with a random delay again.

17Note that we chose to create a new thread for each interaction in this implementation.
This is not very inefficient, but it makes the code simpler and easier to explain. In realistic
applications, you would probably delegate this to a fixed set of worker threads. But, since
this is standard thread programming, we do not discuss this in more detail here.

134 CHAPTER 5. USING THE ECNO TOOL

Listing 5.11: Element controller FireTransitionController

public class FireTransitionController extends ElementEventController {

public FireTransitionController(ExecutionEngine engine,
Transition transition,

5 IEventType eventType) {
super(engine, transition, eventType);

}

@Override
10 protected void setEnabled(boolean enabled) {

if (enabled) {
Interaction interaction = this.interaction;
if (interaction != null) {
// NOTE: By now means call interaction.execute() here!!

15 // We start a thread in which the execution is done instead:
Thread thread =
new FireTransitionThread(engine, interaction, 1.0);

thread.start();
} } }

20

}

the implementation is in the run() method. First of all, the random delay
in milliseconds is computed using the (negative) exponential distribution for
the given rate. Then, the thread sleeps for the computed delay. Note that
due to concurrent user operations or due to other transitions firing auto-
matically in the meantime, it might be that the interaction associated with
the thread is no longer valid, when the thread wakes up again; it might even
happen that the ECNO engine is no longer running at that time. Therefore,
we first check for that. Only if the engine is still running and the interac-
tion is still valid, the thread issues the execution of the interaction. Note
that even though enabledness of the interaction was checked already, due
to concurrent threads, the current interaction might be invalidated before it
actually is executed – or the engine might be stopped before the execution –
in which case calling the execute method will raise an exception. Therefore,
we need to catch the respective exception. Independently of whether the
interaction was executed or not, the thread terminates.

Note that we do not need to take any other measures concerning multi-
threaded execution since the execution of interactions is implemented in a
thread-safe way in the ECNO engine – as discussed in Sect. 5.5.1.

Altogether, automatically executing enabled interactions is quite easy: in
the setEnabled() method of the respective element controller, schedule the
execution of the computed interaction. The most important issue is that the

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 135

Listing 5.12: Firing thread FireTransitionThread

private class FireTransitionThread extends Thread{

private ExecutionEngine engine;
private Interaction interaction;

5 private double rate;

FireTransitionThread(ExecutionEngine engine,
Interaction interaction,
double rate) {

10 this.engine = engine;
this.interaction = interaction;
this.rate = rate;

}

15 public void run() {
double random = Math.random();
long delay = (long) (-1000 * (Math.log(1-random) / rate));
try {
sleep(delay);

20 } catch (InterruptedException e) {}

if (!engine.isExiting() && interaction.isValid()) {
try {
interaction.execute();

25 } catch (InvalidStateException e) {}
} } }

136 CHAPTER 5. USING THE ECNO TOOL

interaction must not be directly executed in the element controller by which
it was computed – this would result in an infinite recursion. The execution of
the interaction must be delegated to another independent thread. Of course,
it is not necessary to create a new thread for each possible interaction – we
created a new thread for each new interaction for simplicity only.

5.5.4 Advanced features

In the sections above, we have discussed the main features of the ECNO
Programming Framework only. Actually, there are many more features and
some pipes and whistles that could be used for tuning and improving ECNO
applications. In order not to loose focus, we do not go into more technical
details. Instead, we briefly name two important features of ECNO, which
are actually at its core. But, we do not go into details here. This overview
should provide a starting point for further investigations only.

5.5.4.1 Package adapters

From an ECNO package with its coordination diagrams and ECNO nets
for the different elements, the ECNO code generator, generates a so-called
package adapter, which is then used by the ECNO engine for executing the
defined behaviour. These package adapters make it possible to use ECNO
with virtually any object-oriented technology – the ECNO engine just needs
an adapter to look up the information for the coordination and the local
behaviours. We did not discuss any details of these package adapters yet,
because they work behind the scenes as long as we stick to EMF-models as
the underlying object-oriented technology.

Actually, the package adapter is defined as an interface IPackageAdapter
in the core project of ECNO dk.dtu.imm.se.ecno.core, which is com-
pletely independent of EMF and even independent of Eclipse. It basically
has methods that, for a given object, allow to determine its ECNO element
type, to create an object that represents the element’s local behaviour when
the element is encountered by the ECNO engine for the first time, and a
method to compute the set of objects an element is linked to with respect
to a reference in a given situation. Moreover, it allows to create event in-
stances for the event types of that package – with the respective values for
the event’s parameters.

In addition, the package adapter gives access to the element and event
types that are defined in the respective ECNO package. This representation,
basically, follows the meta model of ECNO, which is discussed in Sect. 5.6.

Typically, these package adapters would be generated automatically for
some specific underlying object-oriented technology. By default, ECNO
supports the EMF technology. But, such a package adapter can also be
programmed manually – we used that in the very early stages during the

5.5. PROGRAMMING WITH THE ECNO FRAMEWORK 137

development of the ECNO engine.

5.5.4.2 Programming local behaviour

As discussed above, the package adapter must be able to create an object
that represents the local behaviour of an element. This object must imple-
ment the interface IElementBehaviour from the ECNO core. Basically,
this behaviour object says in any given situation, which IChoice would
be possible for that element, where the choice defines which events are in-
volved and which changes would be made when the choice is taken. Due
to behaviour inheritance, however, the details are a bit more involved – a
choice of an element would be a a list of choices for each element type on
the element’s type hierarchy.

In practice, we would probably not want to program the local behaviour
for an element type manually. But, this interface allows us to use other
notations than ECNO nets for modelling local behaviour, if we want to –
for people who are not so fond of Petri nets, for example.

5.5.4.3 Wrapping the execution of interactions

In the context of some existing applications, it is sometimes necessary, to
wrap the execution of an interaction in order to do some preparations or
maintenance work before and after the execution of the interaction by the
engine. To this end, the engine allows to register factories that wrap the
execution of an interaction into an IInteractionExecutionCommand. It
is even possible to wrap the execution of the interaction several times for
different purposes.

Actually, the ECNO Framework uses these wrappers for its own purposes
already. For example, ECNO’s transaction mechanism is implemented this
way; and also the undo and redo mechanism for ECNO Eclipse applications
is realized by using wrappers – the execution of an interaction is wrapped
into a so-called recording command.

This way, it is possible to use the ECNO engine in a completely different
transactional framework or to add some new functionality to the execution
of interactions. Using these wrapper factories, would of course require some
more detailed understanding of the wrapping mechanisms and the order in
which ECNO applies its wrappers for achieving transactionality.

Up to now, the ECNO engine implements a basic and very simple frame-
work for wrapping the execution of interactions, the design of which was
driven by the needs of the ECNO framework itself. For some more so-
phisticated applications some additional functionality for the wrapping of
commands might be needed. But, this will be added to the ECNO engine
when the resp. needs arise.

138 CHAPTER 5. USING THE ECNO TOOL

5.6 ECNO meta model

At last, we make the concepts of ECNO’s coordination diagrams a bit more
explicit by presenting and briefly discussing the meta model of coordination
diagrams. This meta model is defined by a set of Java interface in the
package dk.dtu.imm.se.ecno.core of the ECNO project dk.dtu.imm.

se.ecno.core.

Here, we actually do not discuss these interfaces, but we discuss an im-
plementation of these interfaces, which uses EMF as its underlying object-
oriented technology. This has several reasons: First and foremost, we can
represent this meta model as an Ecore diagram; second, the structure of the
EMF implementation is only a mild variation from the actual meta model
as defined by the Java interfaces; third, the EMF implementation of co-
ordination diagrams serves as a reference implementation of coordination
diagrams; and lastly, the Ecore model for coordination diagram explicitly
establishes the relation of the ECNO concepts to the concepts of the under-
lying object-oriented technology, the Ecore meta model itself.

Figure 5.3 shows the meta model of ECNO coordination diagrams in
magenta, and relates it to the concepts from the Ecore model (marked with
“from ecore” and shown in yellow). This meta model can be found in the
folder model in the ECNO project dk.dtu.imm.se.ecno.model.

The main concepts are the ElementType, which contains Coordination
Sets, which in turn are associated with a set of Synchronisations. The
Synchronisation itself, however, is a part of the Reference, which is
associated with the ElementType.

The ElementTypes are contained in a Package; the class Package is,
actually, a minor deviation from the core model, where this class is called
Namespace. The Package (or Namespace) contains also the EventTypes
and EventTypeExtensions with their respective FormalParameters.

ElementTypes, EventTypes and EventTypeExtensions can be derived
from other types, which is reflected by the feature super. As you might
remember, ECNO allows multiple inheritance on EventTypeExtensions

and each extended type is referred to by a name; therefore, the feature
super is actually a qualified association. Since qualified associations are
not an explicit concept of Ecore, this is represented by a standard pattern
for modelling qualified associations in Ecore by using Mappings, which we
do not discuss in detail here. Basically, the qualified association from the
EventTypeExtension to itself is represented by the reference with name
super to class String2EventTypeExtensionMap, where the attribute key

is the qualifying attribute; the reference value points to the target of the
qualified association.

Note that there is also a concept of ImportedType in this model. This is
specific to the EMF implementation of coordination diagrams. This allows
referring to types of other ECNO packages even when they use different

5.6. ECNO META MODEL 139

Figure 5.3: Meta model for coordination diagrams (EMF implementation)

140 CHAPTER 5. USING THE ECNO TOOL

underlying object-oriented technologies. The way the import mechanism
is realized is left to the implementation, however. Therefore, we do not
discuss this further here. In case of an import from a package from the
EMF implementation, an import can be realized simply by referring to the
resp. type in the other package (in which case the name of the type and the
package URI can automatically be derived). In case of other technologies,
the package URI and the name of the type must be set manually.

Note that, in the EMF implementation of coordination diagrams, Event
Types and EventTypeExtensions appear not to have anything in com-
mon. In the underlying core model, however, both are derived from so-called
EventKinds.

Chapter 6

More examples

In this chapter, we discuss two additional examples of ECNO applications
in order to provide some more insights into the characteristics and the mod-
elling power of ECNO.

The first example is an ECNO model of so-called signal-event nets [50,
15], which are an extended form of P/T-systems. The main purpose of this
example is to show that the definition of the semantics of S/E-nets in terms
of ECNO is a straight forward extension of the ECNO semantics for P/T-
systems. The discussion of the ECNO model is based on an article in the
Peri Net Newsletter [34].

The second example is an ECNO model of a workflow engine. The code
generated from these models – together with a manually implemented GUI
for a worklist – allows enacting workflow models, which consist of models
concerning different aspects of the workflow. This example should demon-
strated that ECNO allows modelling larger scale software and to automati-
cally generate code from it. This workflow engine is the result of a master’s
project of Jesper Jepsen [26]. The main purpose of this project was a first
evaluation of ECNO with a larger example; but the workflow engine might
be considered as a contribution in its own right. Actually, this example also
closes the circle: the modelling concepts of ECNO were very much inspired
by some ad hoc modelling concepts and ideas that we had used in AMFIBIA
[1, 2] for capturing the essence of business process modelling concepts (see
discussion in as discussed in Sect. 1.4); in the ECNO workflow engine, we
used ECNO to rephrase the ideas of AMFIBIA again.

By contrast to the examples that we had discussed in the earlier chapters,
the discussion in this chapter will not go into all modelling details anymore.

6.1 An ECNO semantics for signal-event nets

Signal-event nets (SE-nets) are an extended form of Place/Transition sys-
tems (P/T-Systems), which we discussed in Sect. 2.1 already. The major

141

142 CHAPTER 6. MORE EXAMPLES

syntactical difference between SE-nets and P/T-systems is that, in SE-nets,
there may be arcs between transitions, which are called signal arcs [50, 15].

The meaning of these signal arcs is the following: If there is a signal arc
from some transition t1 to transition t2 and transition t1 fires and t2 can fire
together with t1, then t2 is supposed to fire synchronously together with t2;
if t2, however, is not enabled together with t2 in the current marking, t1 can
fire without t2. It would, however, be okay if t2 fired on its own (i. e. without
t1 firing) provided that there is no signal arc from t2 to t1. Of course, there
are some subtle issues when both transitions, t1 and t2, can fire in a given
marking, but not both can fire together. Things get even more involved in
case of chains of signal arcs, and even more involved when there are cycles
of signal arcs (see [50, 15]).

Fortunately, we do not need to dive into this here. It is enough for us to
formulate the rule above that t2 needs to fire together with t1, if t2 is enabled
together with t1. All the subtleties will be taken care of by the semantics
for P/T-systems that we had defined earlier already (see Sect. 2.1.3.2 and
Fig. 2.4 on page 33). Therefore, we discuss only those parts of the coordi-
nation diagram that change – the local behaviour for the elements does not
need to be changed at all. Figure 6.1 shows the part of the coordination
diagram that needs to be changed in order to cover the semantics of SE-nets.
The two references from the Arc to the right indicate that these references
to Place and their coordination annotations do not change as compared to
the diagram from Fig. 2.4. Only the Transition and Arc are affected. These
changes are discussed below.

Figure 6.1: Coordination diagram: Global behaviour of SE-nets

The most important change is that, now, the event fire is propagated to
all the out-going Arcs, and the Arc has coordination sets for the fire event
now. Actually, there are two coordination sets, one with standard priority
(which is 0) and one with priority −1. The coordination set with standard
priority requires that all transitions1 to which the arc points to participate

1Note that the the associated coordination annotation is quantified with ALL; since each
arc always has one target, this coordination annotation requires that “the” transition the
arc points to participates in the fire event.

6.2. WORKFLOW ENGINE 143

in the fire event too. The two coordination annotations concerning event
fire between the Transition and Arc together, actually reflect the rule that
transition t2 should fire together with t1, if t2 is enabled and when t1 fires.
The coordination set with priority −1 takes care of the situation that t2
could not fire together with t1. Since this coordination set has no coordi-
nation annotations attached, the fire even is not propagated at all. But,
this coordination needs to have lower priority, since otherwise an enabled t2
would not be forced to fire together with t1.

Altogether, this shows that a minor twist (see the minor difference be-
tween Fig. 2.4 and Fig. 6.1) can take care of capturing the semantics of
SE-nets as well. Moreover, this is our first example where priority of co-
ordination nets come into play – without giving the empty coordination
set for event fire lower priority, we would not enforce an enabled t2 to fire
together with t1. They could fire together or not – the choice would be non-
deterministic (erratic), which would not correspond to the actual semantics
of SE-nets.

6.2 Workflow engine

All examples that we discussed in this report up to now, are relatively small
and simple. They are well-suited to discuss the principles of ECNO and to
convey the essence of ECNO and its use. In order to evaluate ECNO in a
more realistic setting, we need to consider more realistic systems. To this
end, Jesper Jepsen set out to develop a workflow engine based on ECNO in
his master’s project [26]. We discuss the main idea of the ECNO models
underlying this workflow engine in this section.

6.2.1 AMFIBIA: A recapitulation

The workflow engine developed by Jesper Jepsen is based on the ideas and
concepts of AMFIBIA [1, 2], which – as mentioned in Sect. 1.4 already
– in turn has strongly inspired the development and concepts of ECNO.
Therefore, we briefly recapitulate the concepts of AMFIBIA in this section
first.

AMFIBIA is an acronym for A Meta-Model for Integrating Business Pro-
cess Modelling Aspects. AMFIBIA set out to identify the main concepts of
business process models independently from any specific modelling nota-
tion, and without a focus on or bias towards any specific aspect of business
process modelling, such as control, information or organisation. Actually,
AMFIBIA is open for adding new aspects, if need should be. AMFIBIA cap-
tures the concepts of business process models and their relation by a bunch
of class diagram. This can, basically, be considered as an ontology of the
concepts of business process models. But, AMFIBIA went one step further

144 CHAPTER 6. MORE EXAMPLES

in that it not only provides terminology, but also defines the behaviour of
the concepts. To this end, AMFIBIA followed the following steps:

• AMFIBIA does not only define the concepts of business process mod-
els; it also defines the concepts for their execution, i. e. it defines an
instance or a runtime model.

• AMFIBIA makes explicit which kind of events in general take place
when executing a process, such as initiating a new instance of a process
(which we call case), starting a task of a process in a case (which we
call activity), finishing an activity, finishing a case, and some more.

• AMFIBIA defines when which kind of event is allowed to happen, and
who needs to be involved in these events.

If this sounds familiar, this is not a coincidence: ECNO is made for
modelling these kind of things. At the time, AMFIBIA had used its own
ad hoc notation, which had limited expressiveness, and some some parts of
the models needed to be manually implemented in the end. Anyway, there
was a prototype implementation of a workflow engine based on AMFIBIA
– which was developed by a group of eight master students over a year –
amounting to an effort of about four person years.

We do not go into the details of the models of AMFIBIA here, since the
essence of these models is captured in the ECNO models now, some of which
are discussed in the next section.

6.2.2 ECNO models of the worklfow engine

In this section, we give an overview and an idea of the ECNO models of
Jesper Jepsens master’s project [26]. Note that this is an overview only,
and that we discuss the most relevant excerpts of these models only. The
ECNO Workflow Engine and all its models are deployed together with the
ECNO Tool, so that you can have a look at the actual the models and
all their details yourself. You will find them in the “model” folder of the
project dk.dtu.imm.se.ecno.workflow.engine2. Note that the models
that are shown and discussed here are slightly adjusted and split up into
different diagram in order to make it easier to discuss and understand them.
In the project, there is a single monolithic coordination diagram only (see
discussion in Sect. 6.2.5.2).

6.2.2.1 Core model

We start with discussing the core concepts of business process models and
their behaviour in this section. These concepts are independent from the

2Remember that you can import this project to the workspace by opening the Eclipse
“Plug-Ins” viewer, selecting the project and choosing “Import As” → “Source Project”.

6.2. WORKFLOW ENGINE 145

different aspects of business process models and independent from the for-
malisms implementing the modelling notation for the different aspects. This
was actually the driving force and the spirit of AMFIBIA [1, 2].

Figure 6.2 shows the class diagram with the core concepts of ECNO. The
most important concepts are shown in the two rows at the bottom (shaded in
light yellow). The two top rows (shaded in grey), show some more technical
infrastructure, which allows us structuring, and accessing business process
models and their different aspects, registering them with the engine, and
maintaining their runtime information. In our discussion, we focus on the
concepts at the bottom. Actually, the diagram is also split vertically: the
left-hand side, shows the concepts of the business process models (modelling
time); the right-hand side shows the concepts of instances of business pro-
cesses (runtime). Having meta models for the modelling concepts for BPM
as well as for the runtime information on the one-hand side, and clearly
separating the runtime information from the model on the other-hand side,
is one of the main principles that werw introduced by AMFIBIA already;
note that the runtime information refers to the information of the models,
but not the other way round. The process models “do not know” which
instances of them are running, but instances “know” the modelling concepts
they are an instance of.

At the heart of AMFIBIA and also the ECNO workflow engine are the
four concepts Process, Task, Case, and Activity, where Case represents one
running instance of a Process (indicated by the respective reference process)
and Activity represents one running instance of a Task (indicated by the
respective reference task). On the modelling side, the main concepts are
processes and tasks: a business process model may consist of any number of
tasks, which, at runtime, are reflected by cases and their activities.

Note that the core concepts do not yet represent in which order the
tasks (or actually the corresponding activities) are supposed to be executed
in the respective instances of a process (which we call cases). Neither do the
core concepts represents who is allowed to initiate or execute activities, or
which data are needed for or are produced by the activities. All this will be
represented by models that represent different aspects of a business process.
In the ECNO workflow engine, the three main aspects from AMFIBIA are
covered: control, organisation, and information. We discuss the concepts
for some of these aspects later in Sect. 6.2.2.2.

The core concepts do not cover any concrete aspect yet. But, they
provide the infrastructure so that a Process can consists of different parts
that represent the concepts concerning the aspects – in the models as well as
at runtime. The respective concepts are shown in the the left-most column
concerning models, and in the right-most column concerning the runtime
information for the running instances: a process model refers to the models
for the different aspects; likewise the case and the activity contains the
runtime information for the different aspects. Note again, that the runtime

146 CHAPTER 6. MORE EXAMPLES

F
igu

re
6.2:

B
P

M
:

C
ore

con
cep

ts

6.2. WORKFLOW ENGINE 147

information can refers to the models, but not the other way round.
Note also that all the concepts for aspects are interfaces only. This means

that specific concrete versions of them need to be defined when defining an
aspect. We come back to this later in Sect. 6.2.2.2.

Now, let us have a brief look at the behaviour concerning the core con-
cepts. Figure 6.3 shows the coordination diagram for the core elements. This
diagram defines the event type CreateCase for creating a new instance of a
process, which is a Case for the respective process; moreover, the diagram
defines the event types StartActivity and FinishActivity, which represent start-
ing and finishing an activity within a process resp. case. Note that there is
a slight asymmetry between the event types StartActivity and FinishActivity:
StartActivity is triggered from a Case, whereas FinishActivity is triggered from
the Activity itself. The reason is that, when starting an activity, the activity
does not exist yet; therefore, it needs to be created from somewhere else: the
Case. The Activity can, however, take responsibility for its own termination.
Note that the event CreateCase is dealt with in a slightly different way – the
Case, actually, seems to trigger itself. This is a minor modelling trick: the
workflow engine always keeps one fresh instance of a case for each process
ready, which is activated when the initial activity of the case is started; the
StartActivity will then by synchronized with the CreateCase event, which in
turn will initialize this case and create another fresh instance of a case for
that process for the next case to be started. Conceptually, this reflects the
fact that starting one of the initial activities of a case, actually, starts the
case.

The coordination diagram of Fig. 6.3 also shows the coordinations con-
cerning these event types, most of which are straight-forward. The most
important part is in the runtime part: the StartActivity and FinishActivity
require all the aspects of the respective concept to participate in that event.
This way, the coordination makes sure that activities are started and fin-
ished only when all aspects are ready for that (for example, an activity can
be started only when the control allows to start it, all the data are ready,
and there is an agent who is allowed to perform this activity).

Most of the life-cycles of the core concepts are trivial – meaning that
all events are possible anytime (there are some minor twists, though which
we do not discuss here). The only interesting local behaviour is the one for
Case and Activity, which are shown in Fig. 6.4 and Fig. 6.5, respectively.

We start discussing the life-cycle of the Case (see Fig. 6.4). Remember
that there is always one fresh case, which is ready for being activated by
starting one of its initial activities. This case will be activated by a Cre-
ateCase event, which actually is jointly executed together (synchronized)
with a StartActivity, which starts the first activity of the case at the same
time. After that, the Case can participate in further StartActivity events
without synchronizing it with another CreateCase event. In a running case,
StartActivity events can happen as long as the case is not finished, which is

148 CHAPTER 6. MORE EXAMPLES

F
igu

re
6.3:

B
P

M
:

C
o
ord

in
ation

d
iagram

(core)

6.2. WORKFLOW ENGINE 149

Figure 6.4: BPM: local behaviour of Case

represented by an additional condition. Actually, the termination of a case
could have been made an explicit part of the life-cycle with a FinishCase
event executed together with a finishing activity. But, the current model
does not do that.

The notation used for the ECNO net in Fig. 6.4 and all other ECNO
nets of this example might be a bit unfamiliar. The reason is that we
show the exact version of the ECNO nets of the master thesis, which uses
an outdated notation3 for assigning parameters to events. This notation
exploits the order of the parameters of the event (instead of referring to the
parameters by name); the keyword none as an expression for a parameter
indicates, that no parameter is assigned to the respective parameter.

Figure 6.5 shows the life-cycle of the Activity. This is almost trivial,
making sure that every activity can finish only once.

6.2.2.2 Models for aspects

Next, we discuss some of the models concerning the different aspects of busi-
ness processes. Note that we restrict this discussion to the control aspect,

3The current version of the ECNO tool works with both notation, but the outdated
one used here might eventually be phased out. With inheritance on events, the order of
parameters might change when other packages with events from which this event is inher-
iting changes; resulting in unforeseen effects in completely unrelated packages. Therefore,
the current version of ECNO nets refers to the parameters explicitly by their names.
And parameters not assigned do not need to mentioned, which makes ECNO nets more
readable.

Figure 6.5: BPM: local behaviour of Activity

150 CHAPTER 6. MORE EXAMPLES

and a part of the organisation aspect. The ECNO workflow engine covers
the information aspect too, but we do not discuss this aspect here.

We start with the discussion of the control aspect as well as one formalism
for modelling the control aspect of business processes: Petri nets. Note that
AMFIBIA set out to separate the concepts of an aspect from the realization
of these concepts in a concrete modelling notation. Anyway, we discuss the
control aspect together with the concrete modelling notation here.

Figure 6.6 shows the general concepts of the control aspect as well as how
these concepts can be captured by the Petri nets formalism – actually by
workflow nets [56, 54]. The classes in the top row (in light yellow) represent
the concepts from the core model as seen in Fig. 6.2 again. The classes
in the two rows below (in light blue) represent the general concepts of the
control aspect, and the classes below that (in magenta) show the concepts
of Petri nets implementing the concepts of the control aspect. Like before,
the classes on the left-hand side represent the modelling concepts, whereas
the classes on the right-hand side represent the runtime concepts.

The class TaskC represents the control aspect of a TaskAspect, which in
Petri nets is realized as a Transition. On the runtime side, the class ActivityC
represents an ActivityAspect from the control point of view, which in turn
refers to the control aspect of the case CaseC. The most important part of
the control aspect is that a case has a concept of a State, which – as we
will see later – determines which activities are possible to be started in the
current situtation. In Petri nets, the State is realized as a Marking, which is
represented by a set of tokens associated with some places of the Petri net.
The model for Petri net roughly resembles the model of Petri nets that we
had seen in Chapter 2 in Fig. 2.3 on page 31 – admittedly, it is a bit more
ad hoc. The most important difference is that tokens are not contained
in places anymore: tokens are contained in a marking, where the tokens
refer to the places they belong to. The reason for detaching tokens from
places in this model is that tokens represent runtime information, which the
actual model should not know about. This leaves the question of how the
initial marking of the Petri net is represented in the model itself. To this
end, we exploit a speciality of workflow nets: they always start in a specific
marking. So, the model does not need to represent the initial marking; we
just need to represent the start place and the finish place of the net by
resp. references from the PetriNet4. Transitions enabled when a single token
is added to the start place correspond to the initial task of a process, which
implicitly starts the process (as discussed earlier).

The more interesting part of the models for the control aspect concern the
behaviour at runtime. The corresponding coordination diagram is shown in
Fig. 6.7. Starting an activity requires the control aspect of the case (CaseC)

4In workflow nets, the start place is often called i and the finish place is called o. But,
in our meta model of workflow nets, the start and finish places are made explicit.

6.2. WORKFLOW ENGINE 151

F
ig

u
re

6
.6

:
B

P
M

:
C

on
ce

p
ts

fo
r

co
n
tr

ol
an

d
P

et
ri

n
et

fo
rm

al
is

m

152 CHAPTER 6. MORE EXAMPLES

Figure 6.7: BPM: Coordination diagram for the control aspect

6.2. WORKFLOW ENGINE 153

to coordinate the event StartActivity with its State – which requires a syn-
chronisation with another event StartActivityC, which represents the control
aspect of the event StartActivity5. The state in turn requires the model for
the control aspect – in our case the Petri net – to participate in the Star-
tActivityC, which requires a Remove event on a Transition to be part of the
coordination. The Remove event is used and handled in a similar way to
the Petri net example that we had discussed in Sect. 2.1.3.2. Note that
in contrast to the original semantics of Petri nets which fires a transition
instantaneously, workflow nets are executed in two steps: Starting the activ-
ity removes the tokens from the input places, whereas finishing the activity
adds the tokens to the output places.

The start of an activity needs to be issued from the case since an instance
of the activity is created only upon starting it. By contrast, the activity can
take care of its own termination. The ActivityC coordinates a FinishActivityC
event with the respective transition, which in turn coordinates it with an
Add event which adds all the tokens to the postset of the transition – similar
to the Petri net semantics that we had discussed earlier.

The only interesting local behaviour is in the life-cycles of the objects of
the Petri net. Since these are similar to the ones discussed in Sect. 2.1.3.2,
we do not discuss them here. All the other local behaviours are quite sim-
ple. Most importantly they synchronize the StartActivity event with the,
StartActivityC, and likewise the FinishActivity event with the, FinishActivityC
event.

Next, let us have a brief look at the organisation aspect. Since the struc-
tural models are quite straight-forward, we discuss the coordination diagram
for this aspect right away. Figure 6.8 shows the coordination diagram for the
organisation aspect. Basically, the organisation aspect for the case CaseO
delegates the StartActivity event to one of the (possibly) involved Agents;
likewise the organisation aspect of an activity ActivityO delegates the Fin-
ishActivity event to the Agent to which this activity was assigned.

The ECNO net for the life-cycle of the Agent is shown in Fig. 6.9. From
the organisation point of view, an agent can start any activity as long as it
does so on its own behalf, and the organisation model allows the agent to
do so, which is represented by the additional conditions.

6.2.3 Worklist GUI

The purpose of a workflow engine is to enact the processes, and allow the
agents to see the activities they could participate in, and to initiate and
finish them. Concerning the information aspect, the agents should also be

5At the time when Jesper Jepsen developed the ECNO workflow engine, not all con-
cepts of ECNO had been implemented yet – in particular event extensions were not sup-
ported. With event extensions, we would not use two independet event types any more
and synchronize them. We would make StartActivityC an extension of StartActivity.

154 CHAPTER 6. MORE EXAMPLES

Figure 6.8: BPM: Coordination diagram for organisation

Figure 6.9: BPM: local behaviour of Agent

6.2. WORKFLOW ENGINE 155

able to add new documents and change some information of an activity in
which they are involved.

In order to allow the agents to do this, the ECNO workflow engine
comes with a GUI. This GUI was implemented manually, using the ECNO
framework for implementing such GUIs as discussed in Sect. 5.3. We do
not discuss this implementation here. The source code can be found in the
package coded.gui folder of the project dk.dtu.imm.se.ecno.workflow.
engine.

In the next section, you can find some screenshots of that GUI when
we discuss how some example workflows can be enacted with the ECNO
workflow engine.

6.2.4 Enacting the example processes

In this section, we give a feeling on how the ECNO workflow engine can
be used. This is not so much meant as a user manual – after all, this is a
prototype only. But, it is meant to better understand, which functionality
is covered by the ECNO models and the workflow engine generated from
them.

6.2.4.1 Example process

To this end, we need to have some example processes. Since the focus of
Jesper Jepsen’s project was on the workflow engine and not on the editors,
there are no graphical editors for the different workflow models yet; the
models deployed together with the ECNO workflow engine are in abstract
syntax only – created by the default EMF tree editors. You will find them in
the “example” folder of project dk.dtu.imm.se.ecno.workflow.example.
For discussing these models here, we use an ad hoc graphical syntax.

This example consists of two processes, but we discuss only one of these
processes here: a process for ordering a book from some online book shop.
Figure 6.10 shows the workflow net of that process. Initially, a customer can
“Place a New Order” for a book, which is then processed (“Take Order”);
depending on the outcome of “Take Order”, the book shop needs to order the
book from a some supplier (“Back Order”), or the book can be “Shipped”
right a away; in case of the payment information being invalid, the book
shop might “Reject” the order. In the end, the customer can “Check the
Receipt”. All the time, while the case is not finished yet, the customer can
“Track” the status of the placed order.

When discussing the workflow net above, we mentioned already who
would be involved in which task – even though the model for the control
aspect does not cover that at all. This part is defined in the organisation
aspect. We discuss the organisation aspect of that process together with the
information aspect, which are shown in Fig. 6.11.

156 CHAPTER 6. MORE EXAMPLES

The labels “Customer”, “Librarian”, “Buyer”, “Accountant”, “Shipping
Agent” attached to the different task, specify who is allowed to do these
tasks. These labels represent the roles of agents that are supposed to take
this task; as part of the runtime configuration, the organisation aspect de-
fines which agent may act in which roles. In our example configuration, Jack
is a “Customer”, Ellen is a “Librarian”, Tom and Tim are “Buyers”, and
Max is a “Shipping Agent”.

Figure 6.11 also shows a part of the information aspect: which documents
are input and output for which tasks, as well as some additional pre- and
post-conditions for the activities to start and to finish.

6.2.4.2 Running the processes

As said above, these (and some more detailed) models can be found in the
“example” folder of project dk.dtu.imm.se.ecno.workflow.example.
The file “load.behaviourstates” combines all the model and runtime infor-
mation, along with configuring the ECNO engine and its GUI. This is a con-
figuration file of the ECNO engine as discussed in Sect. 5.4.1, and the ECNO
workflow engine can be started from this file as discussed in Sect. 5.4.2 by
a right-click on the file and then selecting “ECNO→Start ECNO Engine”.

Once you start the ECNO engine on the file “load.behaviourstates”, a
worklist as shown in Fig. 6.12 pops up, and, in the ECNO Engine registry,
you will see that a new ECNO Engine started on that file.

Once you type in a legal user name with a legal password, the log in
button will be enabled. Remember that there are users Jack, Ellen, Max,
Tim, and Tom with the roles as discussed in Sect. 6.2.4.1. For all these
users, the password is “pw”.

Initially, we suggest to log in as Jack, since he is the customer who can
initiate the book order. In order to log in as a different user later, you can
either log out and log in as the new user in a WorkList GUI. But, for ease
of use, the Work List GUI allows you to create more instances of Work List
GUIs (by pressing the button on the top-left below the headline). This way,
you are able to see the work lists for different agents simultaneously.

Figure 6.13 shows the Work List after Jack logged on and selected the
“Start a new Online Book Purchase Process”. By pressing start, a new case
for that process is created.

Now, Jack will have the “Place New Book Order” activity assigned6 to
him in the work list as shown in Fig. 6.14. When selecting it, the “Open”
button will become enabled; note that the “Finish button” is not enabled
yet, since the information that is required for this task to finish is not yet
there.

Pressing the “Open” button will open a window for that Task, which is
shown in Fig. 6.15. The tabs represent the different documents associated

6Remember, that initiating a case means initiating its initial activity.

6.2. WORKFLOW ENGINE 157

Figure 6.10: Workflow net for control aspect (Source: Fig. 7.1 of [26])

Figure 6.11: Information and organisation aspect (Source: Fig. 7.2 of [26])

Figure 6.12: Initial Work List View

158 CHAPTER 6. MORE EXAMPLES

Figure 6.13: Work List View: With Jack logged on

Figure 6.14: Work List View: With activity “Place New Book Order” active

6.2. WORKFLOW ENGINE 159

Figure 6.15: Task Viewer for activity “Place New Book Order”

with this activity, which, in this case, both need to be created. When
a document can be edited by the agent, a pencil icon is shown. In our
example, both documents need to be edited before the task can finish (note
that closing the task viewer does not finish the task). In each of the tabs,
either a completely new document can be created or an existing one can
be selected. For a book, we suggest to select an existing one by pressing
the “Find” button. For payment, we suggest to create a new one, and then
entering the information to the empty fields of the payment document.

Then you can finish the task by either pressing the “Finish” button in
the task viewer or in the Work List.

Next, Ellen could log in to process the order, and later Tom and Max
could log on working through the process as discussed in Sect. 6.2.4.1. But,
we do not discuss the next steps in detail anymore. You will find all steps
to run through a process in the file “README.txt”, which comes with the
example. It is important, however, that you do not leave the fields in the
documents empty – otherwise the case might be stuck.

Note that the work list viewer itself does not provide any means for
saving the current state of the workflow engine or for shutting it down.
This still needs to be done from the ECNO Engine registry view. In a real
workflow engine, there would need to be other views for that purpose. Since
the current version of the ECNO workflow engine was meant only to show
the feasibility of these ideas, we did not bother to implement such a view
yet (see discussion in Sect. 6.2.5).

6.2.5 Discussion

In this section, we have discussed the ECNO models from which a fully
functioning workflow engine could be generated. This workflow engine was

160 CHAPTER 6. MORE EXAMPLES

developed in a five month master’s project by Jesper Jepsen [26]. Though
this ECNO workflow engine is a prototype only, it demonstrates that ECNO
can be used for larger applications and some more complex behaviour.

6.2.5.1 Prototype not a case study yet

Still, we do not consider this workflow engine as a case study for the use of
ECNO in the true sense of the word. There are several reasons for that:

• The workflow engine was developed, when ECNO was still under devel-
opment itself (it was developed using version 0.3.0), and took benefit
of some features of (0.3.2) when this appeared to makes sense. But
some features (such as event type extensions) were not used yet. So,
ECNO was still a moving target.

• ECNO was developed based on some ideas that came from the AM-
FIBIA project [1, 2]. The ECNO workflow engine itself, can be con-
sidered as a “reimplementation” of AMFIBIA in ECNO. This compro-
mises the universality of this example as a case study.

• The development of the workflow engine by Jesper Jepsen was closely
supervised by the originator of the ECNO, which would not be given
in a realistic development process.

• In turn, there was not much written material on the ECNO method-
ology. In fact, this report is the first concise writeup which touches a
bit on methodology. But, this is still in its beginning.

• The workflow engine still lacks some features which would be required
for its practical use. These missing features and the implications are
discussed below in more detail in Sect. 6.2.5.2.

• One very important characteristics of ECNO was not even an issue
in the development of the workflow engine: the integration with pre-
existing parts of the software. The workflow engine was developed
from scratch.

• The ECNO tool (and software modelling tools in general) does not
support many of the standard functions of modern IDEs, which most
programmers are used to and would expect, such as re-factoring, au-
tomatic validation, auto-completion, etc.

Therefore, the experience of the project of Jesper Jepsen supports what
we believe in: ECNO could significantly speed up the software development
process – in particular for software in which events and their coordination
play a natural role. A more extensive study providing substantial evidence
for such a hypothesis, however, is yet to come.

6.2. WORKFLOW ENGINE 161

6.2.5.2 Limitations

As mentioned earlier already, the ECNO workflow engine is a prototype or
feasibility study only at the current stage. The current version still has some
limitations. We discuss these limitations below.

We start with some limitations, which concern the usability of the ECNO
workflow engine only – they do not expose any principle limitations of
ECNO.

1. The focus of the current version of the ECNO workflow engine is on
the engine part and not on creating and maintaining the business
process models (and the different aspects of it). Therefore, there are no
graphical editors for workflow nets for the control aspect, or graphical
editors for models concerning the organisation or information aspect
yet.

Creating such editors would be supported by different technologies
such as the Graphical Modeling Framework (GMF) [14]. Since this
is straight-forward (see [29] for some a general discussion) and would
not provide much scientific insight, implementing graphical editors for
process models were not in the focus of this project.

2. Up to now, the models for the information aspect covers the flow of
information within a process only. There is no way to model the infor-
mation or documents. Right now, some standard document types are
used. In a sense, only half of the information aspect can be expressed
by models.

For modelling the other half, standard data modelling techniques, such
as for example Ecore models could have been employed. And some of
the coordination models would need to be slightly updated in order
to deal with information in a generic way. But, since the scientific
insight would not be too deep, this half of the information aspect is
not yet covered. Moreover, this part of the information model would
be related to the missing database support; so, this would best be
done together with implementing the database support of ECNO (see
discussion later).

Next, we discuss some limitations, which concern ECNO as notation,
tool and framework.

1. The work list and the task viewer of the workflow engine were still
programmed manually – for the simple reason that ECNO does not
provide a notation for defining a GUI yet.

Developing such a notation for defining a GUI for ECNO applications
is planned – but not with high priority, since the scientific insights in
developing such a notation would not be too high.

162 CHAPTER 6. MORE EXAMPLES

2. The current ECNO workflow engine comes as a single monolithic co-
ordination diagram. The reason for that is that, at the time when
the development of the workflow engine started, the ECNO import
mechanism was not yet implemented.

With version 0.3.2 of ECNO, it should be easy to split the ECNO
models into different packages now. Actually, splitting up the pack-
ages would make the models more elegant, more readable, and more
maintainable. But, we did not do this yet.

3. Some parts of the ECNO model still look a bit clumsy. For example,
there are two independent events StartActvity and StartActvityC, which
basically represent the same event from the core and from the control
aspect point of view. The local behaviour takes care of synchronizing
these events. This was necessary since the control aspect needed an
additional parameter for the StartActivity event which was not provided
by the core. With the current version of ECNO (0.3.2), we would
rather make StartActvityC an extension of StartActvity – avoiding the
need for the local behaviour synchronizing them.

This could be easily changed and would make the models more elegant;
there was no time for doing this yet.

4. The most important limitation of the ECNO framework for practical
use is the lack of database support. As of now, the state of an ECNO
application, and therefore the ECNO workflow engine, is saved in files
(ECNO configuration files and files the configuration is referring to).

Actually, serialization of the state of an ECNO applications is depend-
ing on the underlying object-oriented technology, which is EMF and
Ecore in our case. There exist technologies that allow us to load and
serialise instances of EMF models to a relational database (e. g. Hiber-
nate combined with Teneo [51]) – generally called Object Relational
Mapping (ORM). Basically, ECNO would need to be integrated with
these technologies, which is a technical issue only – but a non-trivial
one. The integration of ECNO with an appropriate ORM-technology
is one of the most important items on the road map for the future de-
velopment of ECNO since this, probably, is the most important feature
for the use of ECNO in practice.

In addition, the work on the project showed that devising a notation
is not enough. It also needs an explicit methodology, which shows how
to work with ECNO and how adequate models should look like. Some
quirks of the current ECNO models for the workflow engine, could have
been avoided by much better teaching material, a bunch of typical examples,
and guidelines for good modelling practices. With this report, we started

6.2. WORKFLOW ENGINE 163

making the methodology of ECNO a bit more explicit; but we need many
more examples for that purpose.

A last issue, which we did not even touch upon yet, is efficiency. Com-
puting possible interactions can be quite computation extensive. But, in
most practical settings, this could be significantly improved due to struc-
tural properties of the coordination models. We did not even start to look
into this aspect yet. Our first goal with the ECNO workflow engine was to
demonstrated the feasibility in principle.

6.2.5.3 Conclusions

Even though the workflow engine cannot be considered as a case study of
ECNO yet, it indicates that, by using ECNO and its tool, a piece of software
with a significant functionality can be developed in a relatively short period
of time.

An empirical evaluation of such a hypothesis is yet to come. Before,
starting such a study, the ECNO Tool and the ECNO Framework would
need to be equipped with some additional features – most prominently, a
persistence mechanism using databases.

If not for implementation, ECNO might serve another purpose: the work-
flow example shows that it allows us to equip a DSL with a behavioural
semantics, which defines the meaning of the DSL in full detail – actually in
such a detail that an implementation can be generated from it.

164 CHAPTER 6. MORE EXAMPLES

Chapter 7

Conclusion and future plans

In this report, we have discussed the motivation and objective for developing
the Event Coordination Notation (ECNO), we have discussed the concepts
of ECNO for modelling the local and global behaviour of systems on top of
structural models, and we have discussed the ECNO Tool for modelling and
generating code, as well as the programming framework behind the ECNO
execution engine.

The work on ECNO, however, is far from being complete – conceptually,
methodologically, as well as technically. In fact, we are still at the beginning.
But, what we have now is a start already. In this chapter, we discuss what
we think is achieved already with the current version of ECNO and its tool
support and what its important contributions are. More importantly, we
discuss some limitations of ECNO and its tool support, and the road ahead
in developing and extending ECNO and its methodology.

7.1 What is achieved

One objective of developing ECNO was to be able to model the behaviour
of software systems on a high level of abstraction, which is closer to the
domain than to the technical concepts for implementing the software. In
spite of this high level of abstraction, the objective was that software could
be generated from these models fully automatically.

Another more technical objective was the ability to integrating the ECNO
models and the software generated from these models with pre-existing soft-
ware – virtually, with any kind of object-oriented software, manually written
or generated by other technologies.

Even though an evaluation of ECNO with respect to these – and some
more – objectives is still missing, the different examples discussed in this
report, to some extent, support this hypothesis. Actually, closeness to the
domain or closeness to the implementation as discussed above would require
a carefully designed experiment, which would be a research project in its

165

166 CHAPTER 7. CONCLUSION AND FUTURE PLANS

own right. But some of the examples seem to formalize the behaviour in
an adequate way. Our favourite example is the semantics of Petri nets
as discussed in Sect. 2.1.3 and Sect. 6.1. These examples show that the
behaviour of Petri nets and signal nets could be concisely captured with
ECNO; but also the behaviour of larger systems like a workflow engine
could be modelled by using ECNO as shown in Sect. 6.2.2.

We believe that there are three main ingredients to ECNO, which allow
ECNO to model behaviour in such a concise way:

• ECNO makes the notion of events explicit as a kind of “object” that
exists for an instant only, and the notion of events is clearly distin-
guished from elements (objects). Still, events or event types enjoy
some of the same features as classes: attributes and inheritance. But,
events enjoy also some similarities with methods, where attributes can
be considered as parameters.

• ECNO models the behaviour of a system on two different levels of
granularity: there is the local behaviour for elements which defines
the life-cycle of the element; moreover, there is the coordination of
behaviour among a set of elements via events, which is defined by
coordination annotations. We call this the global behaviour.

Essentially, the coordination annotations describe who needs to partic-
ipate in an interaction – it is left to the ECNO engine to compute the
valid interactions. This way, interactions are defined in a declarative
way.

• The notion of interactions comes with a natural notion of atomicity
which defines the things that need to be done together. In turn, inter-
actions that concern a disjoint set of elements, are concurrent. This
way, ECNO does not impose a thread oriented way of modelling be-
haviour. Therefore, ECNO models capture concurrency inherent to
some domain in a natural way – without explicitly talking about it.

The main objective of ECNO was to model the behaviour of systems.
But, it might also have some nice applications in the area of Domain Spe-
cific Languages (DSLs). In DSLs, meta modelling is used to formalize the
abstract syntax of a DSL, and constraints are used to formalize the static
semantics. With ECNO, it is now possible to formalize the behavioural se-
mantics of such a DSL as well – at least if the DSL has some form of event-
or transition-based semantics.

We believe that the major modelling concepts of ECNO for global and
local behaviour are in place now. We would expect that we would not need
any major changes in the concepts of ECNO – though some adjustments
of the concrete syntax and some subtle semantical issues (e. g. concerning
inheritance) might be necessary.

7.2. WHAT IS MISSING 167

7.2 What is missing

Though we believe that ECNO can be used with great benefit as it is already,
the tooling and the execution framework still lacks some features for being
used in an industrial setting. But, the lacking features and extensions are
mostly of a technical nature and do not concern the modelling concepts of
ECNO as such. We will discuss some of these limitations below.

In addition to the technical limitations, one thing which is still missing is
a methodology which needs to be worked out together with a set of relevant
examples and case studies from different application areas.

7.2.1 Integration with databases

As mentioned in Sect. 6.2.5.2 already, the probably most important missing
feature for the practical use of ECNO is the possibility of saving the state
of an ECNO application in a database and not in a set of files. To this end,
ECNO needs to be integrated with some existing technologies for Object
Relational Mapping (ORM).

Unfortunately, such an integration depends on the underlying object-
oriented technology and whether there are ORM-technologies that could be
used off the shelf. It would be a start already to integrate ECNO with
Hibernate/Teneo [51] for the default technology of EMF. Doing this inde-
pendently from a specific object-oriented technology would probably be a
project in its own right; so we do not plan to do that – at least not in the
short run.

7.2.2 DSL for modelling GUIs

As discussed earlier, customized GUIs for ECNO applications need to be
programmed manually. For a Model-based Software Engineering approach,
which is motivated by getting rid of programming, this is a bit anachronistic
– in particular, since GUIs could be generated from models quite early on.

In different student projects, we have already experimented with some
simple DSLs that allowed modelling customized GUIs for ECNO applica-
tions from which code could be generated. These experiments show, that
this is possible in principle (for example, the customized GUI of our work-
ers example that we had discussed in Sect. 5.5.2.1 could be modelled this
way). But, the implementation of this DSL is not yet mature enough to
be included with the current version of the ECNO Tool. It would probably
require a BSc project to develop this DSL and implement a code generator
mature enough to be deployed together with the ECNO Tool. A DSL for
more advanced GUIs would require even some more effort.

168 CHAPTER 7. CONCLUSION AND FUTURE PLANS

7.2.3 Clearer interface definition

We have seen already that different types of events play different roles in an
ECNO application. In our Petri net example, there was the fire even, which
directly relates to the Petri net semantics – firing a transition. And there
were two other events, add and remove, which took care of propagating
the required remove and add actions to the respective places and tokens.
These additional events, however, play a subordinate role: they are auxiliary
events, helping to realize the fire event. In a sense, they are like auxiliary
functions or methods in procedural or object-oriented programming. In
particular, to the outside world, i. e. applications using Petri nets, the add
and remove should not be visible and it should not be possible to trigger
them from the outside directly.

Up to now, ECNO caters for that by declaring some event types as GUI
events and some element type as GUI elements. Then the default GUI would
only show the GUI elements with buttons for their GUI events. But, this
concerns the GUI only. As soon as interactions are triggered programmati-
cally or other ECNO models would have coordination annotations referring
to these auxiliary events, these events could be used detached from the fire
event. Therefore, ECNO would need a concept of visibility of events out-
side a package, and eventually ECNO will be equipped with such a feature,
which in a way defines an interface to a package. The exact details of such
an interface definition and the notion of visibility still need to be worked
out – looking at more examples, and taking the ECNO methodology into
account.

7.2.4 Performance

The main behaviour of an ECNO application is driven by the element con-
trollers that compute possible interactions, and schedule these interactions
for execution (either triggered by the user via the GUI or automatically).
The computation of valid interaction, basically, is exploring an AND-OR-
tree following all coordination annotations. This can be quite computation
intensive and might slow down an ECNO application in which many inter-
actions are going on at the same time.

This problem can probably not be avoided completely. But, sometimes
coordinations follow certain patterns, which would allow to pre-compute
some possible interactions or would allow to prune the search tree, so that
not all possibilities need to be followed up.

Up to now, we did not have a closer look into the possibilities for opti-
mizing the computation of valid interactions. But, it is definitely worth a
closer look.

7.2. WHAT IS MISSING 169

7.2.5 IDE integration

Concerning the modelling and development process, the ECNO Tool is still
lacking some features which are expected of today’s IDEs.

First and foremost, developers would need a debugger, which would al-
low to set breakpoints, and to analyse the current state and the currently
enabled interaction. Integrating a debugger to the ECNO engine would tech-
nically not be a problem. But, developing a debugger would require some
conceptual work: what actually is a reasonable break point in ECNO, and
how would we characterize the situations at which the debugger should stop?
In many cases, we would like the debugger to stop when we are in a situation
where we would expect an interaction to be enabled – but it actually is not.
How would we characterize such situations? And if an expected interaction
is not enabled, how would we visualize why it is not enabled? So, before
implementing a debugger, we would need a careful analysis of the typical
“bugs” we would like to find by debugging and how to visualize and show
them. And there are some indications (see questions above) that this is a
bit different from debugging programs in classical programming languages.

Another problem with the current code generator is that it copies some
of the code snippets verbatim to the generated code. This applies to all
the actions and some of the parameter assignments in the ECNO nets. The
editor for ECNO nets does not check these code snippets for syntactical
correctness yet. This might result in some syntactical errors in the generated
code – which then need to be traced back to the ECNO nets and fixed
there. The IDE, should pick up the syntactical errors that are found in the
generated code and add error markers to the respective code snippets in the
ECNO nets.

Doing this is not very difficult and has been done in some student project
for an earlier version of the ECNO Tool. We just did not have the time to
align this with version 0.3.2 of the ECNO Tool yet.

Another issue is that some constraints on ECNO models are not yet
checked automatically. So, that the violation of these constraints will show
only in the generated code.

Generally, we have the feeling that the available IDE support concerning
model-based development is at least 10 years behind as compared to avail-
able programming environments concerning available functionality (refac-
toring, code organisation, automatic clean up, ...) as well as quality. Since
this applies to all kinds of modelling tools, there is a lot of work and research
going on in this area, and we hope that eventually the ECNO Tool can adopt
some of the available technology from there – but we do not do specific de-
velopment or research here, since this would be a completely different kind
of research.

170 CHAPTER 7. CONCLUSION AND FUTURE PLANS

7.2.6 Adapters for more technologies

At last, it would be nice, if ECNO would work together with other object-
oriented technologies than EMF. This would basically require to implement
a package adapter for the respective technology. Also this should not be too
difficult, but since there was no concrete need for that yet, we did not have
an incentive to doing this for now.

7.3 Road ahead

In this section, we give a brief overview on some of the next steps taken in
the development of ECNO – concerning tooling as well as conceptual work.
The order of the issues mentioned might give you an idea of the priority of
these issues. But, the development will also be driven by needs in concrete
projects, available funding, as well as personal interest of volunteers.

7.3.1 Tooling

We start with discussing some issues that concern the ECNO tool support,
some of which would of course, also need conceptual work.

• Right now, there is only one kind of exception, which is thrown when
an interaction could not successfully be executed: InvalidState

Exception. Actually, there can be quite different reasons for this
exception to be throw:

– First and foremost, the interaction might not be valid anymore
at the time when it is executed.

– Some of the actions which are part of the execution turn out to
be impossible and would like to abort and roll back the execution
of the interaction.

– After executing the interaction, a constraint of the model is vio-
lated, so that the execution of the interaction needs to be rolled
back

For the controllers that issue the execution of an interaction, it would
be useful, if they knew what the actual cause for not executing an
interaction was. Therefore, this exception structure will be refined in
the future, which will probably require minor adjustments of manually
programmed element controllers.

• For the default object-oriented technology of ECNO, which is EMF, we
will develop an integration with some ORM technology, so that ECNO
applications can store their persistent data in a database instead of
files.

7.3. ROAD AHEAD 171

Eventually, there might be even some general framework which sup-
ports integration with databases for other technologies in a generic
way. But, this is a very long-term project, since it is not directly
related to the research on ECNO.

• As discussed in Sect. 7.2.3, ECNO will be equipped with a concept of
visible elements and event types so that there is a clearer interface,
which indicates which parts of the software and model can trigger
which kind of interactions, and which elements can coordinate with
which other elements with respect to which events.

In turn, the existing attributes of ECNO identifying an element or an
event as GUI element or event will probably be removed (in the first
place, these features will be marked as deprecated).

• As discussed in Sect. 7.2.2, we will develop a DSL that will allow us
to model a customized GUI for ECNO applications. This DSL should
support the most relevant widgets and GUI interactions of modern
GUIs; but we expect that some advanced features would still need to
be programmed manually.

• The IDE support concerning debugging or properly showing errors in
models and many other minor issues will be improved incrementally –
resources allowing.

• For larger scale applications, the ECNO models need to be analysed for
structural properties, which would allow a more efficient computation
of valid interactions. Sometimes, we might even be able to statically
compute interactions at compile-time (code-generation-time), so that
interactions do not need to be computed at all.

7.3.2 Concepts

Though the tool support is important, we deem some conceptual issues
equally important – and some of them even more challenging.

• First of all, we need to work out the ECNO Methodology, which gives
clear guidelines when and how to use ECNO and in which way to use
it in a beneficial and also maintainable way. This would require many
examples, but also identifying some of the typical modelling patterns.
And there needs to be material which makes it easy to understand and
learn ECNO’s modelling philosophy and principles.

• In Chapt. 3, we have presented the semantics of a core fragment of
ECNO already. Eventually, we would like to formalize the complete
semantics of ECNO for different reasons. First of all, any modelling
notation should have a clearly defined formal semantics. Formalizing

172 CHAPTER 7. CONCLUSION AND FUTURE PLANS

the semantics in a clear mathematical way, would ensure conceptual
clarity of its concepts.

In addition, we would need a formal semantics for, eventually, devel-
oping verification tools, so that ECNO applications could be verified –
as certified correct software. But, this definitely is a long-term project.

• Actually, we believe that the semantics of ECNO can be formulated
in ECNO itself. This would be philosophically appealing - and make
ECNO a meta-modelling notation in the true sense of the word (being
about itself), and in a sense show that ECNO is conceptually complete.
In turn, modelling ECNO in itself would provide great insights into
how to properly use ECNO.

This is very similar to MOF [44] – only that MOF defines its own
syntax only and not its behavioural semantics.

7.4 Getting started

Even though, ECNO still has some limitations , ECNO and its tool support
is mature enough to be used for experimentation and for developing software
in an academic setting. We hope that this report and the examples deployed
with the current version of ECNO will help with getting you started.

ECNO might even be used in an industrial setting, but in this case you
would be well-advised being in close cooperation with us. We would be more
than happy cooperating with partners doing larger examples in a realistic
setting, since this could drive the development of the extensions discussed
above, and help working out the ECNO methodology.

Appendix A

Glossary

This glossary provides brief definitions of the most important terms of the
Event Coordination Notation, and the underlying technologies. More de-
tailed definitions of these terms can be found by using the Index at the end
of this report.

The first part (A.1) discusses the necessary terms from object-orientation,
the second part (A.2) discusses the terms and concepts of ECNO itself,
whereas the third part (A.3) discusses concepts from the ECNO implemen-
tation and its programming framework.

A.1 Terms from object-oriented modelling

In this section, the traditional terms from object-oriented modelling are
introduced as far as they are needed for the ECNO notations. For a more
detailed explanation of the terms, see Sect. 2.2.1.

Class A class in the sense of object-orientation. In domain models a class
typically represents a concept in the application domain, and the class
distills the common features of a set of objects.

Class diagram A model defining the classes and the relations between
different classes as references.

Domain model A class diagram or a collection of class diagrams that
models the concepts of the application and its domain, rather than
modelling the software and its implementation.

Link A link is an instance of a reference. It represents that an object is
related to another object with respect to the specific reference defined
in the class diagram.

Object An object is an instance of a class, which is its type.

173

174 APPENDIX A. GLOSSARY

Object diagram An object diagram represents a collection of objects and
the links between them, which characterizes a specific configuration
that meets the requirements defined in the class diagram – and some-
times some additional constraints.

Package A package is the scope (or namespace) in which classes are defined.
In our setting, a class diagram is typically representing a package. A
model can comprise many packages, and packages provide a way to
structure larger models (conceptually and technically).

Reference A reference characterizes a specific relationship between two
classes. A reference is a simple form of UML’s associations.

A.2 Terms of the ECNO notation

In this section, the terms and concepts of the ECNO notation and its seman-
tics are defined. For a more detailed explanation of the terms, see Sect. 2.2
and Sect. 4.2.

Action An action defines the change made by the local behaviour of an
element when it participates in an interaction. The action is a part
of the resp. choice. The changes might affect the state of the local
behaviour as well as the attributes and links of the underlying objects.

Base event Each event type extension has a base event type, which is the
actual event type used in the coordination model.

Behaviour inheritance The local behaviour of an element of some type
consists of the local behaviours for all the element types in the el-
ement’s type hierarchy. This way an element type inherits the be-
haviour of its super types. Note that the local behaviour can explicitly
drop the behaviour of the super types.

Choice In a given situation, the local behaviour of an element defines the
enabled choices of the element. The choice defines, in which events
it participates, which values are contributed to the event parameters,
and the changes made when executed (action).

In ECNO nets, each choice is characterized by a Petri net transition,
together with an event binding, a condition and an action. The choice
is enabled, if in the given situation, the Petri net transition is enabled
and if the condition evaluates to true.

Collective parameter A collective parameter of an event type is a param-
eter to which all partners in an interaction can contribute, possibly

A.2. TERMS OF THE ECNO NOTATION 175

different, values. The actual value of that parameter during the inter-
action is a collection of all the values contributed. By contrast, only
one value can be contributed to an exclusive parameter of an event.

Condition A condition is a boolean expression attached to a transition of
an ECNO net, which might refer to attributes of the underlying class
as well as to parameters of the events of the event binding. Only if the
condition evaluates to true, the choice corresponding to the transition
is enabled in the given situation.

Coordination annotation For a given element that participates in an
event, the coordination annotations of the underlying element type
defines which other elements need to participate in that event. The
coordination annotations are attached to references, and either require
that one or all (see coordination quantifier) elements of the links cor-
responding to the reference need to participate.

Coordination diagram A coordination diagram defines all the element
types, event types and event type extensions of an ECNO package.
And it defines the coordination annotations for these element types.

Coordination quantifier In a coordination annotation, the coordination
quantifier defines whether one or all elements at the other end of the
respective links need to participate in the respective event.

Coordination set An element type can have one or more coordination sets
for an event type. For an event of this type, all the coordination an-
notations attached to the coordination set need to be met (the coor-
dination annotations of other coordination sets for that event type do
not need to be met).

Counting event type An element type can declare some of its event types
(the event type the element type has coordination sets for) as counting
event type. These are also called trigger event types. For these counting
event types, the element must participate in events of that type as
many times as required by some incoming coordination annotations or
by the local behaviour. Event types of an element type that are not
counting, are sometimes also called non-counting event types.

ECNO net ECNO nets are a version of Petri nets. An ECNO net is one of
the ways to to define the local behaviour for an element type in ECNO.
In particular, the transitions of the ECNO net define the possible
choices of the local behaviour in a given situation.

Element An element is an object together with the local behaviour (and
its state), which is defined by the element type for the class of the

176 APPENDIX A. GLOSSARY

object. Note that not all objects are elements: this is the case, when
the ECNO model does not define an element type for the object’s class.

Element type An element type is defined on top of a class. The element
type defines the possible coordinations with other elements via coordi-
nation sets and coordination annotations as well as the local behaviour
(e. g. by ECNO nets)

Event An event is used to synchronize different choices and to allow these
choices to share some parameters. Each event has some type (either
an event type or an event type extension), which define the event’s
parameters.

By contrast to objects, events exist or live for an instant only during
the execution of an interaction and are used for sharing information
among different elements participating in an interaction.

Event binding The event binding of a choice of the local behaviour defines,
events of which type must participate in that choice. Moreover, the
event binding defines which values are contributed to the parameters
of the different events by the choice.

In ECNO nets, the event binding is attached to the transitions of the
ECNO net.

Event extension Event extension (event type extension) is one of the two
forms of event inheritance. Event extension just adds new parameters
without actually defining a new event type – the actual type of an event
type extension is called its base event type. Different event extensions
of the same type are compatible (which is not true for the other form
of event inheritance, which is called event specialization).

Event inheritance There are two forms of inheritance on event types.
The first is event specialization, the other is event extension.

Event specialization Event specialization is one form of event inheritance.
Two different specialisations of the same event type are two different
and incompatible new event types.

Event type An event type defines the name and the possible parameters
and their types. Moreover, the event type defines which of the param-
eters are exclusive and which of them are collective.

Exclusive parameter An exclusive parameter of an event type is a form
of parameter to which only one value may be contributed in an inter-
action. Note that it is possible that different partners of an interaction
contribute a value to the same parameter of the same event ; in that
case, however, the value must be the same.

A.2. TERMS OF THE ECNO NOTATION 177

Global behaviour The global behaviour defines how the local behaviour of
different elements is coordinated with each other into interactions. In
ECNO, the global behaviour is defined in a descriptive way by coordi-
nation annotations.

GUI element A GUI element is an element that should be represented in
ECNO’s GUI. This is indicated by a specific attribute in the element
type. Note that this attribute might eventually be deprecated in order
to separate the actual coordination mechanisms from the presentation.

GUI Event A GUI event is an event that should, for a given GUI ele-
ment be visible at the GUI. This is indicated by a specific attribute
in the event type. Note that this attribute might eventually be dep-
recated in order to separate the actual coordination mechanisms from
the presentation.

Interaction An interaction is a set of events and elements, where each el-
ement is associated with some choice, each of which is associated with
some events. Some events of an interaction might be shared among
different elements of the interaction. The interaction is valid, if the
choice of each element is possible according to the local behaviour, and
if, for each participating element, the requirements of its coordination
annotations are met. A valid interaction can be executed, which cor-
responds to executing the action of the choice of each participating
element.

Local behaviour The local behaviour of an element defines, which choices
are possible in a given situation. To this end, an ECNO model defines
the local behaviour for each element type. The predominant way of
defining the local behaviour for element types are ECNO nets. The
local behaviour of an element is also called the life cycle of the element.

Life cycle In ECNO, the term local behaviour of an element and the term
life cycle of an element are used synonymously.

Package An ECNO model can be build up from different packages. A
package can import element types and event types from other packages;
cross-references are resolved at run-time.

Parallel (local) behaviour ECNO supports local behaviour with some
choices executed in parallel to each other for the same element in
a single interaction. This is called parallel behaviour. ECNO nets al-
low modelling parallel behaviour in a natural way (the step semantics
of Petri nets): transitions (resp. the choices represented by them) that
are enabled together, are allowed to fire together. It is up to the spe-
cific notation for local behaviours, whether they would support parallel
behaviour or not.

178 APPENDIX A. GLOSSARY

Parameter Events can have parameters, which are defined in the event
type.

Priority An element type can have different coordination sets for the same
event type or for event types that are compatible. In that case, the
coordination would require only one of these coordination sets to meet
the attached coordination annotations. Normally, the choice between
these coordination sets is non-deterministic; but if a priority is defined
for the coordination sets, the coordination set with the higher priority
takes the precedence. Only if no interaction for the coordination set
with the higher priority can be found, the coordination set with the
lower priority is selected.

Situation A situation is a concrete configuration of a system, with an un-
derlying object diagram and the states for each element.

State The state of an element consists of the state of the underlying object
(its links and current values of its attributes) together with the state
of its local behaviour. In ECNO nets, the state of the local behaviour
is defined by the current marking of the ECNO net.

Top-level event type For an event type, its top-level event type is the top-
most event type in its specialization hierarchy. Note that this top-level
event type is uniquely defined, since there is no multiple inheritance
wrt. event type specialization.

In an event binding, it is required that all event types have different
top-level event types.

A.3 Terms of the ECNO programming framework

In this section, the terms and concepts concerning the implementation of
the ECNO engine, the ECNO Tool and its programming framework are
discussed. For a more detailed explanation of the terms, see Chapt. 5.

Controller configurator A controller configurator installs the element con-
trollers of the ECNO engine when an ECNO application is started as
an Eclipse application.

ECNO application An ECNO engine running an ECNO model (or a set
of models) in some configuration is called an ECNO application. An
ECNO application can either be run as stand-alone ECNO Java ap-
plication or as an ECNO Eclipse application.

Element controller An ECNO application can install element controllers
with elements. These element controllers, keep track of which interac-
tions are possible for the element wrt. to some event type. They can

A.3. TERMS OF THE ECNO PROGRAMMING FRAMEWORK 179

offer these interactions at the GUI and execute the respective interac-
tion on user request (standard GUI) or they can initiate the execution
of an interaction autonomously. Typically, an element controllers is
automatically installed by the ECNO engine by so-called engine con-
trollers; but, it is also possible to programmatically install element
controllers.

Element controllers are used when programming a customized GUI for
ECNO application; they can also be used for automatically executing
interactions when they become enabled.

Engine controller It is possible to install engine controllers with a run-
ning ECNO engine. These engine controllers are notified when new
elements are encountered by the ECNO engine when computing possi-
ble interactions or when they are explicitly added to the control of the
ECNO engine. Typically, these engine controllers are used to automat-
ically install element controllers for elements. The engine controllers
are installed with the ECNO engine on start up of an ECNO applica-
tion. In case the ECNO engine is running as an Eclipse application,
the engine controllers are installed by a controller configurator.

Interaction computation strategy The ECNO Engine computes all pos-
sible interactions for an element and some given event (or event type).
The ECNO engine can be configured with an interaction computation
strategy. The default strategy is depth first ; another strategy is small
interactions first.

180 APPENDIX A. GLOSSARY

Appendix B

ECNO Installation

In this appendix, we discuss how to install the ECNO Tool and the ac-
companying examples on your computer. This installation guide refers to
version 0.3.2 of the ECNO tool with Eclipse Kepler (4.3). Since the ECNO
Tool is still developed under Eclipse Indigo (3.7) and was tested with inter-
mediate versions of Eclipse, the ECNO Tool should actually be running on
Eclipse Indigo (3.7 and 4.1), Eclipse Juno (3.8 and 4.2), and Eclipse Kepler
(3.9 and 4.3).

B.1 Installing Eclipse

The ECNO Tool is based on Eclipse, the Eclipse Modeling Framework
(EMF) [8], and the ePNK [31, 35]. Therefore, the ECNO Tool can be
installed on any platform which supports Eclipse. Here, we briefly discuss
how to install Eclipse version 4.3.

If you do not have installed Java, install Java on your computer first –
any version above Java 5 should do. For security reasons, it will probably
be best to use the latest version. For more detailed information on how to
download and install Java, we refer to http://www.java.com/.

Once you have installed Java, you need to download and install Eclipse.
We recommend to use Eclipse Kepler 4.3 classic for your platform from
http://www.eclipse.org/downloads. Extract the downloaded file
to the location in your file system to which you want install Eclipse. Then,
start Eclipse by starting the executable file called ”eclipse” in the folder
to which you extracted eclipse1. The first time you start Eclipse, it will
ask you for a folder where the workspace and all its contents should be
saved. In principle, you can chose any location you like; on the Windows
platforms, you should choose a very short path (otherwise you might run
into problems with too long path names later). Then, click on the arrow
icon (”Workbench”) on the right-hand side to go to the workspace.

1On the Windows platform, the executable file of Eclipse is named “eclipse.exe”.

181

182 APPENDIX B. ECNO INSTALLATION

Next, you need to install EMF from the Eclipse update site. In order
to do that, select “Help→Install New Software...” in your Eclipse. In the
opened dialog, select the Kepler site (“Kepler - http://download.eclipse.org/
releases/kepler”). Then, enter the text “EMF” in the filter field. This
should reduce the choices of extensions to some EMF features. Select the
”EMF Eclipse Modeling Framework SDK” feature and follow through the
installation process. Make sure to check the box ”Contact all update sites
during install to find required software” before your proceed; and remember
that you must accept the license at some point in order to proceed.

If you intend to make your own models, we recommend to install a more
convenient graphical editor for Ecore models (EMF’s light-weight version of
class diagrams), which is coming from the Ecore Tools project. To this end,
install the “Diagram Editor for Ecore (SDK)”2 feature in the same way as
discussed above – ”Ecore” as a filter for finding it would do.

B.2 Installing ECNO

When you have successfully installed Eclipse and EMF, you can install the
ECNO Tool. Version 0.3.2 is available at the ECNO update site http://
www2.imm.dtu.dk/˜ekki/projects/ECNO/download/releases/0.
3.2/.

Select, “Help→Install New Software...” again. In the opened dialog,
press the “Add...” button. In the opended “Add Repository” dialog, add a
name (e. g. “ECNO Tool”) and add the URL http://www2.imm.dtu.
dk/˜ekki/projects/ECNO/download/releases/0.3.2/ as location
and press “OK”. When the dialog closes, this new update site is selected.
Select all the available features, and follow through the installation process
– remember to ”Contact all update sites during install to find required soft-
ware” before your proceed. Note that the features of ECNO are not signed;
therefore, you will be asked whether you would like to proceed.

After the successful installation, you need to restart the Eclipse work-
bench before you can work with the ECNO Tool – by default, Eclipse will
ask you whether you would like to restart it at the end of an update anyway.

B.3 Importing the ECNO Examples

If you had selected all ECNO features when installing the ECNO Tool, you
will also have installed all the examples of this technical report. But, they
are only installed “behind the scenes”. In order to see them in the workspace
or explorer of your Eclipse, you need to import them. This can be done with
Eclipse’s “Import As Source Project” feature.

2Note that this feature was called “Ecore Tools SDK”, in Eclipse versions prior to
Kepler.

B.3. IMPORTING THE ECNO EXAMPLES 183

To this end, you need to open Eclipse’s “Plug-ins” view first: Select
“Window→Show View→Other...”, and in the opened “Show View” dialog
select “Plug-ins” in the “Plug-in Development” category (if you enter “plug-
in” to the filter field at the top of the dialog, it will show up right away”).
Then press “OK”.

After that, you should find the “Plug-ins” view in the view tabs – typ-
ically at the bottom of the Eclipse workbench. In this view, you can select
the ECNO example or the ECNO examples you want to import. Then,
right-click3 on them and select “Import As→Source Project”. After that,
the selected example project will be visible in the Eclipse explorer on the
left. Note that the imported project is a copy of the example project that is
installed behind the scenes; so you can safely change the files in the imported
project.

For example, in order to install the introductory example from Sect. 1.3,
you would import the project dk.dtu.imm.se.ecno.example.workers

to your workspace. If you imported this example, your workspace should
look like the one shown in Fig. B.1, after the class diagram (Ecore diagram)
and the ECNO coordination diagram of the workers example were opened
by double-clicking on them. If the editors cannot be opened or the icons

Figure B.1: Eclipse open with the introductory example

for the model files in the folder “models” do not show up properly in your

3You can also access the import action via the “File” menu when the respective projects
are selected.

184 APPENDIX B. ECNO INSTALLATION

Eclipse workspace, your installation probably failed. In that case, try again
in a fresh installation of Eclipse.

B.4 Overview of examples

In this section, we give a brief overview of some examples that are deployed
together with the ECNO Tool (version 0.3.2) and where they are discussed
in this technical report.

dk.dtu.imm.se.ecno.example.workers Is the simple workers example,
which is discussed in Sect. 1.1. In addition, this example is used in
Sect. 1.3 for explaining the basic functions and use of the ECNO Tool.

dk.dtu.imm.se.ecno.example.workers.worklistgui This is an exten-
sion of the example dk.dtu.imm.se.ecno.example.workers above.
The ECNO models are slightly extended. More importantly, this ex-
ample has a customized GUI, which is used for discussing how to
implement customized GUIs in Sect. 5.5.2.

APetriNetEditorIn15Minutes This is the Petri net example used in Chap-
ter 2. It comprises four different plugin projects:

• APetriNetEditorIn15Minutes

• APetriNetEditorIn15Minutes.diagram

• APetriNetEditorIn15Minutes.ecno.gui

• APetriNetEditorIn15Minutes.edit

• APetriNetEditorIn15Minutes.editor

• APetriNetEditorIn15Minutes.runtime

The most relevant project is APetriNetEditorIn15Minutes, which
contains the Ecore model and the ECNO models for the Petri net be-
haviour; project APetriNetEditorIn15Minutes.runtime contains
some example nets. These two projects are used and discussed in
Chapter 2.

The projects APetriNetEditorIn15Minutes.edit and APetriNet

EditorIn15Minutes.editor represent the EMF editor for this exam-
ple and project APetriNetEditorIn15Minutes.diagram represents
the GMF editor. These are mostly generated from the EMF model
and GMF models. But, the graphical editor is manually extended
so that it can be used for graphically animating the token game when
the simulation is running. The integration of this graphical editor with
the ECNO engine is implemented in APetriNetEditorIn15Minutes.

ecno.gui, which is used in Chapter 5.5.2.5 for discussing on how to

B.4. OVERVIEW OF EXAMPLES 185

configure ECNO Eclipse applications. Note that this integration is –
as might be indicated by the name “in 15 minutes” – done in a quick
and dirty way for demonstration purposes: the command stack for Un-
do/Redo of the GMF editor does not fully integrate with Undo/Redo
of the ECNO execution engine; the simulated net can be edited at
runtime; in that case, however, the undo/redo mechanism for undoing
interactions does not properly work; using it might eventually com-
promise the simulator.

dk.dtu.imm.se.ecno.examples.vendingmachine.split This is an ex-
ample of a vending machine, which is used to explain the concepts
of inheritance in Chapter 4. Moreover, it is an example which shows
how to structure larger models by using packages, and how to extend
existing ECNO models. The technical issues of packages are discussed
by the help of this example in Chapter 5.1.

This example has three plugin projects that contribute different parts
of the ECNO model: dk.dtu.imm.se.ecno.examples.

vendingmachine.split.part1, dk.dtu.imm.se.ecno.examples.

vendingmachine.split.part2, and dk.dtu.imm.se.ecno.

examples.vendingmachine.split.part3. An example instance of
a vending machine can be found in project dk.dtu.imm.se.ecno.

examples.vendingmachine.split.part3.runtime.

Moreover, there are several projects, which are automatically gener-
ated from EMF, which concern the EMF editors: dk.dtu.imm.se.

ecno.examples.vendingmachine.split.part1.edit, dk.dtu.

imm.se.ecno.examples.vendingmachine.split.part1.editor,
dk.dtu.imm.se.ecno.examples.vendingmachine.split.part2.

edit, and dk.dtu.imm.se.ecno.examples.vendingmachine.

split.part3.edit. But, you will not need to have a closer look
into these projects.

186 APPENDIX B. ECNO INSTALLATION

Bibliography

[1] Björn Axenath, Ekkart Kindler, and Vladimir Rubin. An open and
formalism independent meta-model for business processes. In E. Kindler
and M. Nüttgens, editors, Workshop on Business Process Reference
Models 2005 (BPRM 2005), Satellite event of the third International
Conference on Business Process Management, pages 45–59, September
2005.

[2] Björn Axenath, Ekkart Kindler, and Vladimir Rubin. AMFIBIA: A
meta-model for the integration of business process modelling aspects.
International Journal on Business Process Integration and Manage-
ment, 2(2):120–131, 2007.

[3] Friedrich L. Bauer and Hans Wössner. Algorithmic language and
program development. Texts and monographs in computer science.
Springer, 1982.

[4] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous
communication. Information and Control, 60(1-3):109–137, 1984.

[5] Gérard Berry and Gérard Boudol. The chemical abstract machine. In
POPL, pages 81–94, 1990.

[6] Grady Booch. Object-oriented analysis and design. Addison-Wesley,
1994.

[7] Johan Brichau and Michael Haupt. Survey of aspect-oriented lan-
guages and execution models. Technical Report AOSD-Europe-VUB-
01, AOSD-Europe, May 2005.

[8] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and
Timothy J. Grose. Eclipse Modeling Framework. The Eclipse Series.
Addison-Wesley, 2nd edition, April 2006.

[9] Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia,
Mónica Pinto Alarcon, Jethro Bakker, Bedir Tekinerdogan, and An-
drew Jackson Siobhán Clarke and. Survey of aspect-oriented analysis

187

188 BIBLIOGRAPHY

and design approaches. Technical Report AOSD-Europe-ULANC-9,
AOSD-Europe, May 2005.

[10] Siobhán Clarke and Elisa Baniassad. Aspect-oriented analysis and de-
sign: The Theme approach. Addison-Wesley, 2005.

[11] Werner Damm and David Harel. LSC’s: Breathing life into message
sequence charts. In Third International Conference on Formal Meth-
ods for Open Object-Based Distributed Systems, FMOODS’99, IFIP
TC6/WG6.1, 1999.

[12] Rémi Douence and Jacques Noyé. Towards a concurrent model of event-
based aspect-oriented programming. In European Interactive Workshop
on Aspects in Software (EIWAS 2005), 2005.

[13] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[14] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. The Eclipse Series. Addison-Wesley Profes-
sional, March 2009.

[15] H.-M. Hanisch and A. Lüder. A signal extension for Petri nets and its
use in controller design. In H.-D. Burkhard, L. Czaja, and P. Starke, edi-
tors, Proceedings of the CS&P’98 Workshop, number 110 in Informatik-
Bericht, pages 98–105, Berlin, Germany, September 1998. Humboldt-
Universität zu Berlin.

[16] D. Harel and A. Pnueli. On the development of reactive systems. In
K.R. Apt, editor, Logics and Models of Concurrent Systems, volume 13
of Series F: Computer and System Science, pages 477–498. Springer-
Verlag, 1985.

[17] David Harel. Statecharts: A visual formalism for computer systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[18] David Harel and Rami Marelly. Come let’s play: Scenario-based pro-
gramming using LSCs and the Play-engine. Springer, 2003.

[19] William Harrison and Harold Ossher. Subject-oriented programming
(a critique of pure objects). In OOPSLA, pages 411–428. ACM, 1993.

[20] L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves. A primer
on the Petri Net Markup Language and ISO/IEC 15909-2. In K. Jensen,
editor, 10th Workshop on Coloured Petri Nets (CPN 09), pages 101–
120, October 2009.

[21] C.A.R Hoare. Communicating sequential processes. Comm. ACM,
21(8):666–677, 1978.

BIBLIOGRAPHY 189

[22] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[23] ISO/IEC. Systems and software engineering – High-level Petri nets –
Part 2: Transfer format, International Standard ISO/IEC 15909-2:2011,
February 2011.

[24] ITU-T Recommendation Z.120. Message sequence charts (MSC). ITU,
1996.

[25] Nicholas R. Jennings, Katia P. Sycara, and Michael Wooldridge. A
roadmap of agent research and development. Autonomous Agents and
Multi-Agent Systems, 1(1):7–38, 1998.

[26] Jesper Jepsen. Realizing a workflow engine with the Event Coordina-
tion Notation. Master’s thesis, Technical University of Denmark, DTU
Compute, September 2013. IMM-M.Sc.-2013-101.

[27] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In Proc.
of ECOOP 2001 – Object-Oriented Programming, 15th European Con-
ference, pages 327–353. Springer, June 2001.

[28] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220–242, 1997.

[29] Ekkart Kindler. Model-based software engineering and process-aware
information systems. In K. Jensen and W. van der Aalst, editors, Trans-
actions on Petri Nets and Other Models of Concurrency II: Special Issue
on Concurrency in Process-Aware Information Systems, volume 5460
of LNCS, pages 27–45. Springer-Verlag, 2009.

[30] Ekkart Kindler. Model-based software engineering: The challenges
of modelling behaviour. In M. Aksit, E. Kindler, Ella Roubtsova,
and Ashley McNeile, editors, Proceedings of the Second Workshop on
Behavioural Modelling - Foundations and Application (BM-FA 2010),
pages 51–66, June 2010. (Also published in the ACM electronic li-
braries).

[31] Ekkart Kindler. The ePNK: An extensible Petri net tool for PNML. In
Applications and Theory of Petri Nets - 32nd International Conference,
Proceedings, volume 6709 of LNCS, pages 318–327. Springer, 2011.

[32] Ekkart Kindler. Integrating behaviour in software models: An event
coordination notation – concepts and prototype. In Third Workshop
on Behavioural Modelling - Foundations and Application (BM-2011),
Proceedings, June 2011.

190 BIBLIOGRAPHY

[33] Ekkart Kindler. Modelling local and global behaviour: Petri nets and
event coordination. In M. Duvigneau, D. Moldt, and K. Hiraishi, ed-
itors, Petri Nets and Software Engineering. International Workshop
PNSE’11, Newcastle upon Tyne, UK, June 2011. Proceedings, volume
723 of CEUR Workshop Proceedings, pages 42–56, June 2011.

[34] Ekkart Kindler. An ECNO semantics for Petri nets. Petri Net Newslet-
ter, 81:3–16, October 2012. Cover Picture Story.

[35] Ekkart Kindler. The ePNK: A generic PNML tool - users’ and develop-
ers’ guide for version 1.0.0. Technical Report IMM-Technical Report-
2012-14, DTU Informatics, Kgs. Lyngby, Denmark, December 2012.
URL http://www2.imm.dtu.dk/˜ekki/projects/ePNK/PDF/
ePNK-manual-1.0.0.pdf.

[36] Ekkart Kindler. The Event Coordination Notation: Execution engine
and programming framework. In H. Störrle, G. Botterweck, M. Bour-
dellès, D. Kolovos, R. Paige, E. Roubtsova, J. Rubin, and J.-P. Tolva-
nen, editors, Fourth Workshop on Behavioural Modelling – Foundations
and Application (BM-FA 2012), Joint proceedings of co-located events
at ECMFA 2012, pages 143–157, July 2012.

[37] Ekkart Kindler. Modelling local and global behaviour: Petri nets and
event coordination. Transactions on Petri Nets and Other Models of
Concurrency, 6:71–93, 2012.

[38] Ekkart Kindler and David Schmelter. Aspect-oriented modelling from a
different angle: Modelling domains with aspects. In 12th International
Workshop on Aspect-Oriented Modeling, April 2008.

[39] Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher,
Michael Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An ex-
tensible editor and simulation engine for Petri nets: Renew. In Jordi
Cortadella and Wolfgang Reisig, editors, ICATPN, volume 3099 of Lec-
ture Notes in Computer Science, pages 484–493. Springer, 2004.

[40] Kim Mens, Cristina Videira Lopes, Bedir Tekinerdogan, and Gregor
Kiczales. Aspect-oriented programming workshop report. In Jan Bosch
and Stuart Mitchell, editors, Object-Oriented Technology, ECOOP’97
Workshop Reader, ECOOP’97 Workshops, Jyväskylä, Finland, June
9-13, 1997, volume 1357 of LNCS, pages 483–496. Springer, 1998.

[41] Robin Milner. Communication and Concurrency. International Series
in Computer Science. Prentice Hall, 1989.

[42] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes (Parts I & II). Information and Computation, 100(1):1–40 &
41–77, 1992.

BIBLIOGRAPHY 191

[43] OMG. MDA guide v1.0.1. http://www.omg.org/cgi-bin/doc?
omg/03-06-01, June 2003.

[44] OMG. Meta Object Facility (MOF) specification, version 1.4.1. Tech-
nical Report formal/05-05-05, The Object Management Group, Inc.,
May 2005.

[45] Chris Peltz. Web services orchestration and choreography. IEEE Com-
puter, 36(10):46–52, 2003.

[46] Carl Adam Petri. Kommunikation mit Automaten. Technical Report
Schriften des IIM, Nr. 2, Institut für instrumentelle Mathematik, Bonn,
1962.

[47] Wolfgang Reisig. Petri Nets, volume 4 of EATCS Monographs on The-
oretical Computer Science. Springer-Verlag, 1985.

[48] Wolfgang Reisig. Place/Transition systems. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Petri Nets: Central Models and Their Prop-
erties, volume 254 of LNCS, pages 117–141. Springer-Verlag, 1987.

[49] David Schmelter. Eine Technik zur Entwicklung und Ausführung as-
pektorientierter Modelle. Master’s thesis, Department of Computer
Science, Software Engineering Group, University of Paderborn, Pader-
born, Germany, 2007.

[50] P. H. Starke and H.-M. Hanisch. Analysis of signal/event nets. In
Emerging Technologies and Factory Automation (ETFA ’97), Proceed-
ings, 6th International Conference on, pages 253–257. IEEE, September
1997.

[51] Teneo/Hibernate. Eclipsepedia web pages: http://wiki.eclipse.
org/Teneo/Hibernate, November 2012.

[52] P.S. Thiagarajan. Elementary net systems. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Petri Nets: Central Models and Their Prop-
erties, volume 254 of LNCS, pages 26–59. Springer-Verlag, 1987.

[53] Rüdiger Valk. Petri nets as token objects: An introduction to elemen-
tary object nets. In J. Desel and M. Silva, editors, Application and
Theory of Petri Nets. 19th International Conference, Lisbon, Portugal,
Proceedings, volume 1420 of LNCS, pages 1–25, June 1998.

[54] Wil van der Aalst and Kees van Hee. Workflow Management: Models,
Methods, and Systems. Cooperative Information Systems. The MIT
Press, 2002.

192 BIBLIOGRAPHY

[55] Wil M. P. van der Aalst and Twan Basten. Life-cycle inheritance: A
Petri-net-based approach. In P. Azéma and G. Balbo, editors, Appli-
cation and Theory of Petri Nets, volume 1248 of LNCS, pages 62–81.
Springer-Verlag, June 1997.

[56] W.M.P. van der Aalst. Verification of workflow nets. In P. Azéma and
G. Balbo, editors, Application and Theory of Petri Nets, volume 1248
of LNCS, pages 407–426. Springer-Verlag, June 1997.

[57] Michael Wooldridge. Agent-based software engineering. IEE Proceed-
ings - Software Engineering, 144(1):26–37, 1997.

Index

ACID principle, 51
ACID-principle, 112
Action, 7, 12, 44, 174
Actual parameter, see Parameter
AMFIBIA, 143–144
Arc, 28
Atomicity, 112
Attribute, 10, 41

base event, 71
Base event type, 88, 174
Behaviour

global, 177
local, 4, 11, 58, 137, 177
parallel, 82, 177

Behaviour inheritance, see Inheritance
Behaviour states file, 108

Choice, 44, 174
Class, 10, 40, 56, 173
Class diagram, 10, 56, 173
Code generation, 102–106

EMF, 102
Collective parameter, see Parameter
compatible event types, 86
Composition, 10
Computation model

of a notation, 48
Condition, 44, 175
Configuration

ECNO Eclipse application, 126
ECNO Java application, 125

Configuring ECNO applications, 125–
130

Consistency, 112

Controller configurator, 109, 126, 178

Coordination annotation, 7, 11, 46–
48, 58, 175

Coordination diagram, 7, 12, 58, 175

simple, 58

Coordination quantification, 175

Coordination quantifier, 46–48, 58

Coordination set, 7, 32, 43, 46–48,
175

priority, 142–143, 178

Counting event type, see Event type

Domain model, 173

ECNO, 3

GUI, 21

Instance code generation, 20

Model code generation, 19

Package adapter, 112

Programming Framework, 111–
137

ECNO application, 178

Running an, 105–106, 110–111

ECNO Coordination Diagram editor,
15–16, 95–99

ECNO Eclipse application, 107–111,
126–130

ECNO Eclipse applications, 96

ECNO generator model, 18

ECNO generator model editor, 18–
19

ECNO instance generator model, 20

ECNO instance generator model ed-
itor, 20

193

194 INDEX

ECNO Java application, 96, 101–103,
105–106, 125–126

ECNO net, 4, 6, 11, 175
ECNO net editor, 16–18
ECNO nets

editing, 99–101
ECNO Tool, 12
ECNO Workflow Engine, 144–159
ECNO: Engine Registry, 30
Ecore diagram, 10, 13

create, 13, 94–95
Ecore model, see Ecore diagram
Ecore Tools, 94–95, 182
Element, 11, 43–44, 175
Element Controller, 112
Element controller, 123, 178
Element instance, 43–44
Element type, 11, 43–44, 176
EMF

Dynamic instance editor, 20
Generator model, 14
ModelFactory, 15

enabled transition, 28
Engine controller, 112, 123–125, 179
ePNK, 13, 16–18

Label, 17
Page label, 17

ePNK tree editor, 17
Event, 3, 5, 11, 41–43, 176
Event binding, 6, 44, 45, 176
Event extension, 65, 87–88, see Ex-

tension
Event inheritance, see Inheritance
Event instance, 41–43
Event Modelling Notation, see ECNO
Event parameter, see Parameter
Event specialization, 65, 76, 86–87,

176
Event type, 11, 41–43, 58, 176

counting, 43, 48, 175
non-counting, 43, 48, 175
trigger, see counting

Event types
trigger, 48

Event value class, 105
Exclusive parameter, see Parameter
execute(), 112
Extension, 176

Formal parameter, see Parameter

gen model, 102
ECNO, 102–104
ECNO instance, 106
EMF, 102

getInteractions(), 112
Global behaviour, see Behaviour
GUI, 106–107
GUI element, 177
GUI event, 177

Import
Class, 94–95
ECNO types, 98–99

Inheritance
behaviour, 81–86, 174
event, 86–88
event extension, 71
events, 176
in object-orientation, 10
multiple, 84

Initial state, 44
Instance, 101

dynamic, 101
of an Ecore model, 101

Interaction, 8, 11, 48–50, 62, 177
valid, 59

Interaction, 112
Interaction computation strategy, 179
Interaction execution, 62
Interaction structure, 59
InteractionIterator, 112
invalidation listener, 113
InvalidStateException, 113
Isolation, 112
isValid(), 113

Life cycle, 3, 11, 43, 177
Link, 10, 40, 57, 173

INDEX 195

Local behaviour, see Behaviour

Marking, 28
Method, 41
Multiple inheritance, see Inheritance
Multiplicity, 10, 40

Net, see ECNO Net
Non-counting event type, see Event

type

Object, 10, 40, 57, 173
Object diagram, 10, 57, 174

P/T-system, 141
P/T-systems, 28
Package, 41, 65, 174, 177

in object-orientation, 10
Package adapter, 136–137
Parallel behaviour, see Behaviour
Parameter, 42, 178

actual, 42
assignment, 88–90
collective, 42, 174
exclusive, 42, 176
formal, 42
use, 88–90

Petri nets, 28–29
Place, 28
Place/Transition systems, see P/T-

systems
PNML, 99
PNML document, 99
PNML Editor, 100
Postset, 29
Present, 29
Priority, see Coordination set

Reference, 10, 56, 174
References, 40

sub-typing, 98
Runtime model

of a notation, 48

SE-nets, 141–143

Signal arc, 142
Signal-event nets, see SE-nets
single inheritance, 81
Situation, 44, 48, 178
Specialization, see Specialization
Start configuration, 29, 101, 108–110,

126
State, 57, 178
super type (element), 81
super type (event), 86

Token, 28
Top-level event type, 178
top-level event type, 87
Transition, 28
Trigger event type, see Event type,

counting

Workflow engine, see ECNO Work-
flow Engine

196 INDEX

