
Journal of Software Testing, Veri�cation, and Reliability, V. 10, no. 3, September, 2000

An Empirical Investigation of the Relationship Between Spectra

Di�erences and Regression Faults

Mary Jean Harrold,y Gregg Rothermel,z Kent Sayre,z Rui Wu,� Liu Yiz

yCollege of Computing

Georgia Institute of Technology

Atlanta, GA 30332

harrold@cc.gatech.edu

zDepartment of Computer Science

Oregon State University

Corvallis, OR 97331

fgrother,ksayre,liuyig@cs.orst.edu

�Department of Computer and

Information Science

Ohio State University

Columbus, OH 43210

rwu@cis.ohio-state.edu

Abstract

Many software maintenance and testing tasks involve comparing the behaviors of program versions.
Program spectra have recently been proposed as a heuristic for use in performing such comparisons.
To assess the potential usefulness of spectra in this context an experiment was conducted, examining
the relationship between di�erences in program spectra and the exposure of regression faults (faults
existing in a modi�ed version of a program that were not present prior to modi�cations, or not revealed
in previous testing), and empirically comparing several types of spectra. The results reveal that certain
types of spectra di�erences correlate with high frequency | at least in one direction | with the exposure
of regression faults. That is, when regression faults are revealed by particular inputs, spectra di�erences
are likely also to be revealed by those inputs, though the reverse is not true. The results also suggest that
several types of spectra that appear, analytically, to o�er greater precision in predicting the presence of
regression faults than other, cheaper, spectra may provide no greater precision in practice. These results
have rami�cations for future research on, and for the practical uses of, program spectra.

Keywords: program spectra, software testing, empirical studies

1 Introduction

Various software testing and maintenance tasks require comparisons of the behaviors of program versions.

For example, when a program is modi�ed, regression testing is used to compare the behavior of the modi�ed

version to the behavior of its previous version, in the hope of detecting regression faults { faults existing in

a modi�ed version of a program that were not present prior to modi�cations, or not revealed in previous

testing. Similarly, when a modi�ed program fails, the behaviors of versions are compared in the hope of

locating the cause of that failure. Tasks such as these constitute a signi�cant percentage of the costs of

software testing and maintenance, and thus, techniques that reduce the costs of these tasks are valuable.

1

Path spectra were recently proposed as a heuristic for assessing the magnitude of the behavioral changes

between program versions [11].1 A path spectrum is a distribution of paths derived from an execution of

a program using program pro�ling. A path-spectra-comparison technique compares path spectra to gain an

understanding of program behavior. Such a technique may aid in addressing testing and maintenance tasks

that require such understanding. For example, constructing expected outputs for programs can be costly.

If the presence of regression faults is reliably indicated by the presence of spectra di�erences, then during

regression testing testers could identify the test cases on which a program and modi�ed version exhibit spectra

di�erences, and restrict the construction of expected outputs to those test cases. If the cost of constructing

expected outputs for test inputs exceeds the cost of obtaining spectra for those inputs, this process may

reduce regression testing costs. As a second example, spectra comparison may be a useful technique for

locating points of divergence in computations, thus helping guide programmers in fault localization [11].

For path spectra to be useful in these contexts, however, they must provide meaningful behavior signa-

tures. An assessment of the potential usefulness of path-spectra comparisons requires an understanding of

the relationship between spectra di�erences and di�erences in program behavior.

Program behavior can be measured in many ways; however, one measure important to uses of spectra

such as those just described involves whether particular inputs cause a program to fail. Reference [11]

hypothesizes a strong association between spectra di�erences and failures, at least in one direction, stating

that given a correct version of a program, and a faulty version of that program, one expects di�erences

between spectra on inputs that cause the faulty version to fail. One goal of this work is to empirically

investigate this claim.

If path spectra prove useful, then other spectra such as branch spectra or complete-path spectra may also

be useful, and may provide a range of techniques, varying in cost and e�ectiveness, for examining program

behavior. Reference [11] conjectures that spectra that track statement or branch executions will not be as

useful as path spectra for distinguishing program behavior. There is some empirical data [1] to support

this conjecture: this data indicates that path pro�ling data may be superior to branch pro�ling data for

certain applications. On the other hand, another recent study [5] suggests the contrary. Neither of these

studies, however, directly investigated program spectra. A second goal of this work is to perform such an

investigation.

The next section of this paper de�nes program spectra more precisely, presents several di�erent types of

spectra, and compares these spectra types analytically. Section 3 describes the experiments, including their

objectives, measures used, and experiment instrumentation and design. Section 4 presents the data collected

in the experiments, and the analysis of that data. Section 5 presents additional discussion and conclusions.

1The primary use of spectra investigated in [11] involves the \Year 2000 problem," comparing spectra from two runs of

the same program on input data that di�ers only with respect to date. The intuition is that spectra di�erences may help
programmers locate date-dependent computations. The alternative use of spectra investigated here, in which spectra are
collected from runs of a program and a modi�ed version of the program on the same data, is suggested in [11] but not pursued
in depth. The goal of this work is to empirically investigate this alternative suggestion.

2

Mnemonic Name Description

BHS Branch Hit Spectra conditional branches that were executed

BCS Branch Count Spectra number of times each conditional branch was executed

CPS Complete Path Spectra complete path that was executed

PHS Path Hit Spectra intraprocedural, loop-free path that was executed

PCS Path Count Spectra number of times each intraprocedural, loop-free path was executed

DHS Data-dependence Hit Spectra de�nition-use pairs that were executed

DCS Data-dependence Count Spectra number of times each de�nition-use pair was executed

OPS Output Spectra output that was produced

ETS Execution Trace Spectra execution trace that was produced

Table 1: A catalog of program spectra.

2 Program Spectra

A program spectrum characterizes, or provides a signature of, a program's behavior [11]. One class of

program spectra, path spectra, uses path pro�ling [1, 4] to track the execution of loop-free intraprocedural

paths in a program. Path spectra can track the frequency of path occurrences, or ignore frequency and track

only whether or not paths were executed.

In addition to path spectra, many other signatures of program behavior are possible; for example, spectra

can track the execution of statements or branches (outcomes of decisions). To obtain a broader empirical

view of spectra, in this research, nine distinct types of spectra are considered (see Table 1). These spectra are

next described, and examples are provided to illustrate them. In the following de�nitions, let P be a program.

Branch spectra. Branch spectra record the set of conditional branches that are exercised as P executes.

The entry to a procedure is treated as a branch representing the \decision" to execute the procedure; this

treatment enables the tracking of executions of procedures that contain no branches. If, for each conditional

branch in P , the spectrum merely indicates whether or not that branch was exercised, the spectrum is a

branch-hit spectrum (BHS). If, for each conditional branch in P , the spectrum indicates the number of times

that branch was executed, the spectrum is a branch-count spectrum (BCS).

Complete-path spectrum. A complete path spectrum (CPS) records the complete path that is traversed

as P executes. Such a spectrum may be intolerably expensive to utilize in practice; however, it provides a

useful reference point for comparisons.

Path spectra. To provide some of the bene�ts of considering paths rather than statements or branches,

while avoiding the expense of considering complete paths, Reps et al. [11] consider a di�erent variety of

spectra that tracks partial paths, which they refer to as \path spectra". Path spectra record the set of

loop-free intraprocedural paths that are traversed as P executes. Path spectra were initially de�ned in [4],

where an e�cient algorithm for calculating and tracking loop-free intraprocedural paths is given.

The set of loop-free intraprocedural paths in a procedure is obtained by transforming the control
ow

graph2 for that procedure into an acyclic control
ow graph, as follows. Given a control
ow graph G with

2A control-
ow graph for program (or procedure) P is a directed graph G; nodes in G represent statements in P and edges
in G represent the
ow of control between those statements.

3

a unique entry node e and a unique exit node x, depth-�rst search is used to identify backedges (associated

with cycles) in G. For each backedge (u; v), edges (e; u) and (v; x) are added to G. Finally, all backedges

are removed from G. The resulting graph is acyclic, and contains a �nite number of bounded-length paths.

These are the paths utilized in path spectra.

If, for each such (loop-free, intraprocedural) path in G, a spectrum merely indicates whether or not that

path was executed, the spectrum is a path-hit spectrum (PHS). If, for each such path in G, the spectrum

indicates the number of times that path was executed, the spectrum is a path-count spectrum (PCS).

Data-dependence spectra. Data-dependence spectra record the set of de�nition-use pairs that are ex-

ercised as P executes.3 If, for each de�nition-use pair in P , the spectrum merely indicates whether or not

that de�nition-use pair was exercised, the spectrum is a data-dependence-hit spectrum (DHS). If, for each

de�nition-use pair in P , the spectrum indicates the number of times that de�nition-use pair was exercised,

the spectrum is a data-dependence-count spectrum (DCS).

Output spectrum. An output spectrum (OPS) records the output produced by P as it executes.

Execution-trace spectrum. An execution-trace spectrum (ETS) records the sequence of program state-

ments traversed as P executes.

At �rst glance, CPS and ETS may appear identical, because they each involve complete control-
ow

paths through P . They di�er, however, in that CPS does not record the actual instructions executed along

that path, whereas ETS does.

OPS and ETS are of interest in this context because of their relationship to regression testing. One

important regression testing activity is the selection of a subset of the test suite that was originally used to

test a program, for use in testing a modi�ed version of that program; Reference [13] provides details. In brief,

given a program P , a test suite T for P , and a modi�ed program version P 0, testers want to identify the test

cases in T that reveal regression faults in P 0. For test cases whose speci�ed behavior has not changed, these

\fault-revealing" test cases are exactly the test cases that produce di�erent output spectra for P and P 0.

In general, there is no algorithm to precisely identify these test cases, but under certain conditions, the test

cases that produce di�erent execution-trace spectra constitute a conservative (safe) approximation. Several

regression test selection techniques (e.g., [3, 6, 12]) exploit this relationship to select safe subsets of T for

use in regression testing P 0.

The motivation for considering DCS and DHS is that, intuitively, it seems likely that di�erences in

executing de�nition-use associations might more closely correlate with di�erences in program behavior than

di�erences in executing simple paths, statements, or branches.

To illustrate these spectra, program Sums and its control-
ow graph are presented (Figure 1), with the

spectra for Sums on two executions (Table 2): execution 1 uses input 10 and has expected output 0, and

3A de�nition-use pair is a tuple of the form (d; U; v) in which d is a statement in P and v is a variable, d (the de�nition)
sets a value of v, U (the use) is either a non-predicate statement u that references v, or a pair (u; u0) consisting of a predicate
statement u that references v and a statement u0 reached following evaluation of u, and there is a path in P from d to u without
a rede�nition of v.

4

1

3 4

5

6

2

7
end Sums
7 print sum
 endwhile
6 i = i + 1
5 sum = sum + j
4 read j
3 while i < 10
2 sum = 0
1 read i
program Sums

Figure 1: Sums and its control-
ow graph.

Execution 1 Execution 2
(input: 10) (input: 8, 2, 4)

Spectrum Pro�led entities Hit Count Hit Count
Branch (1,2) Y 1 Y 1

(3,4) N 0 Y 2
(3,7) Y 1 Y 1

Complete (1,2,3,7) Y NA N NA
path (1,2,3,(4,5,6,3)2,7) N NA Y NA
Path (1,2,3,7) Y 1 N 0

(1,3,7), (1,2,3,4,5,6,7), (1,3,4,5,6,7) N 0 Y 1
Data- (1,(3,7),i), (2,7,sum) Y 1 N 0
dependence (1,(3,4),i), (1,6,i), (6,(3,7),i), (2,5,sum), (5,7,sum),(6,6,i), (6,(3,4),i), (5,5,sum) N 0 Y 1

(4,5,j) N 0 Y 2
Output sum is 0 Y NA N NA

sum is 6 N NA Y NA
Execution (read i,sum=0,while i<10,print sum) Y NA N NA
trace (read i,sum=0,while i<10,(read j,sum=sum+j,i=i+1,while i<10)2,print sum) N NA Y NA

Table 2: Spectra for program Sums of Figure 1.

execution 2 uses inputs 8, 2, and 4 and has expected output 6. Where applicable, the two types of spectra

in each category | hit and count | are shown in columns on the right in the table; where the spectra

category does not have these subtypes, \NA" is listed. Consider, for example, the branch spectra for Sums.

There are three conditional branches in Sums (recall that we consider entry edges to be branches), and the

two executions exercise all of them: the BHS for execution 1 records Y for edges (1,2) and (3,7); the BHS

for execution 2 records Y for edges (1,2), (3,4), and (3,7); the BCS for execution 1 records that edges (1,2)

and (3,7) were each exercised once; and the BCS for execution 2 records that edges (1,2) and (3,7) were

exercised once, and edge (3,4) was exercised twice.

Types of spectra can be analytically compared given the subsumption relationship that exists between

them. Spectra type S1 subsumes spectra type S2 if and only if, whenever the S2 spectra for program P ,

version P 0, and input i di�er, the S1 spectra for P , P
0, and i di�er. Spectra type S1 strictly subsumes spectra

type S2, denoted !, if S1 subsumes S2, and for some program P , version P 0, and i, the S1 spectrum di�ers

but the S2 spectrum does not. Spectra types S1 and S2 are incomparable if neither S1 ! S2 nor S2 ! S1.

The following theorem establishes the subsumption relationship for all of the spectra under consideration.

5

DCS

DHS

OPSCPS

PCS

BCS PHS

BHS

ETS

Figure 2: Spectra subsumption hierarchy.

Theorem 1. The family of spectra listed in Table 1 is partially ordered by strict subsumption as shown in

Figure 2. Furthermore, spectra type S1 strictly subsumes spectra type S2 if and only if it is explicitly shown

to do so in Figure 2 or follows from the transitivity of the relationship.

Proof: See Appendix A.

The spectra subsumption hierarchy shown in Figure 2 depicts an analytical relationship between spectra

types that may help in assessing potential cost-bene�t tradeo�s between these types. For example, the

hierarchy suggests that PCS is more sensitive to di�erences in program behavior than BCS, and might be

expected to more precisely reveal such di�erences. It is not clear, however, the extent to which this analytical

expectation of greater e�ectiveness will be borne out in practice. The experiments described in this paper

are intended, in part, to shed some light on this.

3 The Experiments

Two experiments were conducted: the �rst with a set of seven small (100 - 500 lines-of-code) C programs,

and the second with a program an order of magnitude larger. The following sections describe the objectives,

measures, instrumentation, and design shared in common by the two experiments. Subsequent sections in

turn describe the results of the two experiments.

3.1 Objectives

The objective of these experiments was to investigate the following research questions:

1. Given program P , faulty version P 0 of P , and the universe of inputs U for P , what relationship exists

between inputs that cause P and P 0 to produce di�erent spectra and inputs that cause P and P 0 to

exhibit di�erent failure behavior? More precisely:

(a) How often does an input i 2 U that exposes a regression fault in P 0 produce di�erent spectra for

P and P 0?

6

(b) How often does an input i 2 U that produces di�erent spectra for P and P 0 expose a regression

fault in P 0?

2. What are the relationships between the various spectra types, both in terms of their associations with

program-failure behavior, and in terms of their associations with one another?

3.2 Measures

To quantify 1(a) and 1(b), two measures were utilized. Given program P , faulty version P 0, and the universe

of inputs U for P , let FR(P; P 0; U) be the set of inputs in U that expose a regression fault in P 0 (i.e.,

FR(P; P 0; U) are Fault Revealing for P; P 0, and U). For each spectra variety S, let SR(P; P 0; U) be the set

of inputs in U that produce spectra on P and P 0 that di�er (i.e., SR(P; P 0; U) are spectrum S Revealing for

P; P 0, and U).

Degree of Imprecision. For spectra type S, any input i in U that is in SR(P; P 0; U) but not in FR(P; P 0; U)

exhibits a spectra di�erence under S that is not associated with exposure of a regression fault. For such

an input i, S-spectra-comparison is \imprecise". If jSR(P; P 0; U)j = 0, the degree of imprecision of S with

respect to P , P 0 and U is understood to be 0%, otherwise the degree of imprecision of S with respect to P ,

P 0 and U is given by the equation:

jSR(P; P 0; U)� FR(P; P 0; U)j

jSR(P; P 0; U)j
� 100 (1)

Degree of Unsafety. For spectra type S, any input i in U that is in FR(P; P 0; U) but not in SR(P; P 0; U)

exposes a regression fault that is not associated with a spectra di�erence of type S. For such an input i,

S-spectra-comparison is \unsafe". If jFR(P; P 0; U)j = 0, the degree of unsafety of S with respect to P , P 0,

and U is understood to be 0%, otherwise the degree of imprecision of S with respect to P , P 0, and U is

given by the equation:

jFR(P; P 0; U)� SR(P; P 0; U)j

jFR(P; P 0; U)j
� 100 (2)

Note that the degree of imprecision of S can be determined even though S is not safe. In this respect, the

de�nition of the term \imprecision" used in this paper di�ers from its de�nition in areas such as compiler

optimization, where safe analyses are required. In the context of maintenance and testing, however, safe

analyses are not always necessary { a technique that identi�es a su�ciently large subset of some set of facts

can be useful, even though it omits some members of that set of facts. However, it is still desirable to know,

even for unsafe analyses, the degree to which they identify spurious results. The de�nition of \imprecision"

used in this paper supports this.

7

Lines of Number of Input
Program Code Versions Universe Size Description

totinfo 431 22 1052 information measure
schedule1 416 7 2650 priority scheduler
schedule2 309 2 2710 priority scheduler

tcas 238 26 1608 altitude separation
printtok1 584 4 4130 lexical analyzer
printtok2 513 7 4115 lexical analyzer
replace 569 20 5542 pattern replacement

Table 3: Experiment 1 subjects.

Note further that when P is correct for input i, and when P 0 is intended to have the same output for i

as P , then i is in FR(P; P 0; U) if and only if P and P 0 produce di�erent output for i, or equivalently, if and

only if i is in OPSR(P; P 0; U). That is, when P 0 is intended to have the same output for i as P , the presence

of an output di�erence between P and P 0 on i necessarily implies the exposure of a fault in P 0. This fact is

exploited in the design of the experiments presented in this paper.

3.3 Experiment Instrumentation

3.3.1 Experiment 1 Subjects

In the �rst experiment seven smaller C programs were used as subjects (see Table 3). Each program has

many versions, and each of these versions contains one fault-inducing modi�cation. Each subject program

also has a large universe of inputs. These programs, versions, and inputs were assembled by researchers at

Siemens Corporate Research for a study of the fault-detection abilities of control- and data-
ow coverage

criteria [8]. These are referred to as the Siemens programs.

The Siemens programs perform a variety of tasks: tcas is an aircraft collision avoidance system,

schedule2 and schedule are priority schedulers, tot info computes statistics given input data, print tokens

and print tokens2 are lexical analyzers, and replace performs pattern matching and substitution.

The researchers at Siemens sought to study the fault-detecting e�ectiveness of coverage criteria. There-

fore, they created faulty versions of the seven base programs by manually seeding those programs with faults,

usually by modifying a single line of code in the program. Their goal was to introduce faults that were as

realistic as possible, based on their experience with real programs. Ten people performed the fault seeding,

working \mostly without knowledge of each other's work" [8, p. 196].

For each base program, the researchers at Siemens created a large test pool containing possible test cases

for the program. To populate these test pools, they �rst created an initial suite of black-box test cases

\according to good testing practices, based on the tester's understanding of the program's functionality and

knowledge of special values and boundary points that are easily observable in the code" [8, p. 194], using the

category partition method and the Siemens Test Speci�cation Language tool [2, 10]. They then augmented

this suite with manually-created white-box test cases to ensure that each executable statement, edge, and

de�nition-use pair in the base program or its control-
ow graph was exercised by at least 30 test cases. To

obtain meaningful results with the seeded versions of the programs, the researchers retained only faults that

were \neither too easy nor too hard to detect" [8, p. 196], which they de�ned as being detectable by at most

8

Lines of Number of Universe
Program Code Versions Size Description

space 6218 20 13585 interpreter for an ADL

Table 4: Experiment 2 subjects.

350 and at least 3 test cases in the test pool associated with each program.

For the purpose of these experiments, these test pools constitute a \universes of inputs" to these programs.

3.3.2 Experiment 2 Subjects

The second experiment used a single, larger C program developed for the European Space Agency (see

Table 4). This program is referred to here as the Space program.

The Space program consists of 9564 lines of C code (6218 executable), and functions as an interpreter

for an array de�nition language (ADL). The program reads a �le that contains several ADL statements, and

checks the contents of the �le for adherence to the ADL grammar, and to speci�c consistency rules. If the

ADL �le is correct, the Space program outputs a data �le containing a list of array elements, positions, and

excitations; otherwise the program outputs error messages. The Space program is equipped with a number

of faulty versions { each containing a single fault that was discovered during the program's development.

An input universe for the Space program was obtained as follows. An initial pool of 10,000 test cases

was obtained from Vokolos and Frankl; they had created the pool for another study by randomly generating

test cases [14]. Beginning with this initial pool, the program was instrumented for branch coverage, coverage

was measured, and then additional test cases were added to the pool until it contained, for each dynamically

executable branch in the control
ow graph for the program (excluding those branches that are required to

cause execution of malloc faults) at least 30 test cases that exercised that branch. This process yielded an

input universe of 13,585 inputs.

3.3.3 Tools and Techniques

A variety of tools and techniques were used to compute and record the various types of spectra. For

the output spectra (OPS), P and P 0 were executed on the inputs in U . For the execution trace spectra

(ETS), the regression test selection tool DejaVu was used [12] to identify the inputs in U that traverse

modi�ed statements in the P 0s.4 For the branch-hit spectrum (BHS), the branch-count spectrum (BCS),

the path-hit spectrum (PHS), the path-count spectrum (PCS), the data-dependence-hit spectrum (DHS),

the data-dependence-count spectrum (DCS), and the complete-path spectrum (CPS), various coverage tools

from the Aristotle analysis system [7] and the FATE data-
ow testing system [9] were used to record the

appropriate entities (i.e., branches, paths, de�nition-use pairs, complete paths) executed in P and each P 0.

4In general this approach may identify a superset of the inputs that produce di�erent execution traces; however, in practice
it can be determined when the approach incurs imprecision; in all the cases examined in these experiments, the algorithm
identi�ed precisely the inputs that produced di�erent execution traces.

9

3.4 Experiment Design

3.4.1 Variables

Each experiment manipulated a single independent variable, namely, the spectra: OPS, ETS, BHS, BCS,

CPS, PHS, PCS, DHS, and DCS. On each run (with P , P 0, U , and spectra type S), a single dependent

variable was measured, namely, the set of inputs in U that revealed S-spectra di�erences between P and P 0.

To measure the fault-revealing behavior of inputs in U , no additional steps were necessary. This is

because by construction, for each subject program P (Siemens or Space), the inputs in U that expose faults

in P 0 are exactly the inputs that cause P and P 0 to produce di�erent outputs. Thus, as discussed in Section

3.2, with these programs, versions, and input universes, FR(P; P 0; U) = OPSR(P; P 0; U), and therefore, in

these studies, the OPS spectrum serves as a measure of the inputs that expose regression faults in P 0.

3.4.2 Design

Each applicable spectra calculation was applied to each (base program, modi�ed version) pair, for each

input in the universe for that base program. (Due to limitations in the data
ow analysis tools, DHS and

DCS spectra were examined on only the Siemens programs.) This data was used to examine the degrees of

imprecision and unsafety of the various spectra, and to compare spectra, using an analysis strategy described

in the next subsection.

3.4.3 Analysis Strategy

To examine the relationship between inputs that expose regression faults in P 0 and inputs that cause P to

produce di�erent spectra than P 0 (objective 1), for each program P and version P 0, with respect to universe

U , and for each spectra type S, the following data was calculated:

1. The degree of imprecision of S with respect to P , P 0, and U .

2. The degree of unsafety of S with respect to P , P 0, and U .

To compare spectra (objective 2), for each program P and version P 0, with respect to universe U , and for

each pair of spectra types S1 and S2, the following data was calculated:

1. The number of inputs in U that cause spectra di�erences of type S1.

2. The number of inputs in U that cause spectra di�erences of type S2.

3. The number of inputs in U that cause spectra di�erences of type S1 but not of type S2.

4. The number of inputs in U that cause spectra di�erences of type S2 but not of type S1.

This data was also summarized over the entire set of (program, modi�ed version) pairs, considering each

for the entire universe U of inputs (245,087 inputs for the Siemens programs, 271,700 inputs for the Space

program). Sections 4.1 and 4.2 present and analyze this data for the two experiments in turn.

10

3.4.4 Threats to Validity

The primary threats to validity for these experiments are external: these are conditions that limit the ability

to generalize the results of the studies to a larger population of subjects. First, the Siemens programs are

not large, and it cannot be claimed that they represent a random selection over the population of programs

as a whole. Second, the faulty Siemens versions all contain only simple, one- or two-line faults, manually

seeded with the intent of simulating \real" faults, but with no data to indicate that they represent a random

selection over the population of faults as a whole. These threats can be reduced only by repeated application

of the experiment on wider classes of subjects.

Through replication of the experiment on the larger Space program with its real faults, these threats

are initially addressed. However, the tools used to collect spectra were not implemented with e�ciency in

mind, and thus, experimental runs on Space were expensive at 330 hours of machine time per version. Tool

improvements are needed to support runs on additional larger subjects.

A second source of threats to validity for this study are internal: these are in
uences that can a�ect

the dependent variables without the researchers' knowledge. The greatest concern in this study involves

instrumentation e�ects, which can bias results. To control for such e�ects, two types of cross-checks were

utilized: (1) certain results were obtained independently using di�erent instruments at di�erent sites and

examined for association; (2) results were examined for adherence to the analytically determined spectra

hierarchy relationship. No attempt was made, however, to control for the structure of source programs or

for the locality of program changes.

4 Data and Analysis

4.1 Experiment 1

Figure 3 uses boxplots to present the degrees of imprecision and unsafety calculated for each spectra type

over the 88 di�erent (program, modi�ed program) pairs of Siemens programs and versions. The vertical axes

list degrees of unsafety and imprecision, respectively; the horizontal axes list spectra types. In each boxplot,

the dashed line represents the median degree of imprecision or unsafety that occurred for that spectra. The

box indicates the interquartile range { the range in which the middle half of the data falls { and also indicates

where that data falls with respect to the median. The vertical lines extending above and/or below boxes

indicate the percentages at which data above or below the interquartile range fell; however, data points at a

distance of greater than 1.5 times the interquartile range are considered outliers, and represented by small

circles.

The unsafety data depicted in the �gure (left) supports the hypothesis that spectra di�erences can be

expected to occur on inputs that expose faults. Every spectra type demonstrated a median degree of unsafety

of 0%. Furthermore, four types of spectra (CPS, PCS, BCS, and DCS) demonstrated a 0% degree of unsafety

over their entire �rst, second, and third quartiles; in other words, on over three quarters of the (program,

modi�ed program) pairs, these spectra demonstrated di�erences on every input that exposed a regression

fault. For the BHS and PHS spectra, the degrees of unsafety varied more widely than for the other spectra.

11

90807060

50403020

100

90807060

50403020

100

B
H

S
B

C
S

PH
S

PC
S

C
PS

D
C

S
E

T
S

D
H

S

spectra type

degree of unsafety

B
H

S
B

C
S

PH
S

PC
S

C
PS

D
H

S
D

C
S

E
T

S

100

spectra type
degree of imprecision

100

F
ig
u
re

3
:
G
ra
p
h
s
sh
ow

in
g
th
e
d
eg
rees

o
f
u
n
sa
fety

a
n
d
im
p
recisio

n
o
f
sp
ectra

o
n
th
e
S
iem

en
s
p
ro
g
ra
m
s.

F
in
a
lly,

a
ll
sp
ectra

o
th
er

th
a
n
E
T
S
d
isp

lay
ed

o
cca

sio
n
a
l
ex
trem

e
(h
ig
h
)
u
n
sa
fety,

rep
resen

ted
b
y
o
u
tliers.

S
ig
n
i�
ca
n
tly,

o
n
ly

E
T
S
w
a
s
sa
fe:

in
a
ll
ca
ses,

a
ll
in
p
u
ts

th
a
t
rev

ea
led

fa
u
lts

a
lso

rev
ea
led

E
T
S
sp
ectra

d
i�
eren

ces.

T
h
e
im
p
recisio

n
d
a
ta

p
resen

ted
in

F
ig
u
re

3
(rig

h
t)

illu
stra

tes
th
a
t
n
o
t
a
ll
in
p
u
ts

th
a
t
ca
u
sed

sp
ectra

d
i�
eren

ces
a
lso

ex
p
o
sed

fa
ilu
res:

a
ll
ty
p
es

o
f
sp
ectra

in
cu
rred

im
p
recisio

n
.
H
ow

ev
er,

E
T
S
in
cu
rred

a
m
u
ch

h
ig
h
er

m
ed
ia
n
d
eg
ree

o
f
im
p
recisio

n
(9
5
%
)
th
a
n
th
e
o
th
er

ty
p
es

o
f
sp
ectra

,
fo
r
w
h
ich

th
e
m
ed
ia
n
d
eg
rees

o
f
im
p
recisio

n
ra
n
g
ed

fro
m

3
%

to
1
7
%
.
T
h
u
s,
th
e
co
st

o
f
th
e
sa
fety

a
ch
iev

ed
b
y
E
T
S
,
in

term
s
o
f
d
eg
ree

o
f

im
p
recisio

n
,
w
a
s
h
ig
h
.
F
u
rth

er,
im
p
recisio

n
resu

lts
fo
r
a
ll
sp
ectra

o
th
er

th
a
n
E
T
S
va
ried

w
id
ely

;
ex
h
ib
itin

g

m
u
ch

g
rea

ter
va
ria

n
ce

th
a
n
th
e
u
n
sa
fety

resu
lts.

T
h
e
b
ox
p
lo
ts
a
lso

in
d
ica

te
th
a
t,
in
term

s
o
f
b
o
th

d
eg
rees

o
f
im
p
recisio

n
a
n
d
u
n
sa
fety,

th
e
C
P
S
,
P
C
S
,
a
n
d

B
C
S
sp
ectra

d
isp

lay
ed

n
ea
rly

id
en
tica

l
b
eh
av
io
r.

T
h
ese

resu
lts,

th
en
,
d
o
n
o
t
su
p
p
o
rt

th
e
co
n
jectu

re
th
a
t

p
a
th

sp
ectra

w
ill

b
e
m
o
re

sen
sitiv

e
in
d
ica

to
rs

o
f
d
i�
eren

t
b
eh
av
io
r
th
a
n
b
ra
n
ch

sp
ectra

,
w
h
ere

b
eh
av
io
r
is

m
ea
su
red

in
term

s
o
f
ex
p
o
su
re

o
f
reg

ressio
n
fa
u
lts.

T
a
b
le

5
p
resen

ts
d
a
ta

o
n
th
e
rela

tio
n
sh
ip
s
b
etw

een
th
e
va
rio

u
s
sp
ectra

,
sh
ow

in
g
th
e
to
ta
l
n
u
m
b
er

o
f

in
p
u
ts

in
th
e
u
n
iv
erses

th
a
t
ca
u
se

ea
ch

ty
p
e
o
f
sp
ectra

d
i�
eren

ce,
a
n
d
th
e
rela

tio
n
s
b
etw

een
th
e
sets

o
f

in
p
u
ts

id
en
ti�

ed
b
y
ea
ch

sp
ectra

.
C
o
lu
m
n
A

lists
th
e
sp
ectra

co
m
p
a
red

;
C
o
lu
m
n
B

lists
th
e
to
ta
l
n
u
m
b
er

o
f
in
p
u
ts

th
a
t
ca
u
se

sp
ectra

d
i�
eren

ces
o
f
ty
p
e
S
1
;
C
o
lu
m
n
C

lists
th
e
to
ta
l
n
u
m
b
er

o
f
in
p
u
ts

th
a
t
ca
u
se

sp
ectra

d
i�
eren

ces
o
f
ty
p
e
S
2
;
C
o
lu
m
n
D

lists
th
e
to
ta
l
n
u
m
b
er

o
f
in
p
u
ts

th
a
t
ca
u
se

sp
ectra

d
i�
eren

ces
o
f

ty
p
e
S
1
b
u
t
n
o
t
o
f
ty
p
e
S
2
;
C
o
lu
m
n
E
lists

th
e
to
ta
l
n
u
m
b
er

o
f
in
p
u
ts
th
a
t
ca
u
se

sp
ectra

d
i�
eren

ces
o
f
ty
p
e

S
2
b
u
t
n
o
t
o
f
ty
p
e
S
1
.

1
2

A B C D E

Spectra Number of Number of S1 di�erences not S2 di�erences not
(S1-S2) S1 di�erences S2 di�erences di�erent in S2 di�erent in S1

OPS-BHS 8076 10536 1868 4328
OPS-BCS 8076 17956 469 10349
OPS-PHS 8076 12120 1266 5310
OPS-PCS 8076 17956 469 10349
OPS-DHS 8076 37881 743 30548
OPS-DCS 8076 40372 448 32744
OPS-CPS 8076 17963 469 10356
OPS-ETS 8076 130151 0 122075
BHS-BCS 10536 17956 0 7420
BHS-PHS 10536 12120 0 1584
BHS-PCS 10536 17956 0 7420
BHS-DHS 10536 37881 16 27361
BHS-DCS 10536 40372 12 29848
BHS-CPS 10536 117963 0 7427
BHS-ETS 10536 130151 0 119615
BCS-PHS 17956 12120 5836 0
BCS-PCS 17956 17956 0 0
BCS-DHS 17956 37881 2502 22427
BCS-DCS 17956 40372 12 22428
BCS-CPS 17956 17963 0 7
BCS-ETS 17956 130151 0 112195
PHS-PCS 12120 17956 0 5836
PHS-DHS 12120 37881 29 25790
PHS-DCS 12120 40372 12 28264
PHS-CPS 12120 17963 0 5843
PHS-ETS 12120 130151 0 118031
PCS-DHS 17956 37881 2502 22427
PCS-DCS 17956 40372 12 22428
PCS-CPS 17956 17963 0 7
PCS-ETS 19191 136226 0 117035
DHS-DCS 37881 40372 0 2491
DHS-CPS 37881 17963 22426 2508
DHS-ETS 37881 130151 0 92270
DCS-CPS 40372 17963 22427 18
DCS-ETS 40372 130151 0 89779
CPS-ETS 17963 130151 0 112188

Table 5: Comparison of spectra on the Siemens programs, summarized over all (program, modi�ed version)
pairs, considering each for the entire input universe (245,087 data points).

13

OPS-BHS OPS-PHS OPS-DHS OPS-CPS

OPS-ETSOPS-DCSOPS-PCSOPS-BCS

Figure 4: Graphical comparison of OPS with the other spectra, on the Siemens programs.

To aid in interpreting this data, Figure 4 provides a graphical view of the portion of the data in Table 5

that compares the various spectra with OPS, within the context of the entire universe of inputs as applied

to all (program, modi�ed program) pairs. In the �gure, the eight outer squares represent comparisons of

the OPS spectra to the other eight spectra, respectively, as labeled. Each such square represents the entire

universe of input points over all (program, modi�ed version) pairs. Within the outer squares, the lightly

shaded areas indicate the percentages of input points that caused only XS-spectra di�erences (XS 6= OPS),

the medium shaded areas represent the percentages of input points that caused only OPS di�erences, and

the darkly shaded areas represent the percentages of input points under both XS and OPS. Recall that

by construction, FR(P; P 0; U) = OPSR(P; P 0; U); thus, this graph provides another view of the safety and

imprecision of the various spectra types.

It is also possible to compare the sizes of shaded areas in Figure 4 to obtain a qualitative idea of the

relationships among the spectra. For example, it is easy to see the relative imprecisions of ETS, DCS, DHS,

and CPS in this �gure. One observable result: where intuition had prompted the conjecture that DCS and

DHS might be better than other spectra types at predicting fault exposing inputs, that intuition was wrong.

Instead, DHS and DCS were less precise than all spectra other than ETS, and more unsafe than BCS, PCS,

and CPS. Another result: CPS, PCS, and BCS appear quite similar, as do PHS and BHS.

Figure 5 provides a closer view of the relationships between CPS, PCS, PHS, BCS, and BHS that shows,

for each of these spectra types, the number of inputs for which spectra di�erences occurred. Like the

imprecision and unsafety results, this �gure illustrates the near equivalence, over the programs, modi�ed

versions, and input universes considered, of the CPS, PCS, and BCS spectra, as well as the relative closeness

14

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

15,000

10,000

5,000

20,000

0
BHS PCS CPSBCSPHS

nu
m

be
r

of
 in

pu
ts

spectra type

Figure 5: Comparison of CPS, BCS, PCS, PHS, and BHS on the Siemens programs, showing, for each
spectra type (horizontal axis), the number of inputs for which spectra di�erences occurred (vertical axis).

of the PHS and BHS spectra. Finally, where analytical results foretold that neither PHS nor BCS should

subsume the other, in this experiment BCS subsumed PHS: BCS spectra di�erences occurred in 5836 cases

in which PHS spectra di�erences did not occur, but in all cases in which PHS spectra di�erences occurred,

BCS spectra di�erences also occurred.

These results do not support the conjecture that path spectra will be more sensitive indicators of di�erent

behavior than branch spectra. For the 245,087 inputs, PCS was never more sensitive than BCS, and CPS

was more sensitive than PCS on only 7 inputs. Essentially, despite the analytical di�erences between spectra

depicted by the subsumption hierarchy, in the cases studied, the CPS, PCS and BCS spectra collapsed into

one another, exhibiting nearly equivalent abilities to distinguish di�erences in program behaviors.

4.2 Experiment 2

Figure 6 shows boxplots, similar to those presented for the Siemens programs in Figure 3, presenting the

degrees of unsafety and imprecision of the various spectra types over the 20 di�erent modi�ed versions of the

Space program. As the unsafety data (left) indicates, again, spectra di�erences can be expected to occur on

inputs that exposed faults. Again, every type of spectra demonstrated a median degree of unsafety of 0%,

with CPS, PCS, and BCS, and DCS demonstrating unsafety greater that 0% only on outliers. For the BHS

and PHS spectra, however, the degrees of unsafety demonstrated a much greater range than on the Siemens

programs. Again, only ETS was safe.

The imprecision data shown in Figure 6 again indicates that no spectra were perfectly precise. Again,

the ETS spectra was the most imprecise with a median degree of imprecision of 91%. The median degree of

imprecision for the other spectra (PHS, PCS, BHS, BCS, and CPS) was again 0%; however, in this case, all

�ve of these spectra displayed equivalent ranges of imprecision except for outliers.

Similar to Table 5, Table 6 lists the relationships between the various spectra. Similar to Figure 4, Figure

7 provides a graphical depiction of some of the data in Table 6. In this case, however, the medium shaded

areas for OPS-CPS, OPS-PCS, and OPS-BCS are so small (representing only 925 of 271,700 inputs) that

15

100

90

40

30

20

50

60

70

80

10

0

spectra type

BHS BCS PHS PCS CPS ETS

de
gr

ee
 o

f
un

sa
fe

ty

100

90

40

30

20

50

60

70

80

10

0

spectra type

BHS BCS PHS PCS CPS ETS

de
gr

ee
 o

f
im

pr
ec

is
io

n
Figure 6: Graphs showing the degrees of unsafety and imprecision of spectra on the Space program.

they are not visible, illustrating the low imprecision of CPS, PCS, and BCS.

Figure 8 provides another perspective on the relationship of BHS, BCS, CPS, PHS, and PCS spectra,

similar to that of Figure 5, that displays, for each of those spectra, the number of inputs for which spectral

di�erences existed. With the Siemens programs PCS was found never to be more sensitive than BCS over

the 245,087 inputs in the experiment and CPS was found to be more sensitive than PCS on only 7 inputs,

whereas with the Space program CPS, BCS, and PCS displayed identical sensitivities for all 271,700 inputs.

5 Discussion and Conclusions

This paper has described an empirical investigation of the relationship between spectra di�erences and the

exposure of regression faults, considering the abilities of various spectra types to predict program behavior

in terms of such faults, and the relationship between spectra types.

It is important to emphasize that this study has considered only one scenario in which the usefulness of

program spectra has been postulated: the scenario in which spectra from a program and modi�ed version,

run on the same input, are compared. The results do not provide data applicable to the use of spectra when

a single program is run on two slightly di�erent inputs. However, given the degree to which certain spectra

types produced nearly equivalent results for our subjects, further empirical study of the relationship between

spectra types in the latter scenario would be appropriate.

Further, these studies have focused on just one indicator of program behavior { exposure of regression

faults. This indicator is important, and the fact that spectra do correlate with it { at least in one direction

{ is signi�cant. Whether spectra will correlate with other measures of behavior, such as measures based on

16

A B C D E

Spectra Number of Number of S1 di�erences not S2 di�erences not
(S1-S2) S1 di�erences S2 di�erences di�erent in S2 di�erent in S1

BHS-BCS 46131 49994 0 3863
BHS-PHS 46131 47655 0 1524
BHS-PCS 46131 49994 0 3863
BHS-CPS 46131 49994 0 3863
BCS-PHS 49994 47655 2339 0
BCS-PCS 49994 49994 0 0
BCS-CPS 49994 49994 0 0
PHS-PCS 47655 49994 0 2339
PHS-CPS 47655 49994 0 2339
PCS-CPS 49994 49994 0 0
OPS-BHS 47308 46131 2923 1746
OPS-BCS 47308 49994 925 3611
OPS-PHS 47308 47655 2235 2582
OPS-PCS 47308 49994 925 3611
OPS-CPS 47308 49994 925 3611
OPS-ETS 47308 201711 0 154403
ETS-BHS 201711 46131 155580 0
ETS-BCS 201711 49994 151717 0
ETS-PHS 201711 47655 154056 0
ETS-PCS 201711 49994 151717 0
ETS-CPS 201711 49994 151717 0

Table 6:
Comparison of spectra on the Space program, summarized over all (program, modi�ed version) pairs, con-
sidering each for the entire input universe (271,700 data points).

OPS-ETSOPS-PCS

OPS-CPSOPS-PHSOPS-BHS

OPS-BCS

Figure 7: Graphical comparison of OPS with the other spectra, for the Space program.

17

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

BHS PCS CPSBCSPHS

49,000

48,000

47,000

46,000

45,000
nu

m
be

r
of

 in
pu

ts 50,000

spectra type

Figure 8: Comparison of CPS, BCS, PCS, PHS, and BHS on the Space program showing, for each spectra
type (horizontal axis), the number of inputs for which spectra di�erences occurred (vertical axis).

sequences of execution states [11], is a subject for future investigation. The comparisons of spectra to each

other described in this paper, however, are not restricted to fault-revealing behavior.

Finally, as discussed earlier, there are some threats to validity for this experiment, primarily concerning

representativeness of subjects. Additional experimentation with a variety of subjects is necessary.

Keeping the foregoing in mind, however, the results of these experiments support several conclusions.

First, although the execution trace spectra emerged as the only spectra to necessarily exhibit di�erences for

inputs that exhibit faults, certain other types of spectra di�erences (i.e., CPS, PCS, and BCS) also correlate

with high frequency (at least in one direction) with fault occurrences. The results suggest that for these

spectra types, when failures exist on particular inputs, spectra di�erences are likely also to exist on those

inputs. Moreover, with these spectra types, the degree of imprecision { the frequency with which spectra

di�erences exist but faults do not { is much lower than with the execution trace spectra.

Another conclusion involves the near equivalence of the CPS, PCS, and BCS spectra in terms of their

ability to distinguish program behaviors. Program instrumentation has a cost, and in practice that cost must

be balanced against potential savings, while also considering the criticality of the application. In general, it

would not be cost-e�ective to collect the complete traces required for CPS spectra; however, if the results

of these experiments generalize, PCS and BCS spectra possess power almost equivalent to that of CPS, and

may be cost-e�ective alternatives. Furthermore, estimates suggest that the pro�ling necessary to collect

BCS spectra incurs a 16% run-time overhead whereas the pro�ling necessary to collect PCS spectra incurs

a 30% run-time overhead [5]. In the absence of a gain in sensitivity, use of the PCS spectra instead of the

BCS spectra would not be worth the added overhead required to collect the more sensitive spectra.

It is important to note that the experiments reported in this paper do not directly involve techniques

for program validation: no speci�c tools using spectra in software ver�cation were considered. Nevertheless,

this work makes a contribution that should be viewed in a di�erent context from the contributions made by

empirical studies of tools. The experiments performed in this work explore fundamental relationships between

program behaviors, and techniques for observing those behaviors. By demonstrating that a relatively close

18

association can exist (in one direction) between certain types of spectral di�erences and program failure

behavior, and by providing data on the possible relationships between types of spectra in practice, the

experiments provide a foundation for further research and experimental work on techniques that directly

utilize spectra to help with software veri�cation. With this foundation, such research and experimental work

can proceed, and hopefully, can yield practical uses of program spectra for software validation.

Acknowledgments

This work was supported in part by a grant from Microsoft Inc., by NSF under NYI Award CCR-9696157

to Ohio State University, ESS Award CCR-9707792 to Ohio State University and Oregon State University,

and by CAREER Award CCR-9703108 to Oregon State University. Siemens Corporate Research supplied

the Siemens programs. Alberto Pasquini, Phyllis Frankl, and Filip Vokolos provided the Space program and

many of its test cases.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with
ow and context

sensitive pro�ling. ACM Sigplan Notices, 32(5):85{96, June 1997.

[2] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts from formal test speci�ca-

tions. In Proc. of the 3rd Symp. on Softw. Testing, Analysis, and Veri�cation, pages 210{218, December

1989.

[3] T. Ball. On the limit of control-
ow analysis for regression testing. In Proc. of the ACM Int'l. Symp.

on Softw. Testing and Analysis, March 1998.

[4] T. Ball and J. R. Larus. E�cient path pro�ling. In Proc. of Micro 96, pages 46{57, December 1996.

[5] T. Ball, P. Mataga, and M. Sagiv. Edge pro�ling versus path pro�ling: The showdown. In Proc. of 25th

ACM Symp. on Prin. of Prog. Lang., pages 134{148, Jan. 1998.

[6] Y.F. Chen, D.S. Rosenblum, and K.P. Vo. TestTube: A system for selective regression testing. In Proc.

of the 16th Int'l. Conf. on Softw. Eng., pages 211{220, May 1994.

[7] M. J. Harrold and G. Rothermel. Aristotle: A system for research on and development of program-

analysis-based tools. Technical Report OSU-CISRC-3/97-TR17, The Ohio State University, March

1997.

[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the e�ectiveness of data
ow- and

control
ow-based test adequacy criteria. In Proc. of the 16th Int'l. on Softw. Eng., pages 191{200, May

1994.

19

[9] J. Lloyd and M.J. Harrold. Implementing an interprocedural data
ow tester using abstract execution.

Technical Report 95-111, Clemson University, Clemson, SC, May 1995.

[10] T.J. Ostrand and M.J. Balcer. The category-partition method for specifying and generating functional

tests. Comm. of the ACM, 31(6), June 1988.

[11] T. Reps, T. Ball, M. Das, and J. Larus. The use of program pro�ling for software maintenance with

applications to the year 2000 problem. ACM Software Engineering Notes, 22(6):432{439, November

1997.

[12] G. Rothermel and M. J. Harrold. A safe, e�cient regression test selection technique. ACM Trans. on

Softw. Eng. and Methodology, 6(2):173{210, April 1997.

[13] G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques. IEEE Trans. on Softw.

Eng., 22(8):529{551, August 1996.

[14] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the textual di�erencing regression testing tech-

nique. In Proceedings of the International Conference on Software Maintenance, pages 44{53, November

1998.

Appendix A: Proof of Theorem 1

Proof:

1. ETS ! DCS, ETS ! CPS, ETS ! OPS .

Given a spectrum S 2 fDCS;CPS;OPSg. Let i be an input that is S-di�erencing for P and P 0. Then,

assuming controlled regression testing [13], P 0 must execute the statement that has changed from P . Thus,

i is ETS-di�erencing, and DCS, CPS, and OPS are subsumed by ETS.

To show that the subsumption is strict, consider a program that has a predicate statement s : a � b in P

that is changed to s0 : a < b in P 0, and an input i that causes a to be less than b when execution reaches both

s and s0. In this case, i is ETS-di�erencing. However, none of the data-dependencies, the complete path,

or the output change for input i, and thus i is not DCS-di�erencing, CPS-di�erencing, or OPS-di�erencing.

Thus, equality does not hold, and the subsumption is strict.

2. CPS ! PCS.

Let i be an input that is PCS-di�erencing for P and P 0. Then there is at least one loop-free path e for P 0

whose count di�ers from the count of e in the PCS for P . But this means that there must be a complete

path that di�ers. Thus, i is PCS-di�erencing and CPS subsumes PCS.

To show that the subsumption is strict, consider the control
ow graph of program P , shown on the right in

Figure 9. Suppose that, on some input i, the complete path taken through the graph is EabcdfbcdfbceghX.

The PCS for P contains paths EabcdfX, EbcdfX, EbcegX, and EhX. Now suppose P 0 is such that its

execution on i produces the complete path EabcdfbcegbcdfhX. Because the complete path is di�erent for P

and P 0 on i, i is CPS-di�erencing. However, the acyclic paths in P 0 would be EabcdfX, EbcdfX, EbcegX,

and EhX { the same as for P . Thus, equality does not hold, and the subsumption is strict.

20

e

a

g

b

c

d

ef

E

X

a

b

c

E

X

d

f g

h

Figure 9: Subgraphs used for proof of Theorem 1.

3. PCS ! BCS.

Let i be an input that is BCS-di�erencing for P and P 0. Then there is at least one branch e in the BCS for

P 0 whose count di�ers from the count of e in P 0s BCS. The paths in PCS are acyclic, so each occurrence of

e appears in exactly one path in PCS. Thus, one of the paths containing e has a di�erent count in P and

P 0, and i is PCS-di�erencing for P and P 0, and PCS subsumes BCS.

To show that the subsumption is strict, consider the control
ow graph on the left in Figure 9. Suppose

that, on some input i, the path taken through the graph is EabcdedefbcfgX, and the path taken for P 0 is

EabcdefbcdefgX. Then for both P and P 0, b is executed twice, g is executed once, d is executed twice, and

f is executed twice. For P the paths are EabcdeX, EdeX, EbcfX, EfX, and EgX, whereas for P 0 the paths

are EabcdeX, EfX, EbcdeX, EfX, and EgX. Thus, equality does not hold, and the subsumption is strict.

4. DCS ! DHS, BCS ! BHS PCS ! PHS.

Let i be an input that is S{hit-di�erencing for P and P 0, there exists some entity e (branch, path, data-

dependence) that di�ers in the S-hit spectrum for P and P 0 on i. Suppose that P 's spectrum contains e

(branch, path, or data-dependence) that is not contained in P 0's spectrum. Then the number of occurrences

of e in P 's spectrum is at least 1, whereas the number of occurrences of e in P 0's spectrum is 0, and thus i

is S{count-di�erencing for P and P 0. Thus, S{count subsumes S-hit.

To show that the subsumption is strict, consider an input i that is S{count{di�erencing, and let P and P 0

di�er only in the number of times that loops are executed. Then, the S{count spectra for P and P 0 would

di�er but the S{hit spectra would be the same. Thus, equality does not hold, and the subsumption is strict.

5. PHS ! BHS.

Let i be an input that is BHS-di�erencing for P and P 0. Suppose that P 's BHS contains some branch e that

is not in P 0's BHS. Then P 's PHS must contain at least one path containing e, whereas P 0's PHS contains

none of the paths containing e. Thus, i is PHS-di�erencing for P and P 0, and PHS subsumes BHS.

21

a

b

c

E

d

f g

h

e

x = zX

z =

i

print("true branch")

if (debug)

Figure 10: Subgraph used for proof of Theorem 1.

To show that the subsumption is strict, consider the control
ow graph of program P , shown on the left in

Figure 9. Suppose that, on some input i, the actual path taken through the graph is EabcfbcfgX. The BHS

for P contains branches b, f, and g; the PHS contains paths EabcfX, EbcfX, and EgX. Now suppose that

P 0 is such that it executes the loop only one time. Then the BHS for P 0 contains b, f, and g { the same

as the BHS for P . However, the PHS for P 0 has EabcfX and EgX. Thus, equality does not hold, and the

subsumption is strict.

6. OPS is incomparable with CPS, PCS, PHS, BCS, and BHS.

6a. Consider OPS with CPS. Let P be a program with computation x = a + b, and let P 0 be a modi�ed

version in which x = a+ b is changed to x = a� b, such that neither x = a+ b nor x = a� b a�ects the
ow

of control in P or P 0. In this case i can be OPS-di�erencing, but it is not CPS-di�erencing for P , P 0, and

i. Thus, CPS does not subsume OPS, and thus none of CPS, PCS, PHS, BCS, or BHS subsumes OPS.

6b. Now consider BHS and OPS,and a program P in which a section of code is replaced by a semantically

equivalent piece of code that has a di�erent control
ow structure to get P 0, let i be an input that produces

the same output for P and P 0 (of course all i should do this) but traverses di�erent branches in P 0. In this

case, i is BHS-di�erencing but not OPS-di�erencing. Thus, BHS does not subsume OPS, and thus none of

CPS, PCS, PHS, BCS, or BHS subsumes OPS.

By 6a and 6b, OPS is incomparable to CPS, PCS, PHS, BCS, and BHS.

7. DCS and DHS are incomparable with CPS, PCS, PHS, BCS, and BHS

7a. Consider DHS with CPS. Let P contain a statement s : a = B+C, and let P 0 contain a modi�ed version

s0 : a = b + 1. Let i be an input that produces the same complete path in P and P 0. Clearly i produces a

di�erence in the de�nition-use pairs in P and P 0, and thus, i is DHS-di�erencing for P , P 0, and i. However,

because the path executed in P and P 0 for i is the same, i is not CPS-di�erencing for P , P 0, and i. Thus,

CPS does not subsume DHS, and thus none of CPS, PCS, PHS, BCS, or BHS subsumes DHS or DCS.

7b. Now consider BHS and DCS, and the partial control
ow graph for shown in Figure 10. Assume that this

22

graph models both P and P 0, and that the only di�erence between the two is that the conditional statement

associated with the node that is the target of edge a has been changed. Let i be an input such that when

P is executed with i, it takes the path EabcdfbceghiX and when P 0 is executed with i, it takes the path

EabcdfhiX. In this case, i is BHS-di�erencing for P and P 0 but not DCS-di�erencing for P and P 0. Thus,

DCS does not subsume BHS, and thus neither DCS nor DHS subsumes CPS, PCS, PHS, BCS, or BHS.

By 7a and 7b, DCS and DHS are incomparable with CPS, PCS, PHS, BCS, or BHS.

8. OPS is incomparable with DCS and DHS.

8a. Consider OPS and DCS, and the example given in part 6a above. If i is such that it produces a di�erent

output on P and P 0, then i is OPS-di�erencing, but not DCS-di�erencing for P and P 0. Thus, neither DCS

nor DHS subsumes OPS.

8b. Now consider DHS and OPS, and the example given in 7a above with i such that P and P 0 produce the

same output when executed with i as input. Then i is DCS-di�erencing, but not OPS-di�erencing for P ,

P 0, and i. Thus, OPS does not subsume DCS, and thus it does not subsume DHS.

By 8a and 8b, OPS is incomparable with both DCS and DHS.

9. BCS and PHS are incomparable.

9a. Consider the partial control
ow graphs on the left of Figure 9, and the case where input i causes

execution of the path EabcfbcfbcfX when used as input for P but causes execution of the path EabcfbcfX

when used as input for P 0. The number of times branch b is executed di�ers in P and P 0, and thus i is

BCS-di�erencing for P and P 0. The paths that are executed in P and P 0, however, are the same { EabcfX,

EbcfX, and EgX in both cases { and thus i is not PHS-di�erencing for P and P 0. Thus PHS does not

subsume BCS.

9b. Now consider the partial control
ow graph on the right of Figure 9, and i such that when P is executed

with i, it takes the path EabcdfbceghX and when P 0 is executed with i, it takes the path EabcegbcdfhX.

Clearly, i is PHS-di�erencing, but not BCS-di�erencing, for P and P 0. Thus, BCS does not subsume PHS.

From 9a and 9b, BCS and PHS are incomparable.

This completes the proof. 2

23

