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ABSTRACT: We discuss a general way to derive approximate molecular orbital (MO)
methods starting from some reference MO theory. In particular, we present a model
Hamiltonian that is based on a Kohn—Sham reference and that is free of adjustable
parameters. This Hamiltonian is a linear combination of atom-centered ket-bra operators,
each of which is easily derived from the results of Kohn—-Sham atomic calculations. The
resulting equations are similar to those of extended Hiickel (eH) theory and are as efficient
computationally as eH. Orbital energies for a few small molecules show that this method
is more stable with respect to choice of basis set, and slightly more accurate, than eH. We
improved the accuracy of our model Hamiltonian by introducing parameters fitted to the
higher level of theory. These parameters define a basis of pseudoatomic orbitals that are, in
a certain sense, optimal for the molecule used in the fitting procedure. We illustrate our
method by calculating the eigenvalue spectrum of silicon clusters.  © 2000 John Wiley &
Sons, Inc. Int ] Quantum Chem 80: 582-590, 2000
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Theory

lf the n lowest eigenvalues A; and associated
eigenfunctions | f;) of an operator O are known,
the effect of O on any function belonging to the
n-dimensional subspace spanned by {|fi)} is ex-
pressed exactly by a spectral resolution formula [1],
O = Y, Mlfi)(fel- In particular, if we know the
atomic orbitals (AO) | x¢) and orbital energies ef of N
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atoms A, B, C, .. ., within, say, Kohn-Sham (KS) the-
ory using some exchange—correlation potential V.,
then we can write the Hamiltonian of N infinitely
separated atoms A, B, C, ..., within the same model
as H = Y orerlxg)(xgl, where the sum is over all AO
on all atoms.

Electronic structure calculations on molecules
can be done using a variety of basis sets: AO, atom-
centered Cartesian Gaussians or numerical Slater-
type orbitals, plane waves, etc. If we leave aside
considerations about numerical efficiency or ease
of implementation, the AO basis stands out as a
natural choice; it is the starting point of the lin-
ear combination of AO (LCAO) theory of chemical
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bonding. We can view AO bases for molecular cal-
culations as made up of the n lowest energy AO of
infinitely separated atoms {|x¢)} translated in space
to the positions nuclei have in the molecule to give
a basis set that we denote by {|xk)}. A first-principles
calculation would then proceed with that finite basis
and the exact Hamiltonian. If instead we construct a
model Hamiltonian ™ from the |x?) by translation
in space, in a way similar to how the AO basis set is
constructed, we get Hm = > erlxx) (xx|. Defining
the metric matrix {S;;} over normalized AO through
Si = 1and Sij = (xilx;), the matrix elements of 1"
are

r (e} (o] 2
Hz(zM) =e¢ + Zeksik
ki

Hf]m) = Z Sixey Skj, P#].
x

1

An equation similar to Eq. (1) was proposed by
Newton et al., as an “intuitively reasonable for-
mula” [2]. Newton et al. noted that their equa-
tion satisfied some symmetry requirements, but
they did not obtain it from first principles, and
they introduced adjustable parameters in defin-
ing their nonempirical molecular orbital (NEMO)
method. Linderberg and Ohrn proposed the Hamil-
tonian [Eq. (1)] and used it to illustrate how elec-
tron binding energies can be calculated using a
Green’s function [3]. Shortly after, model Hamil-
tonians of the form of Eq. (1) were used [un-
der the name “modified extended Hiickel”(eH)] to
calculate the photoelectron spectra of azines [4]
and nuclear quadrupole coupling constants of
some oxy-compounds of bromine and chlorine [5].
A more detailed discussion of Eq. (1) was given
by Linderberg et al. who coined the term energy
weighted maximum overlap (EWMO) to describe
their method [6]. Linderberg et al. applied EWMO
to electron spin resonance problems [7, 8] and
particle-hole excitations [9]. The EWMO method is
not as popular as eH or other semiempirical meth-
ods, but we think that it is very important for theory
and deserves a close look. It has no adjustable pa-
rameter, and it can be used to approximate any
first-principles molecular orbital (MO) theory, includ-
ing KS theory. Moreover, if we write Eq. (1) in matrix
form, H = SeS, we see that e is a diagonal matrix
of AO energies and that better model Hamiltonians
may be obtained by adding empirical off-diagonal
elements to e. On the other hand, if we neglect all
the terms in the sum of Eq. (1) except those with
k = i and k = j, an approximation that seems

justified when AO on different atoms overlap only
weakly, we get

i = ¢
o m) o o )
Hij = (ei + 8]-)51']', 1 75]

This is the well-known Wolfsberg—Helmholtz for-
mula [10] of eH theory [11, 12], with the parameter
K set equal to 2. This way to arrive at eH theory
is interesting, but it is rarely mentioned. (However,
Linderberg and Ohrn did mention the similarity be-
tween Egs. (1) and (2) [3].) If we retain all terms
in the sum in Eq. (1) we might improve over eH
while keeping a very efficient method. But more im-
portantly, we can generalize the model Hamiltonian
[Eq. (1)] in two ways.

First, we can take H™ = Y, v |#x) (¢x] where vy
and |¢p) are eigenvalues and eigenfunctions of mod-
ified atomic problems, or, pseudoatom orbitals (PAO).
Porezag et al. [13] proposed an analogous idea—
a basis of PAO obtained by solving the KS atomic
problem in a constraining spherical potential—in
the context of tight-binding (TB) methods. These
authors reported that TB calculations with a non-
self-consistent potential gave better results when
the basis functions and potential are derived from a
superposition of PAO instead of a superposition of
free atom AO. We surmise that the use of some kind
of modified AO (maybe the PAO of Porezag et al.)
would improve the accuracy of Eq. (1) as well.

Second, we note that if we knew the solution
to the molecular problem in the AO basis, the KS
Hamiltonian could be written as H = i€l (Wil =

Zi € Zu,b Cia |Xﬂ>cfb (xvl, or
H=""|xa)Wa{x0], ®)
ab

where |¥;) is a molecular orbital, ¢; is an MO en-
ergy, |xa) is an AO, Cj, is the coefficient of AO “a”
in MO “i,” and W,, = ), €,C;,C}, can be viewed as
a weighted sum of MO energies for the ab pair of
AOQ. In calculations it is practical to view Wy, as de-
fined by the matrix equation H™ = SWS (or, W =
S~TH™S~1). Expansion of operators in a basis, as in
Eq. (3), is well-known in the general theory [1]. We
merely wish to point out here that Eq. (3) is a very
promising starting point for devising model Hamil-
tonians by modeling the matrix {W} in a basis of
AO. Indeed, even the crudest model, W, = §ue5,
is useful as it brings us back to Eq. (1) and, with a
further approximation, to eH theory. Nothing that
simple works as well when trying to model directly
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the Hamiltonian matrix {H;}, as done in most TB
methods [14].

KS theory can, in principle, yield exact ground-
state properties in an MO formalism. Therefore,
it can be viewed as the correct underlying theory
for all variants of eH and TB schemes, including
EWMO and its generalization [Eq. (3)]. Lindholm
and Lundqvist gave a similar argument for inter-
preting the semiempirical theories PPP, MINDO,
MNDO, CNDO/S, SPINDO, and HAM as approx-
imations to KS theory [15]. They showed that the
KS energy expression, with exact exchange and cor-
relation contributions, can be put in the same form
as that of semiempirical theories. Lindholm and As-
brink used this conceptual connection as a guide
in approximating different terms of the energy in
HAM, but they fitted parameters of their method to
experiment instead of taking them from KS calcula-
tions [16].

Before discussing the results of calculations, we
want to indicate the relation between our approach
and previous work. Our Eq. (1) is the same as for
EWMO [3, 6], although we propose it on differ-
ent grounds—by making an analogy between the
expansion of MO by LCAQO, and the approximate
representation of operators by linear combination
of atomic orbital operators. Differences with EWMO
are that we recommend to generalize Eq. (1) by us-
ing PAO or Eq. (3); we interpret Egs. (1) and (3)
as approximate KS Hamiltonians; and, in order to
be consistent with this interpretation, we choose
to parametrize Egs. (1) and (3) directly from ref-
erence KS calculations. Our goal is to derive an
efficient semiempirical theory from KS density func-
tional theory (DFT), the same goal as in the HAM
method [16]. But our approach differs greatly from
HAM in the details: it is much simpler, it does not
require any fit to (or, input from) experiment, and its
focus is on one-electron energies instead of the total
energy. A disadvantage of our approach, compared
to HAM, is that we do not specify how to calculate
the total energy [see Eq. (5)].

Tests on Small Molecules

We calculated the orbital energies of the mole-
cules H,O, CHy4, N, C,Hy, and CO, with different
methods. First, we used KS in the local spin density
(LSD) approximation with the Vosko-Wilk-Nusair
parametrization for the exchange—correlation po-
tential and (4s,3p, 1d) basis sets on C, N, and O,
and a (3s, 1p) basis on H. This is our reference: All

other methods use AO calculated in this approxi-
mation and aim to reproduce its results for mole-
cules. The other methods are non-self-consistent.
They simply require diagonalization of the ma-
trix (S~1/2H™S~1/2) where H™ is given by either:
(1) Eq. (1); (2) Eq. (2) with the right side multiplied
by 0.875 (eH with K = 1.75); or (3) Eq. (2) (eH
with K = 2). We made variations on these methods
by choosing different subsets of the atomic KS-DFT
eigenfunctions: (a) minimal set of valence AO;
(b) minimal set of AO that includes core orbitals;
(c) the full set of atomic eigenfunctions. The results
are given in Table I. We point out that Stowasser and
Hoffmann recently discussed the chemical meaning
of KS and eH eigenvalues [17]. However, the stan-
dard eH model they used is defined from Slater
AO and ionization potentials, instead of KS AO and
eigenvalues, and therefore their comparison of eH
and KS molecular orbital energies is not as straight-
forward as it is here.

The best model in principle is 1(c). The mean ab-
solute deviation (MAD), in electron volts, between
KS and 1(c) orbital energies [valence, lowest unoc-
cupied molecular orbitals (LUMO), and LUMO+1
in some cases] are: 1.4 for H,O, 2.3 for CHy, 2.1 for
CyHy, 1.4 for N», and 1.7 for CO,. The best of the
four eH models, 2(a), gives MAD for these mole-
cules (in the same order) of 4.4,7.7,1.8,7.5 and 4.4;
these go down to 1.7, 3.4, 1.6, 2.5, and 2.2, respec-
tively, if we ignore the highest energy MO, which
are very poorly predicted by eH (except in CoHy).
Table I shows that models 1(c) and 2(a) get a wrong
order for some orbitals, and although it cannot be
seen from Table I, model 2(a) gets the wrong orbital
as the LUMO of H,O. Model 1(c) gives the small-
est MAD overall, and the MAD for models 1(a),
1(b), and 1(c) decrease in that order, as one would
expect when increasing the size of the basis and im-
proving the description of the Hamiltonian. Going
from 1(a) to 1(c) shifts the eigenvalues to higher en-
ergies, which particularly improves the position of
the lowest valence orbital (except for CO,) and of
the LUMO. By way of contrast, the eH model gets
worse when the basis gets larger, that is, in going
from 2(a) to 2(b) and 2(c). [We simply list the 1 low-
est eigenvalues of model 2(c) in increasing order;
that order is generally not consistent with KS and
other calculations.] Actually, 2(c) is seriously flawed
because the proportionality of H; and S; implied
by Eq. (2) holds only when the effect of the opera-
tor is nearly constant across the region of overlap.
(Cjj and S;; are clearly proportional when the op-

erator C is a constant ¢, in which case C;j = c§;;.)
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TABLE |
Orbital energies (eV) of H,O, CHg4, C2Hg, N2, and CO5, degeneracy in parentheses.
H>0
KS —-507.2 -25.3 —-13.4 -9.3 -7.3 -0.9
1(a) — —-30.2 —12.2 —11.4 —10.4 —4.1
1(b) -511.5 -30.2 —-12.2 —-11.4 -10.4 —-4.1
1(c) —511.1 —-26.4 -10.4 —-10.3 -94 -0.9
2(a) — —-25.2 -11.2 -10.6 -10.4 9.9
2(b) —-511.8 —-25.2 -11.2 —-10.5 -10.4 14.6
2(c) —-513.2 —140.8 -112.2 —-32.1 —19.1 -17.3
3(b) —511.4 —-25.8 -11.6 -10.6 -10.4 22.4
CHy4
KS —265.8 -16.9 -9.4 (3) 0.3 1.1 (3)
1(a) — -26.5 -9.4 (3) -25 -1.7 (3)
1(b) —270.8 —26.3 —9.4 (3) —2.4 -1.73)
1(c) —270.1 —22.6 —8.2 (3) -05 —0.5 (3)
2(a) — -15.8 —8.1(3) 20.9 8.9 (3)
2(b) —-270.7 —-15.5 —8.1(3) 31.8 8.9 (3)
2(c) —272.9 —73.5(3) —57.1 —24.7 -18.4 (3)
3(b) -270.6 -16.5 —8.6 (3) 45.3 14.2 (3)
CoHgy
KS —266.5 (2) -18.7 —~14.1 -11.5 -10.2 -85 -6.8 -1.2
1(a) — -28.9 —-17.1 -12.3 -7.2 -8.4 -8.2 -4.0
1(b) —270.8 (2) -28.7 —-17.1 -12.3 -7.2 -8.4 -8.2 -4.0
1(c) —270.0 (2) —25.2 —~14.1 -10.7 -5.9 -7.4 6.6 -3.0
2(a) — —-17.9 —12.4 -8.9 -75 ~7.1 7.4 -3.7
2(b) —-270.8 (2) —17.4 —-12.3 -8.9 —-7.4 —7.1 —7.4 -3.7
2(c) —273 (2) —130.5 —-119.0 —77.9 —67.1 —65.6 —-59.3 —48.9
3(b) —270.7 (2) —-18.5 —-13.0 -9.7 -7.8 —7.1 -7.7 -2.8
N2
KS —380.8 (2) —28.3 -135 -11.8(2) -10.4 —2.4(2) 1.6
1(a) — —-30.3 —15.1 -11.3(2) —-8.3 —5.5(2) —2.4
1(b) —381.5(2) —30.1 —15.1 -11.3(2) —-8.3 —5.5(2) -23
1(c) —380.5 —27.9 —13.1 -10.5(2) —7.4 -3.7(2) —0.1
2(a) — —24.2 —14.4 —-10.0 (2) -7.2 —5.0(2) 33.9
2(b) —381.4(2) —23.6 —14.3 -10.0(2) -5.4 -5.0 (2) 55.1
2(c) —385 (2) —201.0 -52.0 -325 —31.4(2) —13.1 -11.8 (2)
3(b) —381.3(2) —24.9 —14.4 —10.6 (2) —4.4 -3.9(2) 77.8
CO»
KS —-29.3 -28.3 —-13.8 -13.0(2) —-12.8 -9.3(2) -0.9 -0.6 (2)
1(a) —-335 —27.8 —14.2 —12.7(2) —10.1 -10.0(2) -3.8 —4.2(2)
1(b) -33.3 —27.8 —14.1 —12.7(2) —10.1 -10.0(2) -3.8 —4.2(2)
1(c) —29.7 —25.2 -12.3 —12.0(2) -8.7 —8.4(2) -0.2 -2.3(2)
2(a) —27.0 —24.7 —12.2 —11.12) -9.8 -10.1(2) 19.2 —2.7(2)
2(b) —26.3 —24.6 -10.6 —11.12) -9.8 -10.1(2) 329 —2.7(2)
2(c) -150.2 —52.4 —48.1 —42.9(2) —41.6 —27.7 -19.7 -17.7 (2
3(b) —27.5 —25.1 -10.3 -11.6(2) -9.6 -10.0(2) 48.9 -1.2(2)
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Equation (2) fails for core-valence matrix elements
because the potential (and effective Hamiltonian)
varies rapidly near the nuclei. It also fails for ma-
trix elements involving diffuse functions because,
then, functions overlap over a large region of space,
and it is unrealistic to assume that the one-electron
effective Hamiltonian is constant over that region
of space. The latter problem can be very serious
for metals such as sodium or silver where the de-
scription of interactions mediated by outer s AO is
crucial. Therefore, we expect Eq. (1) to be better than
Eq. (2) for describing bonding in metals. Changing
K from 1.75 to the theoretically more correct value
of 2.00 [model 3(b)] generally does not improve eH
models. On the contrary, K =2.00 is optimal for
Eq. (1): Results deteriorate if we multiply the right-
hand side of Eq. (1) by a factor different from 1. In
other words, if we introduced an adjustable factor
in Eq. (1) and fitted it to KS eigenvalues, we would
get something very close to the theoretically cor-
rect value. The highest occupied molecular orbital
(HOMO)-LUMO gap is a critical property for chem-
ical reactivity, electronic spectroscopy, and many
properties. Table I shows that HOMO-LUMO gaps
calculated by 1(c) are not very good, but they are
somewhat better than those of 2(a). Taken together,
our results illustrate that eH is essentially a mini-
mal valence basis theory that cannot be improved in
a straightforward way, whereas model 1 improves
with basis set size.

Tests on Silicon Clusters

One of the possible applications of a model
Hamiltonian such as Eq. (3) are in studying the
electronic structure of clusters. Finite-temperature
and dynamic properties of small clusters require
large numbers of energy evaluation; realistic models
of materials often require large clusters with thou-
sands of atoms. Both types of problems require very
efficient computational methods. We tested model
Hamiltonians by comparison to KS-DFT for two
isomers of Siy and Si; and cluster fragments of
the Si bulk diamond structure shown in Figure 1.
Our KS-DFT calculations use a model core potential
and treat explicitly only the four valence electrons
with a (311/311/1) Gaussian basis set. We did two
series of KS calculations: with a standard LSD po-
tential (that of Vosko, Wilk, and Nusair) and with
a standard gradient-corrected functional (Becke’s
1988 exchange with Perdew and Wang 1986 cor-
relation). The two exchange—correlation functionals

give nearly identical eigenvalues for the silicon clus-
ters we looked at, so we report only the LSD results
here. In Figure 2 we display eigenvalue spectra
as “densities of states” (DOS)—superpositions of
Gaussians with a width of 0.2 eV—for Siy rhombus
and linear isomers, and for Si; pentagonal bipyra-
mid and tricapped tetrahedron isomers, calculated
by KS-DFT, by Eq. (1) (“diagonal W” in Fig. 2), and
by Eq. (4) (see next section and “PAO” in Fig. 2).
There is a rough correspondence between KS-DFT
and Eq. (1) in the positions of peaks and eigenvalue
degeneracy, but the agreement is poor. The MAD
between the KS-DFT eigenvalues of the rhombus
and linear Siy is 0.6 eV, whereas the MAD between
KS-DFT and Eq. (1) are 1.0 eV for the rhombus and
0.8 eV for the linear form. Therefore, Eq. (1) would
not be good enough to predict or explain differences
in the photoelectron spectra of two very different
cluster isomers. The same can be said about Siy;
(Fig. 2). We also looked at the DOS of Siy9 and Siss
bulk silicon fragments. They are not very informa-
tive and are not shown here. What we learn from
them can be summed up in few words: The mean
and width of the energy band are reasonably well
reproduced by the model Hamiltonian [Eq. (1)], but
KS-DFT and Eq. (1) differ greatly in the details—
the match between the two is poor. As another test,
we compared DOS for different Sipg clusters ob-
tained by removing one atom from the Siy cluster
of Figure 1. We considered removal of the central
atom (“4c”), one of the 4-coordinated atoms bonded
to the central one (“4”), one of the 3-coordinated
atoms bonded to atom “4” (“3”), and one of the 2-
coordinated atoms bonded to atom “3” (“2”). The
difference in DOS relative to Siy are quite compli-
cated and do not yield much insight, so we do not
show them here. Instead, we compare DOS two
at a time, by computing a measure of mismatch
A(DOS), which we define (up to an arbitrary con-
stant) as A(A, B) = [[DOS4(e) — DOSg(€)]* de. The
values of A(KS/4c,KS/n) (n = 4,3,2) are 2.3, 2.9,
and 3.2, respectively. The corresponding values for
A[Eq. (1)/4c, Eq. (1)/n] (n = 4,3,2) are 2.0, 2.1,
and 2.2. More importantly for comparing KS and
Eq. (1), the A[KS/n, Eq. (1)/n] (n = 4c,4,3,2) vary
between 5.1 and 5.4. We conclude that Eq. (1) is not
accurate enough to describe reliably the change in
electronic structure associated with a missing atom
defect. We did eH calculations for several of these
clusters and found that it is not significantly better
or worse than Eq. (1).

Overall, our assessment of the model Hamil-
tonian [Eq. (1)] is that it gives a qualitatively correct
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FIGURE 1. Silicon clusters used in testing model Hamiltonians.

description of MO symmetry and energy ordering
as does eH theory. It has a better theoretical basis
than eH theory, and it affords a more robust and
slightly more accurate method for calculating MO
energies than eH. However, it gives only low accu-
racy: Errors of 1-2 eV on MO energies are typical.
It is not accurate enough to describe subtle changes
in electronic structure associated with changes in
geometry or defects. But Eq. (1) is only a starting
point, a rough approximation to Eq. (3). We describe
a better model for the matrix {W;} in the next sec-
tion.

W Parametrized to Give
Pseudoatomic Orbitals

As a first step beyond Eq. (1) we tried the follow-
ing model:

W =€, + A(n, £) whena =10,

=K(n,¢,n',t) whena #b, A=B,
L=, m=m,
=0 otherwise. 4)
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FIGURE 2. Densities of states (DOS) obtained by Gaussian broadening (0.2 eV width) of the discrete eigenvalue

spectrum of small silicon clusters.

Here, A and B label atoms, a and b label AO
functions, n and ¢ (1/,¢’) label atomic subshells
(3s,3p,4s,...),and m (m’) label components of a sub-
shell (e.g., different m for p., py, p.); A(n, ) shift
AO energies, whereas K(n,¢,n’,£’) mix AO of the
same symmetry from different shells. The parame-
ters were allowed to vary in a range from —5 to
+5 eV and were optimized by a genetic algorithm
minimization of the root mean square (RMS) devi-
ation relative to the KS-DFT eigenvalues of some
reference silicon cluster. In the limit of separated
atoms, the exact {Wy} is diagonal with elements
equal to e: all A(n,¢) and K(n,¢,1n', ") are zero.
The parameters A(n,£) and K(n,¢,n’,£') act in a
way to produce a sort of spherically symmetric ex-
cited state of the atom that is (in a sense) optimal
for the molecule. Therefore, this parametrization of
{Wa} is almost equivalent to using PAO and Eq. (1).

PAO can be obtained by diagonalizing a block of
{Wa} corresponding to a single atom. For example,
when we parametrize {W,;} using the linear Siy as
the reference, we find that the two lowest energy
PAO can be characterized as: a 3s that is 98% 3s
and 2% higher s; and a 3p that is 99.8% 3p, and
0.2% higher p. For rhombic Siy, the lowest ener-
gy PAO are: a 3s that is 99.5% 3s and 0.5% higher s;
and a 3~p that is 85% 3p, and 15% higher p. In
principle, these PAO could be obtained by solv-
ing the KS-DFT problem for an atom in a suit-
ably chosen spherically symmetric external po-
tential. That would be similar to the PAO of
Porezag et al. [13]. But, contrary to Porezag et al.,
we fit directly to MO energies of reference KS-DFT
calculations and do not try to find the external
potential that would give rise to a given PAO.
Clearly, we obtain different PAO depending on the
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cluster (or atoms) we choose for fitting. Thus, for
applications to silicon materials, it will be impor-
tant to obtain a few representative PAOs for sil-
icon atoms in 2-, 3-, or 4-coordinated sites of Si
diamond fragment clusters such as those of Fig-
ure 1. (In order to apply Eq. (4) to arbitrary silicon
structures, one would have to describe how pa-
rameters change with geometry. This may be dif-
ficult, but since our model Hamiltonians have a
close connection to some KS-DFT reference, they
could at least be used to interpolate in the neigh-
borhood of structures for which KS-DFT results are
known.)

We went in a stepwise way from the model of
Eq. (1) to that of Eq. (4): First, we show the results
of Eq. (1) [W(0)]; then, we allow the diagonal terms
of W corresponding to the 3s and 3p to shift relative
to the AO energies [W(sp)]; then, we allow all diag-
onal terms of W to shift [W(ii)]; next, we introduce
off-diagonal terms that mix the s-symmetry AO
[W(ij,s)]; and finally, we allow mixing within the
p-symmetry AO [W(ij, sp)]. At each step, all parame-
ters are free to change and get reoptimized, so that
the final result is probably very close to the global
minimum in parameter space. Table II summarizes
the results. For simplicity, we did not attempt to
match MO from different calculations on criteria
other than energy: We report a simple RMS devia-
tion between two sets of numbers (the eigenvalues).
However, it is clear that there are some MO energy
ordering mismatch between calculations, therefore
the RMS that we report here should be viewed as
lower bounds. For example, linear Sis in model W(0)
has an RMS of 0.95 (instead of 0.87) if we match
MO of KS-DFT with those of Eq. (1) according to
their symmetry (and energy). We expect that the
true RMS in the other cases are also roughly 0.1 eV
higher than those in Table II. Judging simply from
RMS deviations, Eq. (1) gets progressively worse

TABLE Il
RMS deviation (eV) between eigenvalues calculated
by KS-DFT, and by Eq. (4) with different models for W.

Model®  Linear Siy Rhombic Siy PBP Si; TT Siy
W(0) 0.87 1.11 1.53 1.41
W(sp) 0.68 0.55 0.99 0.80
W (i) 0.48 0.42 0.86 0.67
W(ij, s) 0.26 0.37 0.72 0.56
W(ij, sp) 0.25 0.36 0.69 0.54

2 See text for the meaning of the symbols.

from linear Siy4, to rhombic Sig, to Siy. This can be
understood in terms of coordination numbers: zero
for separated atoms where Eq. (1) is exact, one or
two in linear Sig, two or three in rhombic Sis, and
four or more in both Siy isomers. Likewise, the op-
timal parameters generally get further from zero in
the same order, although this is not systematic. The
most important parameter, the energy shift of the
3s,is 1.02 eV for linear Siy, 3.07 eV for rhombic Sig,
2.49 eV for pentagonal bipyramid Siy, and 2.68 eV
for tricapped tetrahedral Si;. Model Eq. (4) cuts the
RMS deviation considerably: by 0.6 to 0.8 eV, or,
by a factor between 2.0 and 3.5. Figure 2 shows
how the agreement with KS-DFT improves in going
from Eq. (1) to (4). This is noteworthy considering
that Eq. (4) is still a rather crude attempt at model-
ing {W,,}—it ignores differences between atoms in
a cluster, and all interatomic terms. Using different
PAO on different atoms will not be very difficult to
implement, and it may also be possible to improve
accuracy with a simple model for interatomic terms
in {Wy}. But, on the other hand, in practical appli-
cations of Eq. (3) one will not know the KS results in
advance, and, thus, the RMS deviations of Table II
are lower bounds to what one could get by a priori
modelling of {W,,} with Eq. (4).

Finally, we want to point out that the PAO ob-
tained as we described could find other uses than
for constructing approximate model Hamiltonians.
A small set of the lowest energy PAO defines a
compact basis set, which might be useful in first-
principles methods. We believe that a minimal basis
of PAO would generally give better results in mole-
cular calculations than a minimal basis of AO. But
this remains to be verified by calculations.

Concluding Remarks

One can go in a systematic way from a first-
principles one-electron effective Hamiltonian to
more approximate methods. Equation (1) gives
eigenvalues in better agreement with the underly-
ing model (here, KS-DFT) than eH, and it can be
improved through either the use of PAO, or, of a
model W [Eq. (3)] in place of the diagonal matrix
of AO energies. It is not necessary to invoke any ex-
perimental result: One can parametrize W entirely
from a higher level of theory in a way similar to TB
models [14]. Likewise, there is a well-known and
straightforward way to calculate approximate KS-
DEFT total energies. One defines 2-body potentials for

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 589



FOURNIER AND JIANG

atoms of type A and B U(Rp) through

U(Rap) = Exs(Rap) — A (Z Tliéi), ©)

where Exs(Rag) is the energy, relative to separated
fragments, of a reference system with interatomic
distance Rap calculated accurately by KS-DFT, and
A(Y"7°“ nje;) is the difference in the sum of occupied
orbital energies between the separated and inter-
acting fragments calculated with the model Hamil-
tonian.

KS theory can in principle give exact results for
the ground state of molecules within a MO formal-
ism [18] and, in practice, it gives rather good results.
Therefore, it seems possible to derive very efficient
and fairly accurate methods from KS theory. Differ-
ent arguments for this were put forth by Lindholm
and Lundqvist [15], by Harris [19], and by Foulkes
and Haydock [20]. The way we arrive at Egs. (1)—(3)
illustrates that the spectral resolution formula is
a natural approach to semiempirical theories. This
should not come as a surprise considering that pro-
jectors afford a very elegant formulation of quantum
theory [1]. We hasten to add that there already is
a conceptual bridge between first-principles and
semiempirical theories [15, 21], and that projectors
have already proven very useful in approximate
methods [22]. But we feel that it is worthwhile to
make a more systematic use of projectors [Eq. (3)] in
the context of approximate KS-DFT, and we plan to
do this in the future.
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