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Abstract. Climate extremes can affect the functioning of ter-
restrial ecosystems, for instance via a reduction of the photo-
synthetic capacity or alterations of respiratory processes. Yet
the dominant regional and seasonal effects of hydrometeoro-
logical extremes are still not well documented and in the fo-
cus of this paper. Specifically, we quantify and characterize
the role of large spatiotemporal extreme events in gross pri-
mary production (GPP) as triggers of continental anomalies.
We also investigate seasonal dynamics of extreme impacts on
continental GPP anomalies. We find that the 50 largest pos-
itive extremes (i.e., statistically unusual increases in carbon
uptake rates) and negative extremes (i.e., statistically unusual
decreases in carbon uptake rates) on each continent can ex-
plain most of the continental variation in GPP, which is in
line with previous results obtained at the global scale. We
show that negative extremes are larger than positive ones
and demonstrate that this asymmetry is particularly strong
in South America and Europe. Our analysis indicates that the
overall impacts and the spatial extents of GPP extremes are
power-law distributed with exponents that vary little across
continents. Moreover, we show that on all continents and for
all data sets the spatial extents play a more important role for
the overall impact of GPP extremes compared to the dura-
tions or maximal GPP. An analysis of possible causes across
continents indicates that most negative extremes in GPP can
be attributed clearly to water scarcity, whereas extreme tem-
peratures play a secondary role. However, for Europe, South

America and Oceania we also identify fire as an important
driver. Our findings are consistent with remote sensing prod-
ucts. An independent validation against a literature survey on
specific extreme events supports our results to a large extent.

1 Introduction

The terrestrial carbon cycle is tightly linked to the global cli-
mate system. Favorable conditions for vegetation in the fu-
ture are expected to increase terrestrial carbon uptake, while
extreme climatic conditions might drastically decrease this
uptake (Reichstein et al., 2013). Separating the enhancing
and attenuating effects of growth in the terrestrial biosphere
requires, besides others, a precise understanding of the feed-
backs between climate extremes and terrestrial carbon fluxes.

The impacts of climate extremes on ecosystems and the
carbon cycle are diverse. Storms transform carbon stocks
from living biomass to dead wood and thus increase the risk
of fire and pathogen outbreaks (Negrón-Juárez and Cham-
bers, 2010). Droughts and heat waves have an impact on
plant physiology, phenology and carbon allocation (Ciais
et al., 2005; Reichstein et al., 2007; Phillips et al., 2009).
Inevitable consequences are often increased tree mortality,
higher fire risks and susceptibility to pathogens. In the long
term, droughts might also influence vegetation composition.
In general, impacts of droughts on the carbon cycle are
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difficult to assess, which is partly due to lagged effects like
increased tree mortality in years after a severe drought (Bréda
et al., 2006; Bigler et al., 2007), or changes in the respiration
of soil heterotrophic organisms a year after an anomalously
warm season (Arnone et al., 2008). Fires have an immediate
and large impact on carbon stocks and vegetation structure
(Westerling et al., 2006; Field et al., 2009). Ice storms and
frost may cause physical damage up to whole-stand destruc-
tion (Irland, 2000; Sun et al., 2012). Hence, it is a major chal-
lenge to design an analytic approach that consistently quanti-
fies the diverse impacts of climate extremes on the terrestrial
biosphere.

The classical approach to investigate the effects of climate
extremes on the carbon cycle is based on a “forward" anal-
ysis: The analyst identifies extreme events in climate vari-
ables or other environmental drivers and subsequently ana-
lyzes the impacts on ecosystems and the carbon cycle (ex-
amples can be found inPage et al., 2002; Ciais et al., 2005;
Kurz et al., 2008; Zeng et al., 2009; Zhao and Running,
2010). This forward approach is appealing because one can
emphasize a certain region or specific time span or concen-
trate on a single extreme event to study the consequences for
ecosystem functioning. However, one has to be prepared to
acknowledge that climate extremes do not necessarily trans-
late into extreme responses of the biosphere. Inversely, not
all extreme responses of the terrestrial biosphere are unam-
biguously explicable by some climate extreme or disturbance
event. For instance, a very unlikely constellation of drivers,
none of which are extreme in their own domain, might still
cause extreme changes in ecosystems (so-called compound
extremes,IPCC, 2012; Leonard et al., 2013). To tackle this
aspect,Smith (2011) suggested the definition of an extreme
climatic event (ECE) as “an episode or occurrence in which
a statistically rare or unusual climatic period alters ecosystem
structure and/or function”. A pure forward analysis, instead,
is at risk of overlooking extreme changes in the state of the
biosphere and hence is not always desirable. An event-based
analysis of the sort described above can potentially also lead
to a biased perception of extreme events. Extreme events that
affect regions of social or economical interest gain more at-
tention than extreme events in regions with less public inter-
est. For instance, very few experimental studies are done in
Africa. In contrast, in a global analysis of extreme events the
attention is distributed more equally.

In a recent study,Zscheischler et al.(2014) presented
a quantification of negative extremes in gross primary pro-
duction (GPP) based on four different data sets at the global
scale. This study explicitly adopted an impact-driven per-
spective aiming for an assessment of globally relevant ex-
treme changes in an impact variable (see alsoReichstein
et al., 2013). We define the impact variable as a variable de-
scribing the state of the biosphere, including the fraction of
absorbed photosynthetically active radiation (fAPAR), leaf
area index (LAI), the enhanced vegetation index (EVI), or
biosphere–atmosphere carbon exchange.

At a glance, an obvious approach to identify extremes
in time series would be based on the extreme value theory
(EVT, Coles, 2001; Ghil et al., 2011), where samples ex-
ceeding a specific threshold are modeled using an appropri-
ate extreme value distribution. This approach is called peak
over threshold method (POT).Gumbel(2004) showed that
for any well-behaved initial distribution only a few models
are needed. However, because the sample size is limited by
the samples exceeding the set threshold, this approach is not
feasible for analyses based on satellite remote sensing obser-
vations (or derived products), where we typically deal with
comparatively short time series. Another important aspect
to consider is that we are generally interested in extremes
affecting large contiguous areas and/or long time periods.
More formally, we are interested in the “volume of extreme
events”, which we define as three-dimensional structures
contiguous in time and space, where each single value ex-
ceeds a certain threshold. For that reason, here we use an al-
ternative approach motivated by a three-dimensional drought
assessment (Lloyd-Hughes, 2012; Zscheischler et al., 2013).

In this contribution, we directly follow up onZscheischler
et al.(2014) where it was shown that a few extreme events in
GPP explain most of its global interannual variability. Here,
we further investigate the regional and temporal characteris-
tics of extreme events in GPP. In particular, we will look for
regions in time and space where carbon uptake is much lower
compared to normal conditions. We will then trace these ex-
treme changes back to anomalous meteorological variables
or fires and aim at understanding continental differences. It
has been suggested earlier that the size distribution of ex-
treme events in the biosphere follow a power law (Zscheis-
chler et al., 2013, 2014; Reichstein et al., 2013). One ques-
tion we address here is whether this power-law behavior is
robust across continents and different spatial and temporal
resolutions. To validate our approach we compare the spatial
patterns of GPP extreme events with extremes in independent
remote sensing products and the current literature.

2 Material and methods

2.1 Data

The study is based on four different data sets describing
GPP covering the last 30 years (1982–2011). The range
of the data sets spans from purely data-driven (upscaled
model tree ensemble, MTE,Jung et al., 2011) over semi-
empirical (based on light-use efficiency, MOD17+,Running
et al., 2004) towards process-based global ecosystem (Lund–
Potsdam–Jena Dynamic Global Vegetation Model for man-
aged Land, LPJmL,Bondeau et al., 2007) and land-surface
models (OCN,Zaehle and Friend, 2010).
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MTE involves training a model tree ensemble at site level
using FLUXNET (a global network of eddy covariance ob-
servations in tandem with site level meteorology;Baldoc-
chi et al., 2001) to extrapolate to large spatiotemporal do-
mains. We use a fully data-driven upscaling product that re-
lies mainly on a composite of different remote sensing fA-
PAR products but also uses climate data from ERA interim
(Dee et al., 2011).

MOD17+ is derived using the same model structure as
the MODIS GPP data stream (Running et al., 2000) link-
ing shortwave incoming radiation, minimum temperature and
vapor pressure deficit. The model parameterization ofBeer
et al.(2010), based on Bayesian inversion against GPP time
series from FLUXNET, is applied here. The terms in the
MODIS-MOD17 biome-specific look-up table are used as
priors. For regionalizing the model parameters, we strat-
ify the results of the in situ calibration per vegetation type
and bioclimatic class. As climatic drivers we use the ERA-
interim data set and the same composite of fAPAR products
as in MTE (Jung et al., 2011).

LPJmL is a dynamic vegetation model that mechanisti-
cally represents plant physiological and biogeochemical pro-
cesses (Sitch et al., 2003) including the hydrological cycle
(Gerten et al., 2004) and a process-based fire model (Thon-
icke et al., 2010). Vegetation is represented as plant func-
tional types (PFTs), which are described by their bioclimatic
limits, and morphological, phenological and physiological
parameters. The model is also capable of simulating agri-
cultural land (crop functional types,Bondeau et al., 2007)
but for the present study, the model is applied in its natural
vegetation mode. For each PFT, the model simulates photo-
synthesis (based onFarquhar et al.(1980) with adjustment
of carboxylation capacity and leaf nitrogen seasonally and
within the canopy profile;Haxeltine and Prentice, 1996) and
respiration, as well as the allocation of accumulated carbon
to the plant’s compartments (leaves, stem, root and reproduc-
tive organs).

OCN is a land-surface model derived from the OR-
CHIDEE DGVM (Krinner et al., 2005), which prognosti-
cally simulates foliar area and N content and employs a two-
stream radiation scheme coupled to the process-based calcu-
lation of photosynthesis in light-limited and light-saturated
chloroplasts within each canopy layer (Friend and Kiang,
2005).

AVG is the average of the above four data sets. Al-
though in most cases we will report averaged results of MTE,
MOD17+, LPJmL and OCN, we will also compute extremes
on the averaged data set, assuming that averaging levels out
artifacts of individual data sets and emphasizes common fea-
tures.

The attribution of GPP extreme events to climatic drivers
is based on temperature (T) and precipitation (P) data from
bias-corrected ERA Interim (Dee et al., 2011, as used by the
models predicting GPP), the water availability index (WAI),
burned area (BA), and CO2 emissions from fires (FE,Giglio

et al., 2010). WAI is a surrogate for soil moisture and was
computed according toPrentice et al.(1993) using daily pre-
cipitation and potential evapotranspiration data from ERA
Interim and a map of plant available water holding capacity
from the Global Harmonized World Soil Database. The spa-
tial resolution for all above data sets is 0.5◦. T, P, WAI and
all GPP data sets are available monthly from 1982 to 2011,
BA and FE from 1997 to 2010.

We use the following data sets to compare results obtained
from the GPP data sets (in particular hot spots of extreme
events and scaling behavior) with other remote sensing prod-
ucts. A composite of the fraction of absorbed photosyntheti-
cally active radiation (fAPAR,Jung et al., 2011) and the leaf
area index (LAI,Liu et al., 2012) from 1982 to 2011 on a 0.5◦

spatial and monthly temporal resolution, the enhanced veg-
etation index from MODIS (EVI,Huete et al., 2002) from
2001 to 2011 on a 0.5◦ spatial and 8-day temporal resolu-
tion, and GPP from MODIS (MODISGPP,Running et al.,
2004) from 2001 to 2011 on a 0.1◦ spatial and 8 day spatial
resolution.

We then define six areas as continental cutouts by con-
catenating selected regions of the SREX report of theIPCC
(2012) (see also Fig. 2 inZscheischler et al., 2013) as fol-
lows: North America 1–6, South America 7–10, Europe 11–
13, Africa 14–17, Asia 18–23, Oceania 24–26 (numbers are
the SREX regions).

2.2 Preprocessing

We obtain anomalies by first subtracting linear trends and
mean annual cycles at each pixel from all relevant variables,
that is, T, WAI, EVI, fAPAR, LAI, and all GPP data sets.

2.3 Extreme event identification

In accordance with the IPCC climate extreme classifications
(Seneviratne et al., 2012), we define extremes as the occur-
rence of certain values in the tails of the probability distribu-
tion of the anomalies. More specifically, extremes are defined
as values outside a certain thresholdq, which is given by
a percentile on the absolute values of the anomalies (Fig.1).
The thresholds for each of the four data sets are chosen
such that extremes (positive and negative together) comprise
1, . . . ,10% of the anomalies at each continent separately. We
then define an extreme event by spatiotemporally contiguous
values being larger thanq (positive extremes) and smaller
than−q (negative extremes), respectively. To decide whether
two elements in a 3-D data cube, so-called voxels (short for
volumetric pixel, used for example in Neuroscience or com-
puter gaming), are connected, different definitions are possi-
ble. Naturally, for a three-dimensional data set, connectivities
of 6, 18 and 26 are used. A connectivity of 6 means that only
horizontal or vertical neighbors are considered as connected
to it (each voxel has 6 horizontal and vertical neighbors).
A connectivity of 18 means that all neighbors in the 3×3×3
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Figure 1.Sketch of how extremes are defined on GPP anomalies. A
symmetric thresholdq is set such that 90 % (as an example) of the
data anomalies fall in between−q andq. Those values which ex-
ceed the threshold are defined to be extreme. In this example the ex-
tremes are defined using the 10th-percentile definition (not to scale).
Reprint of figure A2 inZscheischler et al.(2014).

neighborhood of one voxel count as connected, excluding the
8 corners (3× 3× 3 = 27− 8 corners− center= 18), while
a connectivity 26 means that all 26 vertical, horizontal and
diagonal neighbors are considered as connected to the cen-
tral voxel (27−1 = 26). Note that in principle the connectiv-
ity could also extend over more than one neighboring pixel
(Lloyd-Hughes, 2012). Throughout most of this study, we
will use a connectivity of 26. We generally compute the
largest 200 positive and negative GPP extreme events on each
continent.

To evaluate the sensitivity of our method to some of the
relevant parameters, we will analyze the scaling behavior of
different temporal and spatial resolutions as well as differ-
ent definitions of connectivity on the MODISGPP data set,
which is available in high temporal and spatial resolution. To
evaluate spatial patterns of hot spots we compare our results
with the same extreme event detection approach on EVI, fA-
PAR, LAI and the mean of the four 0.5◦ GPP data sets.

2.4 Nomenclature

The integral of anomalies over the spatiotemporal domain
of one GPP extreme event is called the overall impact of an
event. Its spatial extent is the maximal spatial extent in km2,
independent of the time. Duration is the maximal length of an
event in months. An event computed using 5th-percentiles is
called a 5th-percentile extreme.

2.5 Statistics on extreme events

We test whether the distributions of overall impacts and spa-
tial extents of extreme events follow power laws as per the
suggestions byClauset et al.(2009). We assess whether posi-
tive and negative extreme events are equally large by dividing

then largest negative events by then largest positive events.
To study the asymmetry at pixel scale we subtract global
maps of negative and positive extremes from each other (see
below).

The impact of extreme events can be analyzed in time or
space. For a temporal analysis, all anomalies in any extreme
event (according to the definition under consideration) are
summed over a region of interest for each time step. This
summation then yields one regional time series of the to-
tal impact of the respective extreme events. Such time se-
ries of GPP extremes can then be correlated with, for ex-
ample, the continental GPP anomaly in order to obtain the
fraction of explained variance. Similarly, for an analysis in
space, all anomalies in the extreme events are summed to-
gether for each location (pixel). A summation of this type
leads to a map of the cumulative impact of the extreme events
under consideration.

We compute the number of extreme events starting at each
month in the year to analyze whether there is a seasonality in
the occurrence of GPP extreme events. To assess which fac-
tors are most responsible for the overall impact of a GPP ex-
treme event we correlate the overall impact of events against
their spatial extent, duration and maximal anomaly. To in-
vestigate the influence of the resolution and connectivity on
the power-law coefficient we perform a 3-way ANOVA us-
ing spatial resolution (0.1◦, 0.5◦, 1◦), temporal resolution (8
days, 16 days, 1 month) and connectivity (6, 18, 26) as fac-
tors.

2.6 Attributing drivers to GPP extremes

We follow Zscheischler et al.(2013) to identify drivers that
possibly caused extremes in GPP separately for each con-
tinent. More specifically, for each GPP extreme event we
compute the median of a driver variable over the same re-
gion. By shifting the event in time and computing such medi-
ans for each possible time shift, we obtain a test statistic for
each driver variable and each GPP extreme event. We then
computep values for the 200 largest negative 1st-percentile
events of each GPP data set on each continent, where we use
the drivers T, P, WAI, BA, FE and count a driver as “cause” if
p < 0.1. Accordingly, if a driver and GPP are not related one
would expect on average 10 % of the events being “caused”
by that driver. The choice of the threshold is arbitrary and re-
flects how conservative the researcher wants to be. Our gen-
eral conclusions are not sensitive to the specific choice of this
parameter.

2.7 Literature validation

The mere number of extreme events hinders a comparison
of the data sets on an event by event basis. Consequently,
in this study we focus on the largest event of each data set
per continent (5 data sets×6 continents= 30 in total). In or-
der to evaluate our detection approach against independent
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Figure 2.Values of the power-law exponentα for the overall impact (blue) and spatial extent (red) of extremes in GPP. Shown are the median
(dot) and the range of the data sets MTE, MOD17+, LPJmL, OCN and AVG for the positive (+) and negative (−) extremes for the percentiles
1 to 10.

evidence, we perform a systematic literature search. Our
query was designed to find studies that either discuss climate
extremes that could have caused a drastic decrease in GPP,
or directly reported anomalous decreases in carbon uptake.

3 Results and discussion

3.1 Extreme events in GPP are power-law distributed

Mathematically, a variable follows a power law if it is drawn
from a probability distribution

p(x) ∝ x−α, (1)

whereα is the scaling parameter. Power laws have been stud-
ied in many branches of science. In ecology, power laws most
often occur either as bivariate relationships (e.g., population
density–body mass; (Marquet et al., 1990)) or frequency size
distributions (e.g., body sizes; (Morse et al., 1985)), vege-
tation patches (Kéfi et al., 2007) fire magnitudes (Turcotte
et al., 2002), or canopy gaps (Asner et al., 2013). Earlier at-
tempts to describe disturbance events in form of power laws
were restricted to their spatial extent (Fisher et al., 2008;
Gloor et al., 2009; Kellner and Asner, 2009; Asner et al.,
2013). It has recently been shown that the overall impacts of
negative extreme events in fAPAR (Reichstein et al., 2013;
Zscheischler et al., 2013) and GPP (Zscheischler et al., 2014)
can also be well approximated by power laws at the global
scale. Here, we look at each continent separately and also
consider the spatial extent of extreme events.

Overall, the exponentsα of the overall impacts of an event
are lower than the exponents of the spatial extents (1.69 vs.
1.86 on average, Fig.2). We also notice a slight upward trend
for more extreme percentiles. Except for a few values, most
of the power-law exponents of GPP extremes (defined by
the 5th percentile or higher) are well in the range between

1.55–1.75, and 1.65–1.95 for overall impact and spatial ex-
tent, respectively. Hence, the values for the spatial extent fall
in the range of exponents recently estimated for canopy gaps
in tropical forests (α = 1.83±0.09;Asner et al., 2013). Low
power-law exponents (α < 2.0) imply that the distribution of
extremes is largely dominated by few very large events, as
has been discussed for the case of canopy gaps (Fisher et al.,
2008; Asner et al., 2013).

Power laws can have a variety of origins (Newman, 2005;
Sornette, 2006) and indeed, even in the described case of ex-
treme spatiotemporal events, we can think of a series of plau-
sible explanations. Because extreme events are computed
using values exceeding a certain threshold, thresholding of
stochastic processes (Touboul and Destexhe, 2010) or the
theory of large deviation (Varadhan, 1966; Sornette, 2006)
might provide reasonable explanations. It is known in ecol-
ogy that power laws can emerge from a complex interplay
of spatial interactions (Pascual and Guichard, 2005; Pueyo
et al., 2010). For multidimensional lattices, percolation the-
ory (Bollobas and Riordan, 2006) predicts that the size dis-
tribution of random clusters can follow a power law even
without any spatial interactions. Whether the emergent power
laws for overall impact and spatial extent arise from a combi-
nation of the above-mentioned mechanisms, or whether there
is even a different mechanism generating these, cannot be
conclusively resolved here and needs further investigation.

To understand the importance of individual extreme
events, we investigate how much of each continent’s inter-
annual variability in GPP can be explained by extremes in
GPP. It has been shown that at global scale, about 200 posi-
tive and negative 10th-percentile extreme events can explain
nearly 80 % of the global anomaly (Zscheischler et al., 2014).
On the continental level, 50 positive and negative events are
enough to obtain an averaged correlation coefficient, with
continental anomaly between 0.88 (Asia) and 0.95 (Oceania)
(Fig. 3).
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Figure 3. Correlations of 10th-percentile extremes (positive and negative) with the continental GPP anomalies. Depicted are the correlation
coefficients for the data sets MTE (blue circles), MOD17+ (green cross), LPJmL (red square), OCN (cyan diamond). The dashed black line
shows the mean of the correlation coefficients of the four data sets.

For 1st-percentile extremes the spatial extent is the dom-
inating factor (as already mentioned inReichstein et al.,
2013), while the duration and maximal anomaly play a mi-
nor role. This relation changes very little throughout the con-
tinents (Fig.4). For 10th-percentile extremes, the duration
gains on importance and has similarly high correlations with
overall impact as the spatial extent (not shown).

3.2 Global distribution of GPP extremes

The averaged map of an average year of the 200 largest neg-
ative 10th-percentile GPP extreme events computed for each
continent is visually nearly identical with the averaged map
for the globally largest 1000 extreme events (Fig.5, cf. fig-
ure 3a inZscheischler et al., 2014). We find that mostly
savannas and grasslands experience large-scale extremes in
GPP. The regions which on average experience the largest
negative GPP extreme events at global scale include Caatinga
(Brazil), the Pantanal (Brazil), the Great Plains (US), the
grasslands connecting Kenya, Tanzania and Uganda (Africa),
Highveld (South Africa), the Indus–Ganga Plain (India), and
eastern Australia.

Comparing the impacts across continents reveals that ex-
tremes in GPP are largest in Asia (on average 0.87 Pg C yr−1

for 10th-percentile extremes, ranging from 0.50 Pg C yr−1 in
MOD17+ to 1.35 Pg C yr−1 in LPJmL) and lowest in Europe
(on average 0.23 Pg C yr−1 for 10th-percentile extremes,
ranging from 0.13 Pg C yr−1 in MTE to 0.41 Pg C yr−1 in
LPJmL, Fig.6a–f). The overall impact of extreme events in

GPP obviously depends on the size of the continent. The
spread between the data sets is similar for each continent.
However, in all continents the two models (LPJmL and OCN)
exceed the two data-driven approaches (MTE and MOD17+)
by a factor of at least two. Studies that compare model and
data-driven GPP products found that the interannual variabil-
ity of GPP is generally lower in MTE compared to carbon cy-
cle models (Jung et al., 2011; Keenan et al., 2012; Piao et al.,
2013). In South America, the two models agree very well,
while in Europe and Africa the two data driven approaches
nearly coincide (Fig.6b–d). The magnitude of extremes in
the averaged data set AVG lies at the lower range of the four
other data sets. The averaging process levels out the tails of
the distributions of the anomalies of the individual data sets
(where those do not agree among each other) and hence con-
tains less strongly pronounced extremes, as can also be seen
from a histogram of the anomalies (not shown). The differ-
ence between the averaged extremes and the extremes of the
averaged data set (Fig.7) highlights again that extremes in
AVG are generally smaller. Yet in tropical areas, in particular
in densely vegetated regions, the extremes in AVG exceed the
averaged extremes of the individual four data sets. This sug-
gests that the data sets agree rather well in densely vegetated
regions, albeit at the lower magnitude of extremes.

Negative GPP extreme events mainly start in summer, both
in the Northern and Southern Hemisphere, except for Ocea-
nia (Fig. 8). This pattern is much stronger in the northern
continents, presumably because of less pronounced seasonal
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differences in the tropical regions, and the more land area
in northern latitudes than in southern latitudes. For South
America and Africa the increasing number of extremes coin-
cides with the end of the dry season and with the wet season
(ONDJ).

3.3 Positive extremes offset negative extremes only
partly

It has been shown recently that at the global scale nega-
tive extreme events in GPP are larger than positive extremes
(Zscheischler et al., 2014). One question we want to address
here is if this observations holds for all continents. We find
that the observed global asymmetry seems to be mainly gen-
erated by asymmetries in South America and Europe (Fig.6h
and i). In Africa and Asia, however, positive and negative
GPP extremes are balanced, whereas in Oceania the positive
extremes are slightly larger (Fig.6j–l). The averaged data set
AVG, in contrast, exhibits a strong asymmetry towards larger
negative GPP extreme events for all continents except Asia
(Fig. 6h–l).

Figure9 shows an average of the pixel-wise difference be-
tween the largest 200 positive and negative 10th-percentile
GPP extreme events in MTE, MODSI17+, LPJmL and OCN
(a), and the pixel-wise difference between the largest 200
positive and negative 10th-percentile GPP extreme events of
AVG (b), respectively. The patterns are similar in most re-

gions of the world. The asymmetry between negative and
positive extremes in GPP appears as a robust feature, per-
sisting throughout the averaging process. Although it seems
that overall the regions with larger negative extremes do not
dominate at global scale (Fig.9, blue and red occupy a sim-
ilar amount of land surface), their magnitude is often much
larger. Also, in most tropical regions negative extremes are
dominant (red dominates in tropical areas).

Potential reasons for the observed asymmetry have been
discussed inZscheischler et al.(2014) and include the “slow
in, rapid out” principle (Körner, 2003) and asymmetric driv-
ing mechanisms (Mueller and Seneviratne, 2012). Yet an-
other possible driver of the observed asymmetry might be
the asymmetric behavior of the El Niño–Southern Oscillation
(ENSO). The warm and dry phases (El Niño) are often longer
and more intense than its cold counterparts (La Niña), with
far-reaching climatological and ecological impacts (An and
Jin, 2004). In regions where positive extremes prevail, the
“pulse-response” paradigm (Huxman et al., 2004; Chen et al.,
2009) might serve as an explanation. Systems that are gen-
erally unproductive can experience growth phases which are
triggered by rain pulses. Especially arid and semiarid ecosys-
tems exhibit this behavior, whose areal extent coincides well
with the blue areas in Fig.9.

www.biogeosciences.net/11/2909/2014/ Biogeosciences, 11, 2909–2924, 2014
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Figure 5. Global averaged map of negative 10th-percentile extreme events in GPP. The largest 200 10th-percentile extremes in GPP for each
continent and the four data sets MTE, MOD17+, LPJmL and OCN were computed and then averaged to obtain the typical impact of GPP
extreme events per year. Compare with Figure 3A inZscheischler et al.(2014) for an analysis at the global scale.
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Figure 6. Overall impact and asymmetry of GPP extreme events. Depicted are the four different GPP data sets (MTE, MOD17+, LPJmL,
OCN), the average of the results of the four (MEAN), and the results for the averaged data set (AVG).(a–f) Sum of the overall impact of
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Figure 7. Difference between negative GPP extreme events of the averaged data set AVG and averaged negative GPP extreme events of the
four data sets MTE, MOD17+, LPJmL, and OCN. Depicted is the difference in impact per year. For each continent and each data set the 200
largest negative 10th-percentile GPP extreme events were computed and then integrated over time. Red areas imply smaller extreme events
in AVG (less negative impact).
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data sets MTE, MOD17+, LPJmL, OCN.

3.4 Influence of resolution and connectivity on the
scaling parameter

One may remark that the identified scaling behavior (the ex-
ponents of the power law) of GPP extremes is partly an effect
of spatial resolution and chosen connectivity (cf. Sect.3.1).
In order to investigate this issue, we use MODISGPP to an-
alyze the sensitivity of the power-law exponent regarding
the spatial and temporal resolution, because MODISGPP is
available on higher resolutions than the four data sets we an-
alyzed before. We can detect a dependence ofα to the spatial
and temporal resolution as well as to the connectivity (3-way
ANOVA, p < 0.05 in 81 % and 69 % of the cases for over-
all impact and spatial extent, respectively), but the effects are
remarkably small. The mean over the exponentα for the dis-
tribution of overall impacts for all continents and all configu-

rations is 1.87±0.09. For the spatial extent we obtain a mean
of 1.97±0.14. This suggests that the emergent power-law be-
havior in overall impact and spatial extent is a robust feature
of extreme events in GPP.

3.5 Water scarcity as the dominant driver for negative
extreme events

Recent studies identified water scarcity as the globally dom-
inant driver for negative extreme GPP events (Reichstein
et al., 2013; Zscheischler et al., 2014). Breaking down the
analysis to the continental scale supports these findings. The
patterns for the different data sets look alike (Fig.10), al-
though differing slightly in magnitude. GPP in LPJmL is
most sensitive to droughts (on average 76 % of the GPP ex-
tremes could be associated with low levels of WAI; Fig.10,
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Figure 9. Pixel-wise difference between the 200 largest positive and the 200 largest negative extreme events. In the red areas negative
extremes dominate.(a) Averaged difference between GPP extreme events in the four data sets MTE, MOD17+, LPJmL and OCN.(b)
Difference between GPP extreme events in the averaged data set AVG.

orange bars). However, there are also some differences be-
tween continents. In Europe, GPP does not seem to be as sus-
ceptible to droughts as in the other continents. Here we find
on average 20 % fewer associations of GPP extremes with
low values of WAI compared to other continents. Instead,
cold spells are associated with negative GPP extremes more
often than random, similarly to Oceania (on average 10 %
and 11 % more often than random, respectively; Fig.10,
blue bars. Random is here defined as the expected fraction
of events attributed to any driver if the variables were unre-
lated (= 10%)). In contrast, in North America high tempera-
tures lead more often to large reductions in GPP (10 % more
than random; Fig.10, red bars). Intense precipitation events
play a significant role in reducing GPP in South America
and Oceania (6 % and 7 % more than random, respectively;
Fig. 10, green bars), whereas fires are an important driver in
South America, Europe, Africa and Oceania, (14 %, 11 %,
9 % and 18 % more than random, respectively; Fig.10, yel-
low bars). Note that not all negative GPP events can be at-
tributed to the driver variables here. Other drivers like wind
throw, insect outbreaks, intensive grazing, logging, and hu-

man deforestation, which are not considered in this study,
might likewise reduce carbon uptake drastically (Reichstein
et al., 2013). We also do not consider effects of so-called
compound events in climate here (Seneviratne et al., 2012;
Leonard et al., 2013), in other words, events in which a con-
stellation of two or more drivers is extreme in the multivari-
ate variable space which can lead to possibly large changes in
carbon uptake. In Europe, the number of unexplained events
is largest (Fig.10, brown bars). The attribution patterns of
the averaged data set AVG agree very well with the other
data sets.

3.6 Validation with literature

In general it is difficult to validate purely data-based analy-
ses if no ground truth is available. Table1 summarizes the
timing, approximate region, probable reason, and a refer-
ence (where one could be found) for the largest negative 1st-
percentile event on each continent. Out of all 30 events, only
2 could not be associated with a literature reference (eastern
Europe, 1987 in MTE, and eastern Malaysia, Oceania, 2002–
2004 in MOD17+). However, given the good agreement of
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Table 1. Approximate location, timing and reference (ref) for the largest negative 1st-percentile GPP extreme events from each of the five
data sets MTE, MOD17+, LPJmL, OCN and AVG on each continent.

MTE MOD17+ LPJmL OCN AVG

NA 2011 1988 2006 2006 2011
where Texas, South West US Midwestern US Great Plains Great Plains Texas, South West US
what drought drought drought drought drought
ref (Coumou and Rahmstorf, 2012) (Namias, 1991) (Dong et al., 2011) (Dong et al., 2011) (Coumou and Rahmstorf, 2012)

SA 1992–1993 2010 1995–1996 2004–2006 2010
where NE Brazil Amazon Northern Argentina Eastern Amazon SE Amazon
what drought drought drought drought drought
ref (Rao et al., 1995) (Lewis et al., 2011) (Minetti et al., 2009) (Anderson et al., 2010) (Lewis et al., 2011)

EU 1987 2003 1992 2002 2003
where Eastern Europe Central Europe Central-eastern Europe Southwestern Russia Central Europe
what drought, heat wave drought cold spell, flooding drought, heat wave
ref (Ciais et al., 2005) (Siwkcki and Ufnalski, 1998) (Waple and Lawrimore, 2003) (Ciais et al., 2005)

AF 1984–1985 1996–1997 1992 1991–1994 1996–1997
where Sahel East Africa South Africa East Africa East Africa
what drought, famine drought drought drought drought
ref (Rojas et al., 2011) (Galvin et al., 2001) (Rouault and Richard, 2003) (Galvin et al., 2001) (Galvin et al., 2001)

AS 2010 2010 2010 2010 2010
where Russia Russia Russia Russia Russia
what heat wave heat wave heat wave heat wave heat wave
ref (Barriopedro et al., 2011) (Barriopedro et al., 2011) (Barriopedro et al., 2011) (Barriopedro et al., 2011) (Barriopedro et al., 2011)

OC 2002–2003 2002–2004 1982–1983 1982–1983 2002–2003
where SE Australia Eastern Malaysia SE Australia SE Australia SE Australia
what Millennium drought drought drought Millennium drought
ref (Leblanc et al., 2009) (Myneni et al., 1996) (Myneni et al., 1996) (Leblanc et al., 2009)
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Figure 11.Average impact per year due to negative extreme events in(a) EVI (2001–2011),(b) FAPAR (1982–2011), and(c) LAI (1982–
2011). On each continent the 200 largest negative 10th-percentile extremes were computed and merged to obtain a global map. The maps
depict the decrease in the respective variable compared to the average year generated by extreme events in that variable.

the other events compared to literature evidence, we can con-
sider these two events as examples of overlooked continen-
tally relevant GPP extremes. In the Asian cutout, all data
sets agree and we detect the big heat wave of 2010 in Rus-
sia (Barriopedro et al., 2011) as the largest event. Of course,
the largest event in one data set might appear as the second
largest in another. The two models agree in three of the six
continents. It is noteworthy that the averaged data set finds
mostly well-known extreme events, for instance the year of
extreme weather in the United States in 2011 (Coumou and
Rahmstorf, 2012), the Amazon drought of 2010 (Lewis et al.,
2011), the European and Russian heat waves in 2003 (Ciais
et al., 2005) and 2010 (Barriopedro et al., 2011), as well
as the extreme drought in southeastern Australia at the be-

ginning of the 21st century, also known as the “Big Dry”
(Leblanc et al., 2009; Ummenhofer et al., 2009). The good
matching between the AVG and well-known events from the
literature is encouraging because it demonstrates that aver-
aging different data sets with high uncertainties can result
in a reasonably good representation of large-scale extreme
events. An example for such an averaging for an biosphere–
atmosphere flux is a recently presented data product of evap-
otranspiration (ET,Mueller et al., 2013).

3.7 Comparison with other data sets

In order to further test the robustness of our findings, we
compare the global patterns of extremes in GPP from the four
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data sets MTE, MOD17+, LPJmL and OCN with spatiotem-
poral extremes in other remote sensing products, in particu-
lar EVI, FAPAR, and LAI. All these earth observations have
a three-dimensional (spatiotemporal) structure, albeit with
different spatial and temporal resolutions, and hence we can
apply the same extreme event detection method here, as de-
scribed in Sect.2.3. However, note that units are not trans-
ferable into changes in carbon uptake. The patterns for EVI
and FAPAR (Fig.11a and b, respectively) show good agree-
ment with the overall patterns of GPP extreme events (Fig.5)
in Brazil, the Great Plains, eastern Europe, Tanzania/Kenya,
South Africa and southeastern Australia. The hot spot in the
Indus–Ganga Plain (India) is not visible in EVI and FAPAR.
LAI shows strongly pronounced extremes in tropical forests
(Amazon and Congo basins, Indonesia, Fig.11c). LAI values
in tropical forests vary over a much wider range compared to
other biomes (Liu et al., 2012). This in turn leads to a much
larger interannual variability in these areas, resulting in larger
extremes.

4 Conclusions

We present a detailed analysis of spatiotemporal contiguous
extremes in different data sets of GPP over the last 30 years
and compare their impacts across continents. We show that
the overall impact and spatial extent of extreme events in
GPP follow power-law distributions and confirm earlier find-
ings that water scarcity has to be regarded as the key driver
of negative GPP extremes. However, we identify pronounced
regional deviations from this global picture. Depending on
the continent, fires (all continents except North America and
Asia), high temperatures (North America), cold spells (Eu-
rope and Oceania), and intense precipitation events (South
America and Oceania) can also provoke major decreases in
GPP. A comparison of these findings with a literature survey
and a validation with remotely sensed data sets, including
EVI and fAPAR, generally supports our identification of the
largest GPP extremes, and confirms the reported geographi-
cal distributions.

The research on extreme events in both climate variables
and vegetation indexes is important to fully understand car-
bon cycle variability and ultimately carbon cycle–climate
feedbacks. While in the past, changes in the mean were the
primary focus of research, today studies on climate extremes
and their impacts on the terrestrial biosphere are mounting.
This change in focus might have been driven by the in-
sight that changes in extreme events can alter the function-
ing of terrestrial ecosystems more strongly than changes in
the mean (Jentsch and Beierkuhnlein, 2008). However, be-
fore accessing changes in extremes (including their impacts)
we first have to gain a more profound understanding on how
present day climate extremes affect the functioning of terres-
trial ecosystems. In this contribution we corroborate the im-
portance of extreme events for interannual variability of GPP

at continental scales. Yet, despite the prominence of water
availability as the most important driver for extremes in GPP
on all continents, the susceptibility to other drivers such as
fires and extreme temperatures largely differs across conti-
nents. The reason for that might lie in different vulnerabili-
ties of the dominant ecosystems on each continent towards
extreme environmental conditions.
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