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DiscussionsA new method for solving the MHD equations in the magnetosheath
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Abstract. We present a new analytical method to derive
steady-state magnetohydrodynamic (MHD) solutions of the
magnetosheath in different levels of approximation. With
this method, we calculate the magnetosheath’s density, ve-
locity, and magnetic field distribution as well as its geome-
try. Thereby, the solution depends on the geomagnetic dipole
moment and solar wind conditions only. To simplify the rep-
resentation, we restrict our model to northward IMF with the
solar wind flow along the stagnation streamline. The sheath’s
geometry, with its boundaries, bow shock and magnetopause,
is determined self-consistently. Our model is stationary and
time relaxation has not to be considered as in global MHD
simulations. Our method uses series expansion to transfer
the MHD equations into a new set of ordinary differential
equations. The number of equations is related to the level of
approximation considered including different physical pro-
cesses. These equations can be solved numerically; however,
an analytical approach for the lowest-order approximation is
also presented. This yields explicit expressions, not only for
the flow and field variations but also for the magnetosheath
thickness, depending on the solar wind parameters. Results
are compared to THEMIS data and offer a detailed expla-
nation of, e.g., the pile-up process and the corresponding
plasma depletion layer, the bow shock and magnetopause ge-
ometry, the magnetosheath thickness, and the flow decelera-
tion.

Keywords. Magnetospheric physics (Magnetopause, cusp,
and boundary layers; Magnetosheath) – Space plasma
physics (Kinetic and MHD theory)

1 Introduction

The magnetosheath is the flow region of the solar wind
around the Earth. Its characteristics, for example its thick-
ness or magnetic field distribution, depend on the solar wind
conditions. In regions without reconnection, the earthward
boundary of the flow region, the magnetopause, is defined as
a boundary with vanishing normal flow velocity. It is char-
acterized as a small region where a transition from magne-
tosheath plasma density and temperature to magnetospheric
conditions occurs. Very often the magnetopause is identified
by an abrupt change in the magnetic field, which is related
to a region with spatially confined electric current.Chapman
and Ferraro(1930) were the first to speculate about the ex-
istence of such a magnetopause current layer. Without a so-
lar wind magnetic field, all current is located at the magne-
topause, corresponding to a field-free magnetosheath with a
jump of the magnetic field at the magnetopause. Therefore,
the flow within the magnetosheath can be treated in terms of
hydrodynamics (e.g.,Spreiter et al., 1966).

A sharp current layer, however, does not always exist at
the magnetopause as demonstrated in Fig.1, showing obser-
vations made on-board the THEMIS-C spacecraft. The five
spacecraft of the THEMIS mission were launched in 2007
(Angelopoulos, 2008) and provide a wealth of plasma and
magnetic field observations suitable for magnetosheath and
magnetopause studies (e.g., Glassmeier et al., 2008; Plaschke
et al., 2009; Zhang et al., 2009). On 29 October 2009
the THEMIS-C spacecraft traversed the magnetosheath al-
most along the stagnation streamline. Measurements by
the ESA plasma instrument (McFadden et al., 2008) allow
for a clear identification of the magnetopause crossing at
08:25 UT based on abrupt changes of the plasma density and
temperature to magnetospheric conditions. Magnetic field
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Fig. 1. A low-shear magnetopause transition on 29 October 2009.
The upper panel showsBz (GSM) magnetic field observations. The
second panel displays the (ion) velocity in x-direction (GSM), and
the third one shows the density of the plasma ions. The last panel
depicts the logarithmic ion temperature.

observations by the FGM (Auster et al., 2008), however, re-
veal a magnetic pile-up throughout the entire magnetosheath;
i.e., the field slowly increases. At the magnetopause, the
magnetosheath field smoothly adapts to the magnetospheric
field. Thus, there is no confined magnetopause current but
currents distributed over the entire magnetosheath. Simi-
lar pile-up observations under low-shear conditions were
reported by, e.g.,Crooker et al.(1979), Paschmann et al.
(1993), Phan et al.(1994), or Farrugia et al.(1997). In these
earlier reported cases, however, the magnetic pile-up region
is usually less extended than in the present case.

A first model to calculate the magnetic pile-up in the mag-
netosheath was presented byLees(1964). In this model, the
magnetohydrodynamic (MHD) equations are restricted to ax-
isymmetric flows, and the velocity tangential to the stagna-
tion streamline is assumed to be a known function. Although
these restrictions strongly limit the scope of the theory, basic
aspects of the magnetic pile-up could be investigated. A more
detailed theory was developed byZwan and Wolf(1976), the
so-called depletion layer model. They considered a flux tube
moving through the magnetosheath in the MHD approach.
Zwan and Wolf(1976) concluded that the plasma in the flux
tube is squeezed out near the magnetopause, leading to a
lowered density and an enhanced magnetic field strength.
Note that this consideration leads to a somewhat different
density behavior compared toLees(1964). Another theoret-
ical approach is the magnetic string model byErkaev et al.
(1988). In this model, the MHD equations are solved in a
new coordinate system, specially designed to take advantage
of the frozen-in magnetic field. However, both latter mod-
els also rely on additional assumptions (e.g., the pressure

distribution in the magnetosheath) and/or require solutions
of more complicated partial differential equations. All these
models solve differential equations derived from the MHD
equations. Global MHD simulations are another investiga-
tion method which solves the complete set of MHD equa-
tions directly to obtain a magnetosheath solution as shown
by Wu (1984), Wu (1992), Ogino et al.(1992), Siscoe et al.
(2002) andWang et al.(2004), among others.

Simple and very reduced models can provide insight
into the basic physical processes underlying a phenomenon.
However, more complex models include more processes and
can show how the phenomenon is embedded into a com-
plex physical environment. One should be aware, however,
that numerical effects can strongly influence any result when
solving more complex differential equations. Numerical dif-
fusion near the bow shock or magnetopause is large in global
MHD simulations, as noted byWu et al.(1981). Subsequent
developments on the numerical schemes try to reduce the in-
fluence of diffusion; however, it is still a difficult task (Toth,
2000). Only a detailed comparison of simple and complex
approaches provides a complete understanding of the phe-
nomenon considered.

Here, we present a new analytical method to solve the
MHD equations in different orders of approximation, from
a lowest-order approach to the complex, full MHD solution.
Our approach is able to classify the MHD models introduced
above with respect to different levels of approximation. We
show that the different results in the density distribution of
Lees(1964) andZwan and Wolf(1976) can be referred back
to different levels of approximation used. The method is able
to calculate the fluid properties, such as density, pressure,
velocity, and magnetic field, as well as the magnetosheath’s
geometry bounded by the bow shock and magnetopause. In
the lowest-order approach, analytical solutions are obtained,
yielding explicit expressions for the density and field distri-
bution, as well as for the magnetosheath thickness and its
dependence on the solar wind magnetization.

The magnetosheath thickness and the related bow shock
distance have been a major topic of investigation for decades,
as reviewed byPetrinec(2002). However, only empirical re-
lations have been derived (Spreiter et al., 1966) and modified
by Farris and Russell(1994) to take the solar wind magnetic
field into account. We will compare our analytically derived
expression with the empirical relations.

Finally, our method is applied to two magnetosheath tran-
sitions observed by THEMIS: a transition with a confined
magnetopause current layer and the transition shown in Fig.1
exhibiting a strong magnetic pile-up. These observations are
compared to MHD magnetosheath solutions in different or-
ders of approximation.

Ann. Geophys., 31, 419–437, 2013 www.ann-geophys.net/31/419/2013/



C. Nabert et al.: Method for solving the MHD equations 421

MHD Equations
Solar Wind
Parameters

Earth‘s Dipole
Description

ODEs

Ansatz

Boundary
Conditions at
Bow Shock

Rankine-Hugoniot
Relations

Additional

Conditions
Magnetopause

Steady-State MHD Solution

Outflow
Conditions

Fig. 2. Overview of the interplay between different aspects of our
model. Each color represents a part discussed in a separate section
in this chapter. The top row displays the input for our method.

2 Theory

Physical quantities in the steady-state magnetosheath, such
as density, pressure, velocity, or magnetic field, can be de-
termined by the stationary MHD equations. They depend on
three spatial coordinates (x,y,z). We choose the x-axis to be
along the stagnation streamline and the y- and z-axis to be
perpendicular to it. The quantities are expanded into power
series with respect toy andz around the stagnation stream-
line: f (x,y,z) = f0(x)+f1(x)y +f2(x)z+f3(x)y z+ . . . .
Substituting such an ansatz for each quantity in the MHD
equations and equating coefficients of the tangential orders
(1, y, z, y z, . . . ), a system of ordinary differential equa-
tions (ODEs) depending only on the normal directionx is
obtained. It is suitable to modify our ansatz with respect to
the magnetosheath geometry. Consequently, our system of
ODEs and the corresponding solutions depend on bow shock
and magnetopause geometry parameters. These parameters
are calculated by taking the geomagnetic field into account.
Boundary conditions (inflow conditions) for our system of
ODEs are determined at the bow shock. The shocked values
are referred back analytically to the solar wind conditions
using the Rankine–Hugoniot relations. Note that the MHD
equations require further boundary conditions (in global
MHD simulations called outflow conditions) far away along
the y- and z-direction. The complete set of ODEs using the
series expansion ansatz to infinite order is not easy to handle.
A finite expansion order leads to a finite system of ODEs,
which remains underdetermined. But we can use the outflow
conditions to close the system. Finally, a solution of the mag-
netosheath flow and field quantities as well as the bow shock
and magnetopause geometry can be calculated depending on
solar wind conditions only. The interplay of the different
parts of the model are displayed in Fig.2.

2.1 Deriving ODEs from MHD

Plenty of phenomena of the plasma flow in the magne-
tosheath are described by the ideal MHD theory (e.g.,Siscoe
et al., 2002). The time-independent (stationary) MHD equa-

x
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Wind
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Fig. 3.The incident solar wind in x-direction with its field along the
z-direction on the left side and the Earth with its dipole field on the
right side. The origin of the Cartesian coordinate system (x,y,z)
shall be at the nose of the bow shock (BS).

tions read

∇ · (ρ u) = 0, (1)

ρ (u · ∇)u + ∇p −
1

µ0
(∇ ×B) × B = 0, (2)

∇ × (u × B) = 0, (3)

∇ ·B = 0, (4)

p = kργ . (5)

Hereρ denotes mass density,u the fluid’s bulk velocity,p
the thermal gas pressure (assumed to be isotropic),B the
magnetic field,µ0 = 4π×10−7N/A2 the vacuum permeabil-
ity, andγ the ratio of specific heats. Note that instead of the
full energy conservation law, an adiabatic law (Eq.5) is used
with the proportionality constantk. The adiabatic law is valid
within the magnetosheath, but not through the bow shock due
to entropy changes.

The super-magnetosonic solar wind flow causes a bow
shock in front of the Earth. A Cartesian coordinate system
is used with origin at the bow shock’s nose (subsolar point).
The x-axis points towards the Earth, which is located atxE
(see Fig.3). The bow shock distance to the Earth, that is,xE,
will be determined later as part of the solution. We choose the
incident solar wind to flow along the x-axis. The z-axis is nor-
mal to the ecliptic pointing northward, and the y-axis com-
pletes the right-hand triad. For simplification, we choose the

www.ann-geophys.net/31/419/2013/ Ann. Geophys., 31, 419–437, 2013
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solar wind magnetic field to be parallel (northward or posi-
tive) along the z-axis. Furthermore, the Earth’s magnetic field
is represented by a dipole, its moment being anti-parallel to
the z-axis with magnitudeM = 8× 1015 Tm3. The compo-
nents of the geomagnetic fieldBE are given by (e.g.,Ogino,
1993)

BE,x =
−3z1x

r5
M, (6)

BE,y =
−3y z

r5
M, (7)

BE,z =
−2z2

+ 1x2
+ y2

r5
M, (8)

with the radial distancer =

√
1x2 + y2 + z2, and 1x =

xE − x defining the distance from the Earth’s center (Fig.3).
Note that the solar wind magnetic field and the dipole field
are parallel close to the dayside stagnation streamline, which
excludes reconnection.

The situation introduced above is highly symmetric. The
dipole field has a rotational symmetry with respect to the
dipole moment axis, and the solar wind flow is perpendicular
to this symmetry axis, leading to symmetric properties in the
MHD flow around the dipole field. A detailed discussion of
the symmetry relations is presented in AppendixA.

We approximate the bow shock as well as the magne-
topause shapes by elliptic paraboloids (functional relation
x = x0 + a y2

+ bz2 with constantsx0, a, andb). This cor-
responds to a second-order series expansion in accordance
with the symmetry considerations. The bow shock and mag-
netopause parametrization are

x =

∑
t=y,z

cBS,t t
2, (9)

x = xMS +

∑
t=y,z

cMP,t t
2, (10)

respectively, wherexMS denotes the magnetopause distance
from the bow shock’s nose (which is the magnetosheath
thickness along the stagnation streamline, x-axis). The con-
stant parameterscBS,t for the bow shock andcMP,t for the
magnetopause represent curvatures in the respective tangen-
tial directiont = y or t = z. These geometric parameters are
determined by the interaction of the magnetosheath plasma
with the dipole field as we will show later.

The flow and field variables in the magnetosheath are
expanded into Taylor series with respect to the y- and z-
direction around the stagnation streamline (y = z = 0). Due
to the symmetry relations summarized in TableA1 (Ap-
pendixA), several expansion terms vanish. This leads to the
following ansatz expanded to the third order:

ρ = ρ0 + ρ20 y2
+ ρ02 z2, (11)

p = p0 + p20 y2
+ p02 z2, (12)

Bx = Bx01 z + Bx21 y2 z + Bx03 z3, (13)

By = By11 y z, (14)

Bz = Bz0+ Bz20 y2
+ Bz02 z2, (15)

ux = ux0 + ux20 y2
+ ux02 z2, (16)

uy = uy10 y + uy12 y z2
+ uy30 y3, (17)

uz = uz01 z + uz21y
2 z + uz03 z3. (18)

Note that the expansion only holds for the tangential direc-
tions. Thus, the coefficients are arbitrary functions ofx. Their
indices indicate the order iny andz; e.g., “20” means second
order iny and zeroth order inz and “0” means zeroth order
in y andz.

Due to the curved shape of the bow shock and magne-
topause, coefficient functions are more conveniently depend-
ing on x̃ instead ofx (e.g.,ρ0(x) → ρ0(x̃)), with x̃ defined
by the following relation:

x = x̃ +

∑
t=y,z

(
cBS,t + 1ct

x̃

xMS

)
t2, (19)

where1ct = cMP,t − cBS,t denotes the difference between
the magnetopause curvature and the bow shock curvature.
Each value forx̃ corresponds to an elliptic paraboloid de-
fined by Eq. (19). In particular, x̃ = 0 corresponds to the
bow shock parametrization (Eq.9) andx̃ = xMS to the mag-
netopause parametrization (Eq.10). Therefore, the mod-
ified ansatz describes the physical quantities on elliptic
paraboloids parametrized bỹx, starting at the bow shock
for x̃ = 0 and finishing at the magnetopause atx̃ = xMS (see
Fig. 4). Note that the modification of the ansatz does not af-
fect its symmetry becausẽx depends ony2 andz2 only and,
thus,x̃(y,z) is independent of the sign ofy andz. This can
be seen solving Eq. (19) with respect tox̃. Thus, the ansatz
still satisfies the symmetry relations given in TableA1.

Substituting our ansatz into the MHD system (1)–(5)
yields a set of ordinary differential equations (ODEs) by
equating the coefficients of zeroth order,

(ρ0ux0)
′
+ ρ0

(
uy10+ uz01

)
= 0, (20)

Ann. Geophys., 31, 419–437, 2013 www.ann-geophys.net/31/419/2013/
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Fig. 4. Three-dimensional sketch of the elliptic paraboloids de-
scribed by Eq. (19) for different x̃. The bow shock on the left side
for x̃ = 0 and the magnetopause on the right side forx̃ = xMS.

(Bz0ux0)
′
+ Bz0uy10 = 0, (21)

ρ0ux0u
′

x0 + p′

0 + Bz0B
′

z0− Bx01Bz0 = 0, (22)

p0 = k ρ
γ

0 , (23)

and first order,

B ′

x01+ 2Bz02+ By11− 2c̃zB
′

z0 = 0, (24)

ρ0ux0u
′

y10+ ρ0u
2
y10+ 2(p20+ Bz0Bz20) − By11Bz0 (25)

−2c̃y
(
p′

0 + Bz0B
′

z0

)
= 0,

ρ0ux0u
′

z01+ ρ0u
2
z01+ 2p02+ B2

x01− Bx01B
′

z0 (26)

−2c̃zp
′

0 = 0,

p20 = k γ ρ20 ρ
γ−1
0 , (27)

p02 = k γ ρ02 ρ
γ−1
0 , (28)

By11ux0 + 2(Bz02ux0 + Bz0ux02) (29)

−Bx01
(
uy10+ 2uz01

)
+ 2c̃zBz0uy10 = 0,

with c̃t = cBS,t + 1ct
x̃

xMS
. Derivatives with respect tõx are

marked with a prime. To simplify the reading of the equa-
tions, we setµ0 = 1. Equations obtained from equating co-
efficients of the second order can be found in AppendixB.
We expressed the series expansion of the MHD quantities
in new coordinates̃x,y,z. However, as the MHD equations
are explicitly expressed in Cartesian coordinates, the chain
rule was applied to compute the derivatives with respect to
x̃, e.g.,∂xp = p′ ∂xx̃. The factor∂xx̃ can be calculated from
Eq. (19):

∂xx̃ = 1−

∑
t=y,z

1ct

xMS
t2

+ O(t4). (30)

Here t4 denotes any fourth-order product ofy and z. The
system of equations presented contains a conservation equa-
tion (Eq. 29), which has been satisfied by boundary condi-
tions only, as it does not contain any derivatives. We denote
Eqs. (20)–(23) as the zeroth-order system, Eqs. (20)–(28) as
the first-order system, and Eqs. (20)–(28) and (B1)–(B7) as
the second-order system.

Our ansatz transforms the stationary MHD equations,
which are partial differential equations (PDEs), into a set of
ordinary differential equations: (20)–(28) and (B1)–(B7). Al-
though the number of equations increases, the numerical ef-
fort to solve ordinary differential equations (ODEs) is sig-
nificantly lower. Hence, for a sufficient order the solution
might be obtained with less effort. The second-order system
presented here contains 16 ODEs, depending on 22 coeffi-
cient functions and 5 geometric parameters. Thus, 6 addi-
tional equations are required to calculate all coefficient func-
tions, and 5 additional conditions are needed to determine the
geometric parameters.

2.2 Solar wind at the bow shock boundary

First-order derivatives of the coefficient functions with re-
spect tox̃ in the above ODEs require knowledge of corre-
sponding boundary values at one pointx̃0 = 0, i.e.,ρ0(x̃0),
ρ20(x̃0), ρ02(x̃0),. . . . We choose to set these values atx̃0 = 0
(bow shock) using shocked solar wind parameters. These
are related to the solar wind via Rankine–Hugoniot relations
(e.g.,Petrinec and Russell, 1997):[
ρ uξ

]
= 0, (31)

[
Bξ

]
= 0, (32)

[
ρ u2

ξ + p +
B2

τ

2µ0

]
= 0, (33)

[
ρ uξuτ −

Bξ

µ0
Bτ

]
= 0, (34)

www.ann-geophys.net/31/419/2013/ Ann. Geophys., 31, 419–437, 2013



424 C. Nabert et al.: Method for solving the MHD equations

[
uξ Bτ − uτ Bξ

]
= 0, (35)

[(
ρ

2
u2

+

(
γ

γ − 1

)
p +

B2
τ

µ0

)
uξ −

Bξ

µ0
Bτ uτ

]
= 0. (36)

The squared brackets[. . .] indicate that the quantity therein
is conserved across the shock. The subscriptξ denotes the
normal component andτ tangential components with respect
to the bow shock. Solving the Rankine–Hugoniot relations
with respect to the bow shock geometry (Eq.9) and the cho-
sen solar wind conditions, the shocked values are obtained.
Power series expansion in y- and z-direction of this solution
and equating coefficients with our ansatz determine the coef-
ficient functions of the ansatz atx̃ = 0. Analytical solutions
for the zeroth-order coefficients can be found in, e.g.,Siscoe
(1983). A brief summary of his work and a detailed analyti-
cal approach for the the higher-order coefficient values up to
the second order are given in AppendixC.

As a result, the velocity coefficients are given by

ul i j (x̃ = 0) = fu(i,j)2i+j ci
BS,yc

j
BS,z1u, (37)

where1u = uSW− ux0(x̃ = 0), l ∈ {x,y,z}, i andj are la-
beled as in Eqs. (16)–(18), andfu(i,j) is defined by (sign-
function)

fu(i,j) =

{
+1, i + j ∈ {1}

−1, i + j ∈ {2,3}
. (38)

The magnetic field coefficients are given by:

Bl i j (x̃ = 0) = fB(i,j)2i+j ci
BS,yc

j

BS,z1B, (39)

in which

fB(i,j) =

{
+1, i + j ∈ {1,2}

−1, i + j ∈ {3}
, (40)

where1B = BSW−Bz0(x̃ = 0), l ∈ {x,y,z}, andi andj are
as in Eqs. (13)–(15). The boundary values for the density
and pressure coefficientsρ20, ρ02, p20, andp02 are approxi-
mately zero.

2.3 Outflow boundary conditions

Since the MHD system (1)–(5) contains partial derivatives
with respect to all three space dimensions, boundary condi-
tions are needed for three linearly independent planes. In the
previous section, boundary conditions were defined for the
bow shock plane; these are commonly called inflow condi-
tions in global MHD simulations. Here the remaining set of
outflow boundary conditions are defined, used to close the
system of ODEs.

The higher-order coefficient functions in the series expan-
sion dominate far away from the stagnation streamline (e.g.,
ρ(x̃,y → ∞,z → ∞) ≈ ρ20(x̃)y2

+ ρ02(x̃)z2). We suggest
setting the highest-order coefficients to their bow shock
boundary values. This condition is similar to common out-
flow boundary condition in simulations (e.g.,Ogino, 1993).
Different, specific choices of explicit functional relations to
close the system of ODEs lead basically to the models by
Lees(1964) andZwan and Wolf(1976), as discussed below.

2.4 Conditions from the geomagnetic field as an
obstacle

Despite the boundary conditions introduced above, the sys-
tem of ODEs still contains five undetermined geometric pa-
rameters: the bow shock curvaturescBS,y andcBS,z, the mag-
netopause curvaturescMP,y andcMP,z, and the magnetosheath
thicknessxMS. To determine these, inner boundary condi-
tions are necessary.

First, the flow should be tangential with respect to the
magnetopause, not allowing flow to penetrate into the mag-
netosphere (e.g.,Biernat et al., 1999). This stems from the
definition of the magnetopause as earthward flow bound-
ary. The flow direction at the magnetopause can be cal-
culated using magnetopause surface coordinates. The nor-
mal magnetopause vector is derived from the magnetopause
parametrization (10):

ξMP =
1

nMP

(
1,−2cMP,yy,−2cMP,zz

)T
, (41)

wherenMP =

√
1+

∑
t=y,z 4c2

MP,t t
2 normalizes the vector.

A vanishing normal flow velocity through the magnetopause
yields ξMP · u(x̃ = xMS,y,z) = 0. This expression holds for
the y- and z-direction, so using the velocity ansatz (16)–(18)
yields

ux0(x̃ = xMS) = 0, (42)

cMP,y =
ux20(x̃ = xMS)

2uy10(x̃ = xMS)
, (43)

cMP,z =
ux02(x̃ = xMS)

2uz01(x̃ = xMS)
. (44)

However, at the magnetopause surface the flow velocity van-
ishes along the magnetic field direction (→ uz01(x̃ = xMS) =

0) as pointed out bySiscoe et al.(2002). Thus, in the pres-
ence of magnetic fields Eq. (44) is no longer valid. Instead,
we use the assumption that magnetic fields of different ori-
gin cannot mix (Frozen-in theorem). This yields the vanish-
ing of any normal magnetic field component at the magne-
topause boundary:ξMP · B(x̃ = xMS,y,z) = 0 (e.g.,Biernat
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et al., 1999). This requires

cMP,z =
Bx01(x̃ = xMS)

2Bz0(x̃ = xMS)
. (45)

Secondly, a restricting condition arises from the Earth’s
dipole field itself. The total magnetic field of our MHD so-
lution (B) should by a superposition of the magnetic fields
generated by magnetosheath currents (Bj ) and the Earth’s
magnetic field (BE). Since the Earth’s dipole field is curl-
free (see Eqs.6–8), the curl of the total field yields the current
distribution in the magnetosheathjMS only:

∇ ×B = ∇ ×Bj = µ0jMS. (46)

The magnetic field generated by these currents can be cal-
culated with Biot-Savart’s law. The superposition of this
magnetosheath-current-field and the Earth’s magnetic field
necessarily has to match the total field from our MHD so-
lution. If this is not satisfied, geometric parameters and the
magnetopause distance to the Earth’s center have to be mod-
ified accordingly.

A more simple approach to take the geomagnetic field into
account uses a pressure condition at the magnetopause which
is valid in the hydrodynamic limit.Mead and Beard(1964)
pointed out that the tangential components of the total mag-
netic field determine the (calculated) total pressure behind
the magnetopauseptot,MP:

ptot,MP =

(
ξMP ×

(
BE + Bj

))2
2µ0

. (47)

With respect toMead and Beard(1964), a good first approx-
imation for the right-hand side yields:

ptot,MP =
(f BE × ξMP)2

2µ0
, (48)

with f = 2.44. This expression is valid near the stagna-
tion point and determines the magnetopause distance to the
Earth’s center. Variations in y- and z-direction give additional
conditions for determination of two curvature parameters.

Hence, the conditions of vanishing normal flow and field
component and the condition for the Earth’s magnetic field
determine the geometric parametersxMS, cMP,y, cMP,z, cBS,y
andcBS,z. The differential equations together with the closure
conditions for the highest-order coefficients and the inner
boundary conditions determine a unique solution for given
solar wind parameters.

2.5 Application of the method

To calculate magnetosheath solutions with our method, first
an appropriate order of approximation has to be chosen. For
example, the second-order model gives a good approxima-
tion of the dayside magnetosheath up to severalRE beside

the stagnation streamline. If the solar wind is along the stag-
nation streamline (i.e., the x-direction) with a perpendicular,
northward IMF, we can directly apply the ODEs presented
here. The system of ODEs related to the zeroth order is given
by Eqs. (20)–(23). The second-order approach is given by
Eqs. (20)–(28) and (B1)–(B7) as presented in Sect.2.1 and
AppendixB. For solar wind conditions violating the required
symmetry conditions, ansatz (11)–(18) has to be replaced by
an arbitrary series expansion. However, the derivation of the
corresponding ODEs is analogous. Further, higher-order ap-
proximations require higher-order series expansions. We set
the coefficient functions of the highest-order constant at their
postshock values to close the system of equations (i.e., for
the second-order approach presented,uy30, uy12, uz03, uz21,
Bx30, andBx21 are constant). The boundary conditions for the
ODEs (ρ(x̃ = 0),p(x̃ = 0),u(x̃ = 0), andB(x̃ = 0)) are de-
termined at the bow shock by solving the Rankine–Hugoniot
relations for the solar wind conditions (ρSW,pSW,uSW, and
BSW) with respect to the shock geometry. However, we can
also use the analytical approach presented in AppendixC
yielding equations for zeroth-order coefficients (Eqs.C1–
C4) and for the higher-order coefficients (Eqs.C19andC27).
The second-order terms of density and pressure vanish in this
approach.

The Rankine–Hugoniot relations as well as the ODEs re-
quire knowledge of the geometric parametersxMS, cMP,y,
cMP,z, cBS,y, andcBS,z. As an initial choice, we can use the an-
alytical expressions (D13), (D24), (D28), (D25), and (D29)
with the magnetopause distance (Eq.D23). They are related
to solar wind conditions via Eqs. (C1)–(C4). The solution
of our system has to satisfy the inner boundary conditions
given by Eqs. (42), (43), (45), and (48). The latter condi-
tion holds for the y- and z-direction. The geometric param-
eters need to be determined self-consistently; i.e., the initial
choice has to be modified until the conditions are satisfied.
Note that higher-order expansions of the bow shock and mag-
netopause curvatures contain more parameters and lead to
more inner boundary conditions. The zeroth- and first-order
systems are not able to determine the geometric parameters
self-consistently.

Each system of equations together with the boundary and
closure conditions represents a distinct approach to obtain
a magnetosheath solution, characterized by the order of the
system and corresponding level of approximation.

3 Relations to other models

Our zeroth-order equations provide a model similar toLees
(1964). Extending Lees’s first considerations, we present
an analytical approach for the solution of the equations,
by which the physical quantities (density, pressure, mag-
netic field, and velocity) and the magnetosheath geometry
(bow shock, magnetopause, and magnetosheath thickness)
are obtained as a function of solar wind conditions only. The
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complete derivation is presented in AppendixD. In the fol-
lowing section, we focus on an important result of this calcu-
lation: the analytical expression for the magnetosheath thick-
ness. Furthermore, we show that the models byLees(1964),
Zwan and Wolf(1976), andErkaev et al.(1996) are included
in our new method for different orders of approximation.

3.1 Analytical expression for the magnetosheath
thickness

As presented in AppendixD, an analytical expression of the
magnetosheath thickness can be found in the zeroth-order
approximation that is solely dependent on solar wind con-
ditions. This expression is given by

xMS =
1xMP(

4
5 + mBS

)
(gu − 1) − 1

, (49)

wheregu = uSW/ux0(0), the subsolar velocity jump at the
bow shock, which is introduced in AppendixC (Eq. C3) as
a function of solar wind conditions. Furthermore, the mag-
netopause distance to the Earth’s center1xMP is given as a
function of solar wind conditions in Eq. (D23), andmBS is a
measure for the solar wind magnetization given by

mBS = 1−
1

1+
γ
2

p0(0)
pmag(0)

. (50)

Herepmag(0) = B2
z0(0)/2µ0 is the postshock magnetic pres-

sure andγ = 5/3 is the ratio of specific heats. The magne-
tosheath thickness is proportional to the magnetopause dis-
tance to the Earth’s center. A typical value for the mag-
netopause distance is about 10RE; therewith, the magne-
tosheath thickness results in 2.3RE in the hydrodynamic
limit (mBS = 1) for high Mach numbers (gu = 4). The mag-
netosheath thickness increases with solar wind magnetic
field. It should be noted that the sheath thickness may be-
come negative in Eq. (49). This occurs for very low Mach
number conditions, for which conditions our approximation
is not valid. A very often used empirical relation based on
hydrodynamic considerations (Spreiter et al., 1966) is

xMS = 1.1
1

gu

1xMP. (51)

This equation offers the same proportionality between mag-
netosheath thickness and magnetopause distance.Farris and
Russell(1994) modified this relation and obtained

xMS = 1.1
(γ − 1)M2

1,SW+ 2

(γ + 1)(M2
1,SW− 1)

1xMP, (52)

whereM1,SW is the solar wind magnetosonic Mach number
(see also,Bennett et al., 1997). Figure5 shows a comparison
between this relation and Eq. (49). The upper panel shows the
magnetosheath thickness as a function of the unmagnetized
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Fig. 5. Magnetosheath thickness of our model by Eq. (49) (blue
curves) in comparison to the model byFarris and Russell(1994)
(red curves). The upper plot shows the density dependence of
the sheath thickness foruSW = 400 km s−1, TSW = 2× 105K, and
BSW = 0nT. The lower panel offers the magnetic field depen-
dence foruSW = 400 km s−1, TSW = 2× 105K, andρSW = 8.4×

10−21kg m−3
= 5 mP cm−3.

solar wind’s density. The relations are similar; however, an
offset of about 20 % is observed. In the lower panel, both re-
lations’ dependence on solar wind magnetic field are shown.
Eq. (49) yields a steeper increase in the sheath’s thickness.
However, for tyical solar wind conditions both relations pro-
vide a similar magnetosheath thickness, in accord with ob-
servations. Thus, Eq. (49) is a suitable analytical expression
for the magnetosheath thickness as a function of solar wind
conditions.

3.2 The Lees approach

Lees(1964) presented a first model considering the effects
of a solar wind magnetic field on the magnetosheath on the
stagnation streamline. Starting from ideal MHD and con-
sidering the same solar wind conditions, he derives equa-
tions similar to our zeroth-order differential equations (20)–
(23). Note that these equations do not depend on the bow
shock and magnetopause geometry. Neglecting the magnetic
shear (→ Bx01Bz0 = 0) and assuming an axisymmetric flow
(i.e.,uy10 = uz01) in our zeroth-order system leads to Lees’s
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equations. As noted, a relation to close the system is re-
quired. He suggested determining the divergence function
uy10 as part of the solution along the magnetopause away
from the stagnation streamline without going into details.
Lees’s model is a zeroth-order approach to the flow problem;
we extended his considerations by calculating analytical so-
lutions presented in AppendixD. As shown in our approach,
higher-order differential equations allow for a self-consistent
determination of the divergence functions influencing the so-
lution.

3.3 The depletion model

The depletion model byZwan and Wolf (1976) investi-
gates, in more detail, density and magnetic field variations
on the stagnation streamline and also in its vicinity. Starting
from the time-dependent ideal MHD equations, they derive
a system of two-dimensional partial differential equations
describing the properties of a magnetic flux tube moving
through the magnetosheath. Approximations such as WBK
and Taylor expansion restrict the calculations to the vicinity
of the stagnation streamline. Although the model byZwan
and Wolf (1976) depends on several limiting assumptions,
the picture of the pile-up process was deepened. They con-
clude that during northward IMF plasma is squeezed out of
flux tubes close to the magnetopause, inducing a density de-
crease corresponding to a magnetic field increase in order to
maintain pressure balance. The region of density decrease,
called the depletion region, is narrower than predicted by
Lees’s simple model. In the model ofZwan and Wolf(1976),
initial postshock divergence values also need to be deter-
mined, similarly to our model. However, they obtain these
values from numerical hydrodynamic calculations afterSpre-
iter et al.(1966). To close their system, the functional relation
of the pressure is assumed to match the hydrodynamic simu-
lations, too. If we applied the same pressure condition to our
model, we would achieve closure of our first-order system
(20)–(28). This suggests a correspondence of our first-order
system with the model ofZwan and Wolf(1976) despite the
approaches in solving the MHD system of equations being
rather different (we solve only ODEs). Note that the second-
order velocity coefficient functions of our model do not con-
tribute to the first-order equations and thus do not need to be
determined.

3.4 The magnetic string approach

The magnetic string approach byErkaev et al.(1988) trans-
fers the stationary ideal MHD equations into a different set
of partial differential equations (PDEs), using so-called ma-
terial coordinates (e.g.,Erkaev et al., 2003). These coordi-
nates are similar to frozen-in coordinates, with directions
along the flow velocity, the magnetic field, and the electric
field (Pudovkin and Semenov, 1977b). These coordinates are
preferably used in ideal MHD due to the frozen-in theorem.

The MHD equations can be simplified assuming the total
pressure given in the entire magnetosheath, which leads to
a set of two-dimensional PDEs that describes thin magnetic
flux tubes. Similar to our method, a parametrized bow shock
is used. The bow shock and the magnetopause curvatures
are calculated self-consistently using magnetopause bound-
ary conditions. These conditions are a vanishing normal ve-
locity and magnetic field component, and they assume that
the pressure satisfies the Newtonian approximation (Petrinec
and Russell, 1997). The magnetic string approach was used
to investigate the magnetic barrier region, which is equivalent
to the depletion layer region. It was applied to the magne-
tosheath region of Earth (Farrugia et al., 1997), Venus (Bier-
nat et al., 1999), and Jupiter (Erkaev et al., 1996). Further
considerations with respect to anisotropic pressure are pre-
sented byErkaev et al.(2000).

4 Application to THEMIS observations

We apply our method to two different scenarios: The hydro-
dynamic magnetosheath transition – i.e., the solar wind mag-
netic field is zero – and the magnetic pile-up transition as
shown in Fig.1, where the solar wind is significantly magne-
tized.

4.1 Hydrodynamic transition

Without a solar wind magnetic field, we expect a field-free
magnetosheath and results comparable to the hydrodynamic
calculations by, e.g.,Spreiter et al.(1966). We choose the
solar wind velocity to beuSW = 310 km s−1, the solar wind
density ρSW = 1.34× 10−20 kg m−3, the solar wind mag-
netic field BSW = 0.02nT, and the solar wind temperature
TSW = 1.75×105K. These conditions agree with actual solar
wind conditions during THEMIS C’s crossing of the mag-
netosheath region on 24 August 2008. The probe traversed
the magnetosheath about 5.5RE in y-direction and about
2RE in z-direction away from the stagnation streamline
(RE = 6371km). Solar wind measurements were obtained by
THEMIS B, which was closely following THEMIS C.

We apply our method to this event using the analytical
(zeroth-order) approach presented in AppendixD, the full
zeroth-order approach with the equations solved numerically,
and the second-order approach. The results of the calcula-
tions and the THEMIS C observations on 24 August 2008
are displayed in Fig.6. The numerical zeroth-order ap-
proach yields the smaller magnetosheath thickness. The an-
alytical and second-order approach (solutions on the stagna-
tion streamline) yield comparable thicknesses. The observed
magnetosheath thickness, however, is about 0.4RE larger.
This difference is explained by the distance of the probe’s or-
bit to the stagnation streamline, reflected in better agreement
of the solution of the second-order system on the probe’s or-
bit (black) to observations as shown in Fig.6.
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order approach (blue). The second-order solution on the probe’s or-
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black, the corresponding THEMIS data of 24 August 2008 in grey.

The analytical magnetic field diverges at the magne-
topause, due to the linear approximation of the velocity’s x-
component. A slight density increase is apparent in all so-
lutions but the analytical one. This results from the conver-
sion of dynamic pressure, neglected only in the analytical
calculations, into gas pressure. However, the measured den-
sity increases at a higher rate than that given by the models,
which is attributed to a density increase in the solar wind
density of about 15 % during the observation time. All cal-
culated velocities decrease nearly linearly. On the stagnation
streamline the velocity’s x-component vanishes, but close to
it a finite value remains, vanishing after the magnetopause.
This behavior is in accord with the measured data.

The second-order approach reveals the velocity distribu-
tion within the three-dimensional magnetosheath geometry.
The corresponding streamlines in the xy-plane are displayed
in Fig. 7. The density distribution in the xy-plane is shown
in Fig. 8, which shows a decreasing density away from the
stagnation streamline. Although these density variations ap-
pear to be small, corresponding pressure gradients affect the
solution significantly.

The results presented are in agreement with the THEMIS
observations as well as numerical calculations bySpre-
iter et al. (1966) over a large part of the dayside magne-
tosheath. Our three-dimensional solution of the second-order
approach with self-consistently computed bow shock and
magnetopause geometries yields results that best match the
observations of all models considered.

4.2 Northward IMF transition

Without magnetic reconnection, the IMF piles up in the mag-
netosheath against the magnetopause. THEMIS C observa-
tions on 29 October 2009 (Fig.1), showing such a pile-up,
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Fig. 7. Magnetosheath streamlines with the velocity obtained by
solving the second-order approach. The parabolic bow shock (red)
and the magnetopause (green) are delineated.
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are compared to results of our method using different orders
of approximation. The data shown are just a part of the com-
plete magnetosheath observation. About 1.5h before the bow
shock crossing shown in the figure, two further bow shock
crossings were registered by the THEMIS C spacecraft. Dur-
ing the whole time interval, the solar wind velocity was about
325 km s−1, the temperature 2.1× 105K, and the solar wind
magnetic field between 5.0nT and 5.5nT. Note that the mag-
netic field is purely northward with minor deviations of less
than 45◦ (in the last part of the transition even less than 10◦)
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however, the relative variations can be considered. Note that the
density jump measured by THEMIS C at about 05:30 UT is related
to a mode change of the ESA plasma instrument of the spacecraft
(McFadden et al., 2008).

and the satellite’s trajectory is located close to the stagna-
tion streamline (distance less than 2RE) as required for our
method in the approximations presented here. However, the
solar wind density varied significantly during the observation
time, which violates the assumed stationarity of our model
with the consequences discussed below. Time-shifted solar
wind (ion) density measurements (observed by THEMIS B)
and corresponding THEMIS C density measurements, both
obtained by the on-board ESA plasma instrument (McFad-
den et al., 2008), are shown in Fig.9. Immediately after the
first two bow shock crossings at 04:30 UT and 04:50 UT, the
solar wind density increases, causing an inward motion of
bow shock and magnetopause. Consequently, the THEMIS C
spacecraft reenters the solar wind at about 05:00 UT.

The bow shock distance to the Earth’s center and that of
the magnetosheath thickness of the second-order solution are
shown in Fig.10. Both quantities decrease with increasing
density. This is also consistent with the results of our an-
alytical approach (Eqs.49 and D23). Additionally, Fig. 10
shows that the effect of the magnetic field variability during
the event discussed is negligible when compared to changes
in density.

As can be seen in Fig.9, a solar wind density decrease
preceded the bow shock crossing of THEMIS C at 06:05 UT.
This causes an outward motion of the bow shock. Therefore,
the velocity behind the bow shock shown in Fig.1 is about
20 km s−1 lower than expected by the Rankine–Hugoniot re-
lations (Eqs.31–36), which are only valid for a stationary
situation. Consequently, the bow shock and magnetopause
position and the magnetosheath thickness varied during the
first part of the observation. For this reason, the length scales
of the observations might not be comparable to our calcula-
tions. The results of our analytical approach, our zeroth-order
as well as our second-order approach are presented in Fig.11.

In all cases, a magnetic pile-up is predicted. As explained
bySiscoe et al.(2002), the magnetosheath plasma at the mag-
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netopause surface can flow in two dimensions at the surface,
whereas the magnetic field can only escape in one direction,
because field lines are already one-dimensional. Therefore,
more plasma escapes than magnetic field in front of the mag-
netopause, leading to a pile-up of the magnetic field. Note
that the pile-up region exists in the hydrodynamic case above,
too; however, the pile-up region is located closely to the mag-
netopause.
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Again, the magnetic field of the analytical approach di-
verges at the magnetopause due to the linear velocity ap-
proximation made. Furthermore, the numerical zeroth-order
approach shows the most-extended sheath thickness. This be-
havior is associated with a slow density decrease, which con-
trasts with the density drop at the magnetopause in the other
calculations. The solution of the zeroth-order system is com-
parable to that of theLees(1964) model, which exhibits the
same slow density decrease, whereas the second-order solu-
tion is similar to the solution byZwan and Wolf(1976). The
pressure gradients in the second-order approach enhance the
plasma flow away from the stagnation streamline close to the
magnetopause. Consequently, the depletion layer thickness,
which is given by the density decrease at the magnetopause,
differs.

It can be shown that the often-used empirical magne-
topause model byShue et al.(1998) and the bow shock
model byBennett et al.(1997) provide approximately the
same curvatures as our theoretical approach. Furthermore,
the second-order approach offers a well-known behavior:
The divergence of the velocity along the magnetic field drops
at the magnetopause. This is related to the fact that the stag-
nation point is extended to a line along the magnetic field at
the magnetopause as discussed byPudovkin and Semenov
(1977a).

5 Conclusions

A method to calculate the properties of the magnetosheath
as part of the solar wind–geomagnetic field interaction by
solving the stationary MHD equations for different levels
of approximation is presented. The solutions are calculated
without considering time relaxation into a stationary state,
as required, for instance, by MHD simulations. A power
series ansatz is introduced which transfers the stationary
MHD equations into a set of ordinary differential equations
(ODEs). The number of equations is determined by the order
of approximation considered in the ansatz. In the process, for
simplicity, we restricted the approach to northward IMF and
a solar wind along the stagnation streamline. The postshock
values, used as boundary conditions for the ODEs, are re-
ferred back to solar wind conditions via Rankine–Hugoniot
relations. Furthermore, typical outflow boundary conditions
are chosen to determine a unique solution. The Earth’s dipole
field yields additional restrictions for the solution determin-
ing the magnetosheath’s geometry.

A full analytical solution of our zeroth-order approach
is presented, which results in an analytical expression of
the magnetosheath thickness (Eq.49). The models byLees
(1964), Zwan and Wolf (1976), and Erkaev et al.(1988)
are classified by different orders of approximation with re-
spect to our method, revealing similarities and differences
and providing a more detailed insight into magnetosheath
phenomena.

Table A1. Symmetries of the situation considered. Axisymme-
try of a quantityf (x,y,z) to the xy-plane meansf (x,y,−z) =

f (x,y,z), point symmetry meansf (x,y,−z) = −f (x,y,z), anal-
ogous with respect to the xz-plane.

Phys. quantity Symmetry toxy Symmetry toxz

Bx axisym. pointsym.
By pointsym. pointsym.
Bz axisym. axisym.
ux axisym. axisym.
uy pointsym. axisym.
uz axisym. pointsym.
ρ axisym. axisym.
p axisym. axisym.

We apply our method to THEMIS observations. First, a
hydrodynamic transition is examined featuring the typical
Chapman-Ferraro picture of a jump in the magnetic field at
the magnetopause. The second transition investigated shows
an extended magnetic pile-up region resulting from a sig-
nificantly magnetized solar wind. Model results in terms of
streamline distribution, the density contours, the magnetic
field behavior, and the magnetosheath geometry validate our
approach.

We are currently exploring the possibility to generalize
our approach to situations at other planetary bodies such as
comets (Glassmeier et al., 2007) or asteroids (Auster et al.,
2010).

Appendix A

Symmetry relations

The symmetry relations of the MHD variables with respect
to the xy- and xz-coordinate planes are summarized in Ta-
bleA1.

In the following, we sketch the derivation of these rela-
tions. In Sect.2.1, we assume the solar wind to flow along the
x-axis with its magnetic field along the z-axis and the Earth’s
dipole field given by Eqs. (6)–(8). Both the undisturbed solar
wind and the dipole field satisfy the symmetry relations. The
time evolution of the flow is governed by the time-dependent
MHD equations, which read (e.g.,Wu, 1992)

ρ̇ + ∇ · (ρ u) = 0, (A1)

ρ u̇ + ρ (u · ∇)u + ∇p −
1

µ0
(∇ ×B) × B = 0, (A2)

Ḃ − ∇ × (u × B) = 0, (A3)
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∇ ·B = 0, (A4)

ε̇+∇·

((
ρu2

2
+

γ

γ − 1
p

)
u −

1

µ0
(u × B) × B

)
= 0. (A5)

Hereρ denotes mass density,u the fluid’s bulk velocity,p
the thermal gas pressure assumed to be isotropic,B the mag-
netic field,µ0 = 4π × 10−7N/A2 the vacuum permeability,
andε = ρu2/2+ B2/(2µ0) + p/(γ − 1) the energy density
with γ as the ratio of specific heats. Time derivatives are pre-
sented in dot notation. The time-dependent MHD equations
conserve the symmetry relations in time. For example, ap-
plying the relations, the divergence term of the first MHD
Eq. (A1) is axisymmetric with respect to the xy-plane as a
function ofz and axisymmetric with respect to the xz-plane
as a function ofy. Thus, Eq. (A1) requires the density to
be axisymmetric in time. Because the initial situation (solar
wind and Earth’s magnetic field) satisfies the symmetry rela-
tions and these relations are conserved in time, the solution
in its final stationary state needs to satisfy the symmetries,
too.

Appendix B

Second-order equations

The ansatz (11)–(18) is expanded up to the third order. Sub-
stituting this ansatz in the MHD equations, we derived the
zeroth- and first-order equations as presented in Sect.2.1.
Analogously, the second-order equations are obtained by
equating coefficients of the second order:

(ρ0ux20+ ρ20ux0)
′
+ ρ0

(
3uy30+ uz21

)
(B1)

+ρ20
(
3uy10+ uz01

)
− 2c̃y

(
ρ0uy10

)′
−

1cy

xMS
(ρ0ux0)

′
= 0,

(ρ0ux02+ ρ02ux0)
′
+ ρ0

(
uy12+ 3uz03

)
(B2)

+ρ02
(
uy10+ 3uz01

)
− 2c̃z (ρ0uz01)

′

−
1cz

xMS
(ρ0ux0)

′
= 0,

(
Bx01uy10− By11ux0

)′
+ 2

(
Bz02uy10+ Bz0uy12

)
(B3)

−2By11uz01− 2c̃z
(
Bz0uy10

)′
= 0,

−(Bz0ux20+ Bz20ux0)
′
− 3

(
Bz20uy10+ Bz0uy30

)
(B4)

+2c̃y
(
Bz0uy10

)′
+

1cy

xMS
(Bz0ux0)

′
= 0,

(Bx01uz01− Bz0ux20− Bz02ux0)
′
− Bz02uy10 (B5)

−Bz0uy12+ By11uz01+
1cz

xMS
(Bz0ux0)

′
= 0,

ρ0 (ux0ux20)
′
+ ρ20ux0u

′

x0 + 2ρ0ux20uy10+ p′

20 (B6)

+(Bz0Bz20)
′
− Bx21Bz0− Bx01Bz20

−2c̃yρ0uy10u
′

x0 −
1cy

xMS
Bx01Bz0 = 0,

ρ0 (ux02ux0)
′
+ ρ02ux0u

′

x0 + 2ρ0ux02uz01+ p′

02 (B7)

+(Bz0Bz02)
′
− 3Bx03Bz0− Bx01Bz02

−2c̃z
(
ρ0uz01u

′

x0 − Bz0B
′

z02

)
−

1cz

xMS
Bx01Bz0 = 0.

Appendix C

Solving the Rankine–Hugoniot relations at the bow shock

The MHD moment values of the shocked solar wind plasma
at the bow shock’s position at (x̃ = 0) are ρ(x̃ = 0,y,z),
p(x̃ = 0,y,z), u(x̃ = 0,y,z), and B(x̃ = 0,y,z). Via the
Rankine–Hugoniot relations (31)–(36), they are related to
the solar wind conditions introduced in Sect.2.1: ρSW, pSW,
uSW = (uSW,0,0)T , andBSW = (0,0,BSW)T . On the stag-
nation streamline, i.e.,y = z = 0, only zeroth-order coeffi-
cients of our ansatz (11)–(18) remain and only a solar wind
flow normal to the bow shock surface has to be considered.
This simple scenario results in the following solution of the
Rankine–Hugoniot relations:

ρSW = gρ ρ0(x̃ = 0), (C1)

pSW = gp p0(x̃ = 0), (C2)

uSW = gu ux0(x̃ = 0), (C3)

BSW = gB Bz0(x̃ = 0). (C4)

Explicit analytical expressions forgρ , gp, gu, andgB de-
pending on the sonic and Alfvénic Mach number of the solar
wind can be found in, e.g.,Siscoe(1983). In the limit of high
Mach numbers,gρ = 1/4, gp → 0, gu = 4, andgB = 1/4.

To determine the boundary values atx̃ = 0 for the higher-
order coefficient functions, we need to consider the situa-
tion beside the stagnation streamline. This requires taking
the bow shock geometry into account, and, consequently, we
introduce curvilinear bow shock coordinates. Using the bow
shock parametrization (Eq.9), the normal vectorξBS and two
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linearly independent tangential vectorsτBS,1 andτ̃BS,2 with
respect to the shock are determined:

ξBS =
1

nyz

(
1, −2cBS,yy, −2cBS,zz

)T
, (C5)

τBS,1=
1

ny

(
2cBS,yy, 1, 0

)T
, (C6)

τ̃BS,2=
1

nz

(
2cBS,zz, 0, 1

)T
, (C7)

where nyz =

√
1+

∑
t=y,z 4c2

BS,t t
2, ny =

√
1+ 4c2

BS,yy
2,

and nz =

√
1+ 4c2

BS,zz
2 are normalization functions. It is

convenient to orthonormalize the tangential vectorτ̃BS,2with
respect to the other coordinate vectorsξBS andτBS,1 to sim-
plify the following calculations:

τBS,2=
τ̃BS,2−

(
τBS,1· τ̃BS,2

)
τBS,1∥∥τ̃BS,2−

(
τBS,1· τ̃BS,2

)
τBS,1

∥∥ . (C8)

The three coordinate vectorsξBS, τBS,1, andτBS,2 form an
orthonormal system at the bow shock’s surface.

First, we consider the shocked velocity at the bow shock
plane, which can be expressed by

u(x̃ = 0,y,z) = uξ,BS ξBS+

∑
i=1,2

uτ,BS,i τBS,i . (C9)

The coefficient functionsuξ,BS, uτ,BS,1, anduτ,BS,2 need to
be determined. Consider the xz-plane; parametrization of the
bow shock curve by introducing the angleα(z) (see Fig.C1)
allows for the representation of the solar wind velocity’s and
magnetic field’s component normal to the bow shock as

uξ,SW = cos(α(z))uSW ≈ uSW, (C10)

Bξ,SW = sin(α(z))BSW ≈ α(z)BSW, (C11)

and the tangential components as

uτ,SW = sin(α(z))uSW ≈ α(z)uSW, (C12)

Bτ,SW = cos(α(z)) BSW ≈ BSW. (C13)

Here, Taylor expansion up to the first order inα was used.
Apparently, the solar wind’s normal velocity and tangential
magnetic field remain approximately constant close to the
stagnation streamline (smallα), whereas the normal mag-
netic field component and the tangential velocity vanish.

x

z

BS

u
SW

u�SW
u�SW

�

�

Fig. C1.Projection of the solar wind velocity vector with respect to
curvilinear bow shock coordinates.

Note that variations in tangential direction (of the compo-
nents with respect to the shock’s surface), given by deriva-
tives with respect toα, require the opposite. As a conse-
quence of the negligible normal magnetic field component,
the Rankine–Hugoniot relations require continuity of the tan-
gential velocity components of the solar wind across the bow
shock (Siscoe, 1983):

uτ,BS,1 = uSW · τBS,1 =
2cBS,yuSWy

ny
, (C14)

uτ,BS,2 = uSW · τBS,2=
2cBS,zuSWz

ny nyz
. (C15)

Relation (C3) holds for a normal solar wind velocity with
a tangential magnetic field. Because the magnetic field is
nearly tangential close to the subsolar point, we extent the
scope of this relation to the vicinity of the stagnation stream-
line using the normal component of the velocities:

uSW · ξBS = gu u(x̃ = 0,y,z) · ξBS. (C16)

With the solar wind flowing along the x-axis, Eqs. (C3), (C5),
and (C9) yield

uξ,BS =
ux0(x̃ = 0)

nyz
. (C17)

Substituting the coefficients (C14), (C15), and (C17) and the
coordinate vectorsξBS, τBS,1, andτBS,2 in Eq. (C9), the ini-
tial velocity writes

u(x̃ = 0,y,z) =
1u

nyz

(
uSW

nyz

1u
− 1, 2cBS,yy, 2cBS,zz

)T

,

(C18)

where1u = uSW− ux0(x̃ = 0). Expanding this relation into
a Taylor series with respect toy andz around the stagnation
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streamline and equating coefficients with the ansatz (16)–
(18) yields values for the coefficient functions that can be
expressed as

ul i j (x̃ = 0) = fu(i,j)2i+j ci
BS,yc

j

BS,z1u, (C19)

wherel ∈ {x,y,z}, the indicesi andj label the coefficient
functions as in the ansatz (16)–(18), andfu(i,j) denotes the
sign-function:

fu(i,j) =

{
+1, i + j ∈ {1}

−1, i + j ∈ {2,3}
. (C20)

The magnetic field can be treated in a similar manner. Its
postshock values are expressed as follows:

B(x̃ = 0,y,z) = Bξ,BS ξBS+

∑
i=1,2

Bτ,BS,i τBS,i . (C21)

The normal component of the magnetic field is always con-
tinuous through the bow shock, which yields

Bξ,BS =
−2BSWcBS,zz

nyz
. (C22)

Similar to the velocity calculation, we extend the validity of
relation (C4) to the vicinity of the stagnation streamline:

BSW · τBS,i = gB B(x̃ = 0,y,z) · τBS,i, (C23)

wherei ∈ {1,2}. With the solar wind magnetic field along the
z-axis, Eqs. (C4), (C6), (C8), and (C21) give one

Bτ,BS,1 = 0, (C24)

Bτ,BS,2 =
Bz0(0)ny

uz
. (C25)

Finally, the postshock magnetic field is

B(x̃ = 0,y,z) =
1B

n2
yz

(
2cBS,zz,−4cBS,ycBS,zy z, (C26)

Bz0(0) + 4BSWc2
BS,yy

2
+ 4BSWc2

BS,zz
2

1B

)T

,

where1B = BSW− Bz0(x̃ = 0). The field boundary values
on the stagnation streamline result from the derivatives of
Eqs. (13)–(15) at (x̃ = 0,y = 0,z = 0) and of Eq. (C26):

Bl i j (0) = fB(i,j)2i+j ci
BS,yc

j

BS,z1B, (C27)

in which

fB(i,j) =

{
+1, i + j ∈ {1,2}

−1, i + j ∈ {3}
, (C28)

wherel ∈ {x,y,z}, and the indicesi andj label the coeffi-
cient functions as in the ansatz (13)–(15).

Note that Eqs. (C19) and (C27) satisfy the Frozen-in con-
servation Eq. (29) as expected. Under the assumptions ap-
plied in these calculations, the boundary values for the den-
sity and pressure coefficientsρ20, ρ02, p20, andp02 are zero.

Appendix D

Zeroth-order approach

To obtain a first approach to the physics and the correspond-
ing solutions of the MHD equations, the zeroth-order ap-
proach with its Eqs. (20)–(23) is solved analytically. The co-
efficient functions of the first order are set to constant post-
shock values:Bx01 = Bx01(x̃ = 0), uy10 = uy10(x̃ = 0), and
uz01 = uz01(x̃ = 0). The latter two expressions are called di-
vergence parameters describing the amount of flow diversion
in the respective tangential direction. The system is solved
for arbitrary solar wind conditions.

D1 General solutions

For simplification, we neglect magnetic shear, meaning mag-
netic fields in z-direction only, and consequentlyBx01(x̃ =

0) = 0. The shock front decelerates and compresses the flow;
dynamic pressure is converted into gas and magnetic pres-
sure. Most often, in the magnetosheath, the dynamic pressure
term in the momentum equation of zeroth order (22) can be
neglected (the minor effects of the dynamic pressure are dis-
cussed in Sect.4.1). This yields

k
(
ρ

γ

0

)′
+

1

µ0
Bz0B ′

z0 = 0, (D1)

for which the zeroth-order adiabatic law (Eq.23) has been
used. Integration gives

k
(
ρ

γ

0

)
+

B2
z0

2µ0
= kρ0(0)γ +

Bz0(0)2

2µ0
, (D2)

with the integration constant on the right side to be deter-
mined at the bow shock. The zeroth-order continuity Eq. (20)
and the zeroth-order Frozen-in theorem (21) can be written
as

u′

x0 = −(uy10+ uz01) + ε, (D3)

u′

x0 = −uy10− δ, (D4)

whereε = −ux0∂xρ0/ρ0 andδ = ux0∂xBz0/Bz0. The north-
ward magnetic field and the density are positive functions.
Furthermore,ε andδ are always positive because the mag-
netic field increases in the magnetosheath, corresponding to
a decreasing density as given by Eq. (D1). The positiveε

andδ, and Eqs. (D3) and (D4) also provide lower and upper
bounds for the velocity decrease:

−(uy10+ uz01) < u′

x0 < −uy10. (D5)

Expanding the velocity iñx around the bow shock reads

ux0 = ux0(0) +

∞∑
i=1

ai x̃
i . (D6)
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Note that the argument of the coefficient functions is with re-
spect tox̃, soux0(0) = ux0(x̃ = 0) and is not explicitly noted
further. First, we take only the first order iñx into account:

ux0 = ux0(0) + a x̃. (D7)

Herea = a1 for the expansion coefficient was used. An up-
per bound for the error of the linear approach can be esti-
mated using Eq. (D5). However, an almost-linear decrease of
the velocity along the stagnation streamline is also in accord
with global MHD simulation results by, e.g.,Wu (1992) or
Wang et al.(2004), and also agrees with the observations dis-
played in Fig.1. Note that in the hydrodynamic limit the den-
sity is constant (incompressible fluid) because of Eq. (D1).
This leads toε = 0 with the consequence of a linear veloc-
ity decrease witha = −uy10−uz01. Substituting the velocity
ansatz (D7) in the zeroth-order continuity Eq. (20) and the
Frozen-in theorem (21) gives

ρ0 = ρ0(0)

(
ux0

ux0(0)

)−
uy10+uz01+a

a

, (D8)

Bz0 = Bz0(0)

(
ux0

ux0(0)

)−
uy10+a

a

. (D9)

An expression for the expansion parametera is obtained by
substituting the results forρ0 andBz0 in the simplified mo-
mentum equation (D2):

k

ρ0(0)

(
ux0

ux0(0)

)−
uy10+uz01+a

a

γ

(D10)

+
1

2µ0

Bz0(0)

(
ux0

ux0(0)

)−
uy10+a

a

2

= kρ0(0)γ +
Bz0(0)2

2µ0
.

To solve this equation, both sides are expanded into Taylor
series around̃x = 0. Equating coefficients of the lowest non-
vanishing order yields

a = −uy10− uz01

1−
1

1+
γ
2

p0(0)
pmag(0)

 . (D11)

Herepmag(0) = B2
z0(0)/2µ0 denotes the postshock magnetic

pressure andγ = 5/3 the ratio of specific heats.
This result is used to obtain an expression for the mag-

netosheath thicknessxMS. The magnetopause is defined
by a vanishing flow velocity on the stagnation streamline
(ux(xMS) = 0). Equation (D7) thus yields

xMS =
ux0(0)

a
. (D12)

After substitution of Eq. (D11), we obtain

xMS =
−ux0(0)

uy10+ mBS uz01
, (D13)

with

mBS = 1−
1

1+
γ
2

p0(0)
pmag(0)

. (D14)

The parametermBS is a measure for the solar wind magneti-
zation. For the unmagnetized solar wind, we obtainmBS = 1.
Note that the magnetosheath expression results from ideal
MHD equations, neglecting magnetic shear (Bx01(0) = 0)
and the dynamic pressure terms, and using a series ansatz
for the velocity (u = (ux0(0) + a x̃, uy01(0), uz10(0))T ).

Higher-order contributions of the velocity to the magne-
tosheath thickness can also be obtained. For a second-order
ansatz for the velocity iñx-direction, similar calculations
yield the second-order expansion coefficient:

a2 =
2γ 2pmag(0)p0(0)

(
pmag(0) + p0(0)

)
u2

z01(
2pmag(0) + γp0(0)

)3
ux0(0)

. (D15)

In the limit p0(0) >> pmag(0) the expression is approxi-
mated by:

a2 ≈ 2γ
pmag(0)

p0(0)

u2
z01

ux0(0)
. (D16)

Consistently,a2 vanishes in the limit of hydrodynamics (i.e.,
pmag(0) = 0) and a linear velocity decrease remains.

D2 Boundary conditions

The divergence parameters are set to their bow shock values,
which are given by Eq. (C19):

uy10 = 2cBS,y1u, (D17)

uz01 = 2cBS,z1u. (D18)

The geometry parameterscBS,y andcBS,z need to be deter-
mined.

The dynamic pressure of the solar wind is completely con-
verted into gas and magnetic pressure in the magnetosheath.
However, pressure is not a conserved quantity and, thus, the
solar wind pressure differs by a factorK from the magne-
topause pressure on the stagnation streamline:

K ρSWu2
SW = ptot,MP, (D19)

where the total magnetopause pressureptot,MP is given by
Eq. (48). HereK ≈ 0.89 holds for a broad range of solar
wind conditions (Kivelson and Russell, 1995).
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The pressure balance equation above is valid at the stag-
nation point (̃x = xMS,y = 0,z = 0) only. In its vicinity, only
the velocity component normal to the local magnetopause is
important. The dynamic pressure with respect to the magne-
topause normal (Eq.41) thus reads

pdyn,ξ = ρSWu2
SW,ξ = ρ

u2
SW

n2
MP

. (D20)

This expression holds for both the y- and z-directions. Here-
with, the pressure equilibrium writes

K pdyn,ξ = ptot,MP, (D21)

where Eq. (48) was used andf = 2.44. Note that by setting
K = 1 the pressure relation becomes equivalent to the one
used byMead and Beard(1964).

Using the magnetopause parametrization (10), the Earth’s
dipole field (Eqs.6–8), the magnetopause normal vector
(Eq. 41), and the magnetospheric pressure (Eq.48) in the
xy-plane yield

ptot,MP,xy =
f 2

2µ0

M2(
(1xMP − cMP,yy2)2 + y2

)3 . (D22)

Substitutingptot,MP in Eq. (D19) by this pressure relation, the
magnetopause distance1xMP at the stagnation point (y = 0)
is obtained, given by the well-know expression (e.g.,Pu-
dovkin et al., 1998)

1xMP =

(
f 2M2

2µ0KρSWu2
SW

) 1
6

. (D23)

The geomagnetic dipole moment is given byM = 8×

1015 Tm3. The general pressure balance (D21) along with
Eqs. (D20) and (D22) is solved using Taylor expansion with
respect toy around the stagnation point up to the second
order. Equating coefficients allows for determination of the
magnetopause curvature:

cMP,y =
−3+

√
21

41xMP
≈

0.4

1xMP
. (D24)

This expression now enables us to estimate the parabolic co-
efficientcBS,y, which we need to know for an estimate of the
postshock divergence. We assume the same functional ex-
pression for the curvature of the bow shock as derived for the
magnetopause above:

cBS,y =
0.4

1xBS
=

0.4

1xMP + xMS
. (D25)

The divergence parameteruy10 is now calculated with
Eq. (D17):

uy10 = 0.8
uSW− ux0(0)

1xMP + xMS
, (D26)

where1u = uSW− ux0(0) was used, as defined above.
The velocity divergence within the xz-plane remains to be

determined. Using Eq. (48) to describe the magnetospheric
pressure within the xz-plane leads to

ptot,MP,xz=

(
2z2

− 1x2
− 6cMP,z1x z2

)2(
1+ 4c2

MP,zz
2
)(

1x2 + z2
)5 f 2M2

2µ0
, (D27)

which yields

cMP,z =
1

21xMP
. (D28)

Assuming, again, the same functional expression for the bow
shock curvature gives

cBS,z=
1

21xBS
=

1

2(1xMP + xMS)
, (D29)

and using Eq. (D18) the divergence parameteruz01 reads

uz01 =
uSW− ux0(0)

1xMP + xMS
. (D30)

Altogether, after some tedious calculations, Eqs. (D26) and
(D30) provide suitable estimates for flow divergence just af-
ter the bow shock. The numerator is determined by the veloc-
ity jump across the bow shock, and the denominator by the
bow shock’s distance to the Earth’s center. The ratio of both
divergence parameters is

uy10 =
4

5
uz01. (D31)

This equation describes the asymmetry of the divergence in
y- and z-direction in the approach discussed.

The expressions for the divergence still depend on the
magnetosheath thickness. With Eqs. (C3), (D13), (D26), and
(D30) we get

xMS =
1xMP(

4
5 + mBS

)
(gu − 1) − 1

. (D32)

This relation for the magnetosheath thickness depends on
the solar wind conditions only. The velocity jump at the
bow shockgu (Eq.C3), the magnetopause distance form the
Earth’s center1xMP (Eq.D23), and the solar wind magneti-
zationmBS (Eq.D14) are explicit functions of the solar wind
parameters. Equations (C1)–(C4) are used to refer the bow
shock conditionsρ0(0), p0(0), Bz0(0), andux0(0) back to
solar wind conditions. Hence, Eqs. (D26) and (D30) can also
be written as explicit functions of these solar wind parame-
ters.

D3 Application

The flow velocity, the density, and the magnetic field are
given by Eqs. (D7), (D8), and (D9), with the expansion co-
efficient given by Eq. (D11). The postshock boundary con-
ditions ux0(0), ρ0(0), Bz0(0), andp0(0) are related to the
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solar wind conditions via Eqs. (C1–C4). Furthermore, the di-
vergence parametersuy10 anduz01 were set constant to their
postshock boundary values given by the relations (D26) and
(D30). This requires the magnetopause distance1xMP de-
termined by Eq. (D23) and the magnetosheath thickness by
Eq. (D32).
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ture of the dayside magnetopause for low magnetic shear, J. Geo-
phys. Res., 98, 13409–13422,doi:10.1029/93JA00646, 1993.

Phan, T.-D., Paschmann, G., Baumjohann, W., Sckopke, N., and
Lühr, H.: The magnetosheath region adjacent to the dayside
magnetopause: AMPTE/IRM observations, J. Geophys. Res., 99,
121–140,doi:10.1029/93JA02444, 1994.

Petrinec, S. M.: The location of the Earth’s bow shock, Planet.
Space Sci., 50, 541–547, 2002.

Petrinec, S. M. and Russell, C. T.: Hydrodynamics and MHD equa-
tions across the bow shock and along the surfaces of planetary
obstacles, Space Sci. Rev., 79, 757–791, 1997.

Plaschke, F., Glassmeier, K.-H., Auster, H. U., Constantinescu, O.
D., Magnes, W., Angelopoulos, V., Sibeck, D. G., and McFad-
den, J. P.: Standing Alfven waves at the magnetopause, Geophys.
Res. Lett., 36, L02104,doi:10.1029/2008GL036411, 2009.

Pudovkin, M. I. and Semenov, V. S.: Peculiarities of the MHD-flow
by the magnetopause and generation of electric field in the mag-
netosphere, Ann. Geophys., 33, 423–427, 1977a.

Pudovkin, M. I. and Semenov, V. S.: Stationary frozen-in co-
ordinate system, Ann. Geophys., 33, 429–433, 1977b.

Pudovkin, M. I., Besser, B. P., and Zaitseva, S. A.: Magne-
topause stand-off distance in dependence on the magnetosheath

Ann. Geophys., 31, 419–437, 2013 www.ann-geophys.net/31/419/2013/

http://dx.doi.org/10.1007/s11214-008-9336-1
http://dx.doi.org/10.1007/s11214-008-9365-9
http://dx.doi.org/10.1029/97JA01906
http://dx.doi.org/10.1029/1999JA900032
http://dx.doi.org/10.1038/126129a0
http://dx.doi.org/10.1029/JA084iA03p00869
http://dx.doi.org/10.1016/S0032-0633(03)00111-9
http://dx.doi.org/10.1016/S0032-0633(03)00111-9
http://dx.doi.org/10.1029/94JA01020
http://dx.doi.org/10.1029/97JA00410
http://dx.doi.org/10.1007/s11214-006-9140-8
http://dx.doi.org/10.1029/2008GL033469
http://dx.doi.org/10.1007/s11214-008-9440-2
http://dx.doi.org/10.1029/93JA00646
http://dx.doi.org/10.1029/93JA02444
http://dx.doi.org/10.1029/2008GL036411


C. Nabert et al.: Method for solving the MHD equations 437

and solar wind parameters, Ann. Geophys., 16, 388–396,
doi:10.1007/s00585-998-0388-z, 1998.

Shue, J. H., Song, P., Russel, C. T., Steinberg, J. T., Chao, J.
K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J.,
Detman, T. R., and Kawano, H.: Magnetopause location under
extreme solar wind conditions, J. Geophys. Res., 103, 17691–
17700,doi:10.1029/98JA01103, 1998.

Siscoe, G. L.: Solar System Magnetohydrodynamics, in: Solar-
terrestrial physics: Principles and theoretical foundations: based
on the proceedings of the Theory Institute held at Boston Col-
lege, 9–26 August 1982, edited by: Carovillano, R. L. and
Forbes, J. M., D. Reidel Publishing Co., 11–100, 1983.

Siscoe, G. L., Crooker, N. U., Erickson, G. M., Sonnerup, B. U. O.,
Maynard, N. C., Schoendorf, J. A., Siebert, K. D.,Weimer, D. R.,
White, W. W., and Wilson, G. R.: MHD properties of magne-
tosheath flow, Planet. Space Sci., 50, 461–471, 2002.

Spreiter, J. R., Summers, A. L., and Alksne, A. Y.: Hydromagnetic
flow around the magnetosphere, Planet. Space Sci., 14, 223–253,
1966.

Toth, G.: The∇ ·B constraint in shock-capturing Magnetohydrody-
namics Codes, J. Comput. Phys., 161, 605–652, 2000.

Wang, Y. L., Raeder, J., and Russell, C. T.: Plasma depletion layer:
Magnetosheath flow structure and forces, Ann. Geophys., 22,
1001–1017,doi:10.5194/angeo-22-1001-2004, 2004.

Wu, C. C.: MHD modeling of the Earth’s magnetosphere, in: Com-
puter Simulation of Space Plasma, H. Matsumoto and T. Sato,
Terra Scientific Puplishing Company, Tokyo, 155–177, 1984.

Wu, C. C.: MHD flow past an obstacle: Large-scale flow
in the magnetosheath, Geophys. Res. Lett., 19, 87–90,
doi:10.1029/91GL03007, 1992.

Wu, C. C., Walker, R., and Dawson, J. M.: A three-dimensional
MHD model of the Earth’s magnetosphere, Geophys. Res. Lett.,
8, 523–526,doi:10.1029/GL008i005p00523, 1981.

Zhang, H., Zong, Q.-G., Sibeck, D. G., Fritz, T. A., McFadden, J. P.,
Glassmeier, K.-H., and Larson, D.: Dynamic motion of the bow
shock and the magnetopause observed by THEMIS spacecraft,
J. Geophys. Res., 114, A00C12,doi:10.1029/2008JA013488,
2009.

Zwan, B. J. and Wolf, R. A.: Depletion of solar wind plasma
near a planetary boundary, J. Geophys. Res., 81, 1636–1648,
doi:10.1029/JA081i010p01636, 1976.

www.ann-geophys.net/31/419/2013/ Ann. Geophys., 31, 419–437, 2013

http://dx.doi.org/10.1007/s00585-998-0388-z
http://dx.doi.org/10.1029/98JA01103
http://dx.doi.org/10.5194/angeo-22-1001-2004
http://dx.doi.org/10.1029/91GL03007
http://dx.doi.org/10.1029/GL008i005p00523
http://dx.doi.org/10.1029/2008JA013488
http://dx.doi.org/10.1029/JA081i010p01636

