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Abstract. We present a new analytical method to derive 1 Introduction
steady-state magnetohydrodynamic (MHD) solutions of the
magnetosheath in different levels of approximation. With . . .
this method, we calculate the magnetosheath’s density, veThe magnetosheath is the f'°V.V region of the so!ar vv_md
locity, and magnetic field distribution as well as its geome- around the Ear?h. Its chargctgrlstlcs, for example its th'(.:k_
try. Thereby, the solution depends on the geomagnetic dipolé‘ess_o_r magnetic T'eld d|_str|but|on, depen_d on the solar wind
moment and solar wind conditions only. To simplify the rep- conditions. In regions without reconnection, the earthward
resentation, we restrict our model to northward IMF with the boundary of the flow region, the magnetopaus.e, S Qef|ned as
solar wind flow along the stagnation streamline. The sheath'@ Poundary with vanishing normal flow velocity. It is char-

geometry, with its boundaries, bow shock and magnetopauSté"",(:tﬁr'zter:j 6}5 a srr:jall rig|on C\i/vthere a trtansTon from tmagkr:e—.
is determined self-consistently. Our model is stationary andosheath plasma density and temperature to magnetospheric

time relaxation has not to be considered as in global MHpconditions occurs. Ver_y often the magnetopause is_identified
simulations. Our method uses series expansion to transfé?y an abrupt change in the magnetic field, which is related

the MHD equations into a new set of ordinary differential to aregion with spatially confmed electric curreBhapman
f;md Ferrarq1930 were the first to speculate about the ex-

approximation considered including different physical pro- |stenpe of such a magnetopause cgrrent layer. Without a so-
é@r wind magnetic field, all current is located at the magne-

cesses. These equations can be solved numerically; howevt, dind o a field-t tosheath with
an analytical approach for the lowest-order approximation js.opause, corresponding to a field-ree magnetosheath with a
ump of the magnetic field at the magnetopause. Therefore,

also presented. This yields explicit expressions, not only for o .
the flow and field variations but also for the magnetosheat fhe flow W'th'.n the magngtosheath can be treated in terms of
thickness, depending on the solar wind parameters. Resul ydrodynamics (e.gSpreiter et al.1968. .

are compared to THEMIS data and offer a detailed expla- A sharp current layer, however, dqes not alyvays exist at
nation of, e.g., the pile-up process and the correspondin he_ magnetopause as demonstrated in Fighowing obser-_
plasma depletion layer, the bow shock and magnetopause g ations made on-board the THEMIS-C spacecraft. The five

ometry, the magnetosheath thickness, and the flow deceler pacecraft of the THEMIS mi;sion were launched in 2007
tion. Angelopoulos 2008 and provide a wealth of plasma and

magnetic field observations suitable for magnetosheath and
Keywords. Magnetospheric physics (Magnetopause, cuspmagnetopause studies (e.g., Glassmeier et al., 2008; Plaschke
and boundary layers; Magnetosheath) — Space plasmat al., 2009; Zhang et al., 2009). On 29 October 2009
physics (Kinetic and MHD theory) the THEMIS-C spacecraft traversed the magnetosheath al-

most along the stagnation streamline. Measurements by

the ESA plasma instrumenmMcFadden et al.2008 allow

for a clear identification of the magnetopause crossing at

08:25 UT based on abrupt changes of the plasma density and

temperature to magnetospheric conditions. Magnetic field
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420 C. Nabert et al.: Method for solving the MHD equations

__—Bow Shock  Magnetopause ~._ distribution in the magnetosheath) and/or require solutions
285— " Smooth Increase X N of more compllqated pgrtlal dlﬁgrent|al gquatlons. All these
85 a0 w E models solve differential equations derived from the MHD
- . D equations. Global MHD simulations are another investiga-
o Continuous

tion method which solves the complete set of MHD equa-
tions directly to obtain a magnetosheath solution as shown
by Wu (1984), Wu (1992, Ogino et al.(1992), Siscoe et al.
(2002 andWang et al(2004, among others.

. 40 i 1 Simple and very reduced models can provide insight

o7 30 Sharp Jumps: - . . . .

S5 5 \ - into the basic physical processes underlying a phenomenon.

zZ= 10= T\ - However, more complex models include more processes and

0— — can show how the phenomenon is embedded into a com-

10;%— : A plex physical environment. One should be aware, however,

= 135? 3 that numerical effects can strongly influence any result when
104 solving more complex differential equations. Numerical dif-

%%é%fg‘? 0600 0700 0800  Time [h] fusion near the bow shock or magnetopause is large in global

MHD simulations, as noted byu et al.(1981). Subsequent
Fig. 1. A low-shear magnetopause transition on 29 October 2009.developments on the numerical schemes try to reduce the in-
The upper panel shows; (GSM) magnetic field observations. The fluence of diffusion; however, it is still a difficult tasKdth,
second panel displays the (ion) velocity in x-direction (GSM), and 2000. Only a detailed comparison of simple and complex
the third one shows the density of the plasma ions. The last paneépproaches provides a Comp|ete understanding of the phe-
depicts the logarithmic ion temperature. nomenon considered.

Here, we present a new analytical method to solve the

MHD equations in different orders of approximation, from
observations by the FGMAQster et al. 2008, however, re-  a lowest-order approach to the complex, full MHD solution.
veal a magnetic pile-up throughout the entire magnetosheat)ur approach is able to classify the MHD models introduced
i.e., the field slowly increases. At the magnetopause, theabove with respect to different levels of approximation. We
magnetosheath field smoothly adapts to the magnetospherghow that the different results in the density distribution of
field. Thus, there is no confined magnetopause current butees(1964 andZwan and Wolf(1976 can be referred back
currents distributed over the entire magnetosheath. Simito different levels of approximation used. The method is able
lar pile-up observations under low-shear conditions wereto calculate the fluid properties, such as density, pressure,
reported by, e.g.Crooker et al. (1979, Paschmann et al. velocity, and magnetic field, as well as the magnetosheath’s
(1993, Phan et al(1994), or Farrugia et al(1997. In these = geometry bounded by the bow shock and magnetopause. In
earlier reported cases, however, the magnetic pile-up regiothe lowest-order approach, analytical solutions are obtained,
is usually less extended than in the present case. yielding explicit expressions for the density and field distri-

A first model to calculate the magnetic pile-up in the mag- bution, as well as for the magnetosheath thickness and its
netosheath was presentedlses(1964). In this model, the  dependence on the solar wind magnetization.
magnetohydrodynamic (MHD) equations are restricted to ax- The magnetosheath thickness and the related bow shock
isymmetric flows, and the velocity tangential to the stagna-distance have been a major topic of investigation for decades,
tion streamline is assumed to be a known function. Althoughas reviewed byetrine(2002. However, only empirical re-
these restrictions strongly limit the scope of the theory, basidations have been derive8greiter et a].1966 and modified
aspects of the magnetic pile-up could be investigated. A morédy Farris and Russe{lL994) to take the solar wind magnetic
detailed theory was developed Bywan and Wolf(1976, the  field into account. We will compare our analytically derived
so-called depletion layer model. They considered a flux tubeexpression with the empirical relations.
moving through the magnetosheath in the MHD approach. Finally, our method is applied to two magnetosheath tran-
Zwan and Wolf(1976 concluded that the plasma in the flux sitions observed by THEMIS: a transition with a confined
tube is squeezed out near the magnetopause, leading toraagnetopause current layer and the transition shown il Fig.
lowered density and an enhanced magnetic field strengthexhibiting a strong magnetic pile-up. These observations are
Note that this consideration leads to a somewhat differentompared to MHD magnetosheath solutions in different or-
density behavior compared k@es(1964). Another theoret-  ders of approximation.
ical approach is the magnetic string model Exkaev et al.

(2988. In this model, the MHD equations are solved in a
new coordinate system, specially designed to take advantage
of the frozen-in magnetic field. However, both latter mod-
els also rely on additional assumptions (e.g., the pressure
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Fig. 2. Overview of the interplay between different aspects of our

= Dipol

model. Each color represents a part discussed in a separate section pole

in this chapter. The top row displays the input for our method.

2 Theory Fig. 3. The incident solar wind in x-direction with its field along the

z-direction on the left side and the Earth with its dipole field on the

Physical quantities in the steady-state magnetosheath, sudight side. The origin of the Cartesian coordinate systeny(z)
as density, pressure, velocity, or magnetic field, can be deshall be at the nose of the bow shock (BS).
termined by the stationary MHD equations. They depend on
three spatial coordinates,(y, z). We choose the x-axis to be ..

. ! . tions read
along the stagnation streamline and the y- and z-axis to be
perpendicular to it. The quantities are expanded into poweny . (o) =0, (1)
series with respect tgp andz around the stagnation stream-
line: f(x,y,2) = fox)+ fix) y+ f2(x) 2+ fax) yz+....
Substituting such an ansatz for each quantity in the MHD 1
equations and equating coefficients of the tangential order® (¥ - V)u+Vp— —(V x B) x B =0, (2
A, y, z, yz, ...), a system of ordinary differential equa- Ho
tions (ODEs) depending only on the normal directiotis
obtained. It is suitable to modify our ansatz with respect toy, , (4 x B) =0, A3)
the magnetosheath geometry. Consequently, our system of
ODEs and the corresponding solutions depend on bow shock
and magnetopause geometry parameters. These parameters
are calculated by taking the geomagnetic field into accountY "B =0, (4)
Boundary conditions (inflow conditions) for our system of
ODEs are determined at the bow shock. The shocked values
are referred back analytically to the solar wind conditions p =k p”. (5)
using the Rankine—Hugoniot relations. Note that the MHD
equations require further boundary conditions (in globalHere p denotes mass density,the fluid’s bulk velocity,p
MHD simulations called outflow conditions) far away along the thermal gas pressure (assumed to be isotropidhe
the y- and z-direction. The complete set of ODEs using themagnetic fielduo = 47 x 10~"N/A? the vacuum permeabil-
series expansion ansatz to infinite order is not easy to handldty, andy the ratio of specific heats. Note that instead of the
A finite expansion order leads to a finite system of ODEs, full energy conservation law, an adiabatic law (Bpis used
which remains underdetermined. But we can use the outflowVith the proportionality constart The adiabatic law is valid
conditions to close the system. Finally, a solution of the mag-Within the magnetosheath, but not through the bow shock due
netosheath flow and field quantities as well as the bow shocko entropy changes.
and magnetopause geometry can be calculated depending onThe super-magnetosonic solar wind flow causes a bow
solar wind conditions only. The interplay of the different shock in front of the Earth. A Cartesian coordinate system

parts of the model are displayed in Fa. is used with origin at the bow shock’s nose (subsolar point).
The x-axis points towards the Earth, which is locatedgat
2.1 Deriving ODEs from MHD (see Fig3). The bow shock distance to the Earth, thakis,

will be determined later as part of the solution. We choose the
Plenty of phenomena of the plasma flow in the magne-incident solar wind to flow along the x-axis. The z-axis is nor-
tosheath are described by the ideal MHD theory (&3coe  mal to the ecliptic pointing northward, and the y-axis com-
et al, 2009. The time-independent (stationary) MHD equa- pletes the right-hand triad. For simplification, we choose the

www.ann-geophys.net/31/419/2013/ Ann. Geophys., 31, 449% 2013



422 C. Nabert et al.: Method for solving the MHD equations

solar wind magnetic field to be parallel (northward or posi-

tive) along the z-axis. Furthermore, the Earth’s magnetic field ) 5

is represented by a dipole, its moment being anti-parallel to? = P0+ P20 y" + po22", (12)
the z-axis with magnitud@/ = 8 x 10'° Tm°. The compo-

nents of the geomagnetic fieBig are given by (e.gQging,

1993 Bx = Byo1 2+ Bxz1 y? 2 + Bxoz 2°, (13)
—3zAx
BE,X - r5 Mv (6)
By = By11y z, (14)
—3yz
r
B; = Bzo0+ Bz20 y2 + Bz02 22, (15)
P e i S S ®)
Ez= 5 )
r
Ux = tx0 + tx20 % + x0z 2%, (16)

with the radial distance: =/ Ax2+y2+z2, and Ax =
xg — x defining the distance from the Earth’s center (Bg.
Note that the solar wind magnetic field and the dipole field
are parallel close to the dayside stagnation streamline, whicfY =
excludes reconnection.

The situation introduced above is highly symmetric. The
dipole field has a rotational symmetry with respect to theuz = uz01z +uz21y? 2+ uz032°. (18)
dipole moment axis, and the solar wind flow is perpendicular

to this symmetry axis, leading to symmetric properties in the'\.lOte t_??t thehexpar;fglqn only holg§ for tpe tqngen_trl_ﬁl Q|rec-
MHD flow around the dipole field. A detailed discussion of tions. Thus, the coefficients are arbitrary functions ofheir

the symmetry relations is presented in Appentix indices indicate the order imandz; e.g., “20” means second

We approximate the bow shock as well as the magne-order iny and zeroth order in and “0” means zeroth order

L . . . dz.
topause shapes by elliptic paraboloids (functional relation'” Y @n
X = x0+ay2 + bz2 with constantsro, a, andb). This cor- Due to the curved shape of the bow shock and magne-

responds to a second-order series expansion in accordan&%oause’ coefficient functions are more conveniently depend-

with the symmetry considerations. The bow shock and mag"9 ON+ instead ofv (€.g.,00(x) — po(%)), with ¥ defined

netopause parametrization are by the following relation:

uy10 Y +tty12y 22+ uyzo y°, (17)

2 . X
x= Z cBS: 17, 9 X=X+ Z (ch,, + Act—> t2, (29)
1=y, t=y.z XMS
) where Ac; = cmp,r — cBs,r denotes the difference between
X =xms+ Z CMP,1 17, (10) the magnetopause curvature and the bow shock curvature.
=yz Each value forx corresponds to an elliptic paraboloid de-

respectively, whereys denotes the magnetopause distancefined by Eq. 19). In particular,x =0 corresponds to the
from the bow shock’s nose (which is the magnetosheatHoow shock parametrization (E) andx = xus to the mag-
thickness along the stagnation streamline, x-axis). The connetopause parametrization (E0). Therefore, the mod-
stant parametersgs;, for the bow shock andyp,, for the ified ansatz describes the physical quantities on elliptic
magnetopause represent curvatures in the respective tangeparaboloids parametrized by, starting at the bow shock
tial directions = y or r = z. These geometric parameters are for X = 0 and finishing at the magnetopause at xyis (see
determined by the interaction of the magnetosheath plasméig. 4). Note that the modification of the ansatz does not af-
with the dipole field as we will show later. fect its symmetry becausedepends ony? andz?2 only and,

The flow and field variables in the magnetosheath arethus,x(y, z) is independent of the sign gfandz. This can
expanded into Taylor series with respect to the y- and z-be seen solving Eq1@) with respect toc. Thus, the ansatz
direction around the stagnation streamlizge=(z = 0). Due still satisfies the symmetry relations given in TaBle.

to the symmetry relations summarized in Tallé (Ap- Substituting our ansatz into the MHD systerh)<(5)
pendixA), several expansion terms vanish. This leads to theyields a set of ordinary differential equations (ODEs) by
following ansatz expanded to the third order: equating the coefficients of zeroth order,

p = po+ p20 ¥° + poz 22, (11)  (pouxo)’ + po (uy10+uz01) =0, (20)

Ann. Geophys., 31, 419437, 2013 www.ann-geophys.net/31/419/2013/
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z

Bow Shock  0<X<xwms

Fig. 4. Three-dimensional sketch of the elliptic paraboloids de-
scribed by Eq.19) for differentx. The bow shock on the left side

Magnetopause
;:0 X=Xms

for x = 0 and the magnetopause on the right sidecfer xys.

(Bzoux0)" + Bzouy10="0,

pouxoltyg + po+ BzoByo— Bxo1Bzo0 =0,

po=kp{,

and first order,

B)/(Ol + 2B702+ By11 — 25ZB£0 =0,

POuxou;lo + ,00”32/10 + 2(p20+ Bz0Bz20) — By11B20
—2¢y (po + Bz0BJg) = 0.

pOuXOM/ZOJ_ + ,00”301 +2po2+ B)%o]_ - BxOlBéo
—252176 = O,

-1
p2o=ky p20p§

-1
po2=ky po2p

By11uxo + 2 (Bzo2ux0 + Bzouxo2)
—Byo1 (uy10+ 2u701) + 2¢; Bzouy10 = 0,

www.ann-geophys.net/31/419/2013/

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

423

with & = cgs, + Ac, 2= Derivatives with respect té are

. . MS . . .
marked with a prime. To simplify the reading of the equa-
tions, we sefug = 1. Equations obtained from equating co-
efficients of the second order can be found in Apperilix
We expressed the series expansion of the MHD quantities
in new coordinates, y, z. However, as the MHD equations
are explicitly expressed in Cartesian coordinates, the chain
rule was applied to compute the derivatives with respect to
X, €.9.,0, p = p’ 9«x. The factordx can be calculated from
Eqg. 19):

A
ai=1- 3 =L21 0. (30)

=57, XMS

Here t* denotes any fourth-order product efandz. The
system of equations presented contains a conservation equa-
tion (Eqg.29), which has been satisfied by boundary condi-
tions only, as it does not contain any derivatives. We denote
Egs. Q0)—(23) as the zeroth-order system, EqRO)(28) as

the first-order system, and Eq20f—(28) and B81)—(B7) as

the second-order system.

Our ansatz transforms the stationary MHD equations,
which are partial differential equations (PDES), into a set of
ordinary differential equations2(0)—(28) and B81)-(B7). Al-
though the number of equations increases, the numerical ef-
fort to solve ordinary differential equations (ODES) is sig-
nificantly lower. Hence, for a sufficient order the solution
might be obtained with less effort. The second-order system
presented here contains 16 ODEs, depending on 22 coeffi-
cient functions and 5 geometric parameters. Thus, 6 addi-
tional equations are required to calculate all coefficient func-
tions, and 5 additional conditions are needed to determine the
geometric parameters.

2.2 Solar wind at the bow shock boundary

First-order derivatives of the coefficient functions with re-
spect tox in the above ODEs require knowledge of corre-
sponding boundary values at one paigt= 0, i.e., po(Xo),
020(%0), po2(X0),. ... We choose to set these values@t 0
(bow shock) using shocked solar wind parameters. These
are related to the solar wind via Rankine—Hugoniot relations
(e.g.,Petrinec and Russell997):

[pus] =0, (31)
[B:] =0, (32)
|:pu§+p+zlfo:|=0, (33)
[pugu, o Bz} —o, (34)

Ann. Geophys., 31, 449% 2013
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The higher-order coefficient functions in the series expan-
sion dominate far away from the stagnation streamline (e.g.,
[ue Br —u: B] =0, (%)  p(F,y — 00,2 — 00) & p20(X) ¥ + po2(¥) z2). We suggest

setting the highest-order coefficients to their bow shock

boundary values. This condition is similar to common out-

B2 B flow boundary condition in simulations (e.ggino, 1993.

|:<£ u’+ <L> P+ _f> ug — B, uz} =0. (36) Different, specific choices of explicit functional relations to

Ho close the system of ODEs lead basically to the models by

Lees(1964 andZwan and Wolf(1976), as discussed below.
The squared brackefs..] indicate that the quantity therein (1969 1979

is conserved across the shock. The subsérigenotes the 2 4 Conditions from the geomagnetic field as an

normal component andtangential components with respect obstacle

to the bow shock. Solving the Rankine—Hugoniot relations

with respect to the bow shock geometry (Byjand the cho-  Despite the boundary conditions introduced above, the sys-
sen solar wind conditions, the shocked values are obtainedem of ODEs still contains five undetermined geometric pa-
Power series expansion in y- and z-direction of this solutionrameters: the bow shock curvatuegs y andegs 7 the mag-
and equating coefficients with our ansatz determine the coefnetopause curvaturegipy andewvp,z, and the magnetosheath
ficient functions of the ansatz &t= 0. Analytical solutions  thicknessxys. To determine these, inner boundary condi-
for the zeroth-order coefficients can be found in, &5gscoe  tions are necessary.

(1983. A brief summary of his work and a detailed analyti-  First, the flow should be tangential with respect to the
cal approach for the the higher-order coefficient values up tanagnetopause, not allowing flow to penetrate into the mag-

the second order are given in Appendix netosphere (e.gBiernat et al. 1999. This stems from the
As a result, the velocity coefficients are given by definition of the magnetopause as earthward flow bound-
o ‘ ary. The flow direction at the magnetopause can be cal-
uri j(8 =0) = fui, j) 2™ clgg cps  Au, (37)  culated using magnetopause surface coordinates. The nor-

_ . _ mal magnetopause vector is derived from the magnetopause
whereAu = usw—uxo(x =0), [ € {x.y.z}, i and; are la-  parametrization10):
beled as in Eqs.16)—(18), and f, (i, j) is defined by (sign-

function 1
) Evp = s (1, —2cmpy y, —2cmp22) " (41)
.. +1, i+je{l
fuo,n:{_l BT (38) |
’ J e wherenyp = \/1+ > iy Actp,, 12 normalizes the vector.
The magnetic field coefficients are given by: A vanishing normal flow velocity through the magnetopause
yieldsévp - u(x = xms, y, z) = 0. This expression holds for
By j(i =0) = f3(i, )) oitj CiBS vcéSzAB’ (39) the y- and z-direction, so using the velocity ansa@<(18)
R yields
in which
L itje(L2) uxo(X = xms) =0, (42)
. ,  i+jefl,
=T e (40)
whereAB = Bsw— Byo(x =0),[ € {x, y,z}, andi and; are Py = ux20(X = xms) (43)

as in Egs. 13—(15). The boundary values for the density
and pressure coefficientsg, po2, p20, and pg2 are approxi-
mately zero.

2uy10(X = xms)’

ux02(X = xms)
CMPz = s M (44)

2.3 Outflow boundary conditions  2u701(X = xms)

Since the MHD system1j—(5) contains partial derivatives However, at the magnetopause surface the flow velocity van-
with respect to all three space dimensions, boundary condiishes along the magnetic field direction (uz01(x = xms) =
tions are needed for three linearly independent planes. In th@) as pointed out byiscoe et al(2002. Thus, in the pres-
previous section, boundary conditions were defined for theence of magnetic fields Eg44) is no longer valid. Instead,
bow shock plane; these are commonly called inflow condi-we use the assumption that magnetic fields of different ori-
tions in global MHD simulations. Here the remaining set of gin cannot mix (Frozen-in theorem). This yields the vanish-
outflow boundary conditions are defined, used to close theng of any normal magnetic field component at the magne-
system of ODEs. topause boundargmp - B(X = xms, y,z) = 0 (e.g.,Biernat

Ann. Geophys., 31, 419437, 2013 www.ann-geophys.net/31/419/2013/
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et al, 1999. This requires the stagnation streamline. If the solar wind is along the stag-
~ nation streamline (i.e., the x-direction) with a perpendicular,
Py = Bxo1(x = xms) (45)  northward IMF, we can directly apply the ODEs presented
" 2Bz0(X = xMs) here. The system of ODEs related to the zeroth order is given

. . i by Egs. 20)—(23). The second-order approach is given by
S.econdily, a restricting condition arises from the Earth’'s Egs. 20)—(28) and B1)—(B7) as presented in Se@.1and
dipole field itself. The total magnetic field of our MHD SO~ snhandixB. For solar wind conditions violating the required
lution (B) should by a superposition of the magnetic fields symmetry conditions, ansatzX)—(18) has to be replaced by
generated by magnetosheath curredig)(and the Earth's o, appiirary series expansion. However, the derivation of the
magnetic field Bg). Since the Earth’s dipole field is curl- - e500nding ODEs is analogous. Further, higher-order ap-
frge _(39(_3 Eq§—8), the curl of the total field yields the current proximations require higher-order series expansions. We set
distribution in the magnetosheaffys only: the coefficient functions of the highest-order constant at their
postshock values to close the system of equations (i.e., for
the second-order approach presentgdo, uy12, 1203, uz21,

The magnetic field generated by these currents can be cax3® andB,z are constant). The boundary conditions for the
. . ) s .. ODEs (p(x =0), p(x =0), u(x = 0), andB(x = 0)) are de-

culated with Biot-Savart's law. The superposition of this ed at the b hock b Vina the Rankine—H iot

magnetosheath-current-field and the Earth’s magnetic fieldermlne atthe bow shock by solving the Rankine-Hugonio

necessarily has to match the total field from our MHD so- "€/ations for the solar wind conditionsdw. psw. #sw. and
Bsyw) with respect to the shock geometry. However, we can

lution. If this is not satisfied, geometric parameters and the | th tical h ted in Aopeadi
magnetopause distance to the Earth’s center have to be mof:>0 Use the a_maytlca approach presented in Appeudix
ified accordingly. yielding equations for zeroth-order coefficients (EG4—

y C4) and for the higher-order coefficients (EqL9andC27).

A more simple approach to take the geomagnetic field into d-ordert f densit q ishin thi
account uses a pressure condition at the magnetopause Whia_f}i]e second-orderterms ot densily and pressure vanish in this

. L L approach.
is valid in the hydrodynamic limitMead and Bear1964) . . .
pointed out that the tangential components of the total mag- The Rankine-Hugoniot relations as well as the ODEs re-

netic field determine the (calculated) total pressure behindiY!"® knowledge of the g?f’.met”c _parametem‘g, CMP.y
the magnetopauseo w: cMP,z CBS,y» aNdcps 2. As an initial choice, we can use the an-

alytical expressions13), (D24), (D28), (D25), and D29)
(E « (B B ))2 with the magnetopause distance (BE@3). They are related
MP ETR/)) (47)  to solar wind conditions via EqsC()—(C4). The solution
2110 of our system has to satisfy the inner boundary conditions
given by Eqgs. 42), (43), (45), and @8). The latter condi-
tion holds for the y- and z-direction. The geometric param-
eters need to be determined self-consistently; i.e., the initial
(f Be x Evp)? choice has to be modified until the conditions are satisfied.
BT (48) Note that higher-order expansions of the bow shock and mag-
o netopause curvatures contain more parameters and lead to
with f = 2.44. This expression is valid near the stagna-mMore inner boundary conditions. The zeroth- and first-order

tion point and determines the magnetopause distance to th&yStems are not able to determine the geometric parameters

Earth’s center. Variations in y- and z-direction give additional Self-consistently. _ .

conditions for determination of two curvature parameters, ~ Each system of equations together with the boundary and
Hence, the conditions of vanishing normal flow and field closure conditions represents a dlstl_nct approach to obtain

component and the condition for the Earth’s magnetic field® Magnetosheath solution, characterized by the order of the

determine the geometric parametexgs, cmpy, cMp.z CBS.y system and corresponding level of approximation.

andcgs 2. The differential equations together with the closure

conditions for the highest-order coefficients and the inner

boundary conditions determine a unique solution for given3 Relations to other models

solar wind parameters.

VX B =V x Bj= uojus. (46)

Ptot, MP =

With respect tdMlead and Bear1964), a good first approx-
imation for the right-hand side yields:

Ptot, MP =

Our zeroth-order equations provide a model similatées
2.5 Application of the method (1969. Extending Lees’s first considerations, we present
an analytical approach for the solution of the equations,
To calculate magnetosheath solutions with our method, firsby which the physical quantities (density, pressure, mag-
an appropriate order of approximation has to be chosen. Fonetic field, and velocity) and the magnetosheath geometry
example, the second-order model gives a good approximafhow shock, magnetopause, and magnetosheath thickness)
tion of the dayside magnetosheath up to sev&abeside are obtained as a function of solar wind conditions only. The
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complete derivation is presented in Appen@ixin the fol-
lowing section, we focus on an important result of this calcu-
lation: the analytical expression for the magnetosheath thick-
ness. Furthermore, we show that the modelt é&gs(1964),
Zwan and Wolf(1976, andErkaev et al(1996 are included

5
4
3
in our new method for different orders of approximation. 2

AXws [RE]

3.1 Analytical expression for the magnetosheath

thickness T

As presented in Appendi®, an analytical expression of the 1 2 3 4 5 6 7 8
magnetosheath thickness can be found in the zeroth-order

approximation that is solely dependent on solar wind con- Psw  [me/cm?]

ditions. This expression is given by

Axmp
(£+mes) (e —D—1

XMs = (49)

where g, = usw/uxo(0), the subsolar velocity jump at the
bow shock, which is introduced in Appendx(Eq. C3) as

a function of solar wind conditions. Furthermore, the mag- 1t
netopause distance to the Earth’s cemtefp is given as a
function of solar wind conditions in EqD3), andmps is a

AXws [RE]

measure for the solar wind magnetization given by 0 2 4 6 8
1 Bsw [nT]
mes=1— —— . (50)
1+ %20 Fig. 5. Magnetosheath thickness of our model by E&p)((blue

2 pmag(0) A . .
mas curves) in comparison to the model Barris and Russel|1994)

Here pmag(0) = 3220(0)/2M0 is the postshock magnetic pres- (red curves)._ The upper plot shows_{he density dependence of
sure andy = 5/3 is the ratio of specific heats. The magne- "¢ S'fgth;h'iﬁ”elss fogw = 4|00f|f<ms ; Tsw=2x 1(]35}; ‘an
tosheath thickness is proportional to the magnetopause dis:SW = nt. The jower mee offers the magnetic field depen-

, ) dence forugy = 400km s, Tgw = 2 x 10°K, and pgy = 8.4 x
tance to the Earth’s center. A typical value for the mag- 1072 kgm =3 =5mpcm=3
netopause distance is about Rf) therewith, the magne- ’
tosheath thickness results in3Rg in the hydrodynamic

limit (mgs = 1) for high Mach numbersg(, = 4). The mag- g5 ing's density. The relations are similar; however, an
qetosheath thickness increases with sola_r wind magneligieset of about 20 % is observed. In the lower panel, both re-
field. 1t shogld t_)e noted thaF the sheath thickness may be[ations’ dependence on solar wind magnetic field are shown.
come negatwg in £q4Q). '_I'h|s oceurs for very low Mach Eq. @9) yields a steeper increase in the sheath’s thickness.
.””mber c.ondmons, for which condltl_o_ns our a_pproxmatmn However, for tyical solar wind conditions both relations pro-
is not valid. A very .often.used ef“p'”ca' relatlo'n based on vide a similar magnetosheath thickness, in accord with ob-
hydrodynamic considerationSgreiter et al.196 is servations. Thus, Eg49) is a suitable analytical expression

1 for the magnetosheath thickness as a function of solar wind
xvs = 1.1— Axpp. (51) conditions.

u
This equation offers the same proportionality between mag-3.2 The Lees approach
netosheath thickness and magnetopause dist&aces and
Russell(1994 modified this relation and obtained Lees(1964) presented a first model considering the effects
of a solar wind magnetic field on the magnetosheath on the
stagnation streamline. Starting from ideal MHD and con-
sidering the same solar wind conditions, he derives equa-
tions similar to our zeroth-order differential equatio26)¢
where M; sw is the solar wind magnetosonic Mach number (23). Note that these equations do not depend on the bow
(see alsoBennett et a].1997). Figure5 shows a comparison shock and magnetopause geometry. Neglecting the magnetic
between this relation and Ed@9). The upper panel shows the shear & Byp1Bz0 = 0) and assuming an axisymmetric flow
magnetosheath thickness as a function of the unmagnetize@.e., uy10 = uz01) in our zeroth-order system leads to Lees’s

(y —D)M2 oy +2
xvs =11 4 LSW

. A , 52
G+DMegy—1 2
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equations. As noted, a relation to close the system is reThe MHD equations can be simplified assuming the total
quired. He suggested determining the divergence functiorpressure given in the entire magnetosheath, which leads to
uy10 as part of the solution along the magnetopause away set of two-dimensional PDEs that describes thin magnetic
from the stagnation streamline without going into details. flux tubes. Similar to our method, a parametrized bow shock
Lees’s model is a zeroth-order approach to the flow problemjs used. The bow shock and the magnetopause curvatures
we extended his considerations by calculating analytical soare calculated self-consistently using magnetopause bound-
lutions presented in AppendX. As shown in our approach, ary conditions. These conditions are a vanishing normal ve-
higher-order differential equations allow for a self-consistentlocity and magnetic field component, and they assume that
determination of the divergence functions influencing the so-the pressure satisfies the Newtonian approximati@tr{nec

lution. and Russe]l1997). The magnetic string approach was used
to investigate the magnetic barrier region, which is equivalent
3.3 The depletion model to the depletion layer region. It was applied to the magne-

tosheath region of Eartir@rrugia et a].1997), Venus Bier-
The depletion model bywan and Wolf (1976 investi-  nat et al, 1999, and Jupiter Erkaev et al. 1996. Further
gates, in more detail, density and magnetic field variationsconsiderations with respect to anisotropic pressure are pre-
on the stagnation streamline and also in its vicinity. Startingsented byErkaev et al(2000).
from the time-dependent ideal MHD equations, they derive
a system of two-dimensional partial differential equations
describing the properties of a magnetic flux tube moving4 Application to THEMIS observations
through the magnetosheath. Approximations such as WBK
and Taylor expansion restrict the calculations to the vicinity We apply our method to two different scenarios: The hydro-
of the stagnation streamline. Although the modeldwan  dynamic magnetosheath transition —i.e., the solar wind mag-
and Wolf (1976 depends on several limiting assumptions, netic field is zero — and the magnetic pile-up transition as
the picture of the pile-up process was deepened. They corshown in Fig.1, where the solar wind is significantly magne-
clude that during northward IMF plasma is squeezed out oftized.
flux tubes close to the magnetopause, inducing a density de-
crease corresponding to a magnetic field increase in order t¢.1 Hydrodynamic transition
maintain pressure balance. The region of density decrease,
called the depletion region, is narrower than predicted byWithout a solar wind magnetic field, we expect a field-free
Lees’s simple model. In the model Avan and Wolf(1976), magnetosheath and results comparable to the hydrodynamic
initial postshock divergence values also need to be deterealculations by, e.g.Spreiter et al(1966. We choose the
mined, similarly to our model. However, they obtain these solar wind velocity to beirsy = 310 kms2, the solar wind
values from numerical hydrodynamic calculations afipre-  density psw = 1.34 x 10-2%kgm3, the solar wind mag-
iter et al.(1966). To close their system, the functional relation netic field Bsw = 0.02nT, and the solar wind temperature
of the pressure is assumed to match the hydrodynamic simufsw = 1.75x 10°K. These conditions agree with actual solar
lations, too. If we applied the same pressure condition to ouwind conditions during THEMIS C’s crossing of the mag-
model, we would achieve closure of our first-order systemnetosheath region on 24 August 2008. The probe traversed
(20)—(28). This suggests a correspondence of our first-ordethe magnetosheath about5®g in y-direction and about
system with the model adwan and Wolf(1976 despite the 2Rg in z-direction away from the stagnation streamline
approaches in solving the MHD system of equations being(Rg = 6371km). Solar wind measurements were obtained by
rather different (we solve only ODESs). Note that the second-THEMIS B, which was closely following THEMIS C.
order velocity coefficient functions of our model do not con-  We apply our method to this event using the analytical
tribute to the first-order equations and thus do not need to bézeroth-order) approach presented in Apperidixthe full

determined. zeroth-order approach with the equations solved numerically,
and the second-order approach. The results of the calcula-
3.4 The magnetic string approach tions and the THEMIS C observations on 24 August 2008

are displayed in Fig6. The numerical zeroth-order ap-
The magnetic string approach Bykaev et al(1988 trans-  proach yields the smaller magnetosheath thickness. The an-
fers the stationary ideal MHD equations into a different setalytical and second-order approach (solutions on the stagna-
of partial differential equations (PDESs), using so-called ma-tion streamline) yield comparable thicknesses. The observed
terial coordinates (e.gErkaev et al.2003. These coordi- magnetosheath thickness, however, is abodtiR larger.
nates are similar to frozen-in coordinates, with directionsThis difference is explained by the distance of the probe’s or-
along the flow velocity, the magnetic field, and the electric bit to the stagnation streamline, reflected in better agreement
field (Pudovkin and Semeno¥977h. These coordinates are of the solution of the second-order system on the probe’s or-
preferably used in ideal MHD due to the frozen-in theorem. bit (black) to observations as shown in Fg.
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Fig. 6. Magnetosheath solutions on the stagnation streamline for the U ‘ ‘ ‘ ‘ ]
analytical (green), the numerical zeroth order (red), and the second 0 1 2 3 4 5
order approach (blue). The second-order solution on the probe’s or- x [Re]

bit (close to but not exactly on the stagnation streamline) is shown in

black, the corresponding THEMIS data of 24 August 2008 in grey. Fig. 7. Magnetosheath streamlines with the velocity obtained by
solving the second-order approach. The parabolic bow shock (red)
and the magnetopause (green) are delineated.

The analytical magnetic field diverges at the magne-
topause, due to the linear approximation of the velocity’s x-
component. A slight density increase is apparent in all so-
lutions but the analytical one. This results from the conver-
sion of dynamic pressure, neglected only in the analytical
calculations, into gas pressure. However, the measured den-
sity increases at a higher rate than that given by the models,
which is attributed to a density increase in the solar wind
density of about 15% during the observation time. All cal-
culated velocities decrease nearly linearly. On the stagnation
streamline the velocity’s x-component vanishes, but close to
it a finite value remains, vanishing after the magnetopause.
This behavior is in accord with the measured data.

The second-order approach reveals the velocity distribu-
tion within the three-dimensional magnetosheath geometry.
The corresponding streamlines in the xy-plane are displayed 0l
in Fig. 7. The density distribution in the xy-plane is shown 0
in Fig. 8, which shows a decreasing density away from the % [Re]
stagnation streamline. Although these density variations ap-
pear to be small, corresponding pressure gradients affect theig. 8. Magnetosheath density distribution obtained by solving the
solution significantly. second-order approach. The parabolic bow shock (red) and the mag-

The results presented are in agreement with the THEMIShetopause (green) are delineated.
observations as well as numerical calculations Syre-
iter et al. (1966 over a large part of the dayside magne-
tosheath. Our three-dimensional solution of the second-ordefre compared to results of our method using different orders
approach with self-consistently computed bow shock andof approximation. The data shown are just a part of the com-
magnetopause geometries yields results that best match tdete magnetosheath observation. About 1.5h before the bow

(o2}

y [Re]

observations of all models considered. shock crossing shown in the figure, two further bow shock
crossings were registered by the THEMIS C spacecraft. Dur-
4.2 Northward IMF transition ing the whole time interval, the solar wind velocity was about

325kmst, the temperature.2 x 10°K, and the solar wind
Without magnetic reconnection, the IMF piles up in the mag- magnetic field between®nT and 55nT. Note that the mag-
netosheath against the magnetopause. THEMIS C observaetic field is purely northward with minor deviations of less
tions on 29 October 2009 (Fid), showing such a pile-up, than 45 (in the last part of the transition even less thaf)10
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Fig. 9. The solar wind density measured by THEMIS B and the
density measured by THEMIS C crossing the bow shock several
times. The absolute values of the solar wind density do not fit well.
This might be explained by a non-vanishing spacecraft potential;
however, the relative variations can be considered. Note that the
density jump measured by THEMIS C at about 05:30 UT is related
to a mode change of the ESA plasma instrument of the spacecraft
(McFadden et al2008.

and the satellite’s trajectory is located close to the stagna-
tion streamline (distance less thaRg) as required for our
method in the approximations presented here. However, the
solar wind density varied significantly during the observation Fig. 10. Calculations of the bow shock distance from the Earth’s
time, which violates the assumed stationarity of our modelcenter and the magnetopause thickness as a function of the solar
with the consequences discussed below. Time-shifted solawind density, using the second-order approach. Two different solar
wind (ion) density measurements (observed by THEMIS B)Wwind magnetizations, 4.5nT and 5.5 nT, were considered.

and corresponding THEMIS C density measurements, both
obtained by the on-board ESA plasma instruméhtKFad-

Psw[mp/cm?]

den et al, 2008, are shown in Fig9. Immediately after the _ 50
first two bow shock crossings at 04:30 UT and 04:50 UT, the = 40
solar wind density increases, causing an inward motion of & 38
bow shock and magnetopause. Consequently, the THEMIS C ‘
spacecraft reenters the solar wind at about 05:00 UT. T
The bow shock distance to the Earth’s center and that of £
the magnetosheath thickness of the second-order solution are £
shown in Fig.10. Both quantities decrease with increasing <
density. This is also consistent with the results of our an- —
alytical approach (Eq#49 and D23). Additionally, Fig. 10 E
shows that the effect of the magnetic field variability during E

the event discussed is negligible when compared to changes
in density.

As can be seen in Fid, a solar wind density decrease
preceded the bow shock crossing of THEMIS C at 06:05 UT.Fig. 11. Magnetosheath solutions on the stagnation streamline for
This causes an outward motion of the bow shock. Thereforethe analytical (green), the numerical zeroth-order (red), and the
the velocity behind the bow shock shown in Figis about ~ Second-order approach (blue).

20 km st lower than expected by the Rankine—Hugoniot re-

lations (Egs.31-36), which are only valid for a stationary

situation. Consequently, the bow shock and magnetopauseetopause surface can flow in two dimensions at the surface,
position and the magnetosheath thickness varied during thevhereas the magnetic field can only escape in one direction,
first part of the observation. For this reason, the length scalebecause field lines are already one-dimensional. Therefore,
of the observations might not be comparable to our calculamore plasma escapes than magnetic field in front of the mag-
tions. The results of our analytical approach, our zeroth-ordenetopause, leading to a pile-up of the magnetic field. Note
as well as our second-order approach are presented ihFig. thatthe pile-up region exists in the hydrodynamic case above,

In all cases, a magnetic pile-up is predicted. As explainedtoo; however, the pile-up region is located closely to the mag-
by Siscoe et ali2002, the magnetosheath plasma at the mag-netopause.

Xwms [RE]
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Again, the magnetic field of the analytical approach di- Table Al. Symmetries of the situation considered. Axisymme-
verges at the magnetopause due to the linear velocity apwy of a quantity f(x, y,z) to the xy-plane meang (x, y, —z) =
proximation made. Furthermore, the numerical zeroth-order/ (x. y, ), point symmetry meang(x, y, —z) = — f (x, y, 2), anal-
approach shows the most-extended sheath thickness. This b@gous with respect to the xz-plane.
havior is associated with a slow density decrease, which con-
trasts with the density drop at the magnetopause in the other ~ Phys. quantity = Symmetry toy = Symmetry tarz

calculations. The solution of the zeroth-order system is com- By axisym. pointsym.
parable to that of theees(1964 model, which exhibits the By pointsym. pointsym.
same slow density decrease, whereas the second-order solu- B; axisym. axisym.
tion is similar to the solution bywan and Wolf(1976. The Uux axisym. axisym.
pressure gradients in the second-order approach enhance the uy pointsym. axisym.
plasma flow away from the stagnation streamline close to the Uz axisym. pointsym.
magnetopause. Consequently, the depletion layer thickness, P axisym. axisym.
which is given by the density decrease at the magnetopause, P axisym. axisym.
differs.

It can be shown that the often-used empirical magne-

topause model byshue et al.(1998 and the bow shock _ )

model byBennett et al(1997 provide approximately the Ve apply our method to THEMIS observations. First, a
same curvatures as our theoretical approach. Furthermordydrodynamic transition is examined featuring the typical
the second-order approach offers a well-known behaviorChapman-Ferraro picture of a jump in the magnetic field at
The divergence of the velocity along the magnetic field dropsth® magnetopause. The second transition investigated shows
at the magnetopause. This is related to the fact that the stagi" €xtended magnetic pile-up region resulting from a sig-
nation point is extended to a line along the magnetic field athificantly magnetized solar wind. Model results in terms of

(19773. field behavior, and the magnetosheath geometry validate our

approach.

We are currently exploring the possibility to generalize
our approach to situations at other planetary bodies such as
comets Glassmeier et gl2007) or asteroids Auster et al.

A method to calculate the properties of the magnetosheatl?om-
as part of the solar wind—geomagnetic field interaction by

solving the stationary MHD equations for different levels
of approximation is presented. The solutions are calculate
without considering time relaxation into a stationary state
as required, for instance, by MHD simulations. A power

series ansatz is introduced which transfers the stationantq oy mmetry relations of the MHD variables with respect
MHD equations into a set of (_)rdlngry d|ffere_nt|al equations ., iha xy- and xz-coordinate planes are summarized in Ta-
(ODEs). The number of equations is determined by the orde[:)'e Al

o_f apprpximation cpnsidered in the ansatz. In the process, for In the following, we sketch the derivation of these rela-
S|mpI|C|ty3 we restricted the apProaCh to nprthward IMF and tions. In Sect2.1, we assume the solar wind to flow along the
a solar wind along the stagnation streamline. The postshock ;s with its magnetic field along the z-axis and the Earth’s

values, used as boundary conditions for the ODES, are regji, e field given by Eqs 6)—(8). Both the undisturbed solar

ferred back to solar wind conditions via Rankine-Hugoniot inq anq the dipole field satisfy the symmetry relations. The
relations. Furthermore, typical outflow boundary condltlonstime evolution of the flow is governed by the time-dependent
are chosen to determine a unique solution. The Earth's dipolg, ., equations, which read (e.g\u, 1992

field yields additional restrictions for the solution determin-

ing the magnetosheath’s geometry. 6+ V-(pu)=0, (A1)
A full analytical solution of our zeroth-order approach

is presented, which results in an analytical expression of

the magnetosheath thickness (B§). The models byees

(1964, Zwan and Wolf(1976, and Erkaev et al.(1988  ,; 4 ) (u-V)u+Vp — 1 (Vx B)x B =0, (A2)

are classified by different orders of approximation with re- Mo

spect to our method, revealing similarities and differences

and providing a more detailed insight into magnetosheath

phenomena. B—V x (uxB)=0, (A3)

5 Conclusions

dAppendix A

'Symmetry relations
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(Bxo1tz01 — Bzoux20 — Bz02ux0)’ — Bzo2ity10 (BS)
Ac
V-B =0, (A4) — Bzouy12 + By11uz01+ )V; (Bzouxo)' =0,
v pu? y 1 BB 0 (A5 0 (txoux20)’ + P20x0Uyg + 200Ux20Uy10 + Poy (B6)
AN N ah y—1 " "o (wx B)x B ) =0. (%) + (Bz0Bz20)" — Bx21Bz0 — Bx01Bz20
- ACy
Here p denotes mass density, the fluid’s bulk velocity,p —2Cy pouty10iyg — %onleo =0,

the thermal gas pressure assumed to be isotrdpilce mag-

netic field, uo = 47 x 10~7 N/A? the vacuum permeability,

ande = pu?/2+ B?/(210) + p/(y — 1) the energy density 0 (ux021x0)’ + po2itxottg + 2p0ux021:01 + Po2 (B7)
with y as the ratio of specific heats. Time derivatives are pre- + (Bz0Bz02)' — 3Bx03B20 — Bx01Bz02

sented in dot notation. The time-dependent MHD equations Acy

conserve the symmetry relations in time. For example, ap—2¢z (pou201u§(0 - BzoBéoz) — — Bx01Bz0=0.

plying the relations, the divergence term of the first MHD MS

Eqg. (Al) is axisymmetric with respect to the xy-plane as a

function of z and axisymmetric with respect to the xz-plane Appendix C

as a function ofy. Thus, Eqg. Al) requires the density to

be axisymmetric in time. Because the initial situation (solar Solving the Rankine—Hugoniot relations at the bow shock
wind and Earth’s magnetic field) satisfies the symmetry rela- .

tions and these relations are conserved in time, the solutio] "€ MHD moment values of the shocked solar wind plasma

in its final stationary state needs to satisfy the symmetries@ the bow shock’s position aft & 0) are p(x =0, y, 2),
too. p(x=0,y,2), u(x=0,y,z), and B(x =0, y,z). Via the

Rankine—Hugoniot relations3))—(36), they are related to
the solar wind conditions introduced in Se2tl: psw, psw,

Appendix B usw = (usw, 0,0)7, and Bsw = (0,0, Bsw)” . On the stag-
nation streamline, i.ey =z =0, only zeroth-order coeffi-
Second-order equations cients of our ansatz1()—(18) remain and only a solar wind

) ] flow normal to the bow shock surface has to be considered.
The gnsat;](l)—(lB) is expanded up to t.he third ordgr. Sub- This simple scenario results in the following solution of the
stituting this ansatz in the MHD equations, we derived the Rankine—Hugoniot relations:

zeroth- and first-order equations as presented in Sett.
Analogously, the second-order equations are obtained bysw =g, po(X = 0), (C1)
equating coefficients of the second order:

(poux20+ p20ux0)” + po (3iy3o + uz21) (B1)
+020 (3uy10+ z01) — 2¢y (pouy10)’ psw=gp pox=0). (€2
- % (pouxo) =0, )
usw = gu uxo(¥ =0), (C3)
(poux02+ po2uxo)’ + po (y12 + 3uz03) (B2)
+p02 (ity10+ 3uz01) — 227 (pouz00)’ Bow= g5 Bao(i = 0). (Ca)

ACZ ,
—%(pouxo) =0, Explicit analytical expressions fof,, g, gu, andgp de-
pending on the sonic and Alnic Mach number of the solar

/ wind can be found in, e.gSiscog(1983. In the limit of high

(BxOlMle— Bylluxo) + 2(BZOZMy10+ BzO“ylZ) (B3) Mach numbersgp =1/4, &p — 0,84 =4, andgp = 1/4.

—2By11u701— 267 (Bzouy10) =0, To determine the boundary valuestat O for the higher-
order coefficient functions, we need to consider the situa-
. ;o tion beside the stagnation streamline. This requires taking
(Boitxa0+ Bza0x0)' = 3(Bz20tty10 -+ Bzoityso) (B4) the bow shock geometry into account, and, consequently, we
+2¢y ( Bzouylo)/ 4 ﬂ (Byouxo) =0, introduce curvili_nea_r bow shock coordinates. Using the bow

XMS shock parametrization (E), the normal vectofgs and two
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linearly independent tangential vectarss 1 and7gs 2 with
respect to the shock are determined:

1
Egs= — (L —2cBsyy, —2cBs22) (C5)
nyz
1 T
TBS1= (2cBsyy, 1,0)", (C6)
y
- 1 T
Tgs2= — (2cBszz, 0, 1), (C7)

nz

Whel’e nyz = \/1+ Zt=}’,z4cés’t tz, ny =4/ 1“[‘ 4C§S,yy2’

andn; = /l—i-4c§S Zz2 are normalization functions. It is

convenient to orthonormalize the tangential veétes » with
respect to the other coordinate vect9gs andrgs 1 to sim-
plify the following calculations:

7gs2— (TBs1- TBS,2) TBS,1

TBS2= | (C8)

|TBs,2— (TBS1  TBS,2) TBS,1||

The three coordinate vectoégs, Tgs 1, andzgs 2 form an
orthonormal system at the bow shock’s surface.

First, we consider the shocked velocity at the bow shock

plane, which can be expressed by

u(x=0,y,z) =ugpséps+ Z UrBS,i TBS,- (C9)

=12

The coefficient functionsg gs, u s 1, andu, gs 2 need to
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BS

[
»

X

Fig. C1. Projection of the solar wind velocity vector with respect to
curvilinear bow shock coordinates.

Note that variations in tangential direction (of the compo-
nents with respect to the shock’s surface), given by deriva-
tives with respect tax, require the opposite. As a conse-
guence of the negligible normal magnetic field component,
the Rankine—Hugoniot relations require continuity of the tan-
gential velocity components of the solar wind across the bow
shock Siscoe 1983:

2cgs v
YyUswy
UrBS1=USW ' TBS,1 = ——, (C14)
ny
2cBs zUsSWZ
UrBS2 =USW TBS2= —— . (C15)
Ny nyz

be determined. Consider the xz-plane; parametrization of theRelation €3) holds for a normal solar wind velocity with

bow shock curve by introducing the angl¢;) (see FigC1)

a tangential magnetic field. Because the magnetic field is

allows for the representation of the solar wind velocity’s and nearly tangential close to the subsolar point, we extent the

magnetic field’s component normal to the bow shock as

ug sw = CoSa(z)) usw ~ usw, (C10)
Bg sw = sin(a(z)) Bsw ~ a(z) Bsw, (C11)
and the tangential components as

ur sw = sin(a(z)) usw =~ a(z) usw, (C12)
B sw = coSa(z)) Bsw~ Bsw. (C13)

Here, Taylor expansion up to the first orderdrwas used.
Apparently, the solar wind’s normal velocity and tangential

scope of this relation to the vicinity of the stagnation stream-
line using the normal component of the velocities:

usw-éps=g, u(Xx=0,y,2)-&gs. (C1e)

With the solar wind flowing along the x-axis, EqEJ), (C5),

and C9) yield

uxo(X =0)
nyz )

Substituting the coefficient€@4), (C15), and C17) and the
coordinate vectorégs, tgs,1, andrgs 2in Eqg. (C9), the ini-
tial velocity writes

Ug BS = (C17)

- Au n T
u(x=0,y,z)=— (Mswﬁ -1, 2cBsyy, ZCBs,zZ) ,

}’lyz
(C18)

magnetic field remain approximately constant close to the
stagnation streamline (small), whereas the normal mag- whereAu = usw — uxo(X = 0). Expanding this relation into
netic field component and the tangential velocity vanish.a Taylor series with respect oandz around the stagnation
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streamline and equating coefficients with the ansa&—  Appendix D
(18) yields values for the coefficient functions that can be
expressed as Zeroth-order approach

i j(X =0) = fuli, N2 cpg s Au, (C19)  To obtain a first approach to the physics and the correspond-
ing solutions of the MHD equations, the zeroth-order ap-
proach with its Eqs.20)—(23) is solved analytically. The co-
efficient functions of the first order are set to constant post-
shock valuesByg1 = Bxo1(¥ = 0), uy10 = uy10(x =0), and

wherel € {x, v, z}, the indices and j label the coefficient
functions as in the ansatt§)—(18), and f,, (i, j) denotes the
sign-function:

Fuli ) = { +1, l +j e {1} . (C20)  Uz01= uz01(x = 0). The Iatter two expressions are callled d|
-1 i+je{23} vergence parameters describing the amount of flow diversion
The magnetic field can be treated in a similar manner. Its the respective tangential direction. The system is solved
postshock values are expressed as follows: for arbitrary solar wind conditions.
B(=0,y,7) = B: ps&ps+ Z B.Bs,; TBS.i- (C21) D1 General solutions
i=1.2

For simplification, we neglect magnetic shear, meaning mag-
netic fields in z-direction only, and consequenflyp1(X =
0) = 0. The shock front decelerates and compresses the flow;
—2Bswces,z (C22) dynamic pressure is converted into gas and magnetic pres-
Hyz ' sure. Most often, in the magnetosheath, the dynamic pressure
term in the momentum equation of zeroth ord2®)(can be
neglected (the minor effects of the dynamic pressure are dis-
cussed in Sect.1). This yields

The normal component of the magnetic field is always con-
tinuous through the bow shock, which yields

B: ps=

Similar to the velocity calculation, we extend the validity of
relation (C4) to the vicinity of the stagnation streamline:

BSW TBS,i = 4B B(-x~ = 09 Y, Z) : TBS,iv (C23)

1
&Y o
wherei € {1, 2}. With the solar wind magnetic field along the k (0g) + %BZO Bz =0. (b1)
z-axis, Eqs.C4), (C6), (C8), and C21) give one i ) )
for which the zeroth-order adiabatic law (E2R) has been

B:ps1=0, (C24)  used. Integration gives
B2 Bz0(0)?
14 20 _ y 20
B.n(O k (p§) + === =kpo(0)” + ————, (D2)
B:Bs2= M. (C25) 20 210
] z o with the integration constant on the right side to be deter-
Finally, the postshock magnetic field is mined at the bow shock. The zeroth-order continuity 26) (
N AB and the zeroth-order Frozen-in theore2d)(can be written
B(x=0,y,2)= el (205511, —4cpsycszyz,  (C26)  as
yz
B10(0) +4Bswcls 2 + 4Bsweds 27\ | o = —(uy10+uz01) +e, (D3)
AB ’
where AB = Bsw — Bzo(X = 0). The field boundary values u}y= —uy10—34, (D4)
on the stagnation streamline result from the derivatives of
Egs. (13—(15) at (f = 0, y = 0,z = 0) and of Eq. C26): wheree = —uygdxpo/po andé = uxgdx B,o/ Bzo. The north-
o ‘ ward magnetic field and the density are positive functions.
By j(0) = fg(i, j)2't ClBS,ijBS,zAB’ (C27)  Furthermoreg and$ are always positive because the mag-
in which netic field increases in the magnetosheath, corresponding to
o a decreasing density as given by EQ1J. The positivee
Fali j) = {—i—l, i+jefl, 2} (c2g)  ands, and Egs.D3) and O4) also provide lower and upper
' -1 i+je{3 ° bounds for the velocity decrease:

wherel € {x, y, z}, and the indice$ and j label the coeffi-
cient functions as in the ansatiz3j—(15).

Note that Egs.€19 and C27) satisfy the Frozen-in con- Expanding the velocity it around the bow shock reads
servation Eq. Z9) as expected. Under the assumptions ap- ~
p_I|ed in these calculathns, the boundary values for the den-ux0 — 1y0(0) + Z“i 3 (D6)
sity and pressure coefficientsg, po2, p20, andpg2 are zero. =

_(uy10+ uz01) < 14;(0 < —Uy10- (D5)
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Note that the argument of the coefficient functions is with re- After substitution of Eq.[D11), we obtain
spect tax, souxo(0) = uxo(x¥ = 0) and is not explicitly noted

further. First, we take only the first order ininto account: xMS = —ux0(0) ’ (D13)

_ Uy10 + MBS Uz01
uxo = uxo(0) +ax. (D7) _

with
Herea = a1 for the expansion coefficient was used. An up-
; ; 1

per bound for the error of the linear approach can be estiz;pg—1- = (D14)
mated using Eq.¥5). However, an almost-linear decrease of 1+ %p”#(g%)

the velocity along the stagnation streamline is also in accord

with global MHD simulation results by, e.dWu (1992 or The parameteigs is a measure for the solar wind magneti-
Wang et al(2004), and also agrees with the observations dis-zation. For the unmagnetized solar wind, we obtaiz = 1.
played in Fig1. Note that in the hydrodynamic limit the den- Note that the magnetosheath expression results from ideal

sity is constant (incompressible fluid) because of ExfL)(
This leads tas = 0 with the consequence of a linear veloc-
ity decrease witla = —uy10—uz01. Substituting the velocity
ansatz D7) in the zeroth-order continuity Eq2Q) and the
Frozen-in theorem(l) gives

o _ “le*“zOl*"
X a
o = po(0) (uxo(O) : (D8)
y _ uy10+a
x0 “
Bz0 = B20(0) (m (D9)

An expression for the expansion parameteés obtained by
substituting the results fgsp and Bz in the simplified mo-
mentum equation2):

Uy10tiUz01+a Y
Ux0 “

ux0(0)

k | £o(0) ( (D10)

”y10+” 2

Uxo

Mx0(0)>

B20(0)2
— kpo(0)Y + &
210

1
+—

2,U«O BZO(O) <

MHD equations, neglecting magnetic she@d;(0) = 0)

and the dynamic pressure terms, and using a series ansatz

for the velocity ¢ = (uxo(0) + a X, uyo1(0), uz10(0))7).
Higher-order contributions of the velocity to the magne-

tosheath thickness can also be obtained. For a second-order

ansatz for the velocity irk-direction, similar calculations

yield the second-order expansion coefficient:

_ 2V2Pmag(0) po(0) (Pmag(o) + po(O)) ”501

(D15)
(2Pmag0) +1p0(0)° uxo(0)

az

In the limit po(0) >> pmag(0) the expression is approxi-
mated by:

J/Pmag(o) ugm
po(0) uxo(0)’

Consistentlya, vanishes in the limit of hydrodynamics (i.e.,
Pmag(0) = 0) and a linear velocity decrease remains.

(D16)

D2 Boundary conditions

The divergence parameters are set to their bow shock values,
which are given by Eq.G19):

uy10 = 2cgs,yAu, (D17)

To solve this equation, both sides are expanded into Taylor

series around = 0. Equating coefficients of the lowest non-
vanishing order yields

1

v o)

(D11)
1+ 2 Pmag(o)

a = —Uy10— Uz01 1-

Herepmag(0) = BZZO(O) /210 denotes the postshock magnetic

pressure angt = 5/3 the ratio of specific heats.

This result is used to obtain an expression for the mag

netosheath thicknessys. The magnetopause is defined

by a vanishing flow velocity on the stagnation streamline

(ux(xms) = 0). Equation D7) thus yields

_ ux0(0)

XMS (D12)

Ann. Geophys., 31, 419437, 2013

uz01 = 2cBs,zAu. (D18)

The geometry parametergsy andcgs; need to be deter-
mined.

The dynamic pressure of the solar wind is completely con-
verted into gas and magnetic pressure in the magnetosheath.
However, pressure is not a conserved quantity and, thus, the
solar wind pressure differs by a fact& from the magne-

topause pressure on the stagnation streamline:

PSWUZW = Prot,MP; (D19)

where the total magnetopause presspggmp iS given by
Eq. @8). Here K ~ 0.89 holds for a broad range of solar
wind conditions Kivelson and RussellL995.
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The pressure balance equation above is valid at the stagvhereAu = usw — uxo(0) was used, as defined above.
nation point § = xms, y = 0,z = 0) only. In its vicinity, only The velocity divergence within the xz-plane remains to be
the velocity component normal to the local magnetopause igletermined. Using Eq48) to describe the magnetospheric
important. The dynamic pressure with respect to the magnepressure within the xz-plane leads to

topause normal (Eetl) thus reads 2
(222 — Ax2— 6empz Ax zz) f2 M?

) “%W Ptot,MPxz = > 5 5 N5 2 s (D27)
Ddyng = PSWUsy e = 0 2 (D20) (1+ Acyp 2 ) (Ax tz ) o
MP

) ) o which yields
This expression holds for both the y- and z-directions. Here- 1
with, the pressure equilibrium writes empz= > ) (D28)

Axmp

K payng = protmp, (b21) Assuming, again, the same functional expression for the bow
where Eq. 48) was used ang’ — 2.44. Note that by setting ShOCk curvature gives
K =1 the pressure relation becomes equivalent to the one 1 1 (D29)
used byMead and Bear@.964. BSZT SAxms | 2(Axwp+xms)

Using the magnetopause parametrizatib®),(the Earth’s

dipole field (Egs.6-8), the magnetopause normal vector and using Eq.18) the divergence parametejoy reads

(Eq. 41), and the magnetospheric pressure (E8). in the usw — uxo(0)
xy-plane yield L= s (D30)
f2 M2 Altogether, after some tedious calculations, E@2) and
Ptot, MPxy = Z_MO 22 L 3 (D22) (D30) provide suitable estimates for flow divergence just af-
((Axwp — cmpy y?)? + y2) ter the bow shock. The numerator is determined by the veloc-

ity jump across the bow shock, and the denominator by the
bow shock’s distance to the Earth’s center. The ratio of both
divergence parameters is

Substitutingptot mp in EQ. (D19) by this pressure relation, the
magnetopause distanderyp at the stagnation poiny(= 0)
is obtained, given by the well-know expression (eRu-

dovkin et al, 1998 4
Uy10 = 3 Uz01. (D31)
1
T f2M? ° D23 This equation describes the asymmetry of the divergence in
Mp=|-———] . (D23) NS .
210K pswitgyy y- and z-direction in the approach discussed.

The expressions for the divergence still depend on the

The geomagnetic dipole moment is given B =8x  magnetosheath thickness. With Eqg3), (D13), (D26), and
10 Tm3. The general pressure balan@2() along with  (D30) we get

Eqgs. 020) and 022) is solved using Taylor expansion with
respect toy around the stagnation point up to the second yy,g = )
order. Equating coefficients allows for determination of the (g +mBg) (g.—1D -1
magnetopause curvature:

Axmp

(D32)

This relation for the magnetosheath thickness depends on

-3+4/21 _ 04 the solar wind conditions only. The velocity jump at the
(D24) bow shockg, (Eq.C3), the magnetopause distance form the

) ) ) _ Earth’s centernxmp (Eq. D23), and the solar wind magneti-
This expression now enables us to estimate the parabolic cozationmgs (Eq.D14) are explicit functions of the solar wind
efficientcgs,y, which we need to know for an estimate of the parameters. Equation€{)—(C4) are used to refer the bow
postshock divergence. We assume the same functional e%hock conditionso(0), po(0), Byo(0), anduxo(0) back to
pression for the curvature of the bow shock as derived for thesg|ar wind conditions. Hence, Eq®26) and 030) can also

CMPy = ~ :
y 4 Axpp Axmp

magnetopause above: be written as explicit functions of these solar wind parame-
ters.
0.4 0.4
Y . .
Axgs  Axup+xms D3 Application

The divergence parametery;p is now calculated with

Eq. O17):

The flow velocity, the density, and the magnetic field are
given by Egs. D7), (D8), and P9), with the expansion co-
usw — uxo(0) efficient given by Eqg.[P11). The postshock boundary con-

uy10=0.8 (D26) ditions uxo(0), po(0), Bz0(0), and po(0) are related to the

Axmp + xvs
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solar wind conditions via EqsC{—C4). Furthermore, the di- J. Geophys. Res., 99, 17681-1768®j:10.1029/94JA01020
vergence parametei§o anduzo1 were set constant to their 1994. _
postshock boundary values given by the relatidd®g) and ~ Farrugia, C. J., Erkaev, N. V., Biernat, H. K., Lawrence, G. R., and

(D30). This requires the magnetopause distanaogp de- Elphic, R. C.: Plasma depletion layer model for low Alfven Mach
termined bv Ea.D23) and the maanetosheath thickness b number: Comparison with ISEE observations, J. Geophys. Res.,
Eq. 032) y Ea.023 9 Y 102, 11315-11324j0i:10.1029/97JA00410.997.
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