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Abstract
In this paper, we introduce the notion of cyclic R-contraction mapping and then study
the existence of fixed points for such mappings in the framework of metric spaces.
Examples and application are presented to support the main result. Our result unify,
complement, and generalize various comparable results in the existing literature.
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1 Introduction and preliminaries
Let (X, d) be any metric space, Y a subset of X, and f : X → Y . A point x in X that remains
invariant under f is called a fixed point of f . The set of all fixed points of f is denoted
by F(f ). A sequence {xn} in X defined by xn+ = f (xn) = f n(x), n = , , , . . . , is called a
sequence of successive approximations of f starting from x ∈ X. If it converges to a unique
fixed point of f , then f is called a Picard operator.

Fixed point theory plays a vital role in the study of existence of solutions of nonlin-
ear problems arising in physical, biological, and social sciences. Some fixed point results
simply ensure the existence of a solution but provide no information about the unique-
ness and determination of the solution. The distinguishing feature of Banach-Caccioppoli
contraction principle is that it addresses three most important aspects known as exis-
tence, uniqueness, and approximation or construction of a solution of linear and non-
linear problems. The simplicity and usefulness of this principle has motivated many
researchers to extend it further, and hence there are a number of generalizations and
modifications of the principle. One way to extend the Banach theorem is to weaken the
contractive condition by employing the concept of comparison functions. For a detailed
survey of such extensions obtained in this direction, we refer to [, ] and references
therein.

We denote by Pcl(X), N, N, R, and R
+ the collection of nonempty closed subsets of a

metric space (X, d), the set of positive integers, the set of nonnegative integers, the set of
real numbers, and the set of positive real numbers, respectively.

© 2016 Abbas et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206022344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13663-016-0552-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-016-0552-1&domain=pdf
mailto:yubram@yahoo.com


Abbas et al. Fixed Point Theory and Applications  (2016) 2016:61 Page 2 of 9

Let (X, d) be a metric space. A self mapping f on X is called a ϕ-contraction if

d(fx, fy) ≤ ϕ
(
d(x, y)

)

for all x, y in X, where ϕ is a suitable function on [,∞), called a comparison function.

Definition . A map ϕ : [,∞) → [,∞) is said to be a Browder function if ϕ is right
continuous and monotone increasing.

Browder functions are examples of comparison functions. A self-mapping f on X is called
a Browder contraction if

d(fx, fy) ≤ ϕ
(
d(x, y)

)

for all x, y ∈ X, where ϕ is a Browder function. Every Browder contraction on a complete
metric space is a Picard operator []. Every Banach-contraction is a Browder contraction
if ϕ(t) = γ t for γ ∈ [, ).

Boyd and Wong [] introduced a class of comparison functions as follows.

Definition . A function ϕ : [,∞) → [,∞) is called a Boyd-Wong function if ϕ is
upper semicontinuous from the right and ϕ(t) < t for all t > .

A self-mapping f on X is called a Boyd-Wong contraction if for all x, y ∈ X,

d(fx, fy) ≤ ϕ
(
d(x, y)

)
,

where ϕ is a Boyd-Wong function. Every Boyd-Wong contraction on a complete metric
space is a Picard operator []. Note that Browder functions are Boyd-Wong functions.

Matkowski [] initiated another class of comparison functions as follows.

Definition . A function φ : [,∞) → [,∞) is called a Matkowski function if φ is in-
creasing and limn→∞ φn(t) =  for all t ≥ .

Every Matkowski function is a Boyd-Wond function ([]).
Geraghty [] defined the following class of comparison functions.
Let � be the class of all mappings β : [,∞) → [, ) satisfying the condition: β(tn) → 

implies tn → . Elements of � are called Geraghty functions.
Note that � �= φ. For example, if a mapping β : [,∞) → [, ) is defined by β(x) = 

+x ,
x ∈ [,∞), then β ∈ �.

Let (X, d) be a complete metric space, and f : X → X. If there exists a Geraghty function
β such that for any x, y ∈ X, we have

d(fx, fy) ≤ β
(
d(x, y)

)
d(x, y),

then f is a Picard operator.
A self-mapping f on X is called a Meir-Keeler mapping if for any ε > , there exists δε > 

such that for all x, y ∈ X with ε ≤ d(x, y) < ε + δ, we have d(fx, fy) < ε.
Lim [] defined the notion of L- function to characterize the Meir-Keeler mappings.



Abbas et al. Fixed Point Theory and Applications  (2016) 2016:61 Page 3 of 9

Definition . A mapping η : [,∞) → [,∞) is called a Lim function or L-function if
η() = , η(t) >  for all t >  and for any ε > , there exists δε >  such that η(t) ≤ ε for all
t ∈ [ε, ε + δ].

A self-map f on a metric space (X, d) is a Meir-Keeler mapping iff there exists an L-
function η such that d(fx, fy) < η(d(x, y)) for all x, y ∈ X with d(x, y) > .

The notion of simulation functions was introduced by Khojasteh et al. [] and then mod-
ified in [] and [].

Definition . A mapping ζ : [,∞) × [,∞) → R is called a simulation function if the
following conditions hold:

(ζ) ζ (t, s) < s – t for all t, s > ;
(ζ) if {tn} and {sn} are sequences in (,∞) such that limn→∞ tn = limn→∞ sn ∈ (,∞) and

tn < sn for all n ∈N then lim supn→∞ ζ (tn, sn) < .

Note that Boyd-Wong functions are simulation functions.
Consistent with Rodan-Lopez-de-Hierro and Shahzad [], the following definitions,

examples, and results will be needed in the sequel.

Definition . Let A ⊂ R be a nonempty set. A function � : A × A → R is called an R-
function if:

(�) for any sequence {an} ⊂ (,∞) ∩ A with �(an+, an) >  ∀n ∈ N, we have limn→∞ an =
;

(�) for any sequences {an}, {bn} in (,∞) ∩ A satisfying �(an, bn) >  ∀n ∈N, limn→∞ an =
limn→∞ bn = L ≥  and L < an imply that L = .

Example . ([], Example ) Define � : [,∞) × [,∞) →R by

�(t, s) =

⎧
⎨

⎩


 s – t if t < s,

 if t ≥ s.

Then � is an R-function that is not a simulation function.

Rodan-Lopez-de-Hierro and Shahzad [] also considered the following condition:

(�) If {an} and {bn} are sequences in (,∞) ∩ A such that limn→∞ bn =  and �(an, bn) > 
∀n ∈N, then limn→∞ an = .

Example . ([], Lemma ) Every simulation function is an R-function that satisfies
(�).

Example . ([]) If φ : [,∞) → [, ) is a Geraghty function, then �φ : [,∞) ×
[,∞) →R defined by

�φ(t, s) = φ(s)s – t

is an R-function satisfying (�).
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Example . ([]) If φ : [,∞) → [,∞) is an L-function, then �φ : [,∞) × [,∞) →R

defined by �φ(t, s) = φ(s) – t is an R-function satisfying (�).

Definition . Let (X, d) be a metric space. A self-map f of X is called an R-contraction if
there exists � ∈ RA such that ran(d) ⊆ A and �(d(fx, fy), d(x, y)) >  for all x, y ∈ X with x �= y,
where RA is the family of all functions � : A × A → R satisfying the conditions (�) and
(�), and ran(d) is the range of the metric d defined by ran(d) = {d(x, y) : x, y ∈ X} ⊆ [,∞).

Definition . Let X be a nonempty set, p a positive integer, and f a self-map on X. If
{Bi : i = , , . . . , p} is a finite family of nonempty subsets of X such that f (B) ⊂ B, f (B) ⊂
B, . . . , f (Bp–) ⊂ Bp, f (Bp) ⊂ B. Then the set

⋃p
i= Bi is called a cyclic representation of X

with respect to f .

Kirk et al. [] introduced the notion of cyclic ϕ-contraction mappings as follows.

Definition . Let (X, d) be a metric space, and {Bi : i = , , . . . , p} be a finite family of
nonempty closed subsets of X. An operator f :

⋃p
i= Bi → ⋃p

i= Bi is said to be a cyclic ϕ-
contraction if

⋃p
i= Bi is a cyclic representation of X with respect to f and

d(fx, fy) ≤ ϕ
(
d(x, y)

)

for all x ∈ Bi, y ∈ Bi+,  ≤ i ≤ p, where Bp+ = B, and ϕ is a Boyd-Wong function.

Kirk et al. [] established the following fixed point results for Geraghty, Boyd-Wong,
and Caristi cyclic ϕ-contractions.

Theorem . Let (X, d) be a complete metric space, and p a natural number. Suppose that
a self-mapping f is a cyclic ϕ-contraction on

⋃p
i= Bi. Then there exists a unique element

z ∈ ⋂p
i= Bi such that f (z) = z.

Later, Pacurar and Rus [] introduced the notion of weakly cyclic ϕ-contraction. Kara-
pinar [] improved the results in [] dropping the requirement of continuity. For more
results in this direction, we refer to [–] and references therein.

We now introduce the following notion of cyclic R-contraction mapping.

Definition . Let (X, d) be a metric space, and B, B, . . . , Bp ∈ Pcl(X). A mapping f :
⋃p

i= Bi → ⋃p
i= Bi is said to be a cyclic R-contraction if

(i) there exists � ∈ RA with ran(d) ⊆ A;
(ii)

⋃p
i= Bi is a cyclic representation of X with respect to f , and

(iii) �(d(fx, fy), d(x, y)) >  for all x ∈ Bi, y ∈ Bi+,  ≤ i ≤ p, where Bp+ = B.

Meir-Keeler, Geraghty, and simulation contractions are typical examples of R-contrac-
tions that satisfy (�). Consequently, the cyclic-R-contractions are a generalization of
cyclic Meir-Keeler, cyclic Geraghty, cyclic manageable, and cyclic simulative contractions.

In this paper, we prove a fixed point result for cyclic R-contractions. Our result extends
and unifies fixed point results involving Boyd-Wong cyclic contractions, Meir-keeler cyclic
contractions, and Geraghty cyclic contraction mappings. Applying our result, we obtain the
existence of solutions of nonlinear Volterra integro differential equations.
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2 Main results
We start with the following result.

Theorem . Let (X, d) be a complete metric space, and B, B, . . . , Bp ∈ Pcl(X). Suppose
that a mapping f is a cyclic R-contraction on

⋃p
i= Bi. Then there exists a unique element

z ∈ ⋂p
i= Bi such that f (z) = z.

Proof Let x be a given point in
⋃p

i= Bi. Then there exists i in {, , . . . , p} such that
x ∈ Bi . Since f (Bi ) ⊂ Bi+, we have that f (x) ∈ Bi+. Thus, there exists x ∈ Bi+ with
f (x) = x. Similarly, there exists x ∈ Bi+ with f (x) = x. Continuing in this way, we
can construct a sequence in

⋃p
i= Bi by xn = f (xn–) = f n(x) ∈ Bi+n for all n ∈ N. Now, if

xn+ = xn for some n ∈ N, then the result follows immediately. Suppose that xn+ �= xn for
all n ∈N. Note that

�
(
d(fxn–, fxn), d(xn–, xn)

)
= �

(
d(xn, xn+), d(xn–, xn)

)
>  for all n ∈N.

From property (�) of an R-function we have

lim
n→∞ d(xn, xn+) = . (.)

We now show that {xn} is a Cauchy sequence. If not, then there exists L >  such that for
any k ∈ N, we can construct two subsequences {xmk } and {xnk } of {xn} with nk > mk ≥ k
satisfying

d(xmk , xnk ) > L.

Without any loss of generality, we assume that nk is the smallest integer greater than mk

for which the last inequality holds. We can choose jk ∈ {, , . . . , p} such that nk > mk >
mk – jk with nk belonging to the residue class of mk – jk + , and hence xmk –jk and xnk lie in
different adjacently labeled sets Bi and Bi+ for some i ∈ {, , . . . , p}. Thus,

d(xmk –jk , xnk ) > L and d(xmk –jk , xnk –) ≤ L for all k ∈N. (.)

By (.) we have

L < d(xmk–jk , xnk )

< d(xmk–jk , xnk –) + d(xnk –, xnk –) + d(xnk –, xnk )

≤ L + d(xnk –, xnk –) + d(xnk –, xnk ). (.)

Taking the limit as k → ∞ on both sides of this inequality, we have

lim
k→∞

d(xmk–jk , xnk ) = L. (.)

Similarly,

L < d(xmk –jk , xnk )

< d(xmk –jk , xmk –jk –) + d(xmk –jk –, xnk –) + d(xnk –, xnk ). (.)
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Also,

d(xmk –jk –, xnk –) ≤ d(xmk –jk –, xmk –jk ) + d(xmk –jk , xnk ) + d(xnk , xnk –). (.)

Taking the limit as k → ∞ on both sides of (.) and (.), we obtain that

lim
k→∞

d(xmk–jk –, xnk –) = L. (.)

Now, since

d(xmk –jk , xnk ) > L for all k ∈N,

lim
k→∞

d(xmk–jk –, xnk –) = lim
k→∞

d(xmk –jk , xnk ) = L, and

�
(
d(fxmk –jk –, fxnk –), d(xmk –jk –, xnk –)

)
= �

(
d(xmk –jk , xnk ), d(xmk –jk –, xnk –)

)
> ,

then by property (�) of an R-function, we conclude that  = L > , a contradiction. Hence,
{xn} is a Cauchy sequence in X. Since (X, d) is complete, there exists γ ∈ X such that
limn→∞ xn = γ . Since

⋃p
i= Bi is a cyclic representation of X with respect to f , there ex-

ist subsequences {xnp}, {xnp+}, {xnp+}, . . . , {xnp+p–}, {xnp+p–}, and {xnp+p} of {xn} such that
{xnp} ⊂ B, {xnp+} ⊂ B, {xnp+} ⊂ B, . . . , {xnp+p–} ⊂ Bp–, {xnp+p–} ⊂ Bp, and {xnp+p} ⊂
Bp+ = B. Since each Bi, i ∈ {, , , . . . , p}, is a closed subset of X and limn→∞ xn = γ , we
deduce that γ ∈ ⋂p

i= Bi.
Note that for each n ∈N, there exists in ∈ {, , . . . , p} such that xn– ∈ Bin– , xn ∈ Bin , and

γ ∈ Bin . Thus,

�
(
d(f γ , fxn–), d(γ , xn–)

)
= �

(
d(f γ , xn), d(γ , xn–)

)
>  for all n ∈N.

Using property (�) of an R-function, we obtain that limn→∞ d(f γ , xn) = d(f γ ,γ ) = .
Therefore, γ is a fixed point of f in

⋂p
i= Bi.

Uniqueness: Suppose that there exists another fixed point x∗ of f in
⋂p

i= Bi, that is,
d(x∗,γ ) >  and d(f γ , fx∗) = d(γ , x∗). Since f is a cyclic R-contraction, we have

�
(
d
(
f γ , fx∗), d

(
γ , x∗)) > .

By property (�) of an R-function we have  < d(x∗,γ ) = limn→∞ d(x∗,γ ) = , a contradic-
tion. This establishes the result. �

Example . Let X = R be endowed with the Euclidean metric d(x, y) = |x – y| for all
x, y ∈ X. Suppose that B = [–, ], B = [, ], and A = ran(d) ⊂ [,∞). Define f :

⋃
i= Bi →

⋃
i= Bi and � : A × A →R as

f (x) = –
x


and �(t, s) =

⎧
⎨

⎩


 s – t if t < s,

 if t ≥ s.

Note that (X, d) is a complete space and B and B are closed in X. If x ∈ B, that is, – ≤
x ≤ , then  ≤ – x

 ≤ 
 implies that f (x) ∈ B. Similarly, if x ∈ B, that is,  ≤ x ≤ , then

– 
 ≤ – x

 ≤  implies that f (x) ∈ B.
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Further, �(d(fx, fy), d(x, y)) = 
 d(x, y) – d(fx, fy) = 

 |x – y| >  for all x ∈ B, y ∈ B. Thus,
all conditions of Theorem . are satisfied. Moreover, z =  ∈ ⋂

i= Bi is a fixed point of f .

Example . Let X = R and d(x, y) = |x – y| for all x, y ∈ X. Suppose that B = { 
n }n∈N∪{},

B = {– 
n– }n∈N∪{}, and A = ran(d) ⊂ [,∞). Define f :

⋃
i= Bi → ⋃

i= Bi and � : A × A →
R as

f (x) =

⎧
⎨

⎩
– x

 if x ∈ B,

– x
 if x ∈ B,

and �(t, s) =

⎧
⎨

⎩


 s – t if t < s,

 if t ≥ s.

It is clear that B and B are closed subsets of a complete metric space (X, d) such that
f (B) ⊂ B and f (B) ⊂ B. Note that

�
(
d(fx, fy), d(x, y)

)
=




d(x, y) – d(fx, fy)

=


|x – y| –

∣
∣∣∣

x


–
y


∣
∣∣∣

>


|x – y| –

∣
∣∣
∣

x


–
x


–

y


∣
∣∣
∣

=



|x – y| > 

for all x ∈ B, y ∈ B. Hence, all conditions of Theorem . are satisfied, and z =  ∈ ⋂
i= Bi

is a fixed point of f .

Remark . In this example, the mapping is a cyclic R-contraction that is neither a Meir-
Keeler cyclic contraction nor a simulative cyclic contraction and hence neither a Boyd-
Wong nor a Geraghty cyclic contraction. Indeed, if we take t = s = , then (ζ) fails.

Corollary . Let (X, d) be a complete metric space, and B, B, . . . , Bp ∈ Pcl(X). Suppose
that a mapping f is a manageable cyclic contraction, or a simulative cyclic contraction, or
a Geraghty cyclic contraction, or a Boyd-Wong cyclic contraction, or a Meir-Keeler cyclic
contraction on

⋃p
i= Bi. Then there exists a unique element z ∈ ⋂p

i= Bi such that f (z) = z.

3 Application to nonlinear Volterra integral equations
Motivated by the work in [], we obtain the existence and uniqueness of solutions for
nonlinear Volterra integral differential equations.

Consider the following problem:

u(x, y) = f (x, y) +
∫ x


g
(
x, y, ξ , u(ξ , y)

)
dξ +

∫ x



∫ y


h
(
x, y,σ , τ , u(σ , τ )

)
dτ dσ , (.)

where f ∈ C(R+ × R
+,R), g ∈ C(E × R

+,R), h ∈ C(E × R
+,R), E = {f (x, y, s) : s ≤ x ∈

[,∞), y ∈ [,∞)}, and E = {f (x, y, s, t) : s ≤ x ∈ [,∞), t ≤ y ∈ [,∞)}.
Let X be the space of functions z ∈ C(R+ × R

+,R) satisfying |z(x, t)| = O(eλ(x+y)), where
λ is a positive constant, that is, |z(x, y)| ≤ Meλ(x+y) for some constant M > .

Define the norm on X by ‖z‖X = sup(x,y)∈(R+×R+){|z(x, y)|e–λ(x+y)}.
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Note that (X,‖ · ‖X) is a Banach space. Define the mapping T : X → X by

T
(
u(x, y)

)
= f (x, y) +

∫ x


g
(
x, y, ξ , u(ξ , y)

)
dξ +

∫ x



∫ y


h
(
x, y,σ , τ , u(σ , τ )

)
dτ dσ

for every u ∈ X. It is easy to see that u∗ ∈ X is a solution of problem (.) if T(u∗) = u∗.

Theorem . Suppose that problem (.) satisfies the following conditions:
(I)

∣
∣g(x, y, ξ , u) – g(x, y, ξ , ū)

∣
∣ ≤ h(x, y, ξ )|u – ū|

and

∣∣h(x, y,σ , τ , u) – h(x, y,σ , τ , ū)
∣∣ ≤ h(x, y,σ , τ )|u – ū|,

where h ∈ C(E, [,∞)) and h ∈ C(E, [,∞));
(II) There exist α, β in X and α, β in R with α ≤ α(x, t) ≤ β(x, t) ≤ β(x, t) such that

α(x, t) ≤ f (x, t) +
∫ x


g
(
t, s, ξ ,β(ξ , s)

)
dξ +

∫ x



∫ y


h
(
t, s,σ , τ ,β(σ , τ )

)
dτ dσ

and

β(x, t) ≥ f (x, t) +
∫ x


g
(
t, s, ξ ,α(ξ , s)

)
dξ +

∫ x



∫ y


h
(
t, s,σ , τ ,α(σ , τ )

)
dτ dσ

for all x, t ∈ [,∞);
(III)

∫ x


h(x, y, ξ )eλ(x+y) dξ +

∫ x



∫ y


h(x, y,σ , τ )eλ(σ+τ ) dτ dσ ≤ δeλ(x+y)

and
∣
∣∣
∣f (x, t) +

∫ x


g(x, y, ξ , ) dξ +

∫ x



∫ y


h(x, y,σ , τ , ) dτ dσ

∣
∣∣
∣ ≤ δeλ(x+y)

for some nonnegative constants δ, δ < ;
(IV) There exist α, β in X such that α(t) ≤ β(t), T(α(x, t)) ≤ β(x, t), and

T(β(x, t)) ≥ α(x, t). Then the integral Eq. (.) has a unique solution u∗ in
� = {u ∈ X : α(x, y) ≤ u(x, y) ≤ β(x, y)}.

Proof Let B = {u ∈ X : u(x, t) ≤ β(x, t)} and B = {u ∈ X : u(x, t) ≥ α(x, t)}. Then B and B

are closed subsets of the complete metric space X. If u ∈ B, then by conditions (I), (II),
and (IV) we conclude that T(u(x, t)) ≥ α(x, t). Hence, Tu ∈ B. Similarly, u ∈ B implies
that Tu ∈ B, and hence T(B) ⊂ B and T(B) ⊂ B.

If u ∈ B and v ∈ B, then u(x, t) ≤ β(x, t) ≤ β and v(x, t) ≥ α(x, t) ≥ α. From conditions
(I) and (III) we obtain that

∥∥T
(
u(x, y)

)
– T

(
v(x, y)

)∥∥
X ≤ δ‖u – v‖Xeλ(x+y).
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Thus,

‖Tu – Tv‖X ≤ ς‖u – v‖Xeλ(x+y), where ς = δ < .

Taking �(t, s) = ςs – t, we have

�
(‖Tu – Tv‖X ,‖u – v‖X

)
= ς‖u – v‖X – ‖Tu – Tv‖X > , u �= v.

Consequently, T is a cyclic R-contraction on
⋃

i= Bi. By Theorem ., T has a unique fixed
point u∗ in

⋂
i= Bi ∈ � , which is the solution of the integral-differential Eq. (.). �
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