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Abstract
In this paper, we study the existence of solutions for the following nonhomogeneous
Schrödinger-Poisson systems:

(∗)
{
–�u + V(x)u + K (x)φ(x)u = f (x,u) + g(x), x ∈ R

3,

–�φ = K (x)u2, lim|x|→+∞ φ(x) = 0, x ∈ R
3,

where f (x,u) is either sublinear in u as |u| → ∞ or a combination of concave and
convex terms. Under some suitable assumptions, the existence of solutions is proved
by using critical point theory.
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1 Introduction
The following Schrödinger-Poisson system:

⎧⎨
⎩–�u + V (x)u + K(x)φ(x)u = f (x, u) + g(x), x ∈R

,

–�φ = K(x)u, lim|x|→+∞ φ(x) = , x ∈R
,

(.)

arises in several interesting physical contexts. It is well known that (.) has a strong phys-
ical meaning since it appears in quantum mechanical models (see [, ]) and in semicon-
ductor theory (see [–]). From the point view of quantum mechanics, the system (.)
describes the mutual interactions of many particles []. Indeed, if the terms f (x, u) and g(x)
are replaced with , then problem (.) becomes the Schrödinger-Poisson system. In some
recent work (see [–]), different nonlinearities are added to the Schrödinger-Poisson
equation, giving rise to the so-called nonlinear Schrödinger-Poisson system. These non-
linear terms have been traditionally used in the Schrödinger equation to model the inter-
action among particles.

Many mathematicians have devoted their efforts to the study of (.) with various non-
linearities f (x, u). We recall some of them as follows.
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The case of g ≡ , that is, the homogeneous case, has been studied widely in [, , , –
]. In , Cerami and Vaira [] study system (.) in the case of f (x, u) = a(x)|u|p–u
with  < p <  and a(x) > . In order to recover the compactness of the embedding of
H(R) into the Lebesgue space Ls(R), s ∈ [, ), they establish a global compactness
lemma. They prove the existence of positive ground state and bound state solutions with-
out requiring any symmetry property on a(x) and K(x).

In , Sun et al. [] consider a more general case, that is, f (x, u) = a(x)f̃ (u) where f̃
is asymptotically linear at infinity, i.e. f̃ (s)/s → c as s → +∞ with a suitable constant c.
They establish a compactness lemma different from that in [] and prove the existence
of ground state solutions. In [], Ye and Tang study the existence and multiplicity of so-
lutions for homogeneous system of (.) when the potential V may change sign and the
nonlinear term f is superlinear or sublinear in u as |u| → ∞. For the Schrödinger-Poisson
system with sign-changing potential, see [, ].

Huang et al. [] study the case that f (x, u) is a combination of a superlinear term and
a linear term. More precisely, f (x, u) = k(x)|u|p–u + μh(x)u, where  < p <  and μ > ,
k ∈ C(R), k changes sign in R

 and lim|x|→+∞ k(x) = k∞ < . They prove the existence
of at least two positive solutions in the case that μ > μ and near μ, where μ is the
first eigenvalue of –� + id in H(R) and with weight function h. In [, ], the authors
consider the critical case of p = ; in [] one studies the case of p = .

Sun et al. [] get infinitely many solutions for (.), where we have the nonlinearity
f (x, u) = k(x)|u|q–u – h(x)|u|l–u,  < q <  < l < ∞, i.e. the nonlinearity involving a com-
bination of concave and convex terms. For more results on the effect of concave and convex
terms of elliptic equations, see [, ] and the references therein.

Next, we consider the nonhomogeneous case of (.), that is, g �≡ . The existence of
radially symmetric solutions is obtained for above nonhomogeneous system in []. Chen
and Tang [] obtain two solutions for the nonhomogeneous system with f (x, u) satisfying
Amborosetti-Rabinowitz type condition and V being non-radially symmetric. In [, ],
the system with asymptotically linear and -linear nonlinearity is considered. For more
results on the nonhomogeneous case, see [, ] and the references therein.

Motivated by the work mentioned above, in the present paper, we first handle the sub-
linear case, and hence make the following assumptions:

(V) V (x) ∈ C(R,R) satisfies infx∈R V (x) = a > ;
(V) for any M > , meas{x ∈ R

 : V (x) < M} < +∞, where meas denotes the Lebesgue
measures;

(K) K(x) ∈ L(R) ∪ L∞(R) and K(x) ≥  for all x ∈R
;

(F) there exist constants σ ,γ ∈ (, ) and functions A ∈ L/(–σ )(R,R+), B ∈ L/(–γ )(R,
R

+) such that |f (x, u)| ≤ A(x)|u|σ– + B(x)|u|γ –, ∀(x, u) ∈ (R,R);
(G) g(x) ∈ L(R) and g(x) ≥  for a.e. x ∈R

.

Before stating our main result, we give several notations. Let H(R) be the usual Sobolev
space endowed with the standard scalar and norm

(u, v) =
∫
R

(∇u∇v + uv) dx; ‖u‖ =
∫
R

(|∇u| + |u|)dx.
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D,(R) is the completion of C∞
 (R) with respect to the norm

‖u‖
D := ‖u‖

D,(R) =
∫
R

|∇u| dx.

Let

E :=
{

u ∈ H(
R

) :
∫
R

(|∇u| + V (x)u)dx < ∞
}

.

Then E is a Hilbert space with the inner product

(u, v)E =
∫
R

(∇u · ∇v + V (x)uv
)

dx

and the norm ‖u‖E = (u, u)/
E . Obviously, the embedding E ↪→ Ls(R) is continuous for

any s ∈ [, ∗]. The norm on Ls = Ls(R) with  < s < ∞ is given by |u|ss =
∫
R |u|s dx.

Throughout this paper, the letters Ci, di will be used to denote various positive constants
which may vary from line to line and are not essential to the problem. We denote by ‘⇀’
weak convergence and by ‘→’ strong convergence. Also if we take a subsequence of a se-
quence {un}, we shall denote it again {un}. We use o() to denote any quantity which tends
to zero when n → ∞.

Now we state our main result.

Theorem . (Sublinear) Assume that (V), (V), (K), (F), and (G) are satisfied. Then prob-
lem (.) possesses at least one nontrivial solution.

Remark  It is not difficult to see that a function f satisfies our assumption (F). For ex-
ample, let

f (x, u) =

⎧⎨
⎩|x|e–|x| [σ |u|σ–u sin( 

|u|� ) – �|u|σ–�– sin( 
|u|� )], t �= ,

, t = ,

where � >  small enough and σ ∈ ( + �, ).

Remark  To the best of our knowledge, it seems that Theorem . is the first result about
the existence of solutions for the nonhomogeneous Schrödinger-Poisson equations with
sublinear case.

In the second part of this paper, we deal with the following nonhomogeneous Schrö-
dinger-Poisson system:

⎧⎨
⎩–�u + V (x)u + φ(x)u = k(x)|u|q–u – h(x)|u|p–u + g(x), x ∈R

,

–�φ = u, lim|x|→+∞ φ(x) = , x ∈R
,

(.)

where  < q <  < p < , i.e. the nonlinearity of this problem may involve a combination of
concave and convex terms.

We assume that k(x) and h(x) are measurable functions satisfying the following condi-
tions:
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(k) k(x) ∈ L/(–q)(R) ∩ L∞(R) and k(x) ≥  is not identically zero for a.e. x ∈R
;

(h) h(x) ∈ L∞(R) and h(x) >  for a.e. x ∈R
.

Theorem . Let  < q <  < p < , (V), (V), (k), (h), and (G) hold, then problem (.)
admits at least one nontrivial solution.

Remark  The condition in (V), which implies the compactness of embedding of the
working space E and contains the coercivity condition, V (x) → ∞ as |x| → ∞, is first
introduced by Bartsch and Wang in [] to overcome the lack of compactness. We are not
sure whether Theorem . holds without the condition (V).

Remark  In [], the author obtains the existence of multiple radially symmetric solu-
tions on R

 for (.). In our Theorem ., we do not need the radially symmetric on the
potential V , so we get the non-radially symmetrical solution for system (.) with the con-
cave and convex nonlinearities.

Remark  In order to get our results, we have to solve some difficulties. The main diffi-
culty is the loss of compactness of the Sobolev embedding H(R) into Ls(R), s ∈ [, ],
since this problem is set on R

. To recover the difficulty, some references use the radially
symmetric function space, which possesses a compact embedding; see []. In our paper,
we have the integrability of k and the assumption  < q <  to ensure the space E is com-
pactly embedding in the weighted Lebesgue space (see the following Lemma .).

Remark  In [], the authors first get two solutions for the nonhomogeneous Schrö-
dinger-Poisson equations on R

 with  < q < ,  < p < . Theorem . can be regarded as
complementary work to Wang and Ma () [].

2 Nonlinear Schrödinger-Poisson equations with sublinear case
In this section, we consider the following nonhomogeneous Schrödinger-Poisson system:

⎧⎨
⎩–�u + V (x)u + K(x)φ(x)u = f (x, u) + g(x), x ∈ R

,

–�φ = K(x)u, x ∈ R
,

(.)

where g ∈ L(R), g �≡ , V satisfies (V)-(V), and f satisfies (F).
In Section , we know that the embedding E ↪→ Ls(R) is continuous, for any s ∈ [, ∗].

Furthermore, we have the following result.

Lemma . ([], Lemma .) Under assumption (V) and (V), the embedding E ↪→
Ls(R) is compact for any s ∈ [, ∗).

By Lemma ., there exists ds >  such that

|u|s ≤ ds‖u‖E , ∀u ∈ E. (.)

It is well known that problem (.) can be reduced to a single equation with a nonlocal
term; see []. In fact, for every u ∈ E, the Lax-Milgram theorem implies that there exists
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a unique φu ∈ D,(R) such that

–�φu = K(x)u (.)

with

φu(x) =


π

∫
R

K(y)u(y)
|x – y| dy.

If K ∈ L∞(R), by (.), the Hölder inequality, and the Sobolev inequality, we get

‖φu‖
D =

∫
R

K(x)φuu dx ≤ S̄–d
/|K |∞‖u‖

E .

Similarly, if K ∈ L(R),

‖φu‖
D =

∫
R

K(x)φuu dx ≤ S̄–d
|K |‖u‖

E .

Thus, there exists C >  such that

‖φu‖
D =

∫
R

K(x)φuu dx ≤ C‖u‖
E , ∀K ∈ L(

R
) ∪ L∞(

R
). (.)

Now we consider the functional I on (E,‖ · ‖E):

I(u) =



∫
R

(|∇u| + V (x)u)dx +



∫
R

K(x)φuu dx – ϕ(u) –
∫
R

g(x)u dx,

where ϕ(u) =
∫
R F(x, u) dx.

It follows from (F) that

∣∣F(x, u)
∣∣ ≤ A(x)|u|σ + B(x)|u|γ , ∀(x, u) ∈ R

 ×R, (.)

by which, together with (.) and the Hölder inequality, we have

∫
R

F(x, u) dx ≤
∫
R

(
A(x)|u|σ + B(x)|u|γ )

dx

≤ |A| 
–σ

|u|σ + |B| 
–γ

|u|γ
≤ |A| 

–σ
dσ

 ‖u‖σ
E + |B| 

–γ
dγ

 ‖u‖γ

E

< +∞. (.)

Therefore, ϕ and I are well defined. In addition, we need the following lemmas.

Lemma . ([], Lemma .) Assume that (V), (V), and (F) are satisfied and un ⇀ u in
E, then

f (x, un) → f (x, u) in L(
R

).
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Lemma . ([], Lemma .) Assume that (V), (K), and (F) hold. Then ϕ ∈ C(E,R) and
ϕ′ : E → E∗ (the dual space of E) is compact, and hence I ∈ C(E,R),

〈
ϕ′(u), v

〉
=

∫
R

f (x, u)v dx,

〈
I ′(u), v

〉
=

∫
R

(∇u∇v + V (x)uv + K(x)φuuv – f (x, u)v – g(x)v
)

dx
(.)

for all u, v ∈ E. Hence, if u ∈ E is a critical point of I , then (u,φu) ∈ E ×D,(R) is a solution
of problem (.).

We refer the reader to [] and [] for the details.
Now we give a proposition, which will be applied to prove Theorem .. Recall that I ∈

C(E,R) is said to satisfy the (PS)-condition if any sequence {uj}j∈N is bounded and I ′(uj) →
 as j → +∞, possesses a convergent subsequence in E.

Proposition . ([, ]) Let E be a real Banach space and I ∈ C(E,R) satisfy the (PS)-
condition. If I is bounded from below, then c = infE I is a critical value of I .

Lemma . Under the assumptions of Theorem ., I is bounded from below and satisfies
the (PS)-condition.

Proof By (K), (G), and (.), it follows that

I(u) ≥ 

‖u‖

E – |A| 
–σ

dσ
 ‖u‖σ

E – |B| 
–γ

dγ
 ‖u‖γ

E , ∀u ∈ E.

Noting that σ ,γ ∈ (, ), we have

I(u) → +∞ as ‖u‖E → ∞. (.)

Thus I is bounded from below.
Let {un} ⊂ E be a (PS)-sequence of I , i.e. {I(un)} is bounded and I ′(un) →  as n → +∞.

By (.), {un} is bounded, and then un ⇀ u in E for some u ∈ E. Recall that

(xy)/(x + y) ≤ x + y, ∀x, y ≥ .

By –�φu = K(x)u and the Hölder inequality, we obtain

∫
R

K(x)(φun unu + φuunu) dx

≤
(∫

R
K(x)φun u

n dx
)/(∫

R
K(x)φun u dx

)/

+
(∫

R
K(x)φuu

n dx
)/(∫

R
K(x)φun u dx

)/

=
(∫

R
∇φun · ∇φu dx

)/(‖φun‖D + ‖φu‖D
)
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≤ ‖φun‖D + ‖φu‖D

=
∫
R

K(x)
(
φun u

n + φuu)dx,

which implies that
∫
R

K(x)(φun un – φuu)(un – u) dx ≥ .

Since un ⇀ u in L(R) and g ∈ L(R), we obtain
∫
R g(un – u) dx = o(). This with

Lemma . shows that

‖un – u‖
E =

〈
I ′(un) – I ′(u), un – u

〉
–

∫
R

K(x)(φun un – φuu)(un – u) dx

+
∫
R

(
f (x, un) – f (x, u)

)
dx

≤ ∥∥I ′(un)
∥∥

E∗‖un – u‖E –
〈
I ′(u), un – u

〉
+

(∫
R

∣∣f (x, un) – f (x, u)
∣∣ dx

)/

· |un – u|
→ .

That is, un → u as n → ∞. Hence the (PS)-condition holds. The proof is complete. �

Proof of Theorem . Theorem . holds directly by Lemma . and Proposition .. The
proof is complete. �

3 Nonlinear term involving a combination of concave and convex terms
In this section, we consider the following nonhomogeneous Schrödinger-Poisson system:

⎧⎨
⎩–�u + V (x)u + φ(x)u = k(x)|u|q–u – h(x)|u|p–u + g(x), x ∈R

,

–�φ = u, lim|x|→+∞ φ(x) = , x ∈R
,

(.)

where  < q <  < p < , i.e. the nonlinearity of this problem may involve a combination of
concave and convex terms.

It is known that problem (.) can be reduced to a single equation see []. In fact, for
every u ∈ E, the Lax-Milgram theorem implies that there exists a unique φu ∈ D,(R)
such that

–�φu = u, u ∈R
, (.)

with

φu(x) =


π

∫
R

u(y)
|x – y| dy.

By (.), the Hölder inequality, and the Sobolev inequality, we get

∫
R

|∇φu| dx =
∫
R

φuu dx ≤ |u|/‖φu‖ ≤ C|u|/‖φu‖D,
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then

‖φu‖D ≤ C|u|/

and
∫
R

φuu dx ≤ C|u|/ ≤ C‖u‖
E . (.)

Therefore, problem (.) can be reduced to the following equation:

–�u + V (x)u + φuu = k(x)|u|q–u – h(x)|u|p–u + g(x), x ∈R
.

We introduce the functional J : E → R defined by

J(u) =



∫
R

(|∇u| + V (x)u)dx +



∫
R

φuu dx –

q

∫
R

k(x)|u|q dx

+

p

∫
R

h(x)|u|p dx –
∫
R

g(x)u dx. (.)

By (.) and the conditions of Theorem ., all the integrals in (.) are well defined and in
C(E,R). Now, it is easy to verify that the weak solutions of (.) correspond to the critical
points of J : E →R with derivative given by

〈
J ′(u), v

〉
=

∫
R

[∇u∇v + V (x)uv + φuuv – k(x)|u|q–uv

+ h(x)|u|p–uv – g(x)v
]

dx.

Lemma . Under the assumptions in Theorem ., the functional J is coercive on E.

Proof By (k), we have

∫
R

k(x)|u|q dx ≤ |k|/–qS–q/‖u‖q
E . (.)

For ‖u‖E large enough, by (.) we obtain

J(u) =



∫
R

(|∇u| + V (x)u)dx +



∫
R

φuu dx –

q

∫
R

k(x)|u|q dx

≥ 

‖u‖

E –

q
|k|/(–q)S–q/‖u‖q

E – c|g|‖u‖E

≥ 

‖u‖

E – c‖u‖q
E – c|g|‖u‖E → +∞,

since  < q < . The proof is complete. �

Lemma . Assume that (V), (V), (k), (h), (G) hold, and {un} ⊂ E is a bounded (PS)-
sequence of J , then {un} has a strongly convergent subsequence in E.
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Proof Consider a sequence {un} in E which satisfies

J(un) → c, J ′(un) → , sup
n

‖un‖E < +∞.

Going if necessary to a subsequence, we can assume that un ⇀ u in E. In view of
Lemma ., un → u in Ls(R) for any s ∈ [, ∗). By the derivative of J , we easily obtain

‖un – u‖
E =

〈
J ′(un) – J ′(u), un – u

〉
+

∫
R

k(x)
(|un|q– – |u|q–)(un – u) dx

–
∫
R

h(x)
(|un|p– – |u|p–)(un – u) dx –

∫
R

(φun un – φuu)(un – u) dx.

It is clear that

〈
J ′(un) – J ′(u), un – u

〉 →  as n → ∞. (.)

By the Hölder inequality and the Sobolev inequality, we have

∣∣∣∣
∫
R

φun un(un – u) dx
∣∣∣∣ ≤ |φun ||un|/|un – u|/

≤ C‖φun‖D|un|/|un – u|/

≤ C|un|/|un – u|/ → ,

since un → u in Ls(R) for any s ∈ [, ∗). We obtain

∫
R

φun un(un – u) dx →  as n → ∞. (.)

Similarly we can also obtain

∫
R

φuu(un – u) dx →  as n → ∞. (.)

By  < p < , (h), and the Hölder inequality, one has

∣∣∣∣
∫
R

h(x)
(|un|p– – |u|p–)(un – u) dx

∣∣∣∣ ≤ |h|∞
(|un|p–

p + |u|p–
p

)|un – u|p

→  as n → ∞. (.)

By  < q < , (k), and the Hölder inequality, one has

∫
R

k(x)|un|q–(un – u) dx

=
∫
R

k(x)
q–

q k(x)

q |un|q–(un – u) dx

≤ |k|– 
q∞
[∫

R

(
k(x)


q |un|q–) 

–q dx
] –q


(∫

R
(un – u)


q dx

) q
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≤ |k|– 
q∞
(∫

R
k(x)


–q dx

) –q
 · 

q
(∫

R
|un|

q
–q dx

) –q
q (q–)

|un – u| 
q

= |k|– 
q∞ |k|


q


–q

|un|q–
q

–q
|un – u| 

q
→  as n → ∞, (.)

since  < 
q < , un → u in Ls(R) for any s ∈ [, ∗).

Similarly, we also obtain

∫
R

k(x)|u|q–(un – u) dx →  as n → ∞. (.)

Therefore, by (.)-(.), we get ‖un – u‖E → . The proof is complete. �

Proof of Theorem . In view of Proposition . and Lemma ., we only need to check
that {un} is bounded in E,

c̃ +  + ‖u‖E ≥ J(un) –



〈
J ′(un), un

〉
=




‖un‖
E +

(



–

q

)∫
R

k(x)|un|q dx +
(


p

–



)∫
R

h(x)|un|p dx

–



∫
R

g(x)un dx

≥ 


‖un‖
E +

(



–

q

)
|k|/(–q)S–q/‖u‖q

E –



|g||un|

for n large enough. Since g ∈ L(R), it follows from  < q <  that {un} is bounded in E.
The proof is complete. �
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