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Abstract
This work is concerned with a mixed boundary value problems for the slow
equilibrium equations with prescribed angular velocity. As an application, we find
sufficient conditions for the existence and uniqueness of blow-up solutions under
weaker conditions.
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1 Introduction
In -D space, the equilibrium equations for a self-gravitating fluid rotating about the x

axis with prescribed velocity �(r) can be written as

{
∇P = ρ∇(–� +

∫ r
 s�(s) ds),

�� = πgρ.
(.)

Here ρ , g , and � denote the density, gravitational constant, and gravitational potential,
respectively, P is the pressure of the fluid at a point x ∈ R

, and r =
√

x
 + x

. We want to
find axisymmetric equilibria and therefore always assume that ρ(x) = ρ(r, x).

For the density ρ , from (.) we can obtain the induced potential

�ρ(x) = –g
∫

ρ(y)
|x – y| dy, (.)

Obviously, �ρ is decreasing when ρ is increasing.
In the study of this model, Auchmuty [] proved the existence of an equilibrium solution

if the angular velocity satisfied certain decay conditions. For a constant angular velocity,
Miyamoto [] has proved that there exists an equilibrium solution if the angular velocity
is less than certain constant and that there is no equilibrium for large velocity. Pang et al.
[] talked about the exact numbers of the stationary solutions. For many other interesting
results, see references [–].
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Under more general conditions than in [], we prove that there exists an equilibrium
solution under the following constraint set

AM :=
{
ρ

∣∣∣ ρ ≥ ,ρ is axisymmetric,
∫

ρ dx = M
}

. (.)

A standard method to obtain steady states is prescribing the minimizer of the stellar
energy functional. The main problem is to show that the steady state has finite mass and
compact support. To approach this problem, we define the energy functional

F(ρ) :=
∫

Q(ρ) dx –
∫

ρJ(r) dx –
g


∫ ∫
ρ(x)ρ(y)
|x – y| dy dx. (.)

Here

Q(ρ) =


γ – 
P, J(r) =

∫ r


s�(s) ds, (.)

In this paper, we assume that J(r) is nonnegative, continuous, and bounded on [, +∞)
and P is nonnegative, continuous, and strictly increasing for s >  and satisfies:

P : lim
ρ→

P(ρ)ρ– = , lim
ρ→+∞ P(ρ)ρ– 

 = +∞.

In Section , first we prove the existence of a minimizer of the energy functional F in
AM . Then we give the properties of minimizers; they are stationary solutions of equation
(.) with finite mass and compact support. The main difficulty in the proof is the loss
of compactness due to the unboundedness of R. To prevent the mass from running off
to spatial infinity along a minimizing sequence, our variational approach is related to the
concentration-compactness principle due to Fang and Li []. For many other interesting
results, see references [–].

Throughout this paper, for simplicity of presentation, we use
∫

to denote
∫
R and use

‖ · ‖p to denote ‖ · ‖Lp(R). Define

BR(x) :=
{

y ∈R
 | |y – x| ≤ R

}
, BR,K (x) :=

{
y ∈ R

 | R ≤ |y – x| ≤ K
}

,

Fpot(ρ) := –
g


∫ ∫
ρ(x)ρ(y)
|x – y| dy dx = –


πg

∫
|∇�ρ | dx < . (.)

We denote by C a generic positive constant and by χ the indicator function.

2 Minimizer of the energy
In this section, we present some properties of the functional F and prove the existence of
a minimizer. It is easy to verify that the function F is invariant under any vertical shift, that
is, if ρ ∈ AM , then Tρ(x) := ρ(x + ae) ∈ AM and F(Tρ) = F(ρ) for any a ∈ R. Here e =
(, , ). Therefore, if (ρn) is a minimizing sequence of F in AM , then (Tρn) is a minimizing
sequence of F in AM too. First, we give some estimates.

Lemma . Let ρ ∈ L ∩ Lγ (R). If  ≤ γ ≤ 
 , then � ∈ Lr(R) for  < r < γ

–γ
, and

‖�‖ρ
r ≤ C

(‖ρ‖α
 ‖ρ‖–α

γ + ‖ρ‖β
 ‖ρ‖–β

γ

)
(.)

for  < α,β < . If γ > 
 , then � is bounded and continuous and satisfies (.) with r = +∞.
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Proof The proof can be found in []. �

Lemma . For ρ ∈ L ∩ L 
 (R), we have ∇� ∈ L(R).

Proof Interpolation inequality [] implies

‖ρ‖ 


≤ ‖ρ‖/
 ‖ρ‖/

/.

By Sobolev’s theorem, ‖�‖ ≤ C‖ρ‖ 


. So

‖∇�‖
 = πg‖ρ�‖ ≤ C‖ρ‖ 


‖�‖ ≤ C‖ρ‖




.

From the above estimates we can complete our proof. �

Lemma . Assume that P holds. Then there exists a nonnegative constant C, depending
only on 

|x| , M, and J(r), such that F ≥ –C.

Proof For ρ ∈ AM , since P holds, similarly to [], we know that there exists a constant
S >  such that

F(ρ) ≥
∫

ρ<S

Q(ρ) +
∫

ρ≥S

Q(ρ) – M‖J‖∞ – CM/
∫

ρ/

≥
∫

ρ<S

Q(ρ) +



∫
ρ≥S

Q(ρ) – M‖J‖∞ – CM/
∫

ρ<S

ρ/

≥ 


∫
Q(ρ) – M‖J‖∞ – CM/S/

 .

So F ≥ –C with C = M‖J‖∞ – CM/S/
 . �

Let hM = infAM F . A simple scaling argument shows that hM < : let ρ(x) = ερ(εx), then∫
ρ =

∫
ρ . Since limρ→ Q(ρ)ρ– = , it is easy to see that for ε small enough,

∫
Q(ρ) =∫

ε–Q(ερ) → . Therefore, hM < .

Lemma . Assume that P holds. Then for every  < M̃ ≤ M, we have hM̃ ≥ ( M̃
M ) 

 hM .

Proof Let ρ̃(x) = ρ(ax) and J̃(r) = J(ax), where a = (M/M)/ ≥ . So, for any ρ ∈ AM and
ρ̃ ∈AM , we have

F(ρ̃) =
∫

Q(ρ̃) –
∫

ρ̃̃J + Fpot(ρ̃) ≥ b–F(ρ). (.)

The mappings AM → AM̃ , ρ → ρ̃ , J → J̃ are all one-to-one and onto, which completes
our proof. �

From Lemma . we immediately obtain that any minimizing sequence (ρn) ∈ AM of F
satisfies∫

ρ/
n =

∫
ρn<S

ρ/
n +

∫
ρn≥S

ρ/
n < MS/

 +
∫

cQ(ρn) < cF(ρn) + C + MS/
 .
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Lemma . Let (ρn) be bounded in L/(R) and ρn ⇀ ρ weakly in L/(R). Then, for
any R > ,

∫
|∇�χBR ρn | dx →

∫
|∇�χBR ρ | dx.

Proof By Sobolev theorem and Lemma . we can complete the proof. �

Lemma . Assume that P holds. Let (ρn)∞n= ⊂ AM be a minimizing sequence of F(ρ).
Then there exist a sequence (an)∞n= ⊂ R

 and δ > , R >  such that

∫
an+BR

ρn(x) dx ≥ δ, R ≥ R,

for all sufficiently large n ∈N.

Proof Split the potential energy:

–

g

Fpot :=
∫ ∫

|x–y|≤/R

ρn(x)ρn(y)
|x – y| dy dx +

∫ ∫
/R<|x–y|<R

+ · · · +
∫ ∫

|x–y|≥R
· · ·

:= I + I + I.

From Lemma . we easily see that I ≤ C
R . The estimates for I and I are straightfor-

ward:

I ≤ R
∫ ∫

|x–y|<R
ρn(x)ρn(y) dx dy ≤ MR sup

a∈R

∫
a+BR

ρn(x) dx;

I =
∫ ∫

|x–y|≥R

ρ(x)ρ(y)
|x – y| dy dx ≤ M

R
.

Therefore,

sup
a∈R

∫
a+BR

ρn(x) dx ≥ 
MR

(
–


g

Fpot –
M

R
–

C
R

)
. (.)

We know that Fpot(ρn) <  from (.). Thus, when R large enough, –Fpot >  dominates the
sign of (.), so that there exist δ > , R >  as required. �

We are now ready to show the existence of a minimizer of hM , provided that P holds.

Theorem . Assume that P holds. Let (ρn) ∈ AM be a minimizing sequence of F . Then
there exist a subsequence, still denoted by (ρn), and a sequence of translations Tρn := ρn(· +
ane) with constant an and e = (, , ) such that

F(ρ) = inf
AM

F(ρn) = hM

and Tρn ⇀ ρ weakly in L 
 (R). For the induced potentials, we have ∇�Tρn → ∇�ρ

strongly in L(R).



Wang et al. Boundary Value Problems  (2015) 2015:230 Page 5 of 8

Remark . Without admitting the spatial shifts, the assertion of the theorem is false:
Given a minimizer ρ and a sequence of shift vectors (ane) ∈R

, the functional F is trans-
lation invariant, that is, F(Tρ) = F(ρ). But if |ane| → ∞, then this minimizing sequence
converges weakly to zero, which is not in AM .

Proof Split ρ ∈AM into three different parts:

ρ = χBR
ρ + χBR,R

ρ + χBR,∞ρ := ρ + ρ + ρ

with

Ilm :=
∫ ∫

ρl(x)ρm(y)
|x – y| dy dx, l, m = , , .

Thus,

F(ρ) := F(ρ) + F(ρ) + F(ρ) – I – I – I.

If we choose R > R, then

I ≤ 
∫

BR

ρ(x) dx
∫

BR,∞
|y|–ρ(y) dy ≤ C

R
.

Next we estimate I and I:

I + I = –
∫

ρ� dx –
∫

ρ� dx =


πg

∫
∇(� + �) · ∇� dx

≤ C‖ρ + ρ‖ 

‖∇�‖ ≤ C‖∇�‖,

where �l = �ρl .
Denote Ml =

∫
ρl , l = , , . Then M = M + M + M. Using the above estimates and

Lemma ., we have

hM – F(ρ) ≤
(

 –
(

M

M

)/

–
(

M

M

)/

–
(

M

M

)/)
hM +

C

R
+ C‖∇�‖

≤ ChMMM + C

(


R
+ ‖∇�‖

)
, (.)

where C, C are positive and depend on M but not on R or R. Let (ρn) ∈AM be a min-
imizing sequence and (ane) ∈ R

 such that Lemma . holds. Since F is translation in-
variant, the sequence (Tρn) is a minimizing sequence too. So, ||Tρn|| ≤ M. Thus, there
exists a subsequence, denoted by (Tρn) again, such that Tρn ⇀ ρ weakly in L 

 (R). By
Mazur’s lemma and Fatou’s lemma,

∫
Q(ρ) dx ≤ lim inf

n→∞

∫
Q(Tρn) dx. (.)

Now we want to show that

∇�Tρn → ∇�ρ strongly in L(
R

). (.)



Wang et al. Boundary Value Problems  (2015) 2015:230 Page 6 of 8

Due to Lemma ., ∇�Tρn,+Tρn, converge strongly in L(BR ). Therefore, we only need
to show that for any ε > ,

∫
|∇�Tρn, | dx < ε.

By Lemmas . and . it suffices to prove that

∫
Tρn, dx < ε. (.)

Choosing R < R, we obtain that Mn, ≥ δ for n large enough from Lemma .. By (.)
we have

–ChMδMn, ≤ –ChMMn,Mn,

≤ C

R
+ C‖∇�,‖ + C‖∇�n, – ∇�,‖ +

∣∣F(Tρn) – hM
∣∣, (.)

where �n,l is the potential induced by Tρn,l , which in turn has mass Mn,l , n ∈N∪ {}, and
the index l = , ,  refers to the splitting.

Given any ε > , by Lemma . we can increase R > R so that C‖∇�,‖ < ε/. Next,
choose R > R such that the first term in (.) is less than ε/. Now, since R and R

are fixed, the third term converges to zero by Lemma .. Since (Tρn) is a minimizing
sequence, we have |F(Tρn) – hM| < ε/ for suitable n. So, for n large enough,

–ChMδMn, ≤ ε, i.e., Mn, ≤ ε;

thus, (.) holds, (.) follows, and

M ≥
∫

an+BR

Tρn = M – Mn, ≥ M – ε.

Since Tρn ⇀ ρ weakly in L(RN ), it follows that for any ε > , there exists R >  such that

M ≥
∫

BR

ρ ≥ M – ε;

thus,

ρ ∈ L(RN ) with
∫

ρ dx = M,

so thatρ ∈AM . Together with (.), we obtain

F(ρ) = inf
AM

F = hM.

The proof is completed. �

Next, we show that the minimizers obtained are steady states of equation (.).
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Theorem . Let ρ ∈AM be a minimizer of F(ρ) with induced potential �. Then

� + Q′(ρ) – J(r) = K on the support of ρ,

where K is a constant. Furthermore, ρ satisfies (.).

Proof We will derive the Euler-Lagrange equation for the variational problem. Let ρ ∈
AM be a minimizer with induced potential �. For any ε > , we define

Vε :=
{

x ∈R

∣∣∣ ε ≤ ρ ≤ 

ε

}
.

For a test function ω ∈ L∞(R) that has compact support and is nonnegative on V c
ε , define

ρτ := ρ + τω – τ

∫
ω dy

meas(Vε)
χVε ,

where τ ≥  is small such that

ρτ ≥ ,
∫

ρτ =
∫

ρ = M.

Therefore, ρτ ∈AM . Since ρ is a minimizer of F(ρ), we have

 ≤ F(ρτ ) – F(ρ)

=
∫

Q(ρτ ) – Q(ρ) dx –
∫

J(r)(ρτ – ρ) +



∫
(ρτ�τ – ρ�) dx

≤
∫ (

Q′(ρ) – J(r)
)
(ρτ – ρ) dx +

∫
(ρτ� – ρ�) dx + o(τ )

= τ

∫ (
Q′(ρ) – J(r) + �

)(
ω –

∫
ω dy

meas(Vε)
χVε

)
dx + o(τ ).

Hence,

∫ [
Q′(ρ) – J(r) + � –


meas(Vε)

(∫
Vε

Q′(ρ) – J(r) + � dy
)]

ω dx ≥ .

This holds for all test functions ω positive and negative on Vε as specified above; hence,
for all ε >  small enough,

Q′(ρ) – J(r) + � = Kε on Vε , and Q′(ρ) – J(r) + � ≥ Kε on V c
ε , (.)

where Kε is a constant. Taking the limit as ε → , we get

Q′(ρ) – J(r) + � = K on the support of ρ. (.)

By taking the gradient of both sides of (.) we can prove that ρ satisfies the equilibrium
equation (.). �



Wang et al. Boundary Value Problems  (2015) 2015:230 Page 8 of 8

Competing interests
The authors declare that there is no conflict of interests regarding the publication of this article.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Mathematical and Statistical Sciences, Quzhou Vocational and Technical College, Quzhou, 324000, China. 2Center for
Finance and Accounting Research, University of International Business and Economics, Beijing, 100029, China.
3Mathematical and Statistical Sciences, Quzhou University, Quzhou, 324000, China. 4Mathematical and Statistical
Sciences, Yili Normal University, Yining, 835000, China.

Acknowledgements
The authors are very grateful for reviewers’ valuable comments and suggestions in improving this paper.

Received: 31 August 2015 Accepted: 27 November 2015

References
1. Auchmuty, G: Bounding flows for turbulent convection. Arch. Ration. Mech. Anal. 51, 228-238 (1973)
2. Miyamoto, I: A type of uniqueness of solutions for the Dirichlet problem on a cylinder. Tohoku Math. J. 48(2), 267-292

(1996)
3. Pang, S, Zhu, Y, Wang, Y: A class of mixed orthogonal arrays obtained from projection matrix inequalities. J. Inequal.

Appl. 2015, 241 (2015)
4. Fang, Z, Li, H: Numerical solutions to regularized long wave equation based on mixed covolume method. Appl. Math.

Mech. 34(7), 907-920 (2013)
5. Fang, Z, Li, H: An expanded mixed covolume method for Sobolev equation with convection term on triangular grids.

Numer. Methods Partial Differ. Equ. 29(4), 1257-1277 (2013)
6. Fang, Z, Li, S: Painlevé-Kuratowski convergences of the solution sets to perturbed generalized systems. Acta Math.

Appl. Sinica (Engl. Ser.) 28(2), 361-370 (2012)
7. Yang, DW, Zhang, Y: On the finiteness of uniform sinks. J. Differ. Equ. 257(6), 2102-2114 (2014)
8. Yoshida, H: Cohomology and L-values. Kyoto J. Math. 52(2), 369-432 (2012)
9. Dolbeault, J, Esteban, MJ: Extremal functions in some interpolation inequalities: symmetry, symmetry breaking and

estimates of the best constants. In: Mathematical Results in Quantum Physics, pp. 178-182. World Sci. Publ.,
Hackensack (2011)


	Boundary value behaviors for solutions of the equilibrium equations with angular velocity
	Abstract
	Keywords

	Introduction
	Minimizer of the energy
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


