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A sample size planning approach that considers
both statistical significance and clinical
significance
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Abstract

Background: The CONSORT statement requires clinical trials to report confidence intervals, which help to assess
the precision and clinical importance of the treatment effect. Conventional sample size calculations for clinical trials,
however, only consider issues of statistical significance (that is, significance level and power).

Method: A more consistent approach is proposed whereby sample size planning also incorporates information on
clinical significance as indicated by the boundaries of the confidence limits of the treatment effect.

Results: The probabilities of declaring a “definitive-positive” or “definitive-negative” result (as defined by Guyatt et al.,
CMAJ 152(2):169-173, 1995) are controlled by calculating the sample size such that the lower confidence limit under H1
and the upper confidence limit under H0 are bounded by relevant cut-offs. Adjustments to the traditional sample size
can be directly derived for the comparison of two normally distributed means in a test of nonequality, while simulations
are used to estimate the sample size for evaluating the hazards ratio in a proportional-hazards model.

Conclusions: This sample size planning approach allows for an assessment of the potential clinical importance and
precision of the treatment effect in a clinical trial in addition to considerations of statistical power and type I error.

Keywords: clinical significance, confidence interval, sample size
Background
The importance of confidence intervals is clearly attested
by journal guidelines [1-3] as they “convey information
about magnitude and precision of effect simultaneously,
and keep these two aspects of measurements closely
linked” [4]. For clinical trials, the CONSORT statement
[5] stipulates the reporting of the “estimated effect size
and its precision (such as 95% confidence interval)” and
“how sample size was determined,” but traditional sample
size calculations for testing scientific hypotheses consider
only statistical significance and power. The precision and
clinical importance of the effect that can be depicted by
confidence intervals is ignored. Under the usual practice,
one calculates the sample size needed to declare some
“clinically important difference” statistically significant at
the α-level with 1 - β probability. The problem is that
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there is substantial subjectivity in quantifying this differ-
ence, and this can turn the sample size calculation into a
moot exercise for choosing a difference to justify the num-
ber of patients the study can afford [6]. Frequently, the se-
lected difference ends up larger than what is usual, and
thus many studies may display large differences but lack
the precision to make them statistically significant. Such
shortcomings have led some to argue for reform of current
sample size conventions in order to avoid misinterpretation
of completed studies and harm to scientific research [7].
What would be helpful is a sample size estimation

procedure that provides information on the confidence
interval to supply users with information on the clinical
significance and precision of the treatment effect in
addition to power and statistical significance. Beal [8]
suggested selecting sample size such that there is a high
probability of the half-width of the confidence interval
being less than some prescribed length, conditional on the
interval containing the parameter of interest. Similarly,
Liu [9] chose the sample size to yield a short confidence
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interval width but conditional on the rejection of the null
hypothesis H0. Jiroutek et al. [10] combined the two by
considering the probability of attaining a certain interval
width conditional on both rejection of H0 and inclusion of
the true parameter. Cesana et al. [11,12] introduced a
two-step procedure by first obtaining the sample size
according to power and then iteratively increasing the
sample size until the probability of obtaining confidence
intervals with widths less than the expected interval width
under H1 exceeds a specified level.
In the above methods, the user either has to designate an

interval length as reference or rely on the expected interval
width, which may not be clinically relevant. A more straight-
forward alternative is to calculate a sample size such that
the confidence limits of the parameter will be bounded by
designated cut-offs. Specifically, the sample size is chosen
such that according to the confidence limits the result can
be deemed “definitive-positive” if there is indeed an effect or
deemed “definitive-negative” if there is none. According to
Guyatt et al. [13], a “definitive-positive” result implies that
the lower confidence limit (LCL) of the parameter is not
only larger than zero, implying a “positive” and statistically
significant study, but above a relevant nonzero threshold.
Conversely, a “definitive-negative” result implies that the
upper confidence limit (UCL) is below some nonzero
threshold. In hypothesis testing, one does not know whether
H1 or H0 is true and can only control the probabilities of
making a false positive or false negative error. Likewise, in
this approach, we control the probabilities of declaring a
“definitive-positive” or “definitive-negative” result by calcu-
lating the sample size such that LCL under H1 and UCL
under H0 are bounded by fixed cut-offs. The following
section demonstrates these concepts first for continuous
normally distributed data and then for time-to-event data.

Methods
Normally distributed data
Consider a randomized 1:1 clinical trial comparing the
mean responses between the treatment and control groups.
When the response (or appropriately transformed re-
sponse) can be regarded as normally distributed, the as-
sessment of the treatment effect can be formulated as a
hypothesis test of H0: μ1 - μ0 = 0 versus H1: μ1 - μ0 ≠ 0.
The sample size is then given by

n ¼ σ2 Z1−α=2 þ Z1−β
� �2

δ2
; ð1Þ

where Zγ is the γth quantile of the standard normal distri-
bution, (μ0,σ0) and (μ1,σ1) are the means and standard de-
viations of the control and treatment groups, respectively,
σ2 ¼ σ20 þ σ21 , and δ = μ1- μ0 is the clinically important
difference to be detected at level α with power 1 - β.
We first examine how likely the above sample size will
yield a “definitive-negative” or “definitive-positive” result
by calculating, respectively, the probabilities Pr(UCL < k0δ
| H0) and Pr(LCL > k1δ | H1) for k0, k1 ∈ [0,1]. Without
loss of generality, assume δ > 0 and let �D be the sample
estimate of the treatment difference. If σ is known, then

Pr UCL < k0δjH0ð Þ ¼ Pr �D þ Z1−α=2
σffiffiffi
n

p < k0δjH0

� �

¼ Pr Z < k0δ

ffiffiffi
n

p
σ

−Z1−α=2

� �

¼ Pr Z < k0−1ð ÞZ1−α=2 þ k0Z1−β
� �

;and

ð2Þ

Pr LCL > k1δjH1ð Þ ¼ Pr �D−Z1−α=2
σffiffiffi
n

p > k1δjH1

� �

¼ Pr Z > k1δ−δð Þ
ffiffiffi
n

p
σ

þ Z1−α=2

� �

¼ Pr Z > k1−1ð ÞZ1−β þ k1Z1−α=2
� �

;

ð3Þ
where Z is the standard normal variable. As k0, k1 vary
from 0 to 1, these two probability functions are mirror
images about 1/2, with Pr(LCL > δ /2 | H1) = Pr(UCL <
δ /2 | H0). At the boundaries of 0 and 1, Pr(LCL > 0 |
H1) = Pr(UCL < δ | H0) = 1 - β.
Based on the derivations of equations (2) and (3),

it can be shown that if the sample size is increased to
n0 ¼ n=k20 then Pr(UCL < k0δ | H0) = 1 - β for k0 ∈ (0,1)
and if it is increased to n1 = n/(1 − k1)

2 then Pr(LCL >
k1δ | H1) = 1 - β for k1 ∈ (0,1). For example, with k0 =
k1 = 1/2 and sample size n0 = n1 = 4n both Pr(LCL > δ /2 |
H1) = Pr(UCL < δ /2 | H0) = 1 - β. Note that if
k0 = k1 < 1/2 then n0 > n1 and a larger sample size is
required to establish a “definitive-negative” compared to a
“definitive-positive” result. Conversely, if k0 = k1 > 1/2,
then n0 < n1, and a larger sample size is needed to estab-
lish a “definitive-positive” result. In general, if

k0 ¼ 1−k1 and n0 ¼ n1 ¼ n=k20; ð4Þ
then Pr(UCL < k0δ | H0) = Pr(LCL > k1δ | H1) = 1 - β.
For example, if k0 = 2/3, k1 = 1/3 and n0 = n1 = 9n /4
then Pr(LCL > δ /3 | H1) = Pr(UCL < 2δ /3 | H0) = 1 - β.

Time-to-event data
We extend our proposed method to include time-to-event
data, and use this case to show how a simulation-based
approach can be used to estimate the sample size when
the validity of normal approximation may be in doubt. In
situations where a closed-form sample size formula is not
readily available or difficult to derive, simulation provides
an alternative and offers greater flexibility for adapting to



Figure 1 Plot of Pr(LCL > kδ | H1) (red curve) and Pr(UCL < kδ | H0)
(blue curve) for k ∈ [0,1], α = 0.05, β = 0.80 in a comparison of
normally distributed mean responses with known σ between
treatment and control groups for a 1:1 randomized clinical trial.
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more complicated analyses. Briefly, the initial sample size
required to detect the clinically important difference δ at
power 1 - β is first calculated and then iteratively increased
until Pr(LCL > k1δ | H1) and Pr(UCL < k0δ | H0) reach de-
sired levels. The hazard ratio Δ is chosen as the parameter
of interest with its corresponding confidence limits LCL
and UCL being estimated using Cox regression. In the
following description, we select for simplicity and conve-
nience a single common cut-off by letting k0 = k1 = 1/2.
Under the proportional hazards assumption, the initial

total sample size N0 for detecting δ = logeΔ at level α and
power 1 - β can be estimated using Schoenfeld’s [14]
formula,

N0 ¼
Z1−α=2 þ Z1−β
� �2
P0P1 logeΔ

� �2 1
1−πc

; ð5Þ

where πc is the overall censoring proportion, and P0 and P1
are the proportion of subjects in the treatment and control
groups, respectively. (Another choice is to use Freedman’s
[15] formula, which gives a slightly smaller sample size.)
Time-to-event data are simulated from the exponential

distribution since it is most widely used to model time-to-
event data under the proportional hazards assumption. Spe-
cifically, we simulate exponential survival times Ti and expo-
nential censoring times Li for subjects i = 1, …, N0/2 in each
group, and consider a subject censored whenever Ti < Li.
According to Halabi and Bahadur [16], the parameters for
the survival and censoring time distributions are given by

2πc ¼ λc
λ0 þ λcð Þ þ

λc
λ1 þ λcð Þ ; ð6Þ

where λ0, λ1 are the hazard rates of the exponential sur-
vival times for the control and treatment groups, respect-
ively, and λc is the hazard rate for the exponential
censoring time. When πc = 0.5, equation (6) reduces to
the simple relationship

λc ¼
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
: ð7Þ

We set λ0 = 1 and select four values, (1.25, 1.5, 1.75,
2.0), for the hazard ratio Δ ≡ λ1/λ0 = λ1. For each value
of Δ, the procedure goes through the following steps:

1. With α = 0.05, β = 0.2, P0 = P1 = 0.5, πc = 0.5, and
δ = loge(Δ), calculate the initial total sample size N0

using (5);
2. Simulate N0/2 independent samples of exponential

survival and censoring times for the treatment and
control groups with corresponding parameters λ0 =
1, λ1, and λc ¼

ffiffiffiffiffi
λ1

p
;

3. Compare the survival times between the treatment
and control groups using Cox regression and
compute the 95% confidence interval for loge(Δ);
4. Repeat steps (2) and (3) for 10,000 iterations and
estimate Pr(LCL > δ /2 | H1) using the proportion of
iterations where LCL > δ /2;

5. Set Δ = 1 and repeat steps (2) and (3) 10,000 times
to estimate Pr(UCL < δ /2 | H0) using the
proportion of times when UCL < δ /2;

6. Replace N0 with a larger sample size and repeat
steps (2) through (5) until the estimates for both
Pr(LCL > δ /2 | H1) and Pr(UCL < δ /2 | H0) are
greater than some desired level (for example, 0.8).

The above procedure was programmed using SAS 9.2,
and a sample SAS program is provided in the Appendix
as reference.

Results
For comparing the means of normally distributed out-
comes, Figure 1 shows that when α = 0.05 and power =
0.8, Pr(LCL > kδ | H1) decreases steadily from 0.8 to 0.025
while Pr(UCL < kδ | H0) increases steadily from 0.025 to
0.80 as k varies from 0 to 1. In fact, these two probability
functions are mirror images about k = 1/2, where they
both equal 0.288. This implies that a trial designed to de-
tect a clinically important difference δ at the 5% signifi-
cance level with 80% power will be “definitive-positive”
about 29% of the time if one wants to say with 95% confi-
dence that the treatment effect must be at least δ /2.
For time-to-event data, the initial total sample size

(N0 = 1264) for detecting a hazard ratio Δ = 1.25 is al-
most 5/(1 - πc) or ten times larger than that (N0 = 132)
for detecting Δ = 2.00 according to Schoenfeld’s [14] for-
mula. At these initial sample sizes, the estimates of
Pr(LCL > 0 | H1) ranged from 0.79 to 0.81 as expected,
while Pr(UCL < δ | H0) ranged from 0.70 to 0.77, slightly
less than 0.8. Similarly, estimates for Pr(LCL > δ /2 | H1)
ranged from 0.27 to 0.29, close to what is expected for
normally distributed data, while estimates of Pr(UCL < δ
/2 | H0) are slightly lower than expected, ranging from
0.23 to 0.27. For a specific example, say Δ = 1.75, then
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N0 = 204 according to (5) and the estimates of α and β
are 0.0485 and 0.2044, respectively. The β estimate implies
that 79.6% of the samples have LCL > 0 under H1. But the
mean LCL is 0.16, thus as shown in Table 1 only 27.7% of
the samples have LCL > δ /2 = loge(1.75)/2 = 0.28. Corres-
pondingly, 95.2% of the samples under H0 have confidence
intervals that include zero, but since the mean UCL is
0.42 only 25.4% of the samples have UCL < 0.28.
Table 1 suggests that sample sizes need to be larger by

four to five times the initial sample size before estimates of
both Pr(LCL > δ /2 | H1) and Pr(UCL < δ /2 | H0) are
above 0.8. For example, with Δ = 1.75, the mean LCL for
samples under H1 equals 0.38 when the sample size
reaches 938 (4.6 times N0), and 85.0% of the samples then
have LCL > δ /2 = 0.28. In addition, at this sample size, the
mean UCL for samples under H0 equals 0.19, and 80.2% of
the samples have UCL < 0.28. In terms of confidence inter-
val width, the final sample sizes yield confidence interval
widths that are between 0.4 to 0.5 times narrower than
those at the initial sample sizes. For example, with Δ = 1.75
and a final sample size of 938, the mean confidence inter-
val widths are 0.37 and 0.39 under H0 and H1, respectively,
and 0.46 times narrower than the corresponding mean
confidence interval widths at the initial sample size of 204.

Discussion
Many researchers realize that a traditional sample size
calculation for testing H0: μ1 - μ0 = 0 versus H1: μ1 - μ0
≠ 0 with α = 0.05 and 80% power to detect a clinically
important difference δ implies that: 1) 95% of its 95%
confidence intervals for μ1 - μ0 will include zero when
Table 1 Clinical significance and precision of the
log-hazard ratio according to the initial and final sample
sizes

Δ loge(Δ)
bλc N Pr(LCL >

δ /2 |H1)

eCIW1 Pr(UCL <
δ /2 |H0)

dCIW0

1.25 0.22 1.12 aInitial 1264 0.2925 0.322 0.2651 0.314
cFinal 5402 0.8241 0.155 0.8016 0.151

1.50 0.41 1.22 aInitial 384 0.2759 0.602 0.2658 0.577
cFinal 1694 0.8349 0.285 0.8039 0.273

1.75 0.56 1.32 aInitial 204 0.2766 0.850 0.2536 0.804
cFinal 938 0.8496 0.392 0.8021 0.371

2.00 0.69 1.41 aInitial 132 0.2700 1.087 0.2344 1.018
cFinal 632 0.8503 0.487 0.8052 0.457

The ainitial N calculated using equation (5), Schoenfeld’s [14] formula, is the
total sample size required to detect a hazard ratio Δ at the 5% level with 80%
power, assuming equal subject allocation and a 0.5 overall censoring
proportion. b λc is the hazard rate for the exponential censoring time given by
equation (7), and δ. = loge(Δ). The

cfinal N is the total sample size such that
both Pr(LCL > δ /2 | H1) and Pr(UCL < δ /2 | H0) are at least 0.8 as estimated by
the proportion of times LCL and UCL are bounded by δ /2 in 10,000 iterations.
dCIW0 and

eCIW1 are the mean width of the 95% confidence intervals under
H0 and H1, respectively.
H0 is true, and 2) 80% of the 95% confidence intervals
will exclude zero when H1 (that is, μ1 - μ0 = δ) is true.
However, a confidence interval with a LCL that is barely
larger than zero may indicate a statistically significant
treatment effect but be unconvincing to investigators
who desire a “definitive-positive” result [13]. In contrast, a
confidence interval that includes zero and demonstrates a
“statistically nonsignificant” effect may be more convin-
cing as a “definitive-negative” result when its UCL is small.
Therefore, we propose that information on Pr(LCL > cut-
off | H1) and Pr(UCL < cut-off | H0) be available to assist
investigators in gauging the clinical significance of the
treatment effect. For example, a plot similar to Figure 1
can be provided as a supplement to the usual sample size
calculation or the investigator can directly estimate the
sample size required such that LCL and UCL are bounded
by relevant cut-offs with high probability. This offers a
more consistent approach since the confidence interval
becomes an important component in the design of clinical
trials and not solely for analysis.
One question for this method concerns how a clinically

relevant cut-off can be selected. Since δ, the clinically im-
portant difference, is already defined in the original sample
size calculation, a convenient choice is to specify the cut-off
with respect to δ. Given the uncertainty involved in quanti-
fying δ and the tendency to inflate it [6], we set the cut-off
equal to kδ for k ∈ (0,1). This bypasses the need to addition-
ally specify a confidence interval reference width [8-10] or
calculate an expected confidence interval width [11,12]. For
example, δ /2 can be used as the cut-off since it gives equal
consideration to the expected precision of symmetrical in-
tervals under H0 and H1. However, it should be stressed
that there is no requirement for intervals under H0 and H1

to be given equal emphasis or for the boundaries of LCL
and UCL to be the same. A researcher may well choose dif-
ferent cut-offs corresponding to a “definitive-positive” and a
“definitive-negative” result; for example, LCL > 3δ /4 and
UCL < δ /4 or LCL > δ /3 and UCL < 2δ /3.
Previous considerations of sample size estimation by

controlling statistical power and precision often involve
complex calculations even for normally distributed or bin-
ary outcomes. The current proposal is pedagogically
straightforward as it simply focuses on the position of the
confidence limits in relation to clinically relevant boundar-
ies. Greenland [17] designed a method that provides high
power to discriminate between the parameter values
under H0 and H1. A sample size was chosen such that the
discriminatory power, min{ Pr(LCL > 0 | H1), Pr(UCL < δ
| H0)}, equals a specified level. Our method also focuses
on the probabilities of the lower and upper confidence
limits being bounded, but the boundaries are different
as Greenland was not thinking of clinically important
effect sizes but the original parameter values under H0

and H1.
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The condition LCL > k1δ corresponds to the alterna-
tive hypothesis for a superiority test of H0: μ1 - μ0 ≤ k1δ
versus H1: μ1 - μ0 > k1δ. However, the sample size n1 to
attain a “definitive-positive” result is different from the
sample size for the superiority test since the former is
two-sided while the latter is one-sided. For example,
with α = 0.05, β = 0.2, σ2 = 2, δ = 1, and k1 = 1/2, equa-
tions (1) and (4) imply that n1 = 4×16 = 64, while the
sample size for the superiority test, as given by

σ2 Z1−α þ Z1−β
� �2

δ−k1δð Þ2 ;

equals 50. More importantly, our method calculates not
only the sample size involving LCL > k1δ but also that
for UCL < k0δ.

Conclusions
In summary, our proposed method allows the researcher
to calculate the sample size for a clinical trial not only ac-
cording to the specifications of statistical significance (that
is, α and β) but also in terms of clinical significance as
judged by the boundaries of the confidence limits. For
normally distributed data, simple formulae are available
and their results serve as a reference for sample size plan-
ning when analyzing other types of data. For example, to
ensure that LCL and UCL are both bounded by δ /2 the
sample size needs to be increased 4-fold when comparing
normally distributed means. Likewise, when evaluating the
hazard ratio for time-to-event data, simulation results also
suggest that sample sizes need to be 4 to 5 times larger.
The results of our method indicate that sample size needs
to be increased but our intention is not to mandate larger
sample sizes per se. Such an effort may be futile since in
practice cost constraints force clinical trials to aim for the
smallest possible sample size What is important is that re-
searchers be informed, for example by a graph similar to
Figure 1, as to how their sample size will affect judgments
of clinical significance using confidence intervals. In this
respect, our proposal directs attention back to the import-
ance of gauging effect sizes using confidence intervals,
and is consistent with the predicted confidence intervals
Goodman and Berlin [6] advocated to help investigators
better understand the idea of statistical power when calcu-
lating sample size.

Appendix
Sample SAS program to estimate the total sample size
for testing H0: Δ = 1 versus H1: Δ ≠ 1 such that Pr(LCL
> δ /2 | H1) = Pr(UCL < δ /2 | H0) = 1 - β. Survival and
censoring times are assumed to be exponentially distrib-
uted, and the overall censoring proportion equals 0.5.
The initial sample size is estimated using Schoenfeld’s
[14] formula for detecting δ = loge(Δ) with 80% power at
the 5% significance level.

Abbreviations
CONSORT: Consolidated Standards of Reporting Trials; LCL: lower confidence
limit; UCL: upper confidence limit.
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