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Abstract

Whether your interests lie in scientific arenas, the corporate world, or in government,
you have certainly heard the praises of big data: Big data will give you new insights,
allow you to become more efficient, and/or will solve your problems. While big data
has had some outstanding successes, many are now beginning to see that it is not
the Silver Bullet that it has been touted to be. Here our main concern is the overall
impact of big data; the current manifestation of big data is constructing a Maginot
Line in science in the 21st century. Big data is not “lots of data” as a phenomena
anymore; The big data paradigm is putting the spirit of the Maginot Line into lots of
data. Big data overall is disconnecting researchers and science challenges. We
propose No-Boundary Thinking (NBT), applying no-boundary thinking in problem
defining to address science challenges.
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The myth of big data
Big data has been largely promoted as a paradigm [1], bringing new challenges and op-

portunities. There are many national and international initiatives and funding pro-

grams [2,3] which focus on big data. The NIH definition of bioinformatics is

essentially based on data: “Research, development, or application of computational

tools and approaches for expanding the use of biological, medical, behavioral or health

data, including those to acquire, store, organize, archive, analyze, or visualize such data

[4]”. On the back cover of The Fourth Paradigm: Data-Intensive Scientific Discovery

[1], Microsoft Corporation’s founder, Bill Gates, states “The impact of Jim Gray’s think-

ing is continuing to get people to think in a new way about how data and software are

redefining what it means to do science.” There are many research projects and publica-

tions focused on big data; there are many big data-centered conferences and work-

shops; there are many big data hardware and software companies [5]; and there are

many big data, high-throughput technologies, such as sequencing and imaging tech-

nologies. Big data seems to be getting more and more attention.
© 2015 Huang et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

https://core.ac.uk/display/206021382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:xhuang@astate.edu
mailto:jason.h.moore@dartmouth.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Huang et al. BioData Mining  (2015) 8:7 Page 2 of 5
However, is the big data paradigm building a scientific Maginot Line in the 21st

century?

The Maginot Line

The French, based on the experiences of a previous generation during World War I,

built a line of rigid fortifications along their border with Germany just prior to the

start of World War II. While hailed as a work of genius at the time, by the time it

was built, offensive military tactics turned it obsolete as the German’s Blitzkrieg

simply bypassed those fortifications. By giving the French a false sense of security, the

Maginot Line had the effect of draining resources from more flexible defensive

strategies. The return on investment turned out to be poor. Is the big data paradigm

turning out to be a science Maginot Line? Only time will tell, but we are already

becoming aware of the limitations of this strategy.

Big data, admittedly, is a phenomenon. Our main concern with big data is its overall

impact to our current and next generation of students and researchers: Pushing big

data as a paradigm, promoting big data as a necessity in life sciences, and calling for

analytical approaches to big data, these are problematic. Big data is driving a wedge be-

tween scientists of different disciplines, especially computational scientists and life

scientists by focusing on the data, not the problem to be solved. A false belief in the

standalone power of data separates computational scientists from the underlying prob-

lem and provides “answers” to life scientists that may be devoid of meaning. Big data is

attracting the attention of our researchers and our students away from real scientific

challenges. Big data, e.g., The Cancer Genome Atlas (TCGA), may have produced some

good results published in Nature or Science [6], but big data overall is disconnecting

researchers and science challenges.
The Cancer Genome Atlas (TCGA)

TCGA, with the goal to cover more than 20 different types of human cancers (>11,000

cases), is collecting data from different high-throughput platforms (including gene

expression profiling, copy-number variation profiling, SNP genotyping, genome-wide

DNA methylation profiling, microRNA profiling, and exon sequencing) and then

releasing data usually after their analysis and publications. For the pilot project and

phase II of TCGA, about US$200-million has been invested in this effort to gather

samples, generate data, and analyze the data. TCGA publications, almost all in

top-tier science journals and almost all with the similar titles as “Comprehensive

Molecular Characterization of X Cancer” or “Comprehensive Molecular Profiling of Y

Cancers,” for the most part present “stories” of their data generation and data

analysis with some “plausible” results. If TCGA, with a comprehensive team of

scientists and technology experts, could not dig the “gold” out of the collected large

amount of data, how could other researchers be expected to do so? Furthermore,

while collected data is static, the human genome is dynamic. So, should we continue

collecting more and more data with the hope of digging out the “gold” information

to save patients? Or, should we think about redirecting our efforts to specific,

science-driven approaches, dynamic and systematic, to save dying patients from



Huang et al. BioData Mining  (2015) 8:7 Page 3 of 5
whom we collect the data? What is needed are not more reports, more lists of

publications, more software packages, and more data. Efforts like TCGA are reaching

the “bottleneck;” it is hard to make significant breakthroughs in scientific challenges

by focusing on big data. Since interdisciplinary research does not work well, how

about post-interdisciplinary approaches such as transdisciplinary approaches

[communication with a senior scientist]? Since many current methods and

approaches are generic, how about looking into more granular layers and finely-

detailed approaches?

Many authors are beginning to point out the limitations of big data and that big data

is not effective in solving certain problems (see the following several references [7-9]).

“Big data has arrived, but big insights have not” [9].

[7] NY Times: [Eight (No, Nine!) Problems With Big Data]: “Big data is here to stay,

as it should be. But let’s be realistic: It’s an important resource for anyone analyzing

data, not a silver bullet”.

[8] FT article: [Big data: are we making a big mistake?]: “Big data has arrived, but

big insights have not. The challenge now is to solve new problems and gain new answers –

without making the same old statistical mistakes on a grander scale than ever”.

[9] RD article: [Why Big Data Isn't the Big Problem for Genomic Medicine]: “Of

course, as this technology is adopted more broadly it will deliver new challenges in

data management and analytics. But it’s nothing this industry can’t handle. The true

barrier to clinical adoption of genomic medicine isn’t data volume or scale, but how

to empower physicians from a logistical and clinical genomics knowledge standpoint,

while proving the fundamental efficacy of genomics medicine in terms of improved

patient diagnosis, treatment regimens, outcomes and improved patient management”.

Our main concern is not the ineffectiveness of big data for specific scientific prob-

lems. Also, our main concern is not for the numerous projects where big data seems to

introduce significant false-positive results and potentially misleading discoveries (e.g.,

Cancer and chemotherapy are associated with a reduced Alzheimer’s risk [10]). Of

course, specific projects may really need to collect big data to achieve the goals and to

enable discoveries; our main concern here is not evaluating the need for big data in in-

dividual projects.

Overall, we are concerned that the big data paradigm has taken a whole generation of

science and research down the wrong path and given a false sense of progress, in effect,

creating a modern-day Maginot Line.

The Maginot Line gave France a false sense of security (since it seems strong and big);

Is big data giving us a false sense of security, by assuming we could answer science

challenges by looking at big data? The Maginot Line gave France a wrong impression

of challenge (see how the German army attacked it); Is big data a real challenge? Big

data may not be the challenge. It is the time we should re-focus on the science

challenge, which is the real challenge.
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No-boundary thinking
We are proposing No-Boundary Thinking (NBT) to address real scientific challenges

and to help science advance. Last year, we introduced the NBT concept [11]. Rather

than looking for big data or software tools to provide a connection among researchers

of related disciplines, with NBT, the connection will come about by defining scientific

problems to address science challenges. There are many problems based on big data

approaches: not only is it just ineffective, but also it is disconnecting researchers from

understanding the real science challenges. Currently the core of NBT is applying

no-boundary thinking in problem defining.

NBT is not just adjusting the starting point from problem solving to problem

defining, either. And it is not just starting earlier with interdisciplinary research. NBT

is integrating life sciences and the computational and mathematical sciences closely

and inseparably through no-boundary thinking. All researchers who bring similar and

complementary interests and skills need to be integrated into problem defining as well

as solving. NBT is also different from “multidisciplinary” or “transdisciplinary”; it is

conceptualized without disciplinary limitations or boundaries (i.e., “discipline-free”). An

article that explains these concepts and provides a detailed description of NBT unique-

ness is in preparation.

Several decades ago with the boost of computers and software, there might have been

a point to advocate for data and software for empowering science or to promote big

data and software tools to connect researchers of different disciplines. However, today

in the 21st century, the overall impact of the focus on big data and software is mislead-

ing and confusing to researchers and students, making their strategies rigid, which later

on will have even broader negative impacts to science in science history.
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