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Abstract

Background: Untargeted metabolomics generates a huge amount of data. Software packages for automated data
processing are crucial to successfully process these data. A variety of such software packages exist, but the outcome
of data processing strongly depends on algorithm parameter settings. If they are not carefully chosen, suboptimal
parameter settings can easily lead to biased results. Therefore, parameter settings also require optimization. Several
parameter optimization approaches have already been proposed, but a software package for parameter
optimization which is free of intricate experimental labeling steps, fast and widely applicable is still missing.

Results: We implemented the software package IPO (‘Isotopologue Parameter Optimization’) which is fast and free
of labeling steps, and applicable to data from different kinds of samples and data from different methods of liquid
chromatography - high resolution mass spectrometry and data from different instruments.
IPO optimizes XCMS peak picking parameters by using natural, stable 13C isotopic peaks to calculate a peak picking
score. Retention time correction is optimized by minimizing relative retention time differences within peak groups.
Grouping parameters are optimized by maximizing the number of peak groups that show one peak from each
injection of a pooled sample. The different parameter settings are achieved by design of experiments, and the
resulting scores are evaluated using response surface models. IPO was tested on three different data sets, each
consisting of a training set and test set. IPO resulted in an increase of reliable groups (146% - 361%), a decrease of
non-reliable groups (3% - 8%) and a decrease of the retention time deviation to one third.

Conclusions: IPO was successfully applied to data derived from liquid chromatography coupled to high resolution mass
spectrometry from three studies with different sample types and different chromatographic methods and devices. We
were also able to show the potential of IPO to increase the reliability of metabolomics data.
The source code is implemented in R, tested on Linux and Windows and it is freely available for download at https://
github.com/glibiseller/IPO. The training sets and test sets can be downloaded from https://health.joanneum.at/IPO.
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Background
Untargeted metabolomics screens biological samples with
the aim to reveal new compounds and to understand bio-
logical mechanisms. Untargeted metabolomics by using li-
quid chromatography (LC) generates a huge amount of
data when coupled to mass spectrometry (MS). Software
packages for automated data processing are needed to suc-
cessfully process large data sets. Recently, a tool MetExtract
has been presented which uses carbon labeling with stable
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isotopes to find reliable peaks [1,2]. This tool increases the
selectivity of compounds with biological origin, performs
feature reduction and assesses molecular structures of mea-
sured substances. Disadvantages of MetExtract are the time
and the cost intensive labeling step and its feasibility which
is limited to samples that can be labeled.
A number of software packages for processing LC-MS

data have already been developed for data sets of sam-
ples that do not rely on labeling [3-12]. They provide
methods for peak detection, peak picking, retention time
correction and grouping and offer a variety of adjustable
parameters to provide reasonable results. But even
though these parameters are intended to optimize the
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results, wrong parameter selection can lead to distorted
outcomes. Parameter optimization is necessary to coun-
ter wrong selection. Up to now, several parameter
optimization approaches have been proposed to increase
the reliability of the results [13-15].
One parameter optimization approach uses design of ex-

periments (DoE) [13]. A designed experiment is a series of
tests in which specific modifications are made to the input
variables of a process. DoE aims to optimize the response
to modifications or to either explain changes of the re-
sponse variable. . For metabolomics data a dilution series of
a pooled sample is measured and a reliability index for each
experiment of the DoE is calculated. This reliability index is
based on the assumption that peaks which correlate with
the dilution series are reliable ones, and those which do
not correlate are unreliable peaks. The DoE optimization
approach provides quality evaluation of the resulting
optimization, but is very time intensive. To accelerate the
DoE optimization approach, Zheng, H et al. [14] refined
the workflow by first applying a screening step prior to
the optimization. Screening steps are usually performed in
the first stage of an optimization process with the purpose
of identifying the parameters that have large effects on the
target variable. For the screening step Zhen et al. used a
Plackett-Burman design. Such a fractional factorial design
defines only two levels for each parameter and thus re-
quires relatively few experiments. Two levels stand for
two different tested values for each parameter. Second,
only parameters with a significant positive influence on
the target value are optimized and thus the overall
optimization time is considerably decreases. However, po-
tential important parameters may be lost because they
may fall into a range where they do not significantly influ-
ence the target value and hence they may not be further
optimized. A software package for parameter optimization
which is even faster, widely applicable and free of intricate
labeling steps is still missing.
To close this gap we implemented the R-package IPO

(‘Isotopologue Parameter Optimization’) that exploits nat-
ural, stable 13C isotope peaks which are ubiquitously
present in biological samples. The use of these 13C isotope
peaks makes all labeling steps expendable and leads to the
calculation of a target value to assess the optimization qual-
ity. IPO increases the reliability of peak picking, retention
time correction and grouping results and starts the
optimization process for the parameters to be optimized at
the respective default settings of the XCMS methods and is
thus also well suited for inexperienced XCMS users.

Implementation
We developed the R-package IPO to optimize parame-
ters of the open-source package XCMS [3,4]. The
process for the parameter optimization by IPO is de-
scribed in the following subsections (Figure 1).
XCMS parameters
Metabolomics data processing requires peak picking
followed by retention time correction and grouping.
Multiple methods for each of these steps are provided
by XCMS. IPO supports two peak picking, one retention
time correction and one grouping method, and can be
extended to cover other methods in the future. Various
parameters of these methods are optimized by default
(Table 1); all other quantitative parameters are optimized
only if defined by the user.
The first ‘xcmsSet’-method ‘centWave’ [16] deals with

peak picking. This is the method of choice for processing
centroided data acquired with liquid chromatography (LC)
coupled to high resolution mass spectrometry (HRMS).
First, ‘centWave’ identifies regions of interest (ROIs). ROIs
are created by combining consecutive centroids within a
tolerated m/z deviation, defined by the parameter ‘ppm’.
Chromatographic peaks are identified within the ROIs
using wavelets. The peak width parameters (‘min peak-
width‘ and ‘max peakwidth‘) describe the range of the ex-
pected peak widths and determine the scales of the
wavelets. The minimum difference of m/z for peaks with
overlapping retention times is given by ‘mzdiff ’.
The second ‘xcmsSet’-method ‘matchedFilter’ [3] also

deals with peak picking, but it has particularly been de-
veloped for low resolution data. In our study, we only
optimized high resolution data and therefore we present
no example for a parameter optimization with ‘match-
edFilter’. Nevertheless, IPO also supports this method.
The LC-MS data is cut into m/z slices. The widths of
these slices are defined by the parameter ‘step’ and mul-
tiple slices can be combined to avoid issues at the
boundaries. The parameter ‘steps’ defines the number of
adjacent slices to be combined. Matched filtration is
used to filter these slices with a second-derivative
Gaussian model peak shape. This Gaussian model peak
shape is defined by the parameter ‘fwhm’. A signal to
noise ratio to filter noisy peaks is determined by the
‘snthresh’ parameter.
The ‘obiwarp’ method (Table 1) is responsible for the

retention time correction [17]. The ‘center’ parameter
indicates the sample which serves as reference sample
for retention time correction. If not otherwise specified
by the user, XCMS uses the sample with the highest
number of peaks as ‘center’ sample whereas IPO chooses
the one with the highest average intensity. First, profiles
are generated from the raw data. The parameter ‘prof-
Step’ defines the widths of these profiles in the m/z di-
mension. Then, the profiles are compared to each other
and a similarity matrix is calculated. Similarity scores are
added to recursively generate an optimal path. Off-
diagonal transitions are penalized. The parameters ‘gapI-
nit’ and ‘gapExtend’ define penalties for gap openings
and gap enlargements, respectively.



Figure 1 Workflow for the optimization of XCMS parameter. A pooled sample is measured sequentially within the studies. The LC-MS data of the pooled
sample are then used for optimization. The DoEs are created by using Box-Behnken designs. The individual experiments of the design are calculated in
parallel. Peaks are classified as reliable peaks (RP) when they are part of an isotopologue. These RPs serve as basis for the calculation of the Peak Picking
Score (PPS). Two additional scores are introduced for retention time correction and grouping. To improve the quality of retention time correction, the
relative retention time deviations within the peak groups are minimized which leads to the Retention time Correction Score (RCS). So called ‘reliable groups’
and ‘non-reliable groups’ are defined to assess grouping. The ratio of the squared number of ‘reliable groups’ to ‘non-reliable groups’, the Grouping Score
(GS), is maximized within the optimization process. The resulting scores are evaluated by using response-surface-models. The combination of parameters that
yields the best score is used as new center for the next DoE. The optimization process continues as long as the respective scores are increasing.
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The XCMS method ‘density’ is a method for the
grouping step. Grouping is the process of combining
peaks from different samples with similar masses and
retention times to peak groups. The parameter ‘bw’ is
used to define a certain retention time range to find
peak groups. ‘mzwid’ describes the allowed variation in
the m/z dimension. The default value for ‘mzwid’ is 0.25
which is too high for high resolution data and this value
was therefore set to 0.025. A valid feature must have a
minimum fraction of samples within at least one sample
group. This fraction is defined by the parameter
‘minfrac’.
Table 1 XCMS methods and their respective parameters optim

XCMS method

xcmsSet(method = ‘centWave’)

xcmsSet(method = ‘matchedFilter’)

retcor(method = ‘obiwarp’)

group(method = ‘density’)
Optimization procedure
In general, peak picking is done for each individual data
file but for retention time correction and grouping mul-
tiple data files are necessary. The optimization proced-
ure splits the parameters by applying a semi sequential
approach. Peak picking parameters are optimized first
and the retention time correction and grouping parame-
ters are simultaneously optimized afterwards. Grouping
results in peak groups by combining peaks with similar
masses and retention times from different LC-MS runs.
Simultaneous optimization of retention time correction
and grouping is necessary because grouping is required
ized by IPO

Parameters

min peakwidth, max peakwidth, ppm, mzdiff

fwhm, step, steps, snthresh, mzdiff

profStep, gapInit, gapExtend

bw, mzwid, minfrac
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for the assessment of the retention time correction step,
which in turn can improve the grouping. This semi-
sequential approach additionally decreases the overall
computing time. The different levels for the XCMS pa-
rameters are determined by a design of experiments ap-
proach [18]. Box-Behnken designs (BBD) serve as basis to
generate the DoEs. BBD is a three level incomplete factor-
ial design for fitting a second order response surface
model. Three levels denote that for each parameter three
different evenly spaced values are tested. The two outer
values define a range, the middle value a center point. In
contrast to a full factorial design, BBD does not test all
factorial combinations, making it highly efficient [19]. For
the default levels used by IPO in the first DoE see
Additional file 1. To evaluate the result of the DoE, one
score for peak picking and one score for retention time
correction and grouping is used.
Peak picking
IPO supports the peak picking methods ‘centWave’ and
‘matchedFilter’. By using isotopic peaks it is possible to as-
sess the reliability of peak picking by calculating a peak pick-
ing score (PPS):

PPS ¼ RP2

‘all peaks’ − LIP
ð1Þ

The PPS is defined as the ratio of reliable peaks (RPs) to
the number of all peaks (all peaks), diminished by the
number of ‘low intensity peaks’ (LIP). RP is weighted by
the exponential factor 2. Therefore, if the RP value and
the number of all peaks increase by the same amount,
the PPS increases. This creates an optimization force to-
wards an increased recall of reliable peaks. The expo-
nent value of 2 is an empirical one. The sensitivity for
RPs could be enhanced by further increasing this expo-
nent, but then noise would also rise. RPs are defined as
peaks that belong to an isotopologue. IPO identifies iso-
topologues consisting of 13C isotope peaks, which are
defined by three criteria. Only peaks that meet all these
three criteria are considered isotopic peaks. The toler-
able ranges of these criteria are calculated relative to the
respective 12C peak. The first criterion states that the
mass of the isotope peak has to be within a certain mass
range. Second, the isotopic peak must elute at the same
time as the parent peak. To restrict peaks on the time
axis, a relative retention time window is specified. As a
third criterion, the intensities of isotopic peak candi-
dates have to be within a certain intensity window.
Therefore, the maximum number of possible carbon
atoms (maxC) for a specific mass-to-charge ratio pre-
suming a hydrocarbon chain is estimated as follows:
maxC ¼ floor
m=z−2 � CH3

CH2

� �
þ 2 ð2Þ

m/z is the mass-to-charge ratio of a peak. CH2 is the
mass of a molecule consisting of one carbon atom and
two hydrogen atoms and CH3 depicts the exact mass of
a molecule consisting of one carbon and three hydrogen
atoms respectively. First m/z is reduced by 2*CH3 which
represent the ends of a hydrocarbon chain. Then, the
difference is divided by CH2 which is exemplary for the
hydrocarbon bonds within the chain. The function floor
is used on the result to cut of fractional digits. The pre-
viously subtracted 2*CH3 from the ends of the hydrocar-
bon chain is compensated by + 2 to calculate maxC.
Then, intensities of the isotope peaks with one carbon
atom and with maxC carbon atoms are estimated by
multiplying one and maxC with the natural abundance
of 13C isotopes and the 12C peak’s intensity. Conse-
quently an intensity window is defined. ‘all peaks’ in-
cludes reliable as well as unreliable peaks. We consider
the fact that reliable peaks may exist whose isotope peak
concentrations are too low to measure, and would falsely
be classified as unreliable ones. To counter this, all peak
intensities are arranged in descending order and the
average of the lower three percent of the peak intensities
is calculated as cut-off value. This cut-off value is used
to estimate the sensitivity of the LC-MS system.
For each peak, except for the RPs, the maximum

amount of possible carbon atoms is estimated and this
amount is then multiplied with the natural 13C isotopic
abundance, IA. If the intensity of the peak lies below the
cut-off value when multiplied with IA, the peak is nei-
ther reliable nor unreliable and is defined as LIP.

Retention time correction and grouping
Run-to-run retention time changes have to be corrected.
To assess the quality of the retention time correction for
one peak group, a group retention time shift (GRTS) is
calculated as follows:

GRTS xð Þ ¼
Xk

n¼1
median xð Þ−xnð Þj j

k
ð3Þ

x are the retention times of all peaks within one group, k
is the number of these retention times and n is an index
pointing at the retention time of one individual peak in
the peak group. median(x) calculates the median value
of the retention times for all peaks in one group. For
every x the difference to the median retention time is
calculated. The average of all these differences is defined
as GRTS. The average of all GRTS values yields the aver-
age retention time shifts (ARTS):
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ARTS ¼ 1
k
� sum GRTSð Þ ð4Þ

The number of all GRTSs is defined by k and the func-
tion sum calculates the sum of these GRTSs. Decreasing
the ARTS improves the result. To create a usable
optimization value for maximization, the inverse of
ARTS is used to define a retention time correction score
(RCS):

RCS ¼ 1
ARTS

ð5Þ

The grouping score (GS) is based on the classification
of peak groups into ‘reliable’ and ‘non-reliable’ ones. ‘Re-
liable groups’ are assumed to show exactly one peak
from each injection of a pooled sample. All groups that
do not obey this assumption are classified as ‘non-reli-
able groups’. The absence of a peak within a group can
occur due to retention time shifts or due to too low con-
centrations. GS is calculated as follows:

GS ¼ ‘reliable groups’2

‘non−reliable groups’
ð6Þ

The squared number of ‘reliable groups’ divided by
the number of ‘non-reliable groups’ is defined as GS.
Calculation of the retention time correction and group-
ing target value (RGTV) is done by the following
formula:

RGTV ¼ norm RCSð Þ þ norm GSð Þ ð7Þ
To balance the impact of RCS and GS on RGTV, the

function ‘norm’ is used on RCS as well as on GS. Here,
norm is a unity-based normalization used on all RCS
values of the experiments of one DoE to scale these
values between 0 and 1. The same is done for GS. The
normalized values of the same experiments are added
giving one RGTV for each experiment of a DoE.

DoE evaluation and adjustment
After the respective scores for each experiment of the
DoE have been calculated, response surface models are
estimated and applied to evaluate the quality of peak pick-
ing, retention time correction and grouping. In a ‘max-
imum focusing step’ the combination of parameters which
leads to the best respective score is found and used as the
new center point for the next DoE. Additionally, in this
step, parameter ranges are adjusted according to the fol-
lowing procedure: If the maximum of a parameter shows
the same value on the upper and on the lower bound of
the parameter range, the range is increased by 20% (zoom-
ing out). If the maximum of a parameter has already been
located in the middle of the parameter range, with a devi-
ation of less than 25% from the center point, the tool
‘zooms in’ by narrowing the parameter range by 10% at
each bound. The adjusted DoE is recalculated. As long as
the respective scores are increasing, this process is
continued.

Results and discussion
IPO was applied to untargeted metabolomics data from
three different studies that were using different chroma-
tographic devices and methods [20-22]. The sample data
originated from human serum, animal tissue (mouse
muscle, lung, heart) and yeast samples. All data were
high resolution data deriving from LC-HRMS instru-
ments. The three studies used different chromatographic
methods that provide data differing in number, shape
and quality of the resulting peaks. See Additional file 2
for the characteristics of the data sets. The parameter
settings were optimized on training sets and these opti-
mized settings were used on the training and an inde-
pendent test set. The test set gives an unbiased view of
the improvement that can be expected from the ap-
proach. The results of the test sets with regard to the
parameter optimization steps are presented in Table 2.
All response surface models generated during the
optimization process of the three data sets are presented
in Additional file 3.

Metabolite fingerprinting in human serum (HILIC method)
The metabolite fingerprinting data set used hydrophilic
interaction chromatography (HILIC) [20] which typically
creates broad peaks. Twelve injections of a pooled sample
were used as training set for the parameter optimization and
eleven different injections were used as test set. All parame-
ters which were not chosen for optimization were kept at
their default values. The PPS of the training set increased by
29% from 1,214 to 1,565 and the PPS of the test set
increased by 40% from 1,053 to 1,475. Optimization of the
peak picking parameters finished after four DoEs and took
about four hours. The number of peaks increased from
55,845 to 57,075 in the training set and decreased from
65,851 to 53,205 in the test set. The number of reliable
peaks increased from 6,999 to 8,434 in the training set and
from 7,587 to 7,903 in the test set. The optimized peak
width parameter lay between 32.2 and 95 seconds. Selected
chromatograms, showing the different peak types at distinct
masses obtained from the different example data sets are
shown in Figure 2. The chromatograms in Figure 2a reveal
that the default settings for the peak width parameter can be
too small. This results in an only partial integration of the
peak, whereas the optimized peak width parameter inte-
grates the peak accurately. The optimization of the retention
time correction and grouping parameter finished after five
DoEs and 0.8 hours. RCS of the training set increased ten-
fold by using the optimized settings compared to the RCS of
the training set calculated with the default parameters. In
the test set the increase of RCS was fifteenfold. The number



Table 2 Results of the example data sets

Metabolite fingerprinting Lipidomics Central carbon metabolism

pooled sample injections

training set: 12 4 6

test set: 11 4 6

DoEs peakpicking 4 3 2

DoEs retcor + grouping 5 5 4

time for peakpicking optimization 3.8 h 1.5 h 0.9 h

time for retcor + grouping optimization 0.8 h 0.7 h 0.6 h

overall time 4.6 h 2.2 h 1.5 h

default optimized default optimized default optimized

#peaks

training set: 55,845 57,075 33,298 31,710 24,247 24,230

test set: 65,851 53,205 34,415 32,397 27,539 25,609

#RPa

training set: 6,999 8,433 12,606 14,367 2,710 3,351

test set: 7,587 7,903 12,999 14,594 1,582 1,869

#LIPb

training set: 15,497 11,645 15,245 17,284 11,327 11,490

test set: 11,163 10,855 15,643 17,680 12,646 10,962

PPSc

training set: 1,214 1,565 8,802 14,308 568 881

test set: 1,053 1,475 9,001 14,472 168 238

RCSd

training set: 12.3 144.8 67.8 575.4 92.8 311.8

test set: 9.4 142.4 37.6 580.4 48.1 206.7

#reliable groups

training set: 536 990 3,669 5,343 1,504 2,424

test set: 314 759 1,564 5,639 793 1,855

#non-reliable groups

training set: 2,636 82 3,605 151 1,217 101

test set: 2,740 70 3,248 110 1,150 69

GSe

training set: 109 11,952 3,734 189,057 1,859 58,176

test set: 36 8,230 753 289,076 547 49,870
areliable peaks; blow intensity peaks; cpeak picking score; dretention time correction; score; egrouping score
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of ‘reliable groups’ increased from 536 to 990, the number
of ‘non-reliable groups’ decreased from 2,636 to 82 in the
training set. In the test set the number of ‘reliable groups’
increased from 314 to 759 and the number of ‘non-reliable
groups’ decreased from 2,740 to 70.

Lipidomics (RP-HPLC method)
For the lipidomics data set reversed phase high perform-
ance liquid chromatography (RP-HPLC) [21] was coupled
to a HRMS device. Eight pooled sample injections were
analysed. Four of them were used as training set for the
optimization process and the four remaining measurements
were used as test set. The peak picking parameter ‘noise’
was set to 20,000. All other parameters were kept at their
default values. Optimization of peak picking parameters
was finished after three DoEs, which took 1.5 hours. Com-
paring default to optimized settings the amount of peaks
decreased from 33,298 to about 31,710 in the training set
and from 34,415 to 32,397 in the test set. The number of
RPs increased from 12,606 to 14,367 in the training and
from 12,999 to 14,594 in the test set. PPS of the test set in-
creased by 61%, from 9,001 to 14,472. The increase of PPS



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Selected chromatograms showing the different peak types at well-defined masses obtained from the different data sets. Chromatograms derive
from a) metabolite fingerprinting data set; b) lipidomics data set; c) central carbon metabolism data set. Peaks derived from default parameters are
presented in the left chromatograms and peaks coming from optimized parameters are shown in the chromatograms on the right side, respectively. The
peak area integrated by XCMS is colored red. The m/z range for the chromatogram was chosen from the respective minimum and maximum m/z values
of the particular peak. Comparison of chromatograms a) clearly demonstrate that default peak width parameters were too small for the broad peaks, b)
shows an example where the mass range used in the default settings was too wide and c) illustrate peaks where the default peak width parameters were
too wide.
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achieved in the training set was 63% from 8,802 to 14,308.
The chromatograms in Figure 2b suggest that the default
setting for the ‘ppm’ parameter is too large for peaks gener-
ated by HRMS. The optimized parameter results in an m/z
range of only 1 ppm for the optimized peak, whereas the
default peak spans a range of 9.7 ppm. Parameters for re-
tention time correction and grouping needed 0.7 hours and
five DoEs to finish. RCS increased more than eightfold in
the training set and fifteenfold in the test set. The amount
of ‘non-reliable groups’ decreased from 3,605 to 151 in the
training set and from 3,248 to 110 in the test set. The num-
ber of ‘reliable groups’ increased from 3,669 to 5,343 in the
training set and from 1,564 to 5,639 in the test set.

Central carbon metabolism (IP-RP-HPLC method)
The central carbon metabolism data set utilized a modi-
fied ion pair-reversed phase-high performance liquid
chromatography IP-RP-HPLC [22] method which ex-
hibits an outstanding separation performance, thereby
producing very sharp peaks. All parameters that had not
been optimized were kept at their default values. Six
injections of a pooled sample were used as training set
for parameter optimization and six different injections
were used as test set. Optimization of peak picking fin-
ished after two DoEs and took 0.9 hours. Within the
optimization process, the PPS was increased from 568
achieved with the default parameter settings to 881 in
the training set and from 168 to 238 in the test set. The
chromatograms in Figure 2c show that default settings
for the ‘peakwidth’ parameter are too high for the very
sharp peaks generated by this method. The optimization
of the retention time correction and grouping parame-
ters for the central carbon metabolism data set finished
after four DoEs in 0.6 hours. RCS was more than tripled
from 92.8 to 311.8 in the training set and increased four-
fold from 48.1 to 206.7 in the test set. ‘Non-reliable
Table 3 Peak width parameter settings and resulting peak wi

Metabolite fingerprinting

Default Optimized

‘peakwidth’ parameter [sec] 20-50 32.2-95

mean peak width [sec] 44.2 57.9

median peak width [sec] 40.6 52.2

modal peak width [sec] 38.9 51.3
groups’ decreased from 1,217 to only 101 and ‘reliable
groups’ increased from 1,504 to 2,424 which led to a
highly increased GS in the training set. In the test set
the ‘non-reliable groups’ decreased from 1,150 to 69 and
the ‘reliable groups’ increased from 793 to 1,855.
The total optimization for the metabolite fingerprint-

ing data set took 3.8 hours, the optimization time for
the lipidomics data set took 1.5 hours and the
optimization of the central carbon metabolism data set
needed 0.9 hours. IPO is also intended to be used by in-
experienced users. Therefore, all parameters optimized
by IPO start at their respective default values and in a
fixed range. Experienced users can further reduce the
optimization time by starting with settings closer to their
expected parameter values. In general, the results
showed that IPO successfully optimized peak picking pa-
rameters for data from different LC-methods and differ-
ent kinds of samples. Peaks coming from the IP-RP-
HPLC should be the sharpest of all three studies which
is confirmed by the peak width statistics (Table 3). Also,
observed peak widths for the metabolite fingerprinting
and the lipidomics data sets were in good agreement
with the expected peak widths for the respective LC-
methods. Especially for broader peaks, the optimized pa-
rameters showed a much better peak picking perform-
ance than the default settings.

Conclusions
We introduced the software package IPO, ‘Isotopologue Par-
ameter Optimization’, performing parameter optimization
for the open source R-package XCMS. IPO exploits the
existence of natural, stable 13C isotopes that are ubiquitous
in all biological samples. IPO was applied to LC-HRMS data
from tissue, serum and yeast samples and the results
showed that it is applicable to data from different types of
samples as well as from different LC-MS devices and
dth statistics of the training sets

Lipidomics Central carbon metabolism

Default Optimized Default Optimized

20-50 29.6-80 20-50 10-35

44.6 58.4 27.3 15.6

41.8 54.5 24.4 12.6

41.4 56.8 10.3 5.8
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methods. The optimization time has been remarkable re-
duced by separating optimization for peak picking parame-
ters from optimization for retention time correction and
grouping parameters. IPO is also suitable for XCMS begin-
ners, because the default settings are the start values of the
optimization process.
We recommend a powerful workstation with multiple

processors and cores, which costs only a fraction of the
enormous costs of a modern LC-MS instrument and will
enable the user to exploit the full potential of the LC-MS.
IPO is continuously improved, optimization of add-

itional XCMS methods will be implemented, other DoE
evaluation techniques will be tested and additional identi-
fication of isotopic peaks with the R-package CAMERA
[23] will be made available to further increase the power
of IPO.

Availability and requirements
Project name: IPO
Project home page: https://github.com/glibiseller/IPO
Operating system(s): Platform independent
Programming language: R
Other requirements: xcms, rsm
License: GNU GPL
Any restrictions to use by non-academics: none

Additional files

Additional file 1: Default levels used in first DoE. The file shows the
default levels used by IPO in the first DoE for the different XCMS
methods (Table S1).

Additional file 2: Materials. This file contains a detailed description of
the three data sets and information on the computation platform used
for optimization.

Additional file 3: Response surface models. This file contains the
response surface models of all optimization steps of the three data sets.
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