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Ancestry-informative markers for African Americans based on

the Affymetrix Pan-African genotyping array

Genetic admixture has been utilized as a tool for identifying loci associated with complex

traits and diseases in recently admixed populations such as African Americans. In

particular, admixture mapping is an efficient approach to identifying genetic basis for

those complex diseases with substantial racial or ethnic disparities. Though current

advances in admixture mapping algorithms may utilize the entire panel of SNPs, providing

ancestry-informative markers (AIMs) that can differentiate parental populations and

estimate ancestry proportions in an admixed population may particularly benefit

admixture mapping in studies of limited samples, help identify unsuitable individuals (e.g.,

through genotyping the most informative ancestry markers) before starting large genome-

wide association studies (GWAS), or guide larger scale targeted deep re-sequencing for

determining specific disease-causing variants. Defining panels of AIMs based on

commercial, high-throughput genotyping platforms will facilitate the utilization of these

platforms for simultaneous admixture mapping of complex traits and diseases, in addition

to conventional GWAS. Here, we describe AIMs detected based on the Shannon

Information Content (SIC) or Fst for African Americans with genome-wide coverage that

were selected from ~2.3 million single nucleotide polymorphisms (SNPs) covered by the

Affymetrix Axiom Pan-African array, a newly developed genotyping platform optimized for

individuals of African ancestry.
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Genetic admixture has been utilized as a tool for identifying loci associated with complex traits 

and diseases in recently admixed populations such as African Americans. In particular, admixture

mapping is an efficient approach to identifying genetic basis for those complex diseases with 

substantial racial or ethnic disparities. Though current advances in admixture mapping algorithms

may utilize the entire panel of SNPs, providing ancestry-informative markers (AIMs) that can 

differentiate parental populations and estimate ancestry proportions in an admixed population 

may particularly benefit admixture mapping in studies of limited samples, help identify 

unsuitable individuals (e.g., through genotyping the most informative ancestry markers) before 

starting large genome-wide association studies (GWAS), or guide larger scale targeted deep re-

sequencing for determining specific disease-causing variants. Defining panels of AIMs based on 

commercial, high-throughput genotyping platforms will facilitate the utilization of these 

platforms for simultaneous admixture mapping of complex traits and diseases, in addition to 

conventional GWAS. Here, we describe AIMs detected based on the Shannon Information 

Content (SIC) or Fst for African Americans with genome-wide coverage that were selected from 

~2.3 million single nucleotide polymorphisms (SNPs) covered by the Affymetrix Axiom Pan-

African array, a newly developed genotyping platform optimized for individuals of African 

ancestry. 

Introduction

High throughput genotyping arrays have facilitated genome-wide association studies 

(GWAS) on complex traits (Hindorff et al. 2009) including risks for common, complex diseases 
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and drug response. In contrast to a conventional GWAS in a homogeneous parental populations 

(e.g., Caucasians), admixture mapping or mapping by admixture linkage disequilibrium (MALD) 

has begun to be demonstrated as a powerful tool for identifying disease-causing genetic variants 

in recently admixed populations, such as African Americans that have both West African and 

European American ancestry (McKeigue 2005). For example, recent admixture mapping studies 

have identified loci associated with disease risks such as prostate cancer (Ricks-Santi et al. 2012),

lung cancer (Schwartz et al. 2011), and traits like blood pressure/obesity (Shetty et al. 2012) in 

African Americans. Admixture mapping assumes that near a disease causing genetic variant there

will be enhanced ancestry from the population that has greater risk of getting the disease 

(Patterson et al. 2004). Therefore, by calculating the proportion of ancestry along the genome, 

one could use that information to identify disease causing loci in an admixed population with low

resolution. Subsequent fine mapping restricted to the identified genomic regions may greatly 

increase the power of the study. 

It has been demonstrated that 1,500–2,500 ancestry-informative markers (AIMs) with 

genome-wide coverage would be sufficient (Winkler et al. 2010) to identify the ancestral 

chromosome segments for recently admixed populations. To leverage on the power of admixture 

mapping in African American for identifying disease causing genetic variants that may explain 

health disparities between populations, panels of AIMs have been proposed for commercially-

available high throughput genotyping arrays including the Affymetrix SNP 6.0 and Illumina 1M 

(Chen et al. 2010; Tandon et al. 2011). These genotyping arrays however are likely biased to 

genetic variations detected from Caucasian samples. The Affymetrix Pan-African array, which 

interrogates approximately 2.3 million SNPs, was designed for a much greater coverage of 

genetic variations in African individuals. A panel of AIMs based on the Pan-African array may 

enhance the distinguishing of parental populations as well as improve genome coverage. Recent 
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advances in statistical genetics have begun to allow admixture mapping utilizing the entire panel 

of genotyped SNPs (Baran et al. 2012; Churchhouse & Marchini 2013; Maples et al. 2013), 

however, we reasoned that providing a panel of AIMs may particularly benefit studies of a 

limited sample size, help identify unsuitable individuals by genotyping the most informative 

markers before starting a large GWAS, or guide larger scale targeted re-sequencing projects to 

pinpoint causal variants. We describe here AIMs identified for the Affymetrix Pan-African array 

based on Shannon Information Content (SIC) or Fst for African Americans using the 1000 

Genomes Project (Abecasis et al. 2010) data as references for parental populations. 

Materials and Methods 

SNPs covered on the Pan-African array

The Affymetrix Axiom Genome-Wide Pan AFR Genotyping platform (Pan-African array) 

(Affymetrix, Inc., Santa Clara, California) covers ~2.3 million SNPs optimized for individuals of 

African ancestry. The Pan-African array was designed to offer ≥90% coverage of SNPs on the 

Yoruba genome with minor allele frequency (MAF) greater than 2%. Annotations for the Pan-

African array can be accessed at the Affymetrix website (http://www.affymetrix.com/). As a 

platform optimized for individuals of African individuals, the Pan-African array has been 

extensively validated in African populations from the HapMap Project (Altshuler et al. 2010), 

including the Luhya from western Kenya (LWK), Maasai from eastern Kenya (MWK), Yoruba 

from Ibadan, Nigeria (YRI), and the African Ancestry in the Southwest USA (ASW) (Lu et al. 

2011). This platform offers high genomic coverage (>85%) in admixed populations with West 

African ancestry, thus particularly suitable for genome-wide scans in African American 

individuals (admixture of African and European populations).

Obtaining allele frequency and genetic map distances on parental populations
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Genotypes for 2176716 SNPs covered by the Pan-African array were extracted from the 1000 

Genomes Project (Abecasis et al. 2010) Phase I data for the 85 CEU (Caucasian residents from 

Utah, USA) and 88 YRI unrelated samples, representing the two major parental populations for 

African Americans (Western Africans and Europeans). Genome-wide genetic map distances of 

SNPs for genome assembly GRCh37 (Frazer et al. 2007) were downloaded from the website 

(http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps).

Selection of ancestry-informative markers

We aimed to pick the SNPs that were expected to provide the highest mutual information

content to ancestry or fixation index (i.e., Fst, a measure of population differentiation due to 

genetic structure) in the genome using an iterative procedure, conditional on the observed allele 

frequencies in the 1000 Genomes Project CEU and YRI samples. 

(a) Calculation of mutual information content: Allele frequencies for the CEU and YRI samples 

were used to calculate the Shannon Information Content (SIC) for each SNP using a formula 

from previous studies (Smith et al. 2004; Tandon et al. 2011),

SIC=−∑
i=0

1

(ai0+ai1 ) ln (a i0+ai1)−∑
j=0

1

(a0 j+a1 j ) ln (a0 j+a1 j )+∑
i=0

1

∑
j=0

1

a ij ln (a ij)

, where a00= (1−m) × p
YRI

, a01=(m× p
CEU ) , a10=(1−m ) × (1− p

YRI) , and

a11=m× (1− p
CEU) . Here, pCEU and pYRI are the allele frequencies in the CEU (European) and 

YRI (African) samples, and m is the proportion of European ancestry in African Americans, 

which was set to 0.20 following the same assumption of 20% European ancestry (Tandon et al. 

2011). Notably, SNP selection was found not very sensitive to the choice of m (Smith et al. 

2004). In addition, the Fst was also computed for each of the 2176716 SNPs between the two 

parental populations based on Wright’s approximate formula (Wright 1950),

FST=(HT − H S ) /HT
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, where HT represents expected heterozygosity per locus of the total population and HS represents 

expected heterozygosity of a subpopulation.  

(b) Selection of AIMs: We aimed to detect AIMs that are not packed around certain genomic 

regions due to linkage disequilibrium (LD), thus being more representative of the genome. Since 

LD declines gradually with increased genetic distance (Shifman et al. 2003), we assume each 

SNP is not in LD with distant SNPs more than 0.25 cM (~250 kb) away, similar to what was used

in previous publications (Tandon et al. 2011). We selected AIMs using an iterative procedure for 

each chromosome: 1) SNPs were ranked based on SIC; 2) SNP with the highest SIC was selected

as a candidate AIM; 3) Any SNPs within 0.25 cM or within 250 kb of the selected SNP were 

excluded; 4) Steps 2 and 3 were repeated until no more SNPs left. To avoid densely packed 

markers, no more than 8 candidate AIMs were selected within any 4 cM region. This procedure 

ensured a good coverage of AIMs across the entire genome. The quality of the detected candidate 

AIMs was examined using the build-in data quality checking procedure of ANCESTRYMAP 2.0 

(Patterson et al. 2004) f or extracting top “bad” markers, for which allele counts for the ancestral 

(African and European) genotypes appeared to be grossly inconsistent with counts on the 56 

unrelated ASW samples from 1000 Genome Project (Abecasis et al. 2010). After applying the 

ANCESTRYMAP quality checks, we obtained the final panel of AIMs. We also repeated the 

same selection procedure using Fst to identify a companion panel of AIMs. Supplemental Tables 1

and 2 contain detailed information on the final AIMs. 

Evaluation of the detected AIMs for the Pan-African array

The informativeness of the AIMs was evaluated at each SNP using the ANCESTRYMAP-

generated rpower value, which is a measure of uncertainty in ancestry inference at a given locus. 

Specifically, rpower is the expected value of the squared correlation between inferred and true 

ancestry (Patterson et al. 2004). In addition, proportion of variance explained (PVE) by the first 

principal component (PC) using the detected AIMs on the CEU, YRI, and ASW samples was 
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compared with PVE’s from previously published AIMs (based on Affymetrix SNP 6.0 and 

Illumina 1M arrays) (Tandon et al. 2011) as well as 1000 random sets of SNPs. 

Results and Discussion

Given that the Pan-African array was population-optimized, this platform is expected to 

offer higher coverage of genetic variation for individuals of African ancestry than previous 

platforms mostly designed based on Caucasians. Genotyping using the Affymetrix Pan-African 

array will provide opportunities for performing admixture mapping in African Americans to 

detect genetic variants associated with those traits that exhibit disparities between parental 

populations, for instance certain cancers (Schwartz et al. 2011). The primary result from this 

study was a panel of SNPs based on the Pan-African array. We acknowledge that with recent 

advances in statistical genetics, admixture mapping in African Americans may not rely on a 

limited number of AIMs any more (Baran et al. 2012; Churchhouse & Marchini 2013; Maples et 

al. 2013). We propose that some applications for our detected AIMs could include: 1) to facilitate 

admixture mapping in limited samples; 2) to help identify problematic individuals through 

genotyping some top-ranking AIMs before starting a large GWAS; 3) to guide targeted re-

sequencing projects that may not have genome-wide genotypic data. 

Using an iterative selection algorithm, a total of 6011 candidate AIMs were detected 

based on SIC, which can measure the uncertainty in genome-wide ancestry or ancestry at a given 

locus (Tandon et al. 2011). We further examined the quality of these candidates using the build-in

checking procedure of ANCESTRYMAP (Patterson et al. 2004) and identified a final set of AIMs

with 5995 SNPs based on SIC. We also repeated the same analysis using Fst to identify a 

companion panel of 6012 after ANCESTRYMAP checking from 6034detected candidate SNPs. 
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The selected AIMs with rs numbers, genomic positions, reference alleles, alternative alleles, and 

allele counts in the CEU or YRI samples are shown in supplemental materials. Overall, AIMs 

based on SIC and Fst performed consistently with each other. The average rpower (i.e., average 

ancestry information) of the AIMs based on SIC or Fst was 0.85 (Figure 1A), compared to ~0.81 

for previous AIMs detected for Affymetrix SNP 6.0 and Illumina 1M arrays (Tandon et al. 2011). 

The average proportion of European ancestry in ASW was estimated to be 0.25 and 0.24 and the 

average generations of admixture was estimated to be 5.4 and 5.5 using the AIMs based on SIC 

and Fst, respectively, consistent with previous estimation (Tandon et al. 2011).

The availability of dense genetic variation data from the HapMap Project (HapMap 2003; 

HapMap 2005) allows a genome-wide analysis of population differentiation. In particular, the 

CEU (European) and YRI (African) samples represented the two major parental populations of 

African Americans. Our major criteria of identifying AIMs were designed 1) to enrich SNPs with 

higher information content (or Fst) between the CEU and YRI samples; and 2) to have a 

comprehensive genomic coverage. The genome-wide iterative scan for AIMs based on a genetic 

distance bin in a size of 0.25 cM, guaranteed a comprehensive coverage of the entire human 

genome, as well as limit the possibility that the identified AIMs are in strong LD in a particular 

genomic region, as described in previous publications (Chen et al. 2010; Tandon et al. 2011). The 

final AIMs are those SNPs with the highest SIC (or Fst) separated by at least the distance of 0.25 

cM (~250 kb) between the two parental populations. the detected AIMs were able to recapture the

most prominent population structures by being tested on the combined HapMap CEU, YRI, and 

ASW samples (Figure 1B). A simulation analysis demonstrated that the detected AIMs based on 

the Pan-African array explained substantially higher proportion of variance by the first PCs in the

same population than random sets of SNPs in the human genome (Figure 1C). Though our 

analysis showed that the AIMs detected based on SIC and Fst performed consistently, given some 
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potential problems of Fst, in particular its dependency on within-population diversity (Sherwin 

2010), we generally recommend the use of the final panel of AIMs detected based on SIC. 

The assumption of no LD based on 0.25 cM (~250 kb) could be stringent and cause loss 

of some informative SNPs, given that the average distance of LD decay between SNP pairs is 

around 20-30 kb across diverse populations, with generally shorter distance in African Americans

(Shifman et al. 2003). Nevertheless, this cutoff was chosen to balance between minimizing the 

possibility of LD and the comprehensive genomic coverage of AIMs (Tandon et al. 2011).  

In summary, the Affymetrix Pan-African array provides a population-optimized 

genotyping platform for GWAS in individuals of African ancestry. The genotypic data profiled by

this platform also offers opportunities for admixture mapping in African Americans, a recently 

admixed population, for certain complex traits and disease susceptibilities with disparities 

between parental populations. The AIMs we described in this study represent the most 

informative sets of unlinked markers that can be an important resource to facilitate such 

applications based on this new tool.
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Figure 1

Evaluation anlaysis of ancestry-informative markers.

(A) The rpower distributions for AIMs selected based on SIC and Fst. The average rpower is

0.85 (sd= 0.06) for both lists. (B) Principal components analysis on the 1000 Genomes

Project CEU, YRI and ASW panels (n=85 88, 56 unrelated samples, respectively) using the

AIMs detected based on SIC. (C) Comparison of the proportion of variance explained (PVE) by

the first PCs derived from the CEU, YRI, and ASW samples. The histogram shows the

distribution from 1000 randomly-sampled sets of SNPs according to the number of AIMs

(based on SIC) on each chromosome. Circles denote real PVE observations for each panel of

AIMs: AIMs selected by SIC (5885 SNPs) and Fst (6012 SNPs) from Pan-African array, AIMs

selected from Affymetrix SNP 6.0 (4290 SNPs), and Illumina 1M (4285 SNPs), respectively.
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