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This paper solves the problem of controlling linear continuous-time systems subject to
control signals constrained in magnitude (maybe asymmetrically). A controller design
methodology is proposed, based on using an asymmetric Lyapunov function, that avoids
the discontinuities in the control vector components resulting from the application of a
piecewise linear control law previously proposed. The proposed method gives improved
speed of convergence without discontinuities of the control vector components, respect-
ing always the imposed asymmetric constraints. An example illustrates the approach.
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1. Introduction and notation

Usually, real plants are subject to constrained variables. The most frequent constraints
are of saturation type, that is, limitations on the magnitude of certain variables, usually
the control signal. Hence, the topic of designing control systems that maintain stability
(and performance) in the presence of these constraints is a topic of continuing interest
[7, 8, 12]. There are several approaches proposed in the literature to solve this prob-
lem; particularly successful is the positive invariance concept (see [5, 6] and references
therein). In this approach a dilemma appears between the size of the domain of admissi-
ble initial states and the speed of the asymptotic convergence [1].

Recently, this problem of amelioration of the convergence rate of systems with con-
straints on the control has been studied in [4, 9, 10, 13]. For example, in [13] the prob-
lem is studied for linear systems with symmetrical constrained control using quadratic
Lyapunov functions. In [4] the problem is studied for linear systems with asymmetric
constraints on the control by using a piecewise linear control law computed with an
asymmetric Lyapunov function. Unfortunately, in these previous works, the proposed
control laws induce discontinuities on the control vector components. Effort has been
made to smooth these discontinuities (see [9–11] and references therein). For example,
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2 On the convergence rate of systems with constrained control

in [9] the method developed in [13] is extended to obtain a controller that guarantees
fulfilling the imposed symmetric constraints without any discontinuity on the control
vector components.

The objective of this work is to improve the results of [4] by ensuring that the dynam-
ics of the control evolve without any discontinuity during the evolution of the system. For
this, only two state feedback regulators are calculated: a first regulator gain F0 is computed
such that a large domain of admissible initial states is obtained; then, a second regulator
gain F1 is computed to give good convergence performance. Using an asymmetrical Lya-
punov function, a regulator gain F is calculated evolving smoothly from the initial value
F0 to the final value F1. The resulting control law gives a continuous control vector re-
specting the asymmetric constraints without any saturation. The comparison between
the obtained results and the previous results in [4], using the same example, shows the
interest of this method.

The notation used in this work is as follows.
(i) For vectors x, y ∈Rn,

(1) x ≤ y if and only if xi ≤ yi, i= 1, . . . ,n;
(2) x < y if and only if xi < yi, i= 1, . . . ,n;
(3) x+

i = supi(xi,0);
(4) x−i = supi(−xi,0).

(ii) For two subsets S1,S2 ⊂Rm, S1\S2 = {x ∈Rm | x ∈ S1 and x �∈ S2}.
(iii) For a matrix H ∈Rm×m,

˜H =
[

H1 H2

H2 H1

]

∈R2m×2m,

H1(i, j)=
⎧

⎨

⎩

hi j if i= j,

h+
i j if i �= j,

H2(i, j)=
⎧

⎨

⎩

0 if i= j,

h−i j if i �= j,
1≤ i≤m, 1≤ j ≤m.

(1.1)

(iv) Im is the identity matrix of Rm.
The paper is organized as follows: preliminaries are given in Section 2. Section 3

presents the main results and an illustrative example. Finally, some conclusions are given.

2. Preliminaries

In this section, the studied problem is presented together with the preliminary results on
which this work is based. For this, consider the following linear continuous-time system:

ẋ = Ax+Bu, (2.1)

where x ∈ Rn is the state vector and u ∈ Rm is the control vector. We assume that (2.1)
is stabilizable and that matrix A possesses at least n−m stable eigenvalues. The control
vector u is subject to linear constraints of the form u∈Ω⊂Rm, with

Ω= {u∈Rm|−umin ≤ u≤ umax
}

, (2.2)

where umax and umin are given constant vectors in Rm with positive components.
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Now, consider the state feedback stabilizing control law

u(t)= F0x(t). (2.3)

The control is admissible (i.e., u∈Ω) only if the trajectory of the state remains inside the
polyhedral domain �0, defined as

�0 =�
(

F0,umin,umax
)= {x ∈Rn|−umin ≤ F0x ≤ umax

}

. (2.4)

In order to ensure the admissibility of the control, we must then guarantee that the state
does not leave the domain �0 during the system evolution.

Definition 2.1. A subset � of Rn is said to be positively invariant with respect to a given
system if every trajectory of the system starting inside � does not leave �.

Taking into account (2.3), system (2.1) becomes

ẋ = (A+BF0
)

x (2.5)

which represents the stable system in closed loop (i.e., matrix A+BF0 is Hurwitz) if the
saturations do not occur. Consider the transformation z = F0x, then ż = F0(A+ BF0)x.
If there exists a matrix H0 such that F0(A+BF0)=H0F0, then system (2.5) and domain
(2.4) become, respectively,

ż =H0z, (2.6)

�
(

Im,umin,umax
)= {z ∈Rm|−umin ≤ z ≤ umax

}

. (2.7)

Theorem 2.2 [5]. The function

v(z)=max
i

max

(

z+
i

uimax
,
z−i
uimin

)

(2.8)

with umax > 0 and umin > 0, which is continuous positive definite, is a Lyapunov function of
(2.6), and �(Im,umin,umax)= {z ∈Rm|v(z)≤ 1} is a stability domain of the system (2.6) if
and only if

˜H0U ≤ 0, (2.9)

where

U =
[

umax

umin

]

∈R2m. (2.10)

In order to apply this result to the system (2.1) fulfilling (2.2) and (2.3), one must look
for a couple of matrices (F0,H0) such that the two following relations are satisfied:

F0A+F0BF0 =H0F0,

˜H0U ≤ 0.
(2.11)
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Following the steps of the controller design method in [4], a diagonal matrix H0 is chosen
such that

˜H0U <−εU , (2.12)

where ε is a positive real scalar. The gain matrix F0 is obtained from the resolution of the
equation

XA+XBX =H0X. (2.13)

One can refer to [2–4] for the resolution of this equation. From (2.11), the obtained
regulator ensures that domain (2.4) is positively invariant with respect to system (2.5)
(see [5]).

The control law proposed in [4] uses a gain scheduling approach where N different
controller gains are used. The parameter N is chosen a priori and the rate of decreasing
Lyapunov function is given by

1 < α0 < exp

(

1
N

min
j∈J

Log

(
(

˜F0BU
)

j +
(

˜H0U
)

j
(

˜F0BU
)

j + εUj

))

. (2.14)

Using this expression, the remaining regulator gains are obtained from the following
equation:

Fi = αi0F0, i= 1, . . . ,N. (2.15)

The corresponding matrices Hi, satisfying FiA+FiBFi =HiFi, are given by

Hi =H0 +
(

αi0− 1
)

F0B, (2.16)

and the inequality

˜HiU <−εαi0U (2.17)

is satisfied for i= 1, . . . ,N .
Then, the applied control law is given by

u(t)= Fix(t) (2.18)

which is switched from the gain Fi−1 to the gain Fi when the state crosses inside the
boundaries of the polyhedral domain D(Fi,umin,umax), i = 1, . . . ,N . Then, the resulting
control vector experiences N discontinuities.

In order to overcome the drawback of discontinuities in the control vector, the meth-
odology proposed in this paper considers a feedback law of only one switch because
the obtained results can be extended to smoothen the discontinuity of a controller with
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multiple switches. Since the proposed continuous law guarantees a progressively increas-
ing convergence rate, only the outermost and the innermost polyhedral domains �0 and
�1, corresponding to the feedback gains F0 and F1, are used. The control law starts with
a regulator gain F0 which permits to benefit from a large set of admissible initial states �0

and finishes with a regulator gain F1, which permits to benefit from good convergence
rate performance. Because of the dilemma between the size of the set of admissible states
and the good convergence performance, the closed-loop system obtained with F0 usually
gives bad convergence performance while the set of admissible states �1 is of a small size.

To derive the regulator gains, it is assumed that the regulator gain F1 can be obtained
from F0 as follows:

F1 = μF0, (2.19)

where μ > 1.
The link between μ in this work and α0 in [4] is that

μ= αNo . (2.20)

It is easy to see that �1 ⊂�0 : x ∈�1 implies that −umin ≤ F1x ≤ umax, or equivalently
−umin ≤ μF0x ≤ umax. Dividing by μ and taking into account that μ > 1 gives the result.

It is also easy to see that the corresponding matrix H1 can be obtained from H0 as
follows:

H1 =H0 + (μ− 1)F0B. (2.21)

To show this, consider the two equations

F1A+F1BF1 =H1F1,

F0A+F0BF0 =H0F0,
(2.22)

which are equivalent to

F0A+μF0BF0 =H1F0,

F0A+F0BF0 =H0F0.
(2.23)

Subtracting the second equation from the first and using the fact that the obtained solu-
tion of (2.13) is of full rank gives the result.

Until now, matrices H0, H1, F0, and F1 are obtained. Furthermore, from (2.12) the
positive invariance property of �0 is obtained. Since parameter μ is chosen such that

˜H1U <−εμU , (2.24)

the positive invariance property of domain �1 is also guaranteed.
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3. Main results

In this section, the main results of this paper are presented. The idea consists in proposing
a different technique to compute the rate α, which is now considered time-varying in such
a way that the discontinuity of the piecewise controller proposed in the previous work is
avoided.

Based on the previous development, this work can be accomplished in two steps: from
the reasoning developed in the introduction, the first step is completed. It consists in find-
ing H0, ε, F0, H1, μ, and F1 satisfying all the necessary requirements. In the second step,
starting with the regulator gain F0, the control gain evolves continuously until finishing
the regulator gain F1. That is, at each time, the regulator must depend upon the state in
the following way:

F = α
(

x(t)
)

F0, (3.1)

where

1≤ α
(

x(t)
)≤ μ. (3.2)

Using the control law

u(t)= Fx(t), (3.3)

with (3.1), the closed-loop system is given by

ẋ(t)= (A+BF)x(t)= (A+α
(

x(t)
)

BF0
)

x(t)=Ac(x)x(t). (3.4)

Recall that the objective is to make domain � =�(F,umin,umax) positively invariant at
any time. Thus, one has to look for a matrix H satisfying the following two relations at
any time:

FA+FBF =HF,

˜HU ≤ 0.
(3.5)

As in (2.21), matrix H can be obtained as follows:

H =H0 +
(

α
(

x(t)
)− 1

)

F0B. (3.6)

Lemma 3.1. If matrix H is obtained from (3.6) such that relations (2.12) and (2.24) are
satisfied, then ˜HU < 0 for all t.

Proof. Since H0 is a given diagonal matrix, according to (2.12), one can write

˜H = ˜H0 +
(

α
(

x(t)
)− 1

)

˜F0B. (3.7)
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If ˜F0BU ≤−εU , then the result holds for every α. Otherwise, there exists a set of indices
J ⊂ [1, . . . ,2m] such that (˜F0BU)i > −εUi for i ∈ J . In this case, by virtue of (2.21) and
(2.24), one can write

˜H1U = ˜H0U + (μ− 1)˜F0BU <−εμU. (3.8)

This implies that

μ
(

˜F0BU + εU
)

< ˜F0BU − ˜H0U. (3.9)

Then μ satisfies the following inequality:

μ < min
i∈J

((

˜F0BU
)

i−
(

˜H0U
)

i
(

˜F0BU
)

i + εUi

)

. (3.10)

Taking account of (3.2) one can write

α < min
i∈J

((

˜F0BU
)

i−
(

˜H0U
)

i
(

˜F0BU
)

i + εUi

)

. (3.11)

Hence, the last inequality can also equivalently be written as follows:

˜H0U + (α− 1)˜F0BU <−εμU. (3.12)

Taking into account (3.7), one obtains

˜HU <−εαU < 0. (3.13)

Thus, the result is proved. �

Remark 3.2. For F0 solution of (2.13) with H0 satisfying (2.12), from relations (2.19) and
(3.1), the obtained feedback gain matrices F1 = μF0 and F = α(x)F0 have the same kernel
�, which is spanned by the eigenvectors associated to the stable eigenvalues of the open-
loop system. Consequently, all the obtained domains are nested and domain �1 is the
smallest set such that �⊂�1 (see [4]).

Consider the following function:

w(x)=max
i

max

((

F0x
)+
i

uimax
,

(

F0x
)−
i

uimin

)

, (3.14)

and the subset �=�0\�1.
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Lemma 3.3. Function w(x) given by (3.14) is a Lyapunov function of system (2.1) with
(2.24), (3.2), and (3.3) on the subset �, with matrix F0 solution of (2.13) and matrix H0

given according to (2.12).

Proof. It is clear that w(x) is a positive definite function on the set �. Furthermore,
w(x) > 0 for all x ∈ S because � does not contain the kernel of matrix F0. To complete the
proof, we must show that function w(x) is decreasing along the trajectories of the system.
Following [5], we compute the directional derivative of w(x), that is,

ẇ(x)= dw(x)
dt

= lim
h→0+

1
h

[

w
(

x+hAc(x)x
)−w(x)

]

. (3.15)

Substituting function w(x) by its expression (3.14), it follows that

ẇ(x)= lim
h→0+

1
h

[

max
i

max

([

F0
(

x+hAc(x)x
)]+

i

uimax
,

[

F0
(

x+hAc(x)x
)]−

i

uimin

)

−w(x)

]

. (3.16)

Recall that matrix H satisfies (3.6). Then one can obtain that

F0(A+BF)= F0A+αF0BF0

= F0A+F0BF0 + (α− 1)F0BF0

=H0F0 + (α− 1)F0BF0

= (H0 + (α− 1)F0B
)

F0

=HF0.

(3.17)

Equation (3.17) leads to the following:

F0
[

x+hAc(x)x
]= (F0 +hF0A+hF0BF

)

x = (F0 +hHF0
)

x = (Im +hH
)

F0x. (3.18)

Denoting C = Im +hH , then

ẇ(x)= lim
h→0+

1
h

[

max
i

max

((

CF0x
)+
i

uimax
,

(

CF0x
)−
i

uimin

)

−w(x)

]

. (3.19)

On the other hand, if (3.13) is satisfied, one can write

−umin ≤ Fx ≤ umax. (3.20)
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Taking account of (3.1) and (3.2), these inequalities imply that

−umin ≤ F0x ≤ umax. (3.21)

Following the same steps as in [5], one obtains that

ẇ(x)≤max
i

max

[(

H1umax +H2umin
)

i

uimax
w(x),

(

H2umax +H1umin
)

i

uimin

w(x)

]

. (3.22)

By virtue of (3.13), it follows that

H1umax +H2umin ≤−εαumax,

H2umax +H1umin ≤−εαumin,
(3.23)

which leads to

ẇ(x)≤−εαw(x) < 0. (3.24)

The proof is then completed. �

Since the main objective remains to smoothen the discontinuities on the control, one
can impose that the control switches continuously. Thus, the proposed idea is to compute
the gain feedback matrices from the following lemma.

Lemma 3.4. Consider system (2.1) with H0 satisfying (2.12) and H1 satisfying (2.24), if the
control law is given by (3.1) with the scalar α(t) chosen as follows:

α
(

x(t)
)= 1

w
(

x(t)
) , (3.25)

then
(i) the scalar α(t) is strictly time increasing while x ∈�,

(ii) the dynamics of the system are improved continuously through the nested domains,
(iii) the constraints on the control are respected with neither saturation nor discontinuity

on the control vector components.

Proof. The first item follows from the fact that w(x) is a Lyapunov function on �. The
second item follows from the decreasing rate of w(x). The third item is also true be-
cause ˜HU ≤−εαU according to the following: consider the transformation z = F0x, then,
ż(t)= F0(A+BF)x(t). Taking account of (3.17), the dynamic of the new system is given
by ż(t) =Hx(t) while the set �0 becomes �z =�{Im,umin,umax}. Condition ˜HU ≤ 0 is
the necessary and sufficient condition for the set �z to be positively invariant with re-
spect to the new system. Since the scalar α≥ 1, then the set �0 is positively invariant with
respect to system in closed-loop (3.4), that is, the control is always admissible. �
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From the previous lemmas, we can give the following result.

Theorem 3.5. System (2.1) is asymptotically stable using the control law (3.3) with (2.12),
(2.24), (3.1), (3.14), and (3.25). Moreover, every trajectory starting from xo ∈�0 converges
to the origin with neither saturation nor discontinuity of the control vector components.

Proof. Let � =�1\�, then �0 can be decomposed as follows:

�0 =�
⋃

�
⋃

�. (3.26)

If the state is inside � then, from the Lyapunov function properties, the trajectory will
converge to the set �. �

Remark 3.6. (1) From the previous development, the convergence rate α(x) increases
continuously throughout the set � but remains always bounded by μ. This coefficient
is computed from (2.14), (2.20), and the necessary and sufficient condition (2.24) guar-
anteeing the positive invariance property of the set �1. However, from the proof of this
result, if ˜F0BU ≤ −εU , then �1 is positively invariant for every μ, which leads to a free
choice of the convergence rate. That is, �1 can be reduced to the kernel of F0. Once ma-
trix F0 and the scalar μ are computed, the strategy to follow is to use the controller gain
F = α(x)F0 until the scalar α(x) reaches μ. Then, the gain switches to a static gain F1,
leading to the asymptotic stability of the system inside the set �1.

(2) From the expression of w(x(t)), suppose that the value of w(x(t∗)) at the instant
t∗ is obtained from the index j, that is,

w
(

x(t∗)
)=

(

F0x(t∗)
)

j

q j
, (3.27)

where q can take umin or umax as value. Then, the control vector at time t∗ is given by

u(t∗)= 1
w
(

x(t∗)
)F0x(t∗). (3.28)

The jth component of u(t∗) is equal to qj , and this is true for every t∗. In conclusion,
during the evolution of the system inside domain �, always one of the control compo-
nents takes its maximal admissible value, improving the convergence of the process.

(3) The approach developed in [9] solves the problem for linear continuous-time sys-
tems with symmetrical constraints on the control vector using quadratic Lyapunov func-
tions. The approach presented here treats the asymmetrical case which is more convenient
to the real applications, in this case, asymmetrical Lyapunov functions and the positive
invariance concept are used.
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All the steps of the proposed methodology are summarized in the following algorithm.

Algorithm 3.7.

Step 1. Verify that the system matrix A possesses at least (n−m) stable eigenvalues.

Step 2. Choose matrix H0 and ε such that (2.12) is satisfied; and solve (2.13) to obtain F0.

Step 3. Compute μ according to (2.14), (2.20), and (2.24) (see [4] for more details).

Step 4. Start the closed-loop system with the regulator gain F0 and change it to F = α(x)F0

according to (3.25) while the state is inside the set �. When α reaches μ, the controller
gain becomes F1 = μF0 leading to the asymptotic stability of the system inside the set �1.

In order to illustrate the different properties of the obtained controller with the pro-
posed method, we consider the example studied in [4] in order to compare the results of
the two controller designs.

Example 3.8. Consider a continuous-time system given by (2.1) with the following data:

A=

⎡

⎢

⎢

⎢

⎢

⎣

1 −2 −3

0.45 −4 4

2 −0.9 15

⎤

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎣

1 0.2

0.3 −1

0 −0.5

⎤

⎥

⎥

⎥

⎥

⎦

,

umin =
[

7.1 8
]T

, umax =
[

4 1
]T

, U =
[

4 1 7.1 8
]T

.

(3.29)

In this case m= 2 and n= 3, and the spectrum of the system matrix A is

σ(A)= {1.5046,14.2937,−3.7983}. (3.30)

This system possesses one stable eigenvalue (because n−m= 1). As in [4], we choose the
assigned spectrum of the system in closed loop to be

∧= {−3.7983 −1 −1.1}. (3.31)

Solving (2.13) and taking ε = 0.2 and N = 3, we obtain α0 = 1.114. This means that, in
the proposed method, the corresponding scalar μ= (1.114)3.

Figure 3.1 plots the components of the state and the control vectors for the following
three situations:

(1) using just F0 without any change of regulator;
(2) using the controller designed in [4];
(3) using the controller of the proposed method.
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Figure 3.1. Evolution of states and controls.
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It is clear that with the proposed method, the convergence rate of the closed-loop system
is improved with neither saturation nor discontinuity on the components of the control
vector. Furthermore, the first component of the control vector takes (umax)1 = 4 during
the evolution of the process inside �, according to the second item of Remark 3.6.

4. Conclusion

In this work, a new controller design methodology has been proposed to improve the
convergence rate of a linear continuous-time system with asymmetric constraints on its
control vector. The obtained regulator also permits to benefit from a large domain of
admissible state and avoids discontinuities and saturations of the control vector. An illus-
trative example shows the improvement obtained with the proposed method, compared
with previous approaches.
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