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This paper presents a newnonlocal cost aggregationmethod for stereomatching.Theminimum spanning tree (MST) employs color
difference as the sole component to build the weight function, which often leads to failure in achieving satisfactory results in some
boundary regions with similar color distributions. In this paper, amodified initial cost is used.The erroneous pixels are often caused
by two pixels from object and background, which have similar color distribution. And then inner color correlation is employed as
a new component of the weight function, which is determined to effectively eliminate them. Besides, the segmentation method
of the tree structure is also improved. Thus, a more robust and reasonable tree structure is developed. The proposed method was
tested on Middlebury datasets. As can be expected, experimental results show that the proposed method outperforms the classical
nonlocal methods.

1. Introduction

Dense two-frame stereo matching is one of the most exten-
sively researched topics in machine vision. Finding corre-
sponding points in two ormore images is themost important
progress. After their disparities are computed, the results are
used to distinguish the objects and background. Moreover,
the depth information arises from the obtaineddisparitymap.
Scharstein and Szeliski [1] performed the following four steps:

(1) Cost computation
(2) Cost aggregation
(3) Disparity computation
(4) Disparity refinement

Additionally, they separated stereo matching algorithms
into local methods and global methods. On the one hand, in
local methods, they require cost aggregation, which ensures
that the disparity between pixels is more accurate and specific
than making the calculation with only one pixel. Therefore,
in local methods, the support windows of cost aggregation

for each pixel are significant. On the other hand, global
methods construct a global energy function, and then the
matching problem can be replaced by optimization. In these
methods, a global energy function always consists of data and
a smoothness item.The formermeasures thematching degree
of the guidance image and the disparity function. However,
the latter is capable of embodying the constraint of the
definition model. An important problem for these methods,
however, is to find the balance. It is different to obtain the
perfect matching result between both measures. A number
of global methods have been developed such as dynamic
programming [2], graph cut [3], and belief propagation [4].

The semiglobalmatching (SGM) algorithmbyHirschmüller
[5] plays a good trade between matching accuracy and
speed. SGM performs energy minimization along several 1D
paths across the image and, thus, approximates the otherwise
two-dimensional NP-complete energy minimization prob-
lem. However, high computational complexity and memory
demand are a challenge for fast implementations. SGMcan be
implemented relatively efficiently by parallelization schemes.
Real-time designs are possible and have been reported for
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Figure 1:The support regions of cost aggregation.The red circle denotes the central pixel, and the red squares denote the pixels in the support
region. The blue pixels are irrelevant. (a) Fixed support window; (b) cross-based support window; and (c) tree structure.

CPU and GPU systems [6]. There also exist some real-
time embedded system designs, for example, on FPGA [7].
Schumacher and Greiner designed a higher data throughput
FPGA architecture for SGM [8].

As for local methods, the problem in finding the cor-
respondence of pixel 𝑝 and pixel 𝑝 can be concluded as a
similarity comparison of the two local patches, which exist
around 𝑝 and 𝑝, respectively [9]. Hence, the problem of
finding the correspondence of two pixels is how to compute
the cost value about two patches surrounded. Since then,
it requires gathering the cost of each pixel during the cost
aggregation procedure. Yoon and Kweon [10] proposed an
adaptive support weight (ASW) method, which has higher
matching accuracy but low efficiency. They use large support
windows for robust cost aggregation which causes a huge
computational burden [11] and fails to obtain satisfactory
results on large planar surfaces.

For this reason, to obtain accurate results, the matching
windows with an appropriate size and shape should be
selected. However, the fixed windows method (shown in
Figure 1(a)) is restrictive. It may result in incorrect matching
in low-texture areas if the support windows are not large
enough, and the windows break the boundaries between the
object and background to influence the validity of the depth
discontinuity regions [12].

To this end, many methods to construct matching win-
dows have been proposed recently. For instance, Qu et al.
[13] presented an algorithm that filters the inapposite pixels
around the matching point by using the color similarity of
the pixels around a central matching point. This algorithm
finally acquires the appropriate pixels that construct the
adaptive support windows, which are helpful to the matching
point. Zhang et al. [14] also proposed a cross-based structure
(Figure 1(b)) and constructed it in the form of adaptive sup-
port windows by comparing the color similarity around the
adjacent pixels. Bothmethods calculate the disparity of pixels
with the assistance of adaptive support windows, whichmake
the operationsmore specific and suitable than the approaches
using a predefined fixed-size window. These computations,
however, are dependent on the construction of each sup-
port window. And the time consumption caused by cost
aggregation still does not satisfy the real-time requirement.
Therefore,Mei et al. [11] designed an accurate stereomatching
system by using an accelerated CUDA implementation on the

basis of the previous proposed methods, which significantly
improved the efficiency of the algorithm under the help of
hardware.

Recently, Yang [15] proposed a nonlocal cost aggregation
(NLCA) method and then relied on it to perform tree-based
filtering [16].TheNLCA algorithm is a novel cost aggregation
method on a tree structure instead of using support windows.
It also has been demonstrated to outperform the tradition of
cost aggregation methods on support windows in terms of
both speed and accuracy. In the NLCA algorithm, the nodes
of the tree are all the image pixels, and the edges are all the
edges between the nearest neighboring pixels. The similarity
between any two pixels is decided by their shortest distance
on the tree. All the pixels are connected to make a tree as
shown in Figure 1(c), each node is aggregated only with its
parents and children directly, and then every node on the
tree makes a contribution to the final results. Hence, both
the accuracy and the efficiency have been improved in this
method. Nevertheless, this method does not perform well
when the scene is composed of boundaries between object
and background areas with similar color distribution because
it considers color correlation as the only component of the
weight function.

Mei et al. [17] proposed segment-tree cost aggregation
(STCA) that segments the guidance image into several
independent trees and then independent segment graphs
are linked to form the segment-tree structure. In addition,
they selected initial depth as a new component when com-
puting the weight function. This method involves a new
process; it leads to consistent scene segmentation; and only
one judgement condition is adopted during the three-step
image segmentation process. More recently, a cross-scale
framework which unified aggregated based algorithms was
also proposed [18]. With the proposed color-depth weight,
Peng et al. [19] further iteratively rebuilt the tree to improve
the matching efficiency in textureless regions. Besides, based
on a minimum spanning tree, Pham et al. [20] proposed
a robust nonlocal stereo matching algorithm that improves
the performance of nonlocal approaches for outdoor driving
images.

In this paper, we propose an improved nonlocal cost
aggregation algorithm that modifies the original algorithm
in both computational cost and aggregation. The additional
vertical gradient will be used as one of the components
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to calculate the initial cost of each pixel. We also employ
a known function named 𝐺𝑒𝑚𝑒𝑛 − 𝑀𝑐𝐶𝑙𝑢𝑟𝑒 [21] to deal
with outliers. Furthermore, we add the inner correlations
and mix them with color correlation. And then we compute
the weight function with a mixture of both correlations
together. Moreover, when segmenting the guidance image
more reasonably is under consideration, we also try to
provide a new segmentation method with brand.

We evaluate our proposed method on standard and extra
Middlebury datasets and compare our method with ST and
MST. Experimental results show that ourmethod can achieve
acceptable results when it is in the process of computing
the accuracy of disparity, especially in some representative
regions. The average number of erroneous pixels around
discontinuous regions can be reduced efficiently while the
disparities of flat regions becomemore stable. Comparedwith
NLCA and STCA, a performance evaluation on Middlebury
datasets shows that the proposed method has higher correct
matching rate. In our method, the percentage of matching
error declined to between 5% and 15%. Additionally, the
computational cost of the new segmentation method can be
ignored usually, while only the cost from the inner color
correlation which was employed in our cost aggregation
procedure also has a weak impact on the computational
complexity. In this method, the computational complexity
is the same as color correlation in terms of magnitude.
Therefore, the total computational complexity retains the
samemagnitude as the STCA algorithm but slightly improves
the result.

The main contribution of this paper is to improve the
original nonlocal cost aggregationmethodwith the following
advantages:

(1) It has higher accuracy by adding the vertical gra-
dient as one of the components in the process of
cost computation. It is proved to be better in some
discontinuous areas. Its initial value is more stable
with the 𝐺𝑒𝑚𝑒𝑛 −𝑀𝑐𝐶𝑙𝑢𝑟𝑒 function.

(2) Inner color correlation is employed in the computa-
tion of the weight function to make constructing a
tree structure more robust and reasonable.

(3) The segmentation method of STCA is improved and
it achieves a better result. Moreover, irrelevant pixels
contribute less to each other.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce related work on local methods. Then,
our proposed improved method is described in Section 3.
Section 4describes and analyzes the experimental results, and
Section 5 discusses setting the parameters. Finally, we provide
conclusion in Section 6.

2. Related Work

Cost aggregation, which consists of constructing support
regions and aggregating the disparity for each pixel within
those support regions, is one of the important processes in
stereo matching. The efficiency and effectiveness rely on the
used aggregation method; therefore, they are different from

each other. In this section, we review the related work on cost
aggregation, especially on the traditional local methods and
nonlocal cost aggregation methods based on tree structure.

2.1. The Traditional Local Methods. The stationary support
windows with a stationary weight for each pixel are used
by the simplest local method of cost aggregation. However,
note that thismethod fails inmany specific regions, including
occlusion regions and low-textured areas. Furthermore, this
method is unable to achieve decent robustness and its
matching accuracy falls well short of the ideal result. To
resolve this dilemma, there are usually two approaches: (1)
make the fixed support window alterable using shiftable
windows, multiple windows [22], or variable windows [23,
24] or (2) concentrate on varying the weights to achieve
excellent matching accuracy.

The algorithms based on adaptive weight consider every
pixel in the support windows as a unique unit and calculate
weight for the central point by themselves.The pixel will have
a dramatic effect on the final result only if there is a cost value
which is similar to the central point. Hence, every pixel is able
to receive proper contributions from all the other neighbor-
ing pixels. This approach blurs the boundaries between local
methods and global methods due to its remarkable accuracy
and the obvious increase of computational cost.

Yoon and Kweon [10] first proposed an adaptive weight
method and Gu et al. [25] further enhanced their method
by introducing rank transform and disparity refinement.
Tombari et al. [26] obtained the cost value after using the
Meanshift [27] algorithm to segment the image, which revises
ASW algorithm performance calamitously in repetitive tex-
ture regions and discontinuous regions. Hosni et al. [28]
performed connectivity by using the geodesic distance trans-
form; nevertheless, the computational efficiency of their
strategy still has similar efficiency to others.

2.2. Nonlocal Cost Aggregation Based on Tree Structure. Even
though great progress has beenmade in local algorithms, they
still aggregate pixels into local regions. As mentioned above,
a nonlocal cost aggregation (NLCA) method has been pro-
posed that breaks through the boundaries of local and global
methods. This method transforms the guidance images into
a graph and constructs a tree structure so that all the image
pixels become the nodes of the tree. Before aggregating, a
minimum spanning tree (MST) must be constructed. The
nodes attached to edges with the lowest weights (calculated
by differences in color distribution process) are connected to
one another until all the pixels are finally included in the tree.
It is an important step, that is, to convert the guidance image
into a cost tree after all the pixels have been connected.Then,
the whole process is separated into three steps:

(1) Traversing the cost tree
(2) Assigning an appropriate value to each node
(3) Calculating each node’s disparity level with its rela-

tives

After constructing the tree structure, the aggregation
costs can be efficiently computed by executing a tree filter,
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which traces the MST from the leaf nodes to the root nodes
and from the root nodes to the leaf nodes. Hence, the
aggregation is complete after only two trees traverse, and
then any pixel receives proper contributions from every node
in the constructed tree (more or less). Based on the tree
structure, some effective disparity refinement methods are
proposed as follows.

Chen et al. [29] improved the NLCA by adding depth
information in theweight function, which enhances the effect
of regions around the border. Mei et al. [17] proposed a
new segment-tree (ST) method that divides the construction
of the tree structure into two rounds. In the first round, it
combines subtrees in the homogeneous regions, and it also
keeps those subtrees that belong to different regions separate
from each other if they break the predefined equation.
In the second round, to ensure that the different regions
have little impact on each other, it combines the remaining
subtrees with a penalty value. However, the segmentation
performance is not robust because the segmentation equation
is extremely ordinary. Therefore, the performance of this
method falls short of expectations.

3. Our Proposed Method

Our work is directly motivated by the above two nonlocal
cost aggregationmethods.We further improve thesemethods
during cost computation and tree construction process,
respectively. We include the vertical gradient as a new com-
ponent in the cost computation. On the other hand, due to its
stability and versatility, inner color correlation is employed
instead of using a single color component. Moreover, we
modify the structure of the segment tree, which improves
its validity and robustness. In this section, we divide our
methods into five parts as follows:

(1) Cost computation
(2) Tree construction
(3) Cost aggregation
(4) Disparity computation and refinement
(5) Computation complexity
More details can be found in the following subsections.

3.1. Cost Computation. Traditional nonlocal methods are
considered to employ the truncated absolute difference of the
color and the horizontal gradient as the initial cost. However,
the performance of this cost measurement is unstable in
marginal areas. Hence, we decided to employ the vertical
gradient to make the cost measurement reveal more detailed
description of the reference images. We compute the indi-
vidual cost values 𝐶𝐴𝐷(𝑝, 𝑑), 𝐶𝐺𝐷𝑥(𝑝, 𝑑), and 𝐶𝐺𝐷𝑦(𝑝, 𝑑)
primarily for a pixel 𝑝 = (𝑥, 𝑦) in the guidance image
with a disparity level 𝑑. Let 𝐼𝑖 denote RGB color component.𝐶𝐴𝐷(𝑝, 𝑑) is defined as the average absolute difference of 𝑝
and its relevant pixel 𝑝𝑑 in the 𝑅𝐺𝐵 channel (as shown in
(1)):

𝐶𝐴𝐷 (𝑝, 𝑑) = 13 ∑
𝑖=𝑅,𝐺,𝐵

𝐼Left𝑖 (𝑝) − 𝐼Right𝑖 (𝑝𝑑) . (1)

Then, we compute the gradient cost values 𝐶𝐺𝐷𝑥(𝑝, 𝑑) and𝐶𝐺𝐷𝑦(𝑝, 𝑑) using (2) and (3), respectively. The equations can
be designed as follows:

𝐶𝐺𝐷𝑥 (𝑝, 𝑑) = 𝑥𝐼Left (𝑝) − 𝑥𝐼Right (𝑝𝑑) , (2)

𝐶𝐺𝐷𝑦 (𝑝, 𝑑) = 𝑦𝐼Left (𝑝) − 𝑦𝐼Right (𝑝𝑑) . (3)

In addition, our proposed method works pretty well when
truncated values are used for discarding the extremum of the
initial cost. However, the improvement this method yields is
not obvious. Therefore, we employ the 𝐺𝑒𝑚𝑒𝑛 − 𝑀𝑐𝐶𝑙𝑢𝑟𝑒
function to handle the exception values as shown in

𝐶tran𝑐 = 𝐶2init𝑐𝐶2init𝑐 + 𝜀2𝑐 ,

𝐶tran𝑔 =
𝐶2init𝑔𝐶2init𝑔 + 𝜀2𝑔 ,

(4)

where 𝐶tran𝑐 and 𝐶init𝑐 denote the final and initial cost values
of the color, respectively. And then let𝐶tran𝑔 and𝐶init𝑔 denote
the final and initial cost values of the gradient, respectively.
In addition, 𝜀𝑐 and 𝜀𝑔 are user-specified parameters for
adjustment.The former is related to the color adjustment and
the latter is related to adjustments on behalf of the gradient.𝜀𝑐 is set to 7, and 𝜀𝑔 is set to 2 in our experiments.The effect of
this function declines smoothlywhen the initial cost reaches a
certain value and the final cost value converges to 1 under the
control of 𝜀. So, by using three cost components asmentioned
above together, the final initial cost value can be expressed as
the following equation:

𝐶 (𝑝, 𝑑) = 𝛼 ⋅ 𝐶𝐴𝐷 (𝑝, 𝑑) + 𝛽 ⋅ 𝐶𝐺𝐷𝑦 (𝑝, 𝑑)
+ (1 − 𝛼 − 𝛽) ⋅ 𝐶𝐺𝐷𝑥 (𝑝, 𝑑) ,

(5)

where 𝛼 and 𝛽 are the weights for each component. Figure 2
shows a comparison between the traditional cost computa-
tion and our method, which demonstrates the improvement
after adding the discontinuous regions.

3.2. Tree Construction. According to Yang’s contribution [15],
we treat the guidance image 𝐼 as a graph 𝐺 = (𝑉, 𝐸) in
this paper, where each node denotes the corresponding pixel
in 𝐼 and each edge represents the weight that connects two
neighboring nodes. Accordingly, a flow chart shows how to
construct our tree structure in Figure 3.

Theweight𝑊𝑒 of an edge 𝑒 is determinedwith its conjoint
nodes 𝑝 and 𝑞; this process can be described as follows:

𝑊𝑒 = 𝜃In ⋅ 𝐼In (𝑝) − 𝐼In (𝑞) + (1 − 𝜃In)
⋅ 𝐼 (𝑝) − 𝐼 (𝑞) , (6)

where 𝜃In is the predefined weight and is set to 0.2 in this
paper. 𝐼In denotes the inner color correlation, which is shown
in

𝐼In = [𝐼𝑅𝑡𝐺, 𝐼𝐺𝑡𝐵, 𝐼𝐵𝑡𝑅] . (7)
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(a) (b) (c) (d)

Figure 2: Cost measure comparison. (a)The input image; the black boxes express the target areas. (b) Insets of target area; (c) and (d) denote
the results of the traditional cost measure and our method, respectively.
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Figure 3: A flow chart showing the tree construction steps.

The components with a pixel 𝑝(𝑥, 𝑦) of 𝐼In are specifically
expressed as follows:

𝐼𝑅𝑡𝐺 = 𝐼𝑅 (𝑥, 𝑦) − 𝐼𝐺 (𝑥, 𝑦) ,
𝐼𝐺𝑡𝐵 = 𝐼𝐺 (𝑥, 𝑦) − 𝐼𝐵 (𝑥, 𝑦) ,
𝐼𝐵𝑡𝑅 = 𝐼𝐵 (𝑥, 𝑦) − 𝐼𝑅 (𝑥, 𝑦) .

(8)

Then, the edges in 𝐸 are sorted in an ascending order
according to their weights. And then the subtrees are created
for each node in 𝑉. Every node 𝑝 has one subtree 𝑇𝑝. Finally,
we traverse the sequence of edges, and then the subtrees 𝑇𝑝
and 𝑇𝑞 are merged into bigger groups only if the edge weight
should satisfy

𝑤𝑒𝑖 ≤ min((max (𝑤𝑒𝑇𝑝 ) + 𝜏𝑇𝑝) ,

(max (𝑤𝑒𝑇𝑞) + 𝜏𝑇𝑞)) , 𝑤𝑒𝑖 < 𝑤𝑒Avg ,

𝑤𝑒𝑖 ≤ min((𝑤𝑒Avg + 𝜏𝑇𝑝) , (𝑤𝑒Avg + 𝜏𝑇𝑞)) ,
𝑤𝑒𝑖 ≥ 𝑤𝑒Avg ,

(9)

where𝑤𝑒𝑖 denotes the weight of edge 𝑒𝑖 that connects the two
nodes 𝑝 and 𝑞. 𝑤𝑒𝑇𝑝 and 𝑤𝑒𝑇𝑞 denote the weight sequence of
edges in subtrees 𝑇𝑝 and 𝑇𝑞, respectively. 𝑤𝑒Avg denotes the
average weight of all the edges. 𝜏 is a predefined parameter.
We employ 𝑤𝑒Avg and divide the equation into two cases,
which guarantees that the constraint conditionwill not be lost
in those boundary regions with high weights and makes the
segmentation of the tree more precise and robust.

After traversing all the edges, a large number of subtrees
are merged with each other and changed into some new
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Figure 4: The tree filter for cost aggregation; 𝑝 denotes the matching pixel. (a) Leaves to root pass; (b) root to leaves pass.

subtrees that have a bigger structure but are small in quantity.
Note that the integrated graph 𝐼 has been segmented into
several smaller pieces. We then traverse the edges once again
and merge the rest of the subtrees. Meanwhile, we add a
penalty value to the weight of edges to ensure that boundary
regions do not interact with each other. Finally, all the nodes
are constructed into a segment tree 𝑇, and there is only one
path between any two nodes in 𝑇. The segment tree 𝑇 is used
in aggregating the final cost value.

3.3. Cost Aggregation. The nonlocal cost aggregationmethod
is a linear-timemethod inwhich the computational complex-
ity is extremely low. We employ a weighting function 𝑆(𝑝, 𝑞)
to compute the contribution from pixel 𝑞 to 𝑝; its function is
decided as follows:

𝑆 (𝑝, 𝑞) = exp(−𝐷 (𝑝, 𝑞)
𝜎 ) , (10)

where 𝐷(𝑝, 𝑞) denotes the distance from 𝑝 to 𝑞 in the tree
structure that relates to (6) and𝜎 is a predefinedparameter for
adjustment. Because of the otherness of our initial matching
cost, 𝜎 is set to 0.08 in our experiments, and the setting of 𝜎
will be discussed in Section 5. Let𝐶𝑑(𝑝) denote the cost value
for pixel𝑝 at disparity level𝑑; the aggregated cost value𝐶𝐴𝑑 (𝑝)
is computed as follows:

𝐶𝐴𝑑 (𝑝) = ∑
𝑞∈𝐼

𝑆 (𝑝, 𝑞) ⋅ 𝐶𝑑 (𝑞) , (11)

where 𝐼 denotes the whole graph and therefore 𝐶𝐴𝑑 (𝑝) is
aggregated with all the nodes in the graph 𝐼. Yang employs
a tree filter to compute the cost aggregation that traverses the
tree structure from leaves to root and root to leaves [15], as
shown in Figure 4. A node is affected by all the other nodes
in the segment tree 𝑇 but aggregates with only its children
and parents. For a pixel 𝑝, the aggregated value is calculated
as follows:

𝐶𝐴↑
𝑑

(𝑝) = ∑
𝑞∈Child(𝑝)

𝑆 (𝑝, 𝑞) ⋅ 𝐶𝐴↑
𝑑

(𝑞) , (12)

where the set Child(𝑝) contains the children of node 𝑝, and
the computation for the node will be complete only if its child

nodes have already been computed. Therefore, all the nodes
have been aggregated by their low-grade nodes. Then, the
tree structure is traversed from root to leaves, and the final
aggregated cost value of pixel 𝑝 is computed as follows:

𝐶𝐴𝑑 (𝑝) = 𝑆 (Parent (𝑝) , 𝑝) ⋅ 𝐶𝐴𝑑 (Parent (𝑝))
+ (1 − 𝑆2 (Parent (𝑝) , 𝑝) ⋅ 𝐶𝐴↑

𝑑
(𝑝)) , (13)

where Parent(𝑝) denotes the parent node of pixel 𝑝. After
that, all the pixels eventually obtain a reliable aggregated cost.
The complexity of computation is 𝑂(𝑛 ⋅ 𝑑), where 𝑛 denotes
the number of pixels in the guidance image and 𝑑 denotes the
disparity level.

3.4. Disparity Computation and Refinement. This subsection
describes the universal winner-takes-all strategy, which is
employed to seek the appropriate disparity level. And it
carries the lowest matching cost, as shown in

𝐷(𝑝) = arg min
𝑑∈dislevel

(𝐶𝐴𝑑 (𝑝)) , (14)

where set dislevel denotes the disparity level.
We employ a tree structure to refine the coarse dis-

parity map. First, we use the left and right images as
guidance images, respectively. And the tree filter is executed
twice, receiving two corresponding disparity maps. Then,
we employ left and right consistency checks to mark the
mismatched pixels and store them in set 𝑃mis. For the left
disparity map 𝐷, the cost value 𝐶new(𝑝, 𝑑) for each pixel 𝑝
at each disparity 𝑑 is recalculated as follows:

𝐶new (𝑝, 𝑑) = {{{
0, 𝑝 ∈ 𝑃mis𝑑 − 𝐷 (𝑝) , else, (15)

where 𝐷(𝑝) denotes the initial disparity of pixel 𝑝. This
method uses the tree structure mentioned above to execute
the tree filter, and the process of creating a newmathematical
model has no extra computation cost.The total running time
is taken by recalculating the cost value and executing the
tree filter. Furthermore, all the pixels with unstable disparity
are marked as mismatch pixels, and the cost value of each
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Table 1: Comparison of computational complexity.

Process Complexity of computation
Tree construction Cost aggregation

MST 𝑂(𝑒 + 𝑛 + 2𝑒 ⋅ log2𝑛) 𝑂(𝑛 ⋅ 𝑑)
ST-1 𝑂(2 ⋅ (𝑒 + 𝑒𝛼(𝑒))) 𝑂(𝑛 ⋅ 𝑑)
ST-2 𝑂(4 ⋅ (𝑒 + 𝑒𝛼(𝑒))) 𝑂(2𝑛 ⋅ 𝑑)
Our proposed method 𝑂(2 ⋅ (2𝑒 + 𝑒𝛼(𝑒))) 𝑂(𝑛 ⋅ 𝑑)

disparity level is set to zero.Only pixelswith stable andprecise
disparity participate in aggregating the new cost value. The
mismatched pixels achieve their final disparity value through
the propagation of stable pixels afterwards.

This postprocessing technique has two advantages. A
great advantage is that it is a nonlocal method and the whole
stable and precise pixels contribute to the mismatched pixels.
Another great advantage is that the tree structure is ready-
made and the additional computational cost is negligible.The
computation of the tree filter has an extremely low cost as
well.

Moreover, we can further refine the disparity by means of
(9) as mentioned above. Here, this equation can be regarded
as a standard method for image segmentation. By comparing
the boundaries of the disparity map with those of other
segmented maps to mark the blurry regions, we can execute
the tree filter again to obtain a disparity map with higher
precision and more elaborate boundaries.

3.5. Complexity of Computation. Wemainly analyze the com-
putational complexity of tree construction and the cost ag-
gregation in this section. Let 𝑛 denote the number of pixels in
image 𝐼 and 𝑒 denote the number of edges. The computation
of tree construction in MST concentrates on the calculation
of edge weights and node connections. The calculation of
edge weight is 𝑂(𝑒). The pixels connections are divided into𝑓𝑖𝑛𝑑 and 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 operations. The 𝑓𝑖𝑛𝑑 operation requires𝑂(2𝑒 ⋅ log2𝑛), and the complexity of the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 operation
is determined only by 𝑛, so the total computation of tree
construction in MST is 𝑂(𝑒 + 𝑛 + 2𝑒 ⋅ log2𝑛).

As shown in Table 1, compared with MST, ST-1 must exe-
cute more 𝑓𝑖𝑛𝑑 operations due to the constraint condition.
So, the complexity of tree construction in ST-1 is 𝑂(2 ⋅ (𝑒 +𝑒𝛼(𝑒))), but in ST-2, it is 𝑂(4 ⋅ (𝑒 + 𝑒𝛼(𝑒)) according to [17].
Therefore, the computational complexity of tree construction
in our proposedmethod is𝑂(2⋅(2𝑒+𝑒𝛼(𝑒))), which is slightly
larger than ST-1 due to the multiple components of weight
function. As for cost aggregation, let 𝑑 denote the disparity
level. Therefore, it is ordinary to deduce the computational
complexity of aggregation.The cost aggregation computation
complexity ofMST, ST-1, and our proposedmethod is𝑂(𝑛⋅𝑑)
while ST-2 is 2 times slower. Our proposed method requires
more computations than some nonlocal cost aggregation
methods but only on an extremely small scale.

4. Experimental Results

This section compares three mature nonlocal cost aggre-
gation methods (MST [15], ST-1, and ST-2 [17]) with our

proposed method. We tested our method using four stan-
dard Middlebury datasets [30] (Tsukuba, Venus, Teddy, and
Cones).TheMST and STmethods use an AD-Gradient mea-
sure [31] as the matching cost, while our proposed method
employs the improved AD-Gradient method mentioned in
Section 3. Moreover, the initial disparity for all the methods
is computed by a WTA strategy. Finally, the postprocessing
for eachmethod involves nonlocal disparity refinement using
their own tree structures. The parameters for our proposed
method are defined as follows: 𝛼 = 𝛽 = 0.2, 𝜀𝑐 = 7, 𝜀𝑔 = 2,𝜃In = 0.2, 𝜎 = 0.08, and 𝜏 = 1200, and the parameters of
MST and ST methods follow the relevant cited papers. The
performance is tested on a PCwith a 3.40GHzCPU and 4GB
of memory.

Figure 5 shows the results of the four standard Mid-
dlebury datasets with these methods described above. The
performance of ST-2 is better than that of ST-1 and MST
in most typical regions when the boundaries of ST-2 are
quite expressive. Our proposedmethods’ performance on the
areas around the eaves near Teddy (the occluded regions)
is particularly excellent. On Tsukuba, the angle of the table,
where the foreground objects and the background have
similar color contributions, is resolved faultlessly. In addition,
the results of our proposedmethod aremore satisfactory than
the results of ST-2; the boundaries of the disparity maps are
extremely smooth and precise. The typically tough regions
such as the discontinuity regions and low-texture areas both
achieve a good performance. However, our proposedmethod
also fails in some regions, especially in the areas around
the cones in the Cones datasets. The inner pixels of the
cones contribute too much to the mismatch of the pixels
outside, and the areas between any two cones do not achieve
desirable results. The regions between the lamp and the table
in Tsukuba are affected by various regions and, finally, obtain
incorrect results.

More intuitive results are shown in Table 2. ST-1 is slightly
better than MST, while the performance of ST-2 is better
than both. Moreover, our proposed method obtains the best
performance among these four algorithms. Compared with
three classical methods, the number of erroneous pixels is
reduced efficiently to between 5% and 15%.

We further tested 16 extra Middlebury datasets. The
quantitative evaluation results are shown in Table 3. Only
nonoccluded regions are evaluated in this table. First, ST-
1 has the worst average rank. However, the average ranks
are nearly equal between ST-2 and MST. Nevertheless, the
average percentages of erroneous pixels in the three nonlocal
methods are extremely close to one another. Besides, our
proposed method achieves a tremendous advance, whether
to compare the average percentage of erroneous pixels or
the average rank.The percentages of erroneous pixels decline
distinctly in 𝐵𝑎𝑏𝑦3, 𝐿𝑎𝑚𝑝𝑠ℎ𝑎𝑑𝑒1, and 𝐿𝑎𝑢𝑛𝑑𝑟𝑦. However,
the performance of some images (𝐵𝑎𝑏𝑦1, 𝐵𝑎𝑏𝑦2, 𝐵𝑜𝑜𝑘𝑠,𝑐𝑙𝑜𝑡ℎ𝑒𝑠2, and𝑀𝑜𝑒𝑏𝑖𝑢𝑠) exhibits negative growth.

We selected four representative images from the extra16 datasets (𝐵𝑎𝑏𝑦3, 𝐹𝑙𝑜𝑤𝑒𝑟𝑝𝑜𝑡𝑠, 𝐿𝑎𝑚𝑝𝑠ℎ𝑎𝑑𝑒1, and 𝑊𝑜𝑜𝑑1)
to show the superiority of our proposed method through
a visual comparison. The results are shown in Figure 6.
Compared to the other nonlocal methods, our proposed
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(a) Guidance image (b) MST (c) ST-1 (d) ST-2 (e) Proposed

Figure 5: The final disparity maps of the four most common images in the standard Middlebury datasets. (a) denotes the guidance images.
From top to bottom, these are Tsukuba, Venus, Teddy, and Cones. The subfigures (b) to (e) show the disparity maps computed by different
nonlocal methods. (b) shows the results of MST [15]; (c) and (d) show the results of the two segment-tree cost aggregations [17], respectively,
and (e) shows the results of our proposed method.

Table 2: Comparison of the four nonlocal algorithms (MST [15], ST-1 [17], ST-2 [17], and the proposed method) with Middlebury datasets
and the standard of benchmark. The error threshold is set to 1 and three regions (nonocc, all, and disc) are used to evaluate the performance
of the methods. Our proposed method exhibits the best accuracy in every region.

Algorithm Avg.error Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

MST 5.73 1.50 2.18 8.02 0.42 0.85 5.02 5.95 10.89 14.15 3.14 8.68 7.94
ST-1 5.66 1.73 2.52 9.22 0.47 0.71 4.56 6.11 10.88 14.53 2.47 8.28 7.11
ST-2 5.18 1.35 2.00 7.29 0.42 0.69 5.27 5.17 9.95 12.95 2.49 7.90 6.62
Proposed 4.92 1.34 1.77 7.14 0.44 0.64 4.49 5.03 9.57 12.86 2.12 7.24 6.29

method achieves superior results, resulting in amore accurate
disparity map and more reliable boundaries.

In 𝐿𝑎𝑚𝑝𝑠ℎ𝑎𝑑𝑒1, the results are adversely affected by
illumination. Although other methods fail to detect the
authentic boundaries, our method produces a better result.
For example, the boundaries of the yellow trapezoid block
are extremely close to the ground-truth map. As for 𝑊𝑜𝑜𝑑1,
nearly the entire image contributes a similar color intensity.
Therefore, it is crucial to calculate a rational result from the
discontinuous regions. Unfortunately, all the other methods
fail to detect clear boundaries on these datasets. However, the
percentage of erroneous pixels declined to 2.49% by using

our proposedmethod, which improves on the other nonlocal
methods.

We mentioned the computational complexity in Sec-
tion 3.5. In this section, we test 4 datasets and the average
time consumption of each nonlocal method. The results are
listed in Table 4. Most of the time is consumed during tree
construction and tree filter requires only a slight amount of
time.Moreover,MST is the shortest among the fourmethods,
while our proposed method is a bit shorter than ST-2. The
superiority of the proposed improved method over MST, ST-
1, and ST-2 methods is demonstrated on experimental results
(Tables 2 and 3, Figures 5 and 6). Moreover, in contrast to
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(a) Guidance image (b) MST (c) ST-1 (d) ST-2 (e) Proposed

Figure 6: The final disparity maps of the extra Middlebury datasets. Four representative images were selected to show the superiority of our
proposed method. (a) denotes the guidance images. From top to bottom, these are Baby3, Flowerpots, Lampshade1, and Laundry. Subfigures
(b) to (e) show the disparity maps computed by different nonlocal methods. (b) shows the results of MST [15]; (c) and (d) show the results of
the two segment-tree cost aggregations [17], respectively, and (e) shows the results of our proposed method.

Table 3: The comparison of the four nonlocal algorithms (MST [15], ST-1, ST-2 [17], and the proposed method) with 16 extra Middlebury
datasets. The error threshold is set to 1 and only nonoccluded regions are used to evaluate the performance of the methods.

Data MST ST-1 ST-2 Proposed
Aloe 8.413 9.504 8.372 7.421
Art 13.962 14.754 13.993 12.831
Baby1 4.673 4.984 4.521 4.582
Baby2 7.932 9.14 7.501 8.533
Baby3 6.442 6.824 6.523 3.931
Books 6.101 6.293 6.192 6.824
Cloth2 2.643 2.844 2.581 2.592
Cloth3 1.693 2.224 1.652 1.281
Dolls 5.113 5.072 5.464 4.641
Flowerpots 9.964 9.812 9.863 9.171
Lampshade1 8.563 8.432 8.824 6.801
Laundry 16.542 16.633 16.774 14.181
Midd1 28.034 23.412 24.463 22.051
Moebius 8.662 9.344 8.351 8.913
Reindeer 8.993 9.154 8.682 7.531
Wood1 4.053 4.754 3.912 2.491
Avg.Error 8.88 8.94 8.60 7.74
Avg.Rank 2.69 3.38 2.38 1.56
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Figure 7: Parameter sensitivity analysis of our experiments. Four standard datasets (Tsukuba, Venus, Teddy, and Cones) were used in this
experiment. (a) is a line chart representing the percentage of error pixels as parameter 𝜎 increases from [0.02 to 0.22], whereas (b) is a line
chart representing the changes as parameter 𝜃In increases from [0 to 1]. Avg denotes the average percentage of erroneous pixels for three
evaluation regions (nonocc, all, and disc), and All denotes the four standard datasets. (c) represents the average number of erroneous pixels
from the four standard datasets using different weights for the initial components; an exponential function is employed to make the results
more intuitive; 𝛼 ∈ [0, 0.4] denotes the weight of color cost and 𝛽 ∈ [0, 0.4] denotes the weight of the vertical gradient cost.

MST and ST-1, the overall runtime cost of our proposed
method does not increase obviously and is even shorter than
ST-2. In contrast to the color-gradient based matching cost
computation method proposed by Rhemann et al. [31], our
method also has higher accuracy.

5. Parameter Setting

Several parameters are used in our proposed method. 𝜀𝑐 and𝜀𝑔 are user-specified parameters used for adjustment in (4).
They follow the truncated value in [31] while the predefined
parameter 𝜏 = 1200 in the tree construction follows the
settings of the segment-tree [17] method. In this section, we
discuss the rationale and sensitivity of the remaining four
parameters, the weights for each component (𝛼 and 𝛽) in

Table 4: Average time consumption for each nonlocal method with
4 Middlebury datasets.

Process Overall runtime (seconds)
MST ST-1 ST-2 Proposed

Tree construction 0.870 0.894 1.740 1.360
Cost aggregation 0.108 0.110 0.218 0.108
Whole process 0.978 1.004 1.958 1.468

the initial computation, the predefined weight of inner color
correlation (𝜃In) in tree construction, and the adjustment
value (𝜎) of the weight function.

First, we test the adjustment value (𝜎) of (10). The results
are shown in Figure 7(a). When 𝜎 ∈ [0.04, 0.14], the
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experimental results from most of the images are extremely
low and vary slightly. In contrast, the erroneous pixels decline
to a minimum when 𝜎 ∈ [0.06, 0.08], which is due to the
variation in the initial cost value. We employ the 𝐺𝑒𝑚𝑎𝑛 −𝑀𝑐𝐶𝑙𝑢𝑟𝑒 function to protect the initial cost value from
the encroachment of extremum, and the initial cost value
converges to 1. With the adjustment of the initial cost value,
a parameter 𝜎 is required to be adjusted accordingly, or
disparity boundaries will be unclear and foreground objects
will be confused with background.

As for the weight of the inner color correlation 𝜃In, the
parameter range of this experiment is 0 to 1. More details
are shown in Figure 7(b). The percentage of erroneous pixels
increases significantly when the parameter 𝜃In ∈ [0.2, 0.4].
The experimental results show that employing inner color
correlation is obviously reasonable but the parameter 𝜃In
should be confined to 0.5 or below.

Figure 7(c) evaluates the sensitivity of the initial compo-
nent weights 𝛼 and 𝛽with four original Middlebury datasets,
to clarify that the final results (percentage of erroneous
pixels) are processed by an exponential function. The figure
shows that the algorithm achieves its best performance when
the parameters 𝛼 and 𝛽 ∈ [0.15, 0.3]. The range of the
parameters that achieve dramatic performance ismuch larger
than the original nonlocal methods. And Figure 7 further
demonstrates that employing the𝐺𝑒𝑚𝑎𝑛−𝑀𝑐𝐶𝑙𝑢𝑟𝑒 function
helps to resolve the errors caused by outliers more effectively
and robustly than the methods described above which use
truncated values.

6. Conclusion

In this paper, our work is directly motivated by two original
algorithms [15, 17]. We propose an improved nonlocal cost
aggregation algorithm based on them.The proposed method
is developed with modified initial cost and multiple weight
for stereo matching, which modifies the original algorithm
in both computational cost and aggregation. Ourmethod has
some advantages. First, it has higher accuracy by adding the
vertical gradient as one of the components in the process
of cost computation. Particularly, the performance near
some discontinuous areas is much better than that of other
methods. Second, due to its stability and versatility, inner
color correlation is employed instead of using a single color
component.Thus, itmakes constructing a tree structuremore
robust and reasonable. Besides, wemodify the structure of the
segment tree.

The performance was tested on a PC with a 3.40GHz
CPU and 4GB of memory. The proposed method was
evaluated on Middlebury datasets. The experimental results
verified that our proposed method could achieve better
accuracy with a minor cost of increased execution time. In
the near future, we would like to focus on more novel tree
structures. And we will continue to study nonlocal methods
and image segmentation, proposing new ideas to resolve the
issues mentioned above.
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