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The mechanical behavior of geomaterials under plane-strain biaxial stress state (PSBSS, a special case of biaxial stress state)
is often considered in geotechnical structures such as highwall and longwall coal pillars. In this study, a modified statistical
damage constitutive model based on Weibull distribution was established to explain the mechanical behavior of rocks under the
PSBSS. The modified Wiebols-Cook criterion, Drucker-Prager criterion, and extremum method were adopted in this model to
estimate the peak strength of rock, the strength level of microscopic element, and the statistical parameters of model, respectively.
Besides, laboratory tests for brittle and ductile geomaterials under PSBSS were conducted using the modified surface instability
detection apparatus to validate the accuracy of the proposed statistical damagemodel. Finally, the relationships betweenmechanical
parameters and statistical parameters were studied and discussed.

1. Introduction

Thedeformation of rocks is a significantmechanical property
in rock engineering [1], such as tunnel excavation, under-
ground coal mining, and hydraulic fracturing. Numerous
studies have been conducted to explore the relationship
between the loading force and the deformation of geoma-
terials (also known as constitutive relationship) after the
establishment of the first constitutive equation (i.e., Hook’s
law) [2–13]. Statistical damage constitutive model, based on
the Weibull distribution, plasticity theory, and rock failure
criteria [14–16], has been developed afterwards to further
investigate the deformation process and failure mechanism
of rocks under uniaxial and triaxial stress states [17–23].
However, statistical damage model for rocks under plane-
strain biaxial stress state (PSBSS) is rarely available.

The PSBSS [24], different from uniaxial and triaxial stress
states, is a special case of the biaxial stress state. Geomaterials
under the PSBSS are often encountered in geotechnical struc-
tures, such as pillar between adjacent tunnels and highwall

and longwall mining coal pillar (Figures 1(a), 1(b), and 1(c)).
In these engineering structures, one dimension (i.e., the
direction of 𝜎2 in Figure 1) is relatively larger than the others
(i.e., the directions of 𝜎1 and 𝜎3), and the principal strain
in the direction of the longest dimension is constrained and
generally assumed to be zero (i.e., 𝜀2 = 0) (Figure 1(d)).

Identically, plane-strain biaxial compression tests on
brittle and ductile geomaterials are also limited, although
studies have been done to explore the stress-strain behavior
and constitutive model of geomaterials under biaxial stress
state since 1969 [2, 25–29]. Papamichos et al. [30] designed
a plane-strain biaxial apparatus to investigate the surface
spalling phenomena in rocks, indicating a shear-mode failure
for brittle rocks under the PSBSS. Tao [31] tested the failure
strength of soft and hard coal specimens under the PSBSS and
they found out that greater failure strengths will appear under
the PSBSS than those under uniaxial stress state for both
kinds of coal specimens. In addition, the postpeak behavior
of geomaterials (Figure 2) is an important factor to the safety
of underground structures and should be considered when
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Figure 1: Typical pillars under plane-strain biaxial stress state (PSBSS). (a) Rock pillar between adjacent tunnels; (b) coal pillar in highwall
mining system; (c) coal pillar in longwall mining system; (d) a block under plane-strain biaxial compression stress state.
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Figure 2: Typical stress-strain relationship. 𝜎𝑝 is the peak/failure
strength ofmaterials, 𝜀𝑝 the peak strain, and 𝜎𝑟 the residual strength.

dealing with the geotechnical engineering [1]. The shortcom-
ing of the above studies is that the stress-strain behaviors are
not taken into consideration. Furthermore, it is difficult to
establish physicalmodels elaborating the postfailure behavior
for rocks because of the plastic deformation.Thus, amodified

statistical damage constitutivemodel should be established to
illustrate the stress-strain behaviors, especially, the postpeak
behavior of rocks under the PSBSS.

Accumulation and coalescence of stress-induced microc-
racks have been suggested as the fracture and damage mech-
anisms of rocks. Microcrack density was thought to be the
governing factor for the elastic and fracturemechanical prop-
erties [33–37]. As shown in Figure 2, the stress-strain curve
implies that the rock is first considered to be linear elastic
with a constant modulus (𝐸) before the damage threshold is
reached, and then the rock is thought to be damaged. The
damage degree can be represented by the reduction of the
elastic modulus [38–40]. Residual stage occurs at the end of
the postpeak stage in the stress-strain curve (Figure 2). This
stage, representing the residual loading capability of rocks,
is vital to the stability of structures. In order to take the
residual strength (𝜎𝑟) into consideration when establishing
the constitutive damage model, some researchers [41, 42]
introduced a self-determined coefficient. However, it is a
challenge to determine these coefficients. Instead of introduc-
ing the predetermined coefficient, Zhao et al. [32] employed
the Mohr-Coulomb criterion in the light of the classical
damage model [17] to estimate the residual strength of rocks.

In this article, a modified constitutive damage model
is presented to elaborate the stress-strain behavior of rocks
under the PSBSS.We first introduce the constitutive equation
for rocks under the PSBSS. Afterwards, a statistical damage
constitutive model is established by analyzing the damage
variable and residual strength of microscopic elements.
Thirdly, we employ the modified Wiebols-Cook criterion,
Drucker-Prager criterion, and extremummethod to estimate
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the peak strength of rocks, strength level of microscopic
elements, and statistical parameters, respectively. We then
introduce the experimental methodology and, finally, vali-
date and discuss the results.

2. Model

2.1. Elastic-Constitutive Model for Rocks under the PSBSS.
According to the plane-strain concept, the principal strain
in the direction of the longest dimension is constrained and
can be assumed as zero (i.e., 𝜀2 = 0) (Figures 1(c) and 1(d))
[43]. In addition, there is no stress perpendicular to the free
surface after the excavation (i.e., 𝜎3 = 0). Thus, the stress-
strain relationship for isotropic elasticity material is

𝜎1 = 𝐸𝜀1(1 − 𝜇2) , (1)

where 𝜎1, 𝐸, and 𝜇 are the maximum principle stress, elastic
modulus, maximum principle strain, and Poisson’s ratio,
respectively. The intermediate principle stress 𝜎2 is closely
related to maximum principle stress 𝜎2 and 𝜎2 = 𝜇𝜎1.

To obtain the stress-strain curve, three stages should be
settled. The linear elastic stage of rocks under the PSBSS can
be determined by (1). After the elastic stage, the stress-strain
behavior can be calculated by the degradation ofmodulus and
solution of the damage variable. The last stage (i.e., residual
stage) can be determined by considering the residual strength
of the damaged rock.

2.2. Statistical Damage Constitutive Model
for Rocks under the PSBSS

2.2.1. Evolution of the Damage Variable (𝐷). In the new
statistical damage constitutive model, rocks are assumed to
consist of numerous mesoscopic elements. According to the
statistical damage theory, any mesoscopic element has dual
states (i.e., intact and damaged) and strengths of the meso-
scopic elements follow a Weibull distribution [14, 18, 44]:

𝑃 (𝐹) = 𝑚𝐹0 ( 𝐹𝐹0)
𝑚−1

exp [− ( 𝐹𝐹0)
𝑚] , (2)

where 𝐹 is the strength level and 𝐹0 the scale parameter;
statistical parameter (𝑚) represents the shape of the function
and determines the concentration of strength level (𝐹).

After the damage threshold point (Figure 2), Weibull
distribution is employed to estimate the damage distribution
of mesoscopic elements. The density of damaged elements
can be determined by the damage variable (𝐷) [17, 32]. As
shown in Figure 3, with strength level 𝐹 increasing from 0 to𝐹󸀠, the damage variable (𝐷) can be expressed as

𝐷 = ∫𝐹󸀠
0

𝑃 (𝐹) 𝑑𝐹 = 1 − exp[− (𝐹󸀠𝐹0)
𝑚] . (3)

2.2.2. Statistical Damage Constitutive Model Considering
Residual Strength. To reflect the postpeak behavior and
residual strength, a compressed rock is divided into two
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Figure 3: Weibull distribution and damage transition processes.
These rectangles represent rockswith different degrees of damage. 𝑆∗
represents the undamaged area and the force of the undamaged area
is determined by the net stress (𝜎∗) of undamaged portion, while for
damaged portion (Sr), a residual strength (𝑅) is applied (modified
from Zhao et al. [32]).

areas: damaged area (Sr) and undamaged area (𝑆∗) (Figure 3).
Strain-softening behavior can be performed by the degrada-
tion of the undamaged area. However, residual strength (i.e.,
residual stage) is difficult to illustrate without considering the
net stress of the damaged area (Sr). In this new constitutive
model, a net stress (𝑅) is applied on the damaged portion.

Assuming that the effective stress (𝜎𝑖) on the total area of
the specimen consists of the net stress (𝑅) on the damaged
portion and net stress (𝜎∗𝑖 ) on the undamaged portion, thus
effective stress can be described as

𝜎𝑖 = 𝜎∗𝑖 (1 − 𝐷) + 𝑅𝐷. (4)

Net stress (𝑅) on the damaged portion (i.e., residual
strength) can be determined by theMohr-Coulomb criterion
[32, 45]. For a pure frictionmaterial [3, 46, 47], peak strength
increases linearly with the rise of residual strength (𝑅) and
can be theoretical analyzed and expressed as

𝑅 = 𝑎 + 𝑏𝜎𝑝, (5)

with

𝑎 = 2𝑐𝑟 cos𝜑𝑟(1 − sin𝜑𝑟) − 2𝑐𝑏 cos𝜑(1 − sin𝜑) , (6)

𝑏 = (1 + sin𝜑𝑟) (1 − sin𝜑)
[(1 + sin𝜑) (1 − sin𝜑𝑟)] , (7)

where 𝜎𝑝 is the peak strength under the PSBSS; 𝑐 and 𝜑 are
cohesive strength and internal frication angle in the elastic
stage, respectively; 𝑐𝑟 and 𝜑𝑟 are cohesive strength and inter-
nal frication angle in the residual strength stage, respectively.
These parameters can be obtained by experimental test [45].

The undamaged portion is assumed to be elastic under
the net stress of 𝜎∗𝑖 and follows the generalized Hooke’s law:

𝜎∗𝑖 = 𝐸∗𝜀∗𝑖 + 𝜇∗ (𝜎∗𝑗 + 𝜎∗𝑘 ) , (8)



4 Advances in Mathematical Physics

where (𝑖, 𝑗, 𝑘) = (1, 2, 3), (3, 1, 2), and (2, 1, 3); 𝐸∗, 𝜀∗𝑖 , and 𝜇∗
are the Young’s modulus, strain, and Poisson’s ratio, respec-
tively. These microscopic parameters can be replaced by 𝐸,𝜀𝑖, and 𝜇, which are same parameters on the macroscale [19].
Thus, (8) can be modified as follows:

𝜎∗𝑖 = 𝐸𝜀𝑖 + 𝜇 (𝜎𝑗 + 𝜎𝑘) . (9)

Combining (1), (3), and (4) with (9), themodified statisti-
cal damage constitutive model for rocks under the PSBSS can
be established and expressed as

𝜎1 = 𝐸𝜀1(1 − 𝜇2) , 𝐷 = 0

𝜎1 = 𝐸𝜀1(1 − 𝜇2)
+ (𝑅 − 𝜇𝑅2 − 𝐸𝜀1)(1 − 𝜇2) {1 − exp [− ( 𝐹𝐹0)

𝑚]} ,
𝐷 > 0.

(10)

2.3. Determination of Parameters

2.3.1. Modified Wiebols-Cook Criterion and PSBSS Peak
Strength. Intermediate principle stress 𝜎2 plays an important
role in determining the rock strength under the PSBSS. Crite-
ria, such as Mohr-Coulomb, Hoek-Brown, and Tresca failure
criterion, should not be considered when establishing new
constitutive model because these criteria failed to take the
intermediate principle stress into consideration. Colmenares
and Zoback [48, 49] suggested that the modified Wiebols-
Cook criterion and Modified Lade criterion achieved good
fits to the true triaxial test data comparing with other five
criteria, namely,Mohr-Coulomb, Hoek and Brown, Drucker-
Prager, and two empirical criteria. Because the modified
Wiebols-Cook criterion estimated the failure strength more
accurately for rocks which are highly dependent on the
intermediate principle stress in this article [50], the modified

Wiebols-Cook criterion was adopted when establishing the
statistical damage model in order to estimate the PSBSS peak
strength.

As an extension of the Circumscribed Drucker-Prager
criterion [51], the modified Wiebols-Cook criterion implies
that a rock fails if

𝐽1/22 = 𝐴 + 𝐵𝐽1 + 𝐶𝐽21 , (11)

with

𝐽1 = (𝜎1 + 𝜎2 + 𝜎3)3 , (12)

𝐽2 = 16 [(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)2] , (13)

where 𝐽1 and 𝐽2 are the first and second deviatoric stress
invariants, respectively. 𝐴, 𝐵, and 𝐶 are values which can be
determined by mechanical and physical parameters of the
material and can be expressed as

𝐶 = √272𝐶1 + (𝑞 − 1) 𝜎3 − 𝜎𝑐 ( 𝐶1 + (𝑞 − 1) 𝜎3 − 𝜎𝑐2𝐶1 + (𝑞 − 1) 𝜎3 − 𝜎𝑐
− 𝑞 − 1𝑞 + 2) ,

(14)

𝐵 = √3 (𝑞 − 1)
(𝑞 + 2) − [2𝜎𝑐 + (𝑞 + 2) 𝜎3] 𝐶

3 , (15)

𝐴 = 𝜎𝑐√3 − 𝐵𝜎𝑐3 − 𝐶𝜎2𝑐9 , (16)

where 𝐶1 = (1 + 0.6 tan𝜑)𝜎𝑐 and 𝑞 = tan2(𝜋/4 + 𝜑/2); 𝜑
and 𝜎𝑐 are internal friction angle and uniaxial compression
strength, respectively.

Thus, according to the elastic-constitutive relationship
of rocks under the PSBSS (i.e., (1)) and (11)∼(16), the peak
strength (𝜎𝑝) under the PSBSS can be described as

𝜎𝑝 =
[√3√1 + 𝜇2 − 𝜇 − 𝐵 (1 + 𝜇)] − √[𝐵 (1 + 𝜇) − √3√1 + 𝜇2 − 𝜇]2 − 4𝐴𝐶 (1 + 𝜇)2

2𝐶 (1 + 𝜇)2 /3 . (17)

2.3.2. Drucker-Prager Criterion and Strength Level (𝐹). The
distribution parameter of mesoscopic element (strength level
(𝐹)) is correlated with damage variable (𝐷), as described
in (3), and the strength level (𝐹) can be estimated by the
failure criterion of rocks [18, 52]. Tang and coworkers [53,
54] formulated the strength level in strain space. However,
strength level is usually expressed by criteria in stress space
instead of strain space. Two criteria, Mohr-Coulomb and

Drucker-Prager criteria [20, 52, 55], are commonly adopted
to determine the strength level in stress space.

The Drucker-Prager criterion for rocks under the PSBSS
was employed and the value 𝐹 can be expressed as a function
of its net stress and material parameters [20]:

𝐹 = 𝛼𝐼∗1 + √𝐽∗2 − 𝐾, (18)
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with

𝐼∗1 = 𝜎∗1 + 𝜎∗2 + 𝜎∗3 , (19)

𝐽∗2 = 16 [(𝜎∗1 − 𝜎∗2 )2 + (𝜎∗1 − 𝜎∗3 )2 + (𝜎∗2 − 𝜎∗3 )2] , (20)

𝛼 = 2 sin𝜑
[√3 (3 − sin𝜑)] , (21)

𝐾 = 6𝑐 cos𝜑
[√3 (3 − sin𝜑)] , (22)

where 𝛼 and 𝐾 are material constants; 𝐼∗1 and 𝐽∗2 are the
first stress invariant and second deviatoric stress invariant,
respectively.

The strength level (𝐹) can be obtained by combining (4)
and (18)∼(20):

𝐹 = [𝛼 (1 + 𝜇) + √3/3√1 + 𝜇2 − 𝜇] (𝜎1 − 𝑅𝐷)
(1 − 𝐷) − 𝐾. (23)

It should be noted that strength level (𝐹) determines the
damage state of rock. When 𝐹 < 0, the rock is undamaged/
intact, while when 𝐹 ≥ 0, the rock is damaged.

2.3.3. Extremum Method and Statistical Parameters (𝑚 and𝐹0). The statistical parameters 𝑚 and 𝐹0 determine the
strain-softening behavior of rocks and can be calculated by
the “extremum method” [56]. As shown in Figure 2, the
derivative of stress should be equal to zero at the peak point
of a stress-strain curve. Thus the boundary condition can be
described as

𝜕𝜎1𝜕𝜀1 (𝜎𝑝, 𝜀𝑝) = 0, (24)

where 𝜎𝑝 and 𝜀𝑝 are peak stress and peak strain, respectively.
Differentiating (24), we can obtain

𝑚 = 𝐸𝐹𝑝
[(𝑅 − 2𝜇𝑅 − 𝐸𝜀𝑝) ln (1 − 𝐷𝑝) 𝜕𝐹𝑝/𝜕𝜀𝑝] , (25)

with

𝜕𝐹𝑝𝜕𝜀𝑝 = [𝛼 [𝜎𝑝 (1 + 𝜇) − 3𝑅] + √3/3𝜎𝑝√𝜇2 − 𝜇 + 1]
(1 − 𝐷𝑝)2

⋅ 𝜕𝐷𝑝𝜕𝜀𝑝 ,
𝜕𝐷𝑝𝜕𝜀𝑝 = [(2𝜇 − 1) 𝑅𝐸 + 𝐸 (1 − 𝜇2) 𝜎𝑝]

(𝑅 − 2𝜇𝑅 − 𝐸𝜀𝑝)2 ,

(26)

where 𝐹𝑝 and 𝐷𝑝 are the strength level and damage variable
at the peak point, respectively. 𝐹𝑝 can be determined by (23);

then 𝐷𝑝 can be identified by (10). Then statistical parameter
(𝐹0) can be rearranged by (3) as

𝐹0 = 𝐹𝑝
[− ln (1 − 𝐷𝑝)]1/𝑚 . (27)

Briefly, the stress-strain behavior of geomaterials can be
illustrated by the following procedures:

(1) Input mechanical and physical parameters including
Young’s modulus (𝐸), Poisson’s ratio (𝜇), internal fric-
tion angle (𝜑), cohesive strength (𝑐), residual friction
angle (𝜑𝑟), and residual cohesive strength (𝑐𝑟).

(2) Determine the residual strength (𝑅) and peak
strength (𝜎𝑝) under the PSBSS by (5) and (17), respec-
tively.

(3) Input the target range of strain into MATLAB for
looping. Before looping, check the validity of the
range.

(4) Loop for each strain and determine the value of the
damage variable (𝐷). Then calculate the stress based
on (10).

3. Experimental Methodology

3.1. Sample Description and Preparation. To validate the pro-
posed constitutive model, brittle (coal) and ductile (synthetic
materials) specimens were employed to conduct laboratory
tests under the PSBSS. Coal specimens (Figures 4(a) and
4(b)), obtained from the #3 coal seam at the 6303 longwall
panel in the Baodian Coal Mine, China, were 70.7 × 70.7 ×
70.7mm3 in size. The average unit weight of coal specimen is
1360 kg/m3.

Synthetic materials (Figure 4(c)) were 100 × 100 ×
100mm3 cube blocks and they were obtained by mixing the
cemented sand and plaster. The weight percentages of the
sand, cement, and plaster were 40%, 18%, and 42%, respec-
tively. All synthetic specimens were prepared by using a
specific mould (Figure 4(d)). The physical and mechanical
parameters of the prepared coal and synthetic specimens are
shown in Table 1.

3.2. Experimental Apparatus. An apparatus, modified from
the surface instability detection apparatus [30, 57, 58], was
designed to achieve the PSBSS. A cube specimen can be
placed between two rigid vertical sidewalls (Figure 5) and
the adjustable wall, used to test specimens with different
size, was bolted to prevent lateral deflection. Lube oil was
adopted to minimize the friction at the interface. The com-
pression experiments under the PSBSS were conducted on
a rock servo-controlled system with a maximum loading
capacity of 300 kN and a maximum displacement resolution
of 0.001mm.The strain control rate was 2.4 × 10−4/s.

4. Validation Results and Discussion

4.1. Stress-Strain Curves. The mechanical and statistical
parameters of specimens can be determined (see Table 2)
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Table 1: Mechanical and physical parameters of specimens.

Parameters Symbol/material Coal Synthetic material Units
value value

Elastic modulus 𝐸 1.070 0.115 [GPa]
Uniaxial compression strength 𝜎𝑐 18.76 2.00 [MPa]
Poisson’s ratio 𝜇 0.30 0.32 N/A
Cohesive strength 𝑐 4.5 0.4 [MPa]
Internal friction angle 𝜑 25 45 [∘]
Residual cohesive strength 𝑐𝑟 ∼0.30 ∼0.15 [MPa]
Internal friction angle 𝜑𝑟 ∼25 ∼45 [∘]

Table 2: Parameters derived from the proposed model.

Items Symbols Coal specimens (brittle) Synthetic material (ductile) Units
PSBSS peak stress 𝜎𝑝 22.3 3.36 [MPa]
Damage viable at peak stress 𝐷𝑝 5.9% 39.66% [—]
Statistical parameter 𝑚 18.2 2.35 [—]
Statistical parameter 𝐹0 28.02 7.19 [MPa]
Residual strength 𝜎𝑟 2.9 1.9 [MPa]
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according to the parameters obtained from laboratory tests
(Table 1). Stress-strain curves can be then plotted by employ-
ing the calculation procedure described in Section 2.3.3.
Figure 6 illustrates the stress-strain curves derived from the
experimental tests and the proposed statistical damage con-
stitutive model. Figure 6(a) shows the stress-strain curves of
coal specimens under the PSBSS, while Figure 6(b) presents
the stress-strain curves of synthetic materials.

As shown in Figure 6(a), the stress-strain curves of coal
specimens in the compression test under the PSBSS can
be divided into four typical stages, namely, (1) original
microcrack closure stage, (2) elastic deformation stage, (3)
strain-softening stage, and (4) residual stage. In the first stage,
stress-strain curve shows the downward concave because of
the closure of some primary pores and voids. In the second
stage, the loading force increases linearly with the axial
stress. The peak strength can be obtained then and the
strain-softening behavior follows by. With the generation
and coalescence of cracks, an abrupt stress reduction occurs
and finally the stress-strain curves reach the residual stage.
Residual strengths are remarkable which may result from the
confined pressure provided by the vertical walls, although
the residual stages varied with the heterogeneity of coal
specimens.

Figure 6(b) presents the stress-strain curves of synthetic
materials obtained by the compression tests under the PSBSS.
Similar to the stress-strain behavior of coal specimen, four
typical stages can also be identified in the stress-strain curves
of synthetic specimens. However, the original microcrack
closure stages are unobvious, and strain-softening behavior
and residual stage can be more easily identified compared to
those of the coal specimen.

Theoretical curves of the coal specimen and synthetic
materials are also presented in Figure 6. In general, the
theoretical data has good agreement with the experimental

observation and the typical stages (i.e., elastic deformation,
strain-softening behavior, and residual stage) are well illus-
trated in theoretical curves. In the theoretical curves, the
stress increases linearly with the strain prior to the peak
strength. After the peak point, strain-softening behaviors
occur. Finally, the theoretical curves reach the residual stage.
Peak strengths calculated by the modifiedWiebols-Cook cri-
terion under the PSBSS and the residual strengths fit well with
the experimental data. It should be noted that the original
microcrack closure stages are difficult to illustrate in the new
statistical damage constitutive model.

By comparing the stress-strain curves of coal specimens
with that of synthetic specimens, we can easily find out that
the strain-softening behaviors for two different materials are
not the same. It also revealed that the damage in rocks has
been initiated at the peak strength (i.e., peak damage variable
(𝐷𝑝) is nonzero; see Table 2) [19, 33]. These results in turn
pose questions of what are the possible relations behind these
parameters including statistical parameters (𝑚 and 𝐹0) and
physical parameters (peak strain and peak stress). Thus, the
following parametric studies will examine the influence of
peak strain on peak damage variation (𝐷𝑝) and statistical
parameters (𝑚 and 𝐹0) (see Section 4.2).

4.2. Effect of Peak Strain on Peak Damage Variable and
Statistical Parameters. Parametric studies were conducted to
estimate the effect of peak strain on damage variable and
statistical parameters, and results for the synthetic material
are shown in Figure 7. The results for the coal specimens are
similar to the synthetic material. It is clear that peak strain
has a strong influence on the peak damage variable (𝐷𝑝) and
statistical parameters (𝑚 and 𝐹0).

Figure 7(a) shows the peak damage variable increases log-
arithmically with the peak strain, while the statistical param-
eter (𝑚) experiences a decrease in an exponential manner.
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Figure 7: Relationships between physical parameters and statistical parameters. (a) Effects of peak strain on peak damage variable and
parameter (𝑚); (b) effects of peak strain on parameter 𝐹0.

Thus we can conclude that a higher peak strain implies a
higher damage variable (𝐷𝑝) and a lower statistical parameter𝑚. According to the damage theory, the statistical parameter
(𝑚) determines the softening behavior of the constitutive
model, and a larger 𝑚 implies a higher uniformity and a
higher brittleness [52]. However, statistical parameter (𝐹0)
can be divided into two stages (Figure 7(b)). Prior to the peak
strain of 0.06, this parameter experiences an increase, while,
with a peak strain larger than 0.06, the statistical parameter𝐹0 decreases. Thus, peak strain can affect these mentioned
parameters in differentways and should be carefully predeter-
mined or tested. Also, as a compromise parameter, the peak
strain can be adjusted in a small scale to fit the postpeak curve.

5. Conclusions

By employing the basic theory of damage mechanics, we
established a statistical damage constitutive model for rocks
under the PSBSS. The modified model was validated by the
experimental results for brittle and ductile materials. On the
basis of the analyses and calculation of this model, the
following conclusion can be drawn:

(1) An effective theoretical model to simulate the stress-
strain curves of brittle and ductile rocks under the
PSBSS is presented. In this new model, the modified
Wiebols-Cook criterion, Druck-Prager criterion, and
extremum method were employed to estimate the
peak strength under the PSBSS, strength level, and
statistical parameters, respectively.

(2) Comparisons between the experimental and the-
oretical results were made and the results show
that the modified constitutive model provided a
good prediction of the stress-strain curves of rocks
under the PSBSS tests. In particular, the calculated

peak strength, strain-softening behavior, and residual
strength fit well with the experimental data.

(3) Strain-softening behavior in thismodel is determined
by statistical parameters 𝑚 and 𝐹0. Peak strain which
should be carefully predetermined or tested can affect
parameters 𝑚 and 𝐹0 in different manners.
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