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By constructing a special cone and using a fixed-point theorem in cone, this paper investigates the existence of multiple solutions
of coupled integral boundary value problems for a nonlinear singular differential system.

1. Introduction

In recent years, singular uncoupled boundary value problems
to differential systems have been studied widely and there
are many excellent results (see [1–18] and references therein).
Naturally we hope there are the same excellent results on
singular uncoupled boundary value problems to differential
systemswith coupled boundary conditions.Many researchers
put their efforts to study the existence of solutions for
differential systems with coupled boundary conditions (see
[19–30] and references therein).

In [19], Asif and Khan addressed the question of the
existence of coupled four-point boundary value conditions

−𝑥 (𝑡) = 𝑓1 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ (0, 1) ,
−𝑦 (𝑡) = 𝑓2 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ (0, 1) ,
𝑥 (0) = 𝑦 (0) = 0,
𝑥 (1) = 𝛼𝑦 (𝜉) ,
𝑦 (1) = 𝛽𝑥 (𝜂) ,

(1)

where the parameters 𝛼, 𝛽, 𝜉, and 𝜂 satisfy 𝜉, 𝜂 ∈ (0, 1),0 < 𝛼𝛽𝜉𝜂 < 1. The main tool in [19] is the Guo-Krasnosel’skĭı
fixed-point theorem.

In [29], the authors studied the following nonlinear
semipositone fractional differential equation with four-point
coupled boundary value problem:

𝐷𝛼0+𝑢 + 𝜆𝑓 (𝑡, 𝑢, V) = 0, 𝑡 ∈ (0, 1) , 𝜆 > 0,
𝐷𝛼0+V + 𝜆𝑔 (𝑡, 𝑢, V) = 0,

𝑢(𝑖) (0) = V(𝑖) (0) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 2,
𝑢 (1) = 𝑎V (𝜉) ,
V (1) = 𝑏𝑢 (𝜂) ,

(2)

where 𝜆 is a parameter, 𝑎, 𝑏, 𝜉, and 𝜂 satisfy 𝜉, 𝜂 ∈ (0, 1),0 < 𝑎𝑏𝜉𝜂 < 1, 𝛼 ∈ (𝑛 − 1, 𝑛] is a real number and𝑛 ≥ 3, and 𝐷𝛼0+𝑢 is Riemann-Liouville’s fractional derivative.
The existence of positive solutions is established by using
a nonlinear alternative of Leray-Schauder type and Guo-
Krasnosel’skĭı fixed-point theorem in a cone.

In [20], Cui and Sun, using fixed-point index theory,
studied the existence of positive solutions for superlinear
differential system

−𝑥 (𝑡) = 𝑓1 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ (0, 1) ,
−𝑦 (𝑡) = 𝑓2 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ (0, 1) ,
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𝑥 (0) = 𝑦 (0) = 0,
𝑥 (1) = 𝛼 [𝑦] ,
𝑦 (1) = 𝛽 [𝑥] ,

(3)

where 𝛼[𝑥] and 𝛽[𝑥] are bounded linear functionals on𝐶[0, 1] given by

𝛼 [𝑥] = ∫1
0
𝑥 (𝑡) 𝑑𝐴 (𝑡) ,

𝛽 [𝑥] = ∫1
0
𝑥 (𝑡) 𝑑𝐵 (𝑡) ,

(4)

involving Stieltjes integrals; in particular, 𝐴 and 𝐵 are func-
tions of bounded variation with positive measures.

We should note that the nonlinear terms in two equations
for the above problems have the same features. For instance,
the nonlinear terms in two equations are both superlinear
[20, 29] or both sublinear [19]. However, to the best of our
knowledge, only a few papers discuss differential system
under the case that the nonlinear terms of the system have
different behaviors. Motivated by [19, 20, 29], the purpose
of this paper is to establish the existence of multiple pos-
itive solutions for differential system with coupled integral
boundary value problems (3) when 𝑓1 is superlinear in 𝑥
and 𝑦 and 𝑓2 is sublinear in 𝑥 and 𝑦. Also suppose that𝑓1(𝑡, 𝑥, 𝑦) may be singular at 𝑡 = 0, 𝑡 = 1 and 𝑓2(𝑡, 𝑥, 𝑦)
may be singular at 𝑡 = 0, 𝑡 = 1, 𝑥 = 0, and 𝑦 = 0. Our
main features are threefold. Firstly, our study is on singular
nonlinear differential systems with general boundary value
conditions. Secondly, 𝑓2 is allowed to be not only singular at𝑡 = 0 and 1 but also singular at 𝑥 = 0 and 𝑦 = 0. Finally,
a special cone is constructed to overcome difficulties due to
singularities of nonlinear term.

In the rest of this section, let us list the following
assumptions:(𝐻1) 𝜅1 > 0, 𝜅2 > 0, and 𝜅 > 0, where

𝜅1 = 𝛼 [𝑡] = ∫1
0
𝑡 𝑑𝐴 (𝑡) ,

𝜅2 = 𝛽 [𝑡] = ∫1
0
𝑡 𝑑𝐵 (𝑡) ,

𝜅 = 1 − 𝜅1𝜅2.
(5)

(𝐻2) 𝑓1 ∈ 𝐶((0, 1) × [0,∞)2, [0,∞)) satisfy
0 < ∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 1, 1) 𝑑𝑠 < +∞, (6)

and there exist constants 𝜆1𝑗, 𝜇1𝑗 (0 < 𝜆1𝑗 ≤ 𝜇1𝑗 < 1, 𝑗 = 1, 2,𝜆11 + 𝜆12 > 1) such that, for 𝑡 ∈ (0, 1), 𝑥, 𝑦 ∈ (0,∞),
𝑐𝜇11𝑓1 (𝑡, 𝑥, 𝑦) ≤ 𝑓1 (𝑡, 𝑐𝑥, 𝑦) ≤ 𝑐𝜆11𝑓1 (𝑡, 𝑥, 𝑦) ,
𝑐𝜇12𝑓1 (𝑡, 𝑥, 𝑦) ≤ 𝑓1 (𝑡, 𝑥, 𝑐𝑦) ≤ 𝑐𝜆12𝑓1 (𝑡, 𝑥, 𝑦) ,

if 0 < 𝑐 ≤ 1.
(7)

(𝐻3) 𝑓2 ∈ 𝐶((0, 1) × (0,∞)2, [0,∞)) and there exist
constants 𝜆2𝑗, 𝜇2𝑗 (−∞ < 𝜆2𝑗 ≤ 𝜇2𝑗 < 1, 𝑗 = 1, 2, 𝜇21 + 𝜇22 <1) such that, for 𝑡 ∈ (0, 1), 𝑥, 𝑦 ∈ (0,∞),
𝑐𝜇21𝑓2 (𝑡, 𝑥, 𝑦) ≤ 𝑓2 (𝑡, 𝑐𝑥, 𝑦) ≤ 𝑐𝜆21𝑓2 (𝑡, 𝑥, 𝑦) ,
𝑐𝜇22𝑓2 (𝑡, 𝑥, 𝑦) ≤ 𝑓2 (𝑡, 𝑥, 𝑐𝑦) ≤ 𝑐𝜆22𝑓2 (𝑡, 𝑥, 𝑦) ,

if 0 < 𝑐 ≤ 1.
(8)

And they satisfy one of the following conditions:
(𝐻31) 𝜆21 > 0, 𝜆22 > 0, 0 < ∫10 𝑠(1 − 𝑠)𝑓2(𝑠, 1, 1)𝑑𝑠 < +∞,

𝜌 ∫1
0
𝑠(1 − 𝑠)𝑓1(𝑠, 1, 1)𝑑𝑠 + 𝜌 ∫10 𝑠(1 − 𝑠)𝑓2(𝑠, 1, 1)𝑑𝑠 < 1.(𝐻32) 𝜇21 < 0, 𝜇22 < 0, 0 < ∫10 𝑠(1 − 𝑠)𝑓2(𝑠, 𝑠, 𝑠)𝑑𝑠 < +∞,

𝜌 ∫1
0
𝑠(1 − 𝑠)𝑓1(𝑠, 1, 1)𝑑𝑠 + 𝜌𝛾𝜇21+𝜇22 ∫10 𝑠(1 − s)𝑓2(𝑠, 𝑠, 𝑠)𝑑𝑠 < 1.(𝐻33) 𝜆21 > 0, 𝜇22 < 0, 0 < ∫10 𝑠(1 − 𝑠)𝑓2(𝑠, 1, 𝑠)𝑑𝑠 < +∞,

𝜌 ∫1
0
𝑠(1 − 𝑠)𝑓1(𝑠, 1, 1)𝑑𝑠 + 𝜌𝛾𝜇22 ∫10 𝑠(1 − 𝑠)𝑓2(𝑠, 1, 𝑠)𝑑𝑠 < 1.(𝐻34) 𝜇21 < 0, 𝜆22 > 0, 0 < ∫10 𝑠(1 − 𝑠)𝑓2(𝑠, 𝑠, 1)𝑑𝑠 <+∞. 𝜌 ∫1
0
𝑠(1−𝑠)𝑓1(𝑠, 1, 1)𝑑𝑠+𝜌𝛾𝜇21 ∫10 𝑠(1−𝑠)𝑓2(𝑠, 𝑠, 1)𝑑𝑠 < 1,

where

0 < 𝛾 = ]𝜌 < 1, (9)

𝜌 = max{𝛼 [𝑡]𝜅 𝛽 [1] + 1, 𝛽 [𝑡]𝜅 𝛼 [1] + 1, 1𝜅𝛽 [1] , 1𝜅
⋅ 𝛼 [1]} ,

] = min{𝛼 [𝑡]𝜅 𝛽 [𝑡 (1 − 𝑡)] , 𝛽 [𝑡]𝜅 𝛼 [𝑡 (1 − 𝑡)] , 1𝜅
⋅ 𝛽 [𝑡 (1 − 𝑡)] , 1𝜅𝛼 [𝑡 (1 − 𝑡)]} .

(10)

Remark 1. Equations (7)-(8) imply

𝑐𝜆𝑖1𝑓𝑖 (𝑡, 𝑥, 𝑦) ≤ 𝑓𝑖 (𝑡, 𝑐𝑥, 𝑦) ≤ 𝑐𝜇𝑖1𝑓𝑖 (𝑡, 𝑥, 𝑦) ,
𝑐𝜆𝑖2𝑓𝑖 (𝑡, 𝑥, 𝑦) ≤ 𝑓𝑖 (𝑡, 𝑥, 𝑐𝑦) ≤ 𝑐𝜇𝑖2𝑓𝑖 (𝑡, 𝑥, 𝑦) ,

if 𝑐 ≥ 1, 𝑖 = 1, 2.
(11)

Conversely, (11) implies (7)-(8).

Remark 2. Equation (7) implies

𝑓1 (𝑡, 𝑥1, 𝑦1) ≤ 𝑓1 (𝑡, 𝑥2, 𝑦2) ,
if 0 < 𝑥1 ≤ 𝑥2, 0 < 𝑦1 ≤ 𝑦2. (12)

Remark 3. (𝐻31) implies that𝑓2(𝑡, 𝑥, 𝑦) is nondecreasing in 𝑥
and 𝑦.(𝐻32) implies that 𝑓2(𝑡, 𝑥, 𝑦) is nonincreasing in 𝑥 and 𝑦.(𝐻33) implies that 𝑓2(𝑡, 𝑥, 𝑦) is nondecreasing in 𝑥 and
nonincreasing in 𝑦.(𝐻34) implies that 𝑓2(𝑡, 𝑥, 𝑦) is nonincreasing in 𝑥 and
nondecreasing in 𝑦.
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2. Main Results

For each 𝑢 ∈ 𝐸 fl 𝐶[0, 1], we write ‖𝑢‖ = max{|𝑢(𝑡)| : 𝑡 ∈[0, 1]}. Clearly, (𝐸, ‖ ⋅ ‖) is a Banach space. Similarly, for each(𝑥, 𝑦) ∈ 𝐸×𝐸, wewrite ‖(𝑥, 𝑦)‖1 = max{‖𝑥‖, ‖𝑦‖}. For any real
constant 𝑟 > 0, define Ω𝑟 = {(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : ‖(𝑥, 𝑦)‖1 < 𝑟}.
Define

𝑃 = {(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝑥 (𝑡) ≥ 𝛾𝑡 (𝑥, 𝑦)1 , 𝑦 (𝑡)
≥ 𝛾𝑡 (𝑥, 𝑦)1 , 𝑡 ∈ [0, 1]} , (13)

where 𝛾 is given by (9). Clearly, (𝐸×𝐸, ‖ ⋅‖1) is a Banach space
and 𝑃 is a cone of 𝐸 × 𝐸.
Remark 4. The cone 𝑃 defined by (13) is completely different
from the cone used in the uncoupled boundary value prob-
lems. This means that the cone 𝑃 has the following property:

if (𝑥, 𝑦) ∈ 𝑃 \ {𝜃} ,
then 𝛾𝑡 (𝑥, 𝑦)1 ≤ 𝑥 (𝑡) ,

𝑦 (𝑡) ≤ (𝑥, 𝑦)1 ,
for 𝑡 ∈ [0, 1] ,

(14)

which is crucial in the definition of 𝑇 and in the proof of
Lemma 9.

Our main result is the following theorems.

Theorem 5. Assume that (𝐻1), (𝐻2), and (𝐻3) are satisfied.
Then differential system (3) has at least two positive solutions(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐶[0, 1]×𝐶[0, 1] such that 0 < ‖(𝑥1, 𝑦1)‖1 <1 < ‖(𝑥2, 𝑦2)‖1.
Note. We need only to prove this theorem under condition(𝐻33), since the proof is similar when (𝐻31) or (𝐻32) or (𝐻34)
is satisfied.

The proof ofTheorem 5 is based on the following theorem
in [31].

Lemma6. Let𝐸 be a Banach space and𝑃 a cone in𝐸. Suppose
thatΩ1 andΩ2 are two bounded open subsets of𝐸with 𝜃 ∈ Ω1,Ω1 ⊂ Ω2. Let operator 𝑇 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃 be completely
continuous. Suppose that one of the two conditions

(i) ‖𝑇𝑥‖ ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1,
‖𝑇𝑥‖ ≥ ‖𝑥‖ , ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω2,

(ii) ‖𝑇𝑥‖ ≥ ‖𝑥‖ , ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1,
‖𝑇𝑥‖ ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω2

(15)

is satisfied. Then 𝑇 has a fixed point in 𝑃 ∩ (Ω2 \ Ω1).

Lemma 7 (see [20]). Assume that (𝐻1) holds. Let 𝑢, V ∈ 𝐸;
then the system of BVPs

−𝑥 (𝑡) = 𝑢 (𝑡) ,
−𝑦 (𝑡) = V (𝑡) ,

𝑡 ∈ [0, 1] ,
𝑥 (0) = 𝑦 (0) = 0,
𝑥 (1) = 𝛼 [𝑦] ,
𝑦 (1) = 𝛽 [𝑥]

(16)

has integral representation

𝑥 (𝑡) = ∫1
0
𝐺1 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫1

0
𝐻1 (𝑡, 𝑠) V (𝑠) 𝑑𝑠,

𝑦 (𝑡) = ∫1
0
𝐺2 (𝑡, 𝑠) V (𝑠) 𝑑𝑠 + ∫1

0
𝐻2 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠,

(17)

where

𝑘 (𝑡, 𝑠) = {{{
𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝐺1 (𝑡, 𝑠) = 𝑘1𝑡𝜅 ∫
1

0
𝑘 (𝑠, 𝜏) 𝑑𝐵 (𝜏) + 𝑘 (𝑡, 𝑠) ,

𝐻1 (𝑡, 𝑠) = 𝑡𝜅 ∫
1

0
𝑘 (𝑠, 𝜏) 𝑑𝐴 (𝜏) ,

𝐺2 (𝑡, 𝑠) = 𝑘2𝑡𝜅 ∫
1

0
𝑘 (𝑠, 𝜏) 𝑑𝐴 (𝜏) + 𝑘 (𝑡, 𝑠) ,

𝐻2 (𝑡, 𝑠) = 𝑡𝜅 ∫
1

0
𝑘 (𝑠, 𝜏) 𝑑𝐵 (𝜏) .

(18)

Remark 8 (see [20]). From (13) and (𝐻1), for 𝑡 ∈ [0, 1], we
have

𝐺𝑖 (𝑡, 𝑠) ≤ 𝜌𝑠 (1 − 𝑠) ,
𝐻𝑖 (𝑡, 𝑠) ≤ 𝜌𝑠 (1 − 𝑠) ,
𝐺𝑖 (𝑡, 𝑠) ≥ ]𝑡𝑠 (1 − 𝑠) ,
𝐻𝑖 (𝑡, 𝑠) ≥ ]𝑡𝑠 (1 − 𝑠) ,

𝑖 = 1, 2.

(19)

Define an operator 𝑇 : 𝑃 \ {𝜃} → 𝑃 by
𝑇 (𝑥, 𝑦) = (𝑇1 (𝑥, 𝑦) , 𝑇2 (𝑥, 𝑦)) , (20)

where operators 𝑇1, 𝑇2 : 𝑃 \ {𝜃} → 𝑄 = {𝑢 ∈ 𝐸 | 𝑢(𝑡) ≥ 0, 𝑡 ∈[0, 1]} are defined by

𝑇1 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐺1 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠
+ ∫1
0
𝐻1 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠,
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𝑇2 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐺2 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠
+ ∫1
0
𝐻2 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] .
(21)

Lemma 9. Assume that (𝐻1), (𝐻2), and (𝐻3) hold. Then, for
any 0 < 𝑎 < 𝑏 < +∞, 𝑇 : 𝑃 ∩ (Ω𝑏 \ Ω𝑎) → 𝑃 is a completely
continuous operator.

Proof. For (𝑥, 𝑦) ∈ 𝑃 ∩ (Ω𝑏 \ Ω𝑎), let 𝑐 be a positive number
such that ‖(𝑥, 𝑦)‖1/𝑐 < 1 and 𝑐 > 1. From (𝐻2), (𝐻3), and
Remark 2, we have

𝑓1 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) ≤ 𝑓1 (𝑡, 𝑐, 𝑐) ≤ 𝑐𝜇11+𝜇12𝑓1 (𝑡, 1, 1) ,
𝑓2 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) ≤ 𝑓2 (𝑡, 𝑐, 𝛾 (𝑥, 𝑦)1 𝑡)

≤ 𝑐𝜇21𝑓2 (𝑡, 1,min {𝛾 (𝑥, 𝑦)1 , 1} 𝑡)
≤ 𝑐𝜇21 min {𝛾𝑎, 1}𝜆22 𝑓2 (𝑡, 1, 𝑡) .

(22)

Hence for any 𝑡 ∈ [0, 1], by Remark 8, we get

𝑇𝑖 (𝑥, 𝑦) (𝑡)
≤ 𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

+ 𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

≤ 𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 𝑐, 𝑐) 𝑑𝑠

+ 𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 𝑐, 𝛾𝑠 (𝑥, 𝑦)1) 𝑑𝑠

≤ 𝜌𝑐𝜇11+𝜇12 ∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 1, 1) 𝑑𝑠

+ 𝜌𝑐𝜇21 min {𝛾𝑎, 1}𝜆22 ∫1
0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 1, 𝑠) 𝑑𝑠,

𝑖 = 1, 2.

(23)

Thus, 𝑇 is well defined on 𝑃 ∩ (Ω𝑏 \ Ω𝑎).
Next we show that 𝑇(𝑃 ∩ (Ω𝑏 \ Ω𝑎)) ⊂ 𝑃. By Remark 8,

for 𝜏, 𝑡, 𝑠 ∈ [0, 1], we obtain
𝐺𝑖 (𝑡, 𝑠) ≥ 𝛾𝑡𝐺𝑖 (𝜏, 𝑠) ,
𝐻𝑖 (𝑡, 𝑠) ≥ 𝛾𝑡𝐻𝑖 (𝜏, 𝑠) ,

𝑖 = 1, 2,
𝐻1 (𝑡, 𝑠) ≥ 𝛾𝑡𝐺2 (𝜏, 𝑠) ,

𝐺1 (𝑡, 𝑠) ≥ 𝛾𝑡𝐻2 (𝜏, 𝑠) ,
𝐻2 (𝑡, 𝑠) ≥ 𝛾𝑡𝐺1 (𝜏, 𝑠) ,
𝐺2 (𝑡, 𝑠) ≥ 𝛾𝑡𝐻1 (𝜏, 𝑠) .

(24)

Hence, for (𝑥, 𝑦) ∈ 𝑃 ∩ (Ω𝑏 \ Ω𝑎), 𝑡 ∈ [0, 1], we have
𝑇1 (𝑥, 𝑦) (𝑡) = ∫1

0
𝐺1 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠
+ ∫1
0
𝐻1 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

≥ 𝛾𝑡 ∫1
0
𝐺1 (𝜏, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

+ 𝛾𝑡 ∫1
0
𝐻1 (𝜏, 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

= 𝛾𝑡𝑇1 (𝑥, 𝑦) (𝜏) ,
𝑇1 (𝑥, 𝑦) (𝑡) = ∫1

0
𝐺1 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠
+ ∫1
0
𝐻1 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

≥ 𝛾𝑡 ∫1
0
𝐻2 (𝜏, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

+ 𝛾𝑡 ∫1
0
𝐺2 (𝜏, 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

= 𝛾𝑡𝑇2 (𝑥, 𝑦) (𝜏) .

(25)

Then 𝑇1(𝑥, 𝑦)(𝑡) ≥ 𝛾𝑡‖𝑇1(𝑥, 𝑦)‖ and 𝑇1(𝑥, 𝑦)(𝑡) ≥ 𝛾𝑡‖𝑇2(𝑥,𝑦)‖, that is, 𝑇1(𝑥, 𝑦)(𝑡) ≥ 𝛾𝑡‖(𝑇1(𝑥, 𝑦), 𝑇2(𝑥, 𝑦))‖1. In the
same way, we can prove that 𝑇2(𝑥, 𝑦)(𝑡) ≥ 𝛾𝑡‖(𝑇1(𝑥, 𝑦),𝑇2(𝑥, 𝑦))‖1. Therefore, 𝑇(𝑃 ∩ (Ω𝑏 \ Ω𝑎)) ⊂ 𝑃.

Moreover, 𝑇 : 𝑃 ∩ (Ω𝑏 \ Ω𝑎) → 𝑃 is a completely
continuous operator. This is a standard textbook result using
Ascoli-Arzela theorem (see, e.g., [31]) and is omitted.

Proof of Theorem 5. By (𝐻2) and (𝐻3), we can get

𝑡𝜇11+𝜇12𝑓1 (𝑡, 1, 1) ≤ 𝑓1 (𝑡, 𝑡, 𝑡) ≤ 𝑓1 (𝑡, 1, 1) ,
𝑡𝜇21−𝜆22𝑓2 (𝑡, 1, 𝑡) ≤ 𝑓2 (𝑡, 𝑡, 1) ≤ 𝑓2 (𝑡, 1, 𝑡) ,

𝑡 ∈ (0, 1) .
(26)

This implies that

0 < ∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 𝑠, 𝑠) 𝑑𝑠 < +∞,

0 < ∫1
0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 𝑠, 1) 𝑑𝑠 < +∞.

(27)
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Choose constants 𝑟 and 𝑅 such that

𝑅 > max{𝛾−1, 1, (]4
⋅ 𝛾𝜆11+𝜆12 ∫1

0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 𝑠, 𝑠) 𝑑𝑠)

−1/(𝜆11+𝜆12−1)} ,

0 < 𝑟 < min{12 , (]4
⋅ 𝛾𝜇21 ∫1

0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 𝑠, 1) 𝑑𝑠)

1/(1−𝜇21−𝜇22)} .

(28)

It follows from Lemma 9 that 𝑇 : 𝑃 ∩ (Ω𝑅 \ Ω𝑟) → 𝑃 is
a completely continuous operator. Moreover, by Lemma 7, if(𝑥, 𝑦) ∈ 𝑃 ∩ (Ω𝑅 \ Ω𝑟) is a fixed point of 𝑇, then (𝑥, 𝑦) is a
solution of differential system (3).

For any 𝑡 ∈ [0, 1], (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω𝑟, it follows from the
definition of cone 𝑃 that

𝛾𝑟𝑡 = 𝛾𝑡 (𝑥, 𝑦)1 ≤ 𝑥 (𝑡) , 𝑦 (𝑡) ≤ 𝑟 < 1. (29)

Thus for any (𝑥, 𝑦) ∈ 𝑃∩ 𝜕Ω𝑟, by (𝐻33) and Remarks 2 and 8,
we have

𝑇𝑖 (𝑥, 𝑦) (𝑡) ≥ ]4 ∫
1

0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 𝛾𝑟𝑠, 𝑟) 𝑑𝑠

≥ ]4𝛾𝜇21𝑟𝜇21+𝜇22 ∫
1

0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 𝑠, 1) 𝑑𝑠

≥ 𝑟 = (𝑥, 𝑦)1 , 𝑖 = 1, 2, 𝑡 ∈ [14 , 1] .
(30)

Consequently,

𝑇 (𝑥, 𝑦)1 ≥ (𝑥, 𝑦)1 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω𝑟. (31)

Again, for any 𝑡 ∈ [0, 1], (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω𝑅, we have
𝛾𝑅𝑡 = 𝛾𝑡 (𝑥, 𝑦)1 ≤ 𝑥 (𝑡) ,
𝑦 (𝑡) ≤ 𝑅. (32)

Thus for any (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω𝑅, noting that 𝛾𝑅 > 1, we have
𝑇𝑖 (𝑥, 𝑦) (𝑡) ≥ ]4 ∫

1

0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 𝛾𝑅𝑠, 𝛾𝑅𝑠) 𝑑𝑠

≥ ]4 (𝛾𝑅)𝜆11+𝜆12 ∫
1

0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 𝑠, 𝑠) 𝑑𝑠

≥ 𝑅 = (𝑥, 𝑦)1 , 𝑖 = 1, 2, 𝑡 ∈ [14 , 1] .
(33)

This guarantees

𝑇 (𝑥, 𝑦)1 ≥ (𝑥, 𝑦)1 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω𝑅. (34)

On the other hand, for any 𝑡 ∈ [0, 1], (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω1, it
follows from the definition of cone 𝑃 that

𝛾𝑡 ≤ 𝑥 (𝑡) ,
𝑦 (𝑡) ≤ 1. (35)

Thus for any (𝑥, 𝑦) ∈ 𝑃∩𝜕Ω1, by (𝐻33) and Remarks 2 and 8,
we have

𝑇𝑖 (𝑥, 𝑦) (𝑡) ≤ 𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 1, 1) 𝑑𝑠

+ 𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 1, 𝛾𝑠) 𝑑𝑠

≤ 𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 1, 1) 𝑑𝑠

+ 𝜌𝛾𝜇22 ∫1
0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 1, 𝑠) 𝑑𝑠 < 1

= (𝑥, 𝑦)1 , 𝑖 = 1, 2.

(36)

That is,

𝑇 (𝑥, 𝑦)1 < (𝑥, 𝑦)1 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω1. (37)

Therefore, from (31), (37), and Lemma 6, it follows that
differential system (3) has one positive solution (𝑥1, 𝑦1) ∈ 𝑃
with 𝑟 ≤ ‖(𝑥1, 𝑦1)‖1 < 1. In the same way, from (34), (37),
and Lemma 6, it follows that differential system (3) has one
positive solution (𝑥2, 𝑦2) ∈ 𝑃 with 1 < ‖(𝑥1, 𝑦1)‖1 ≤ 𝑅.
3. An Example

In this section we give an example to illustrate the usefulness
of our main results. Let us consider the singular differential
system with coupled boundary value problem

−𝑥 = 𝑥𝑝1𝑦𝑞1
𝜋√𝑡 (1 − 𝑡) ,

−𝑦 = 𝑥𝑝24√𝑦𝑡,
𝑥 (0) = 𝑦 (0) = 0,
𝑥 (1) = 𝑦 (14) + 𝑦(12) ,
𝑦 (1) = ∫1

0
𝑥 (𝑡) 𝑑𝑡,

(38)

where 0 ≤ 𝑝1, 𝑞1, 𝑝2 < +∞, 𝑝1 + 𝑞1 > 1, 𝑝2 < 1.
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Let

𝐴 (𝑡) =
{{{{{{{{{{{{{

0, 𝑡 ∈ [0, 14) ,
1, 𝑡 ∈ [14 , 12) ,
2, 𝑡 ∈ [12 , 1] ,

𝐵 (𝑡) = 𝑡,
𝜆11 = 𝜇11 = 𝑝1,
𝜆12 = 𝜇12 = 𝑞1,
𝜆21 = 𝜇21 = 𝑝2,
𝜆22 = 𝜇22 = −12 ,

𝑓1 (𝑡, 𝑥, 𝑦) = 𝑥𝑝1𝑦𝑞1
𝜋√𝑡 (1 − 𝑡) ,

𝑓2 (𝑡, 𝑥, 𝑦) = 𝑥𝑝24√𝑦𝑡;

(39)

then

𝜅1 = 34 ,
𝜅2 = 12 ,
𝜅 = 1 − 𝜅1𝜅2 = 58 ,
𝜌 = 165 ,
] = 15 ,
𝛾 = 116 ,
𝜌∫1
0
𝑠 (1 − 𝑠) 𝑓1 (𝑠, 1, 1) 𝑑𝑠
+ 𝜌𝛾𝜇22 ∫1

0
𝑠 (1 − 𝑠) 𝑓2 (𝑠, 1, 𝑠) 𝑑𝑠 = 165 (18 + 435)

= 134175 < 1.

(40)

So all conditions of Theorem 5 are satisfied for (38), and our
conclusion follows fromTheorem 5.
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