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Purpose. To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike
coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil
sizes. Methods. A sphere is fitted to the ocular wavefront at the center and at a variable distance, t. The optimal fitting
distance, topt, is obtained empirically from a dataset of 308 eyes as a function of objective refraction pupil radius, r0, and
used to define the formula of a new wavefront refraction metric (MTR). The metric is tested in another, independent
dataset of 200 eyes. Results. For pupil radii r0 ≤ 2mm, the new metric predicts the equivalent sphere with similar accuracy
(<0.1D), however, for r0 > 2mm, the mean error of traditional metrics can increase beyond 0.25D, and the MTR remains
accurate. The proposed metric allows clinicians to obtain an accurate clinical spherical equivalent value without rescaling/
refitting of the wavefront coefficients. It has the potential to be developed into a metric which will be able to predict full
spherocylindrical refraction for the desired illumination conditions and corresponding pupil size.

1. Introduction

Objective wavefront refraction is a computational tech-
nique which can be used to obtain a spherocylindrical
prescription that best corrects the subject’s vision from a
single measurement of ocular wavefront aberrations [1, 2].
The goal is to match the clinical subjective refraction,
which has long been the gold standard in optometric
practice [1–6], in spite of being a lengthy procedure of
relatively poor precision (95% limits of interexaminer
agreement of the spherical equivalent 0.62 to 0.75D
[4–7]—roughly twice the value reported for wavefront
refractions) [4, 7, 8].

In a perfect optical system, a spherical wavefront from
an object point should converge to a single point at the
desired image location, such as the retina of the eye. In
the presence of optical aberrations, however, the wavefront
becomes distorted from its spherical shape which degrades
the quality of the retinal images [7]. The wavefront error

(WFE) is the optical path difference between the aberrated
and the ideal, unaberrated wavefront. Because the WFE is
measured for the whole area of the pupil, wavefront
aberrometers are especially useful for the evaluation of
refractive surgery cases, customized ablations, orthokera-
tology, and similar applications [4, 9, 10]. In daily
optometric practice, however, wavefront refraction with
these devices tends only to be used to estimate a starting
point for subjective refraction [11].

Objective wavefront refraction is based on fitting a
reference wavefront produced by an optimum, spherocy-
lindrical lens to a two-dimensional ocular wavefront aber-
ration function measured for a subject’s eye. As described
by Thibos et al. [7], there are two main categories of
methods (hereafter called “metrics”) of finding such spher-
ocylindrical lens.

The first category, which they refer to as “refraction based
on the principle of equivalent quadratic” is based on fast and
relatively simple computations of Zernike coefficients, which
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are used to describe the wavefront aberration function in the
plane of the pupil. The second category, called “refraction
based on maximizing optical or visual quality” is based on
far more computationally intensive calculations of optical
transfer functions and analyses of images in the plane of
the retina using Fourier or geometrical optics. For instance,
the VSOTF (visual Strehl ratio calculated from the optical
transfer function [7, 12–15]) method can easily take a mod-
ern machine 1000 times longer to compute (e.g., 500ms), as
it involves many intermediate steps, such as calculations of
normal and diffraction-limited pupil functions, their Fourier
transforms, and ratio.

Additionally, the image-plane metrics are no longer
directly tied by means of a mathematical formula to basic
ocular aberrations, such as defocus, astigmatism, or SA,
which are fundamental at the time of prescribing a refraction
correction. All these methods from both categories have
been widely used to predict subjective refraction not only in
normal eyes studies [12–15] but also in peripheral refraction
studies [16, 17], in eyes that have undergone refractive
surgery [18], contact lenses [19], and even to study the
accommodation response [20–22], among many others.

Although the continued development of aberrometers
has made wavefront refraction a fast procedure with even
better repeatability and precision [1, 4, 7], the accuracy of
the technique is still a problem without a simple solution.
Thibos (Indiana University) illustrated this by saying “We
are aiming a gun (objective refraction) that does not shoot
straight at a moving target (subjective refraction).” The
“gun” does not shoot straight because objective refraction
depends on the metric that is used to obtain it from the
WFE, and these are known to suffer from bias [7]. On
the other hand, the “target” is moving because subjective
refraction changes with pupil size, especially in the presence
of spherical aberration (SA), and depends on the level of
illumination during measurement [23, 24]. Consequently,
the spherocylindrical correction obtained via subjective
refraction in clinical conditions does not exactly correspond
to the best correction obtained using an aberrometer under
different conditions (target size, illumination, cycloplegia,
and so forth).

The purposes of the present study were to develop an
objective refraction metric based on Zernike coefficients
and pupil radius, which would be an accurate predictor
of clinical, subjective refraction, and to address the vari-
ability between subjective and objective wavefront refrac-
tion. We propose a relatively simple pupil-plane formula
of a metric that can provide a clinician with an accurate
refraction value for a known pupil radius that the subject
will typically have. Image-plane metrics were not consi-
dered in the present study, which does not in any way
deny their huge usefulness in fundamental research, image
processing, and other applications. In addition, given that
the equivalent sphere is, in most cases, the most important
value in the refraction, the study is limited for the sake of
simplicity to the prediction of the SE. At the end of the
Introduction section, formulas to extend the methodology
and to apply it to the whole spherocylindrical refraction
are provided ((14) and (15)).

2. Methods

2.1. Overview of the Datasets. The database of eyes of the
present study is an amalgamation of wavefront and subjec-
tive refraction data from 4 independent, previously published
datasets; the summary of which is presented in Table 1. All
subjects were free of any kind of ocular disease and have
never had refractive surgery. The data consisted of pupil
diameters, signed Zernike coefficients through the fifth or
sixth order, and subjective refraction data (sphere, axis, and
cylinder) for each individual eye. Subjective refractions were
in all cases performed manually, starting from autorefrac-
tion, using the standard optometric protocol of maximum
plus, to the best visual acuity.

Out of the whole database of 2560 eyes collected by
Salmon and van de Pol [25], only the A dataset was
included because it contained subjective refraction data
compatible with the present study. The eyes were not
dilated, and the subjective refraction pupil radius was not
known. In case of the H dataset, the eyes were dilated with
1% tropicamide, and the subjective refractions were per-
formed at the same pupil size as the wavefront measure-
ments. In case of the M dataset, the eyes were not
dilated and the subjective refraction pupil radius was not
known. Six eyes out of 180 had to be excluded from the
original dataset, because an in-depth data analysis revealed
that the subjects did not perform the accommodation task
of the original study correctly. Together, the three datasets
formed the AHM dataset of 308 eyes, which was used to
develop the objective refraction metric proposed by the
present study.

The IND dataset of 200 eyes was used to indepen-
dently validate the results because the methodology to
obtain the data was distinct. After performing initial subjec-
tive refractions, accommodation was paralyzed with 0.5%
cyclopentolate. The eyes were then optimally corrected for
astigmatism, and their hyperfocal points were conjugated
with the retina with trial lenses. This correction was worn
by the subjects during the subsequent aberrometry. This
experimental design emphasized the effects of higher-order
aberrations by minimizing the presence of uncorrected
second-order aberrations.

The effects of longitudinal chromatic aberration between
the wavelength of the infrared measurement beam and visi-
ble light, depth of diffuse reflection of infrared light in the
choroid [27], and any other internal offsets of the apparatus
were taken into account in the data.

2.2. Traditional Pupil-Plane Metrics of Objective Wavefront
Refraction. The two metrics most widely used in practice,
which belong to the category of wavefront refraction based
on the principle of equivalent quadratic, are paraxial curva-
ture matching at the pupil center (paraxial or Seidel refrac-
tion) and paraboloid least squares fitting over the full pupil
area (minimum RMS or Zernike refraction) [7]. In both
cases, the equivalent sphere is computed from Zernike coef-
ficients Cm

n and pupil radius r0. Aberrometers typically
express the wavefront as an expansion of coefficients up to
the sixth order [28].
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Zernike refraction (hereafter called the “minRMS
metric,” with equivalent sphere MminRMS) takes into account
the Zernike higher-order aberrations (HOA). For this metric,
the equivalent sphere is computed as follows:

MminRMS =
−4 3C0

2
r20

, 1

where C0
2 is the Zernike defocus coefficient and r0 is the actual

pupil radius.
The minRMS metric fits a paraboloid of revolution to the

measured ocular wavefront in such a way that the root mean
square error between the two is minimized for the whole area
of the pupil. It was found to exhibit a systematic, myopic bias
of roughly 0.4D [7] and becomes more myopic in the pres-
ence of large values of SA [29, 30].

Paraxial refraction (hereafter called the “paraxial metric,”
with equivalent sphere Mparaxial) takes into account only the
curvature of the wavefront at the pupil center. It is not
affected by SA because it does not take into account the
peripheral rays. There is evidence, however, that for large
pupils, high-contrast objects (as is the case in night vision),
and in presence of fourth-order SA, the refractive error
may become negative as the eye becomes more myopic
[31]. In this case, the paraxial metric yields a hyperopic pre-
diction of subjective refraction.

Mparaxial =
−4 3C0

2 + 12 5C0
4 − 24 7C0

6
r20

, 2

where C0
4 and C

0
6 are, respectively, the fourth- and sixth-order

Zernike spherical aberration coefficients, which contribute
to the central curvature of the wavefront because they
are balanced [32]. This gives rise to a difference of the
values of equivalent spheres predicted by both metrics
when SA is present in the eye.

In the absence of higher-order aberrations, minRMS and
paraxial refractions are identical [13]. Both metrics give pre-
dictions of equivalent spheres that match for small pupils,
and Campbell [6] reported their excellent agreement with
subjective refractions for 4mm pupils. Both metrics can be
expressed by a more general formula in (3). For example,
the minRMS equivalent sphere formula from (1) can be
obtained from it when n = 1.

Mparaxial =
2
r20

〠
∞

n=1
−1 n n + 1

n − 1
2n + 1C0

2n, 3

where C0
2n is the radially symmetrical Zernike coefficients

of the wavefront, r0 is the actual pupil radius, and n is the
Zernike order.

In the case of aberrated eyes, Thibos et al. [7] suggest that
the clinical subjective refraction should lie somewhere
between the paraxial and minRMS refractions, which is in
agreement with other reports [14, 15].

2.3. Analytical Derivation of the New Objective Wavefront
Refraction Metric. To compute an equivalent sphere from a
two-dimensional wavefront aberration function, it is first
expressed in terms of Zernike polynomials [28].

W r = 〠
∞

n=0
C0
2nZ

0
2n

r
r0

, 4

where C0
2n is the Zernike coefficients of the wavefront,

ρ = r/r0 is the normalized distance from the origin in the
pupil plane, r0 is the actual pupil radius, and r ∈ −r0, r0 .
Zm
2n is a radially symmetric basis functions.

Z0
2 ρ = 3 2ρ2 − 1 ,

Z0
4 ρ = 5 6ρ4 − 6ρ2 + 1 ,

Z0
6 ρ = 7 20ρ6 − 30ρ4 + 12ρ2 − 1 ,…

5

For the sake of simplicity, the present study is focused on
finding the equivalent sphere, the derivation is limited to
terms with radial symmetry (m= 0, and n is even), and the
coefficients are truncated after the sixth order [32, 33].

The equivalent sphere is found by approximating
the wavefront in (4) by a sphere of radius R, centered at
(R, 0, 0).

S r =W 0 + R − R2 − r2 =W 0 +
r2

R + R2 − r2
6

The equivalent sphere, M = −1/R, is expressed as a func-
tion of both the Zernike coefficients and the pupil radius r0.
One simple way to approximate the wavefront by a sphere
is to make them coincide in three prescribed points (nodes):
the origin and the two points symmetrical with respect to the
origin, located within the interval [−r0, r0].

The position of the nodes can be written as −r0t, 0,
and +r0t, where t ∈ 0, 1 is a parameter that controls the
distance from the origin, at which the wavefront is
“matched,” or interpolated. Seeking an explicit expression

Table 1: Summary of datasets of eyes included in the study.

Dataset Number of eyes OD/OS (total) Mean age Cycloplegia Pupil diameter Aberrometer

Army [25] (A) 47/47(94) 29.9± 7.6 No 5.0mm COAS

Houston [26] (H) 20/20(40) 26.4± 7.7 Tropicamide 1% 7.4± 0.5mm COAS

Murcia [20] (M) 87/87(174) 35.0± 12.4 No 5.5± 0.9mm irx3

(AHM) 154 subjects, 308 eyes

Indiana [7] (IND) 100/100(200) 26.1± 5.6 Cyclopentolate 0.5%
>7.5mm (140 eyes)
>6.0mm (60 eyes)

Custom
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for M, both equations (W and S) are replaced by their
corresponding second-order interpolating polynomials,
matching both the wavefront and the fitted sphere at each
of the three nodes.

The polynomial interpolating S at the three nodes is
formed by substituting r with r0t.

Ŝ r =W 0 +
r2

R + R2 − r20t
2

7

Both S r and its interpolating polynomial S r take the
same values at 0 and ±r0t.

Similarly, the polynomial interpolating W at the three
nodes is

Ŵ r =W 0 +
2Δ t

r20
r2, 8

where

Δ t ≔ 3C0
2 + 3 5C0

4 t2 − 1 + 7C0
6 10t4 − 15t2 + 6

9

Well-known formulas for the Lagrange interpolation can
be used to calculate Ŵ r ; however, it is easier to verify the
expression in (9) by taking into account that bothW r trun-
cated after the sixth order and its interpolating polynomial
W r take the same values at 0 and ±r0t.

As the last step or the derivation, S and W are equated
and solved for R.

R t = t2Δ t +
r20

4Δ t
≈

r20
4Δ t

10

The term t2Δ t can be dropped in case of a human eye,
as it is much smaller than the term following it, because r0 is
several millimeters and Δ(t) is of an order of microns.

Finally, the formula for the spherical equivalent M is
as follows:

M t =
−1
R

t =
−4Δ t

r20

=
−4 3C0

2 − 12 5C0
4 t2 − 1 − 4 7C0

6 10t4 − 15t2 + 6
r20

11

This formula defines a one-parameter family of spherical
equivalents: the parameter t controls the position of the
nodes at which the equivalent sphere matches the wavefront
aberration function (Figure 1), and so, the previously
described minRMS and paraxial metrics can be obtained
from (11), depending on the value of t.

(a) When t = 0, the sphere is fit at the center of the wave-
front, and (11) becomes identical to (2) (paraxial
metric).

(b) When t = 1, the sphere is fit to the center and
extremes of the wavefront (Figure 1) and (11) corre-
sponds approximately to (1) (minRMS metric).

M 1 =
−4 3C0

2 − 4 7C0
6

r20
≈
−4 3C0

2
r20

12

The approximation by means of dropping the
last term is justified by the fact that sixth-order
SA is usually very low in human eyes [33]. This
approximation is shown in Figure 1 and validated
experimentally later (Figure 2).

(c) When an intermediate value is used, for instance
t = 3/2, (11) becomes

M
3
2

=
−4 3C0

2 + 3 5C0
4 + 36 7C0

6
r20

13

In this case, the nodes − 3/2, 0, and + 3/2 corre-
spond to the zeros of the cubic Chebyshev polynomial
of the second kind, which are known to provide a
quasi-optimal set of interpolation nodes [34].

Figure 1 shows the example profiles of spherical and
paraboloid fits to a radially symmetrical wavefront, described
by (4). All of the profiles have been fixed to coincide at the
apex of the wavefront.

The paraxial fit (t = 0) matches the wavefront well at the
pupil center but does not take into account the shape of the
wavefront for intermediate and peripheral areas of the pupil.
On the other hand, the minRMS fit (t = 1) matches the wave-
front well at the edge of the pupil but not at intermediate
areas. The Chebyshev fit (t = 3/2) matches the wavefront
at a predefined, intermediate distance from the center of
the pupil.

Given a wavefront described by a set of Zernike coeffi-
cients C0

2, C
0
4, and C0

6 for a given r0, (11) can be used to find
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Figure 1: Example profiles of spherical and paraboloid fits (dashed
blue line: minRMS; red line: t = 0; blue line: t = 1; orange line: t =
3/2) to radially symmetrical wavefront (represented by the black

dotted line, where C0
2 = 0 220 μm, C0

4 = 0 050μm, C0
6 = 0 0025μm,

and r0 = 3mm).
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the optimal value topt, such that M(topt) best approximates
the Msubjective. In the present study, this approach is applied
to a large database of objective and subjective refractions of
real subjects.

The same methodology that was used to analytically
derive the equivalent sphere M can be extended to take into
account the whole spherocylindrical refraction by using
power vectors [35]. Because of their orthogonality, the
derivation can be performed for two orthogonal directions,
corresponding to the higher and lower curvatures of the
wavefront. The values of J0 and J45 can be obtained in a
similar way asM in (11), by taking into account the constant
coefficients that multiply ρ2 cos θ and ρ2 sin θ within each
Zernike polynomial.

J0 t =
−2 6C2

2 − 6 10C2
4 t2 − 1 − 2 14C2

6 10t4 − 15t2 + 6
r20

14

J45 t =
−2 6C−2

2 − 6 10C−2
4 t2 − 1 − 2 14C−2

6 10t4 − 15t2 + 6
r20

15

The complete spherocylindrical refraction can be
obtained using (11), together with (14) and (15), as described
by Thibos et al. [35] (see Equation 23 hither).

2.4. Numerical Definition of the New Objective Wavefront
Refraction Metric. In the previous section, the analytical rela-
tionship between a fitted equivalent sphereM(topt) that opti-
mally approximates Msubjective was established. In order to

find the relationship between the parameter topt and objective
refraction pupil radius r0 (while subjective refraction pupil
radius is unknown), the following data processing methodol-
ogy was applied to the AHM dataset of 308 eyes:

(a) For each value of pupil radius r0 from 1.0mm to
3.8mm (increment of 0.1mm) and each value of
parameter t from 0 to 1 (increment of 0.05), (11)
was applied to the Zernike coefficients of every eye
to obtain equivalent sphere values.

(b) The difference between subjective and objective
refraction (hereafter called subjective minus objective
error (SOE)) was calculated for each eye and the
combination of r0 and t.

(c) For each value of r0, the mean absolute SOE for all
eyes was calculated, and the value of parameter t that
minimized that mean was selected as topt for that
pupil radius.

In order to obtain the Zernike coefficients corresponding
to each pupil radius in step (a), rescaling [36, 37] was per-
formed from larger to smaller pupil radii [38]. Figure 3
presents the change of topt in function of objective refraction
pupil radius r0 and a segmented fit to the data.

Figure 3 illustrates that for pupils that were small during
aberrometry, topt approaches 1 (minRMS metric), while for
large pupils, it decreases, and the slope becomes less negative
as the pupil gets larger. A segmented fit to the discrete values
of the function topt(r0) was performed, and finally, the MTR
metric in (17) was obtained.

MTR =
−4 3C0

2 − 12 5C0
4 t2 − 1 − 4 7C0

6 10t4 − 15t2 + 6
r20

,

16
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Figure 2: Mean SOE in function of the pupil radius for all 308
subjects of the AHM dataset, and for t = 0, 1, 3/2, t(r), and
additionally, the minRMS metric. The error bars represent +1 SEM.
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topt r0 =
1, r0 < 2
2
r0
, r0 ≥ 2

, 17

which gives the result in diopters when C0
2, C

0
4, and C0

6
are expressed in microns and the pupil radius, r0, is in
millimeters.

As described in Section 2.2, the traditional minRMS and
paraxial metrics can be obtained from (11), by using fixed
values of t = 0 and t = 1, respectively. The special case where
the parameter t is a function of r0, is hereafter referred to as
M t r or, for short, the MTR metric. When the plural form
“MTR metrics” is used, the whole family of metrics, where t
can be either a discrete value or a function of the pupil radius,
is being referred to.

3. Results

Figure 4 presents the accuracy of the prediction of subjective
refraction in the AHM dataset for different values of
parameter t in form of Bland-Altman plots [39], where the
difference between the subjective and objective refraction is

plotted in the function of their mean value. Data for
the minRMS metric is not shown because the results are
practically identical (Figures 1 and 2) to those obtained
with theM t = 1 metric.No rescaling of Zernike coefficients
to a common value of the pupil radius was performed.
Each data point represents the SOE value of a corresponding
eye, calculated from the Zernike coefficients of the natural
pupil radius.

Figure 2 shows the mean SOE as a function of the
pupil radius for all 308 subjects of the AHM dataset, for
t = 0, 1, and 3/2, topt = f r0 , and additionally, the classic
minRMS metric.

Finally, in order to validate the results using an indepen-
dent dataset, Figure 5 shows the mean SOE values calculated
using the four MTRs for t = 0, 3/2, and 1 and topt = f r0 in
the IND dataset of 100 left and 100 right eyes (Table 1). This
dataset is called independent because it has not been included
in the numerical definition of the MTR metric described
in Section 2.1.

As described in Section 2.1, the eyes in the IND dataset
were paralyzed using 0.5% cyclopentolate, and optimally
corrected for astigmatism. Their hyperfocal points were
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Figure 4: Bland-Altman plots [39] illustrating the accuracy of the prediction of subjective refraction in the AHM dataset for different values
of parameter t. The data was obtained from WFE without any rescaling of the pupil radii to a common value.
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conjugated with the retina with trial lenses. Consequentially
the values ofMsubjective were 0D for this dataset, and the mean
SOE in Figure 5 represents the objective spherical equivalent
values with the opposite sign. Even though the 100 left and
100 right eyes in the IND dataset cannot be treated as 200
independent eyes, there were no significant differences
between the results obtained with the 4 metrics when
they were applied to the subsets of 100 left and 100 right
eyes separately.

4. Discussion

The present study presents an analytical derivation of a new,
general formula (11) for the calculation of the spherical
equivalent from the WFE. The formula includes the paraxial
metric and a close approximation of the minRMS metric (12)
as particular cases, where the value of the parameter t is a
scalar number (0 and 1, resp.). Additionally, a relation
between the optimum value of the parameter t and the
objective refraction pupil radius r0 is presented as the
function topt r0 ((17), illustrated in Figure 3). This function
was obtained empirically from subjective refraction data
from 308 eyes, measured following standard clinical proto-
cols and under standard illumination conditions.

The Bland-Altman plots in Figure 4 show that for
natural pupil radii (without rescaling the WFE), the mean
difference between the values of subjective and objective
refraction was the smallest for the MTR metric, although
not by a large margin.

Figure 2 presents the mean intersubject SOE in the
function of the pupil radius, which was obtained by rescaling
[36, 37] the WFE before calculating the metrics. For small
pupil radii (up to 2mm), the HOA are small and do not
noticeably affect the objective refraction, so that all of the
metrics give similar results. For example, for r0 = 1mm, the
difference between predictions of subjective refraction
between the minRMS and paraxial metrics is merely 0.05D.
For pupil radii up to 2mm, the minRMS metric predicts sub-
jective refraction slightly better than the paraxial metric. For
such small pupils, the absolute SOE is similar for both the

minRMS and paraxial metrics, and both predict subjective
refraction better than the clinical precision of 0.25D.

Furthermore, Figure 2 indicates that rescaling the wave-
front to correspond to the radius of 1.5mm and applying
the minRMS metric can be very successfully used to calculate
refraction. This result is in agreement with results obtained
by others [6, 26, 40] who found that Zernike refraction is a
good predictor of subjective refraction when SA is low.
Indeed, (17) indicates that topt ⋅ r0 = 2 for r0≥ 2mm and the
MTR metric corresponds to a sphere fitted to the wavefront
at 0 and ±2mm. This means that it predicts a similar equiv-
alent sphere as the one obtained by the minRMS metric to a
wavefront rescaled to correspond to a pupil radius of 2mm
[6]. In this case, the SOE calculated for the IND dataset was
0.06± 0.03D, which is practically the same as the mean SOE
for the MTR metric without rescaling. In Figure 5, it can be
seen that its mean SOE indeed does not exceed 0.1D, even
for a large pupil radii of 3.75mm.

It is important to note, however, that the SOE of the
paraxial metric M(t = 0) remains constant at −0.1D for
pupil radii from 1mm to 2.5mm. This possibly reveals an
empirical calibration offset favoring the minRMS metric in
aberrometer devices and demonstrates that the calibration
of the apparatus used to obtain the WFE data can play a very
important role in the determination of the function topt r0 ,
shown in Figure 3.

For large pupil radii, the refraction calculated using the
paraxial metric M(t = 0) is not expected to change with pupil
radius (as it is based on paraxial curvature matching to the
pupil center), and its increase in the hyperopic direction for
r0≥ 2mm indicates that subjective spherical equivalent
slightly changes with the pupil radius. We found this change
to be very small (~0.1D), and it should not affect vision in any
way. Charman et al. [41] found a similar effect of the decrease
of refraction with pupil size, but it was so small that they con-
cluded that refraction practically did not change. This may
explain why paraxial refraction usually gives results in good
agreement with subjective refraction for large pupil radii
[7, 15]. Within the same range of r0, the M t = 1 metric
suffers from a myopic increase of SOE. This trend can be
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Figure 5: Application of the four MTR metrics to an independent IND dataset (Indiana in Table 1). The error bars represent ±1 SEM.
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predicted from (12), by taking into account that C0
4 and C0

6
spherical aberration coefficients increase their values expo-
nentially with pupil radius and their average values are posi-
tive in the AHM database, which is usually the case for
normal eyes [30]. For pupil radii over 2mm, there are clear
differences in the predictions of subjective refraction depend-
ing on the value of t. In particular, for r > 3 5mm, the differ-
ence can be more than 0.5D, which is clinically significant.

5. Conclusions

The present study indicates that for pupil radii less than
2mm, all of the wavefront refraction metrics are similarly
accurate in predicting the equivalent sphere (mean
SOE< 0.1D). For large pupil radii, however, the mean
absolute SOE can increase beyond 0.25D for traditional
metrics, which is clinically significant. This is caused by two
factors. First, the effects of SA for large pupil radii cause the
minRMS objective refraction to become significantly too
myopic. Secondly, subjective refraction increases slightly in
the myopic direction for large pupil radii, which increases
the SOE for paraxial objective refraction in the hyperopic
direction (Figure 2).

The new MTR objective wavefront refraction metric
(16-17) is designed to depend on the objective refraction
pupil radius, applying more or less weight to the SA
coefficients in the function of r0.

The benefit of this methodology lies in the fact that the
MTR metric allows clinicians to obtain an accurate clinical
spherical equivalent value without rescaling/refitting of the
wavefront coefficients. It has the potential to be developed
into a metric which will be able to predict full spherocylind-
rical refraction for the desired illumination conditions and
corresponding pupil size. Several formulas can be applied to
determine the pupil size from illumination, subject’s age,
and type of task to be performed [42].
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