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We develop a numerical method by using operational matrices of fractional order integrations and differentiations to obtain
approximate solutions to a class of coupled systems of fractional order partial differential equations (FPDEs). We use shifted
Legendre polynomials in two variables. With the help of the aforesaid matrices, we convert the system under consideration to
a system of easily solvable algebraic equation of Sylvester type. During this process, we need no discretization of the data. We also
provide error analysis and some test problems to demonstrate the established technique.

1. Introduction

Recently fractional calculus has attracted the attention of
many researchers as it has many applications in various disci-
plines of applied sciences and engineering (we refer to [1–4]
and the references therein). In fact most of the engineering
and physical processes can be modeled and well explained
by using a system of fractional order differential and inte-
gral equations more realistically as compared to system of
conventional differential and integral equations, (see [1, 5–
15] and the references therein).The area of fractional calculus
devoted to the existence and uniqueness of positive solution
to (FDEs) and (FPDEs) is well studied and a lot of research
work is available on it (we refer to [16–20]). In the last two
decades, the area dealing with numerical solutions of FDEs
and FPDEs has attracted the attention of many researchers.
Researchers are taking keen interests in developing numerical
procedures for FPDEs. Here, it is remarkable that most of
the problems of applied sciences can be modeled by using
PDEs and their systems. The study of coupled systems of
PDEs can widely be found in engineering and biomechanics
and other disciplines. For example, in biomechanics when
modeling the phenomena of electrical activity in the heart,
the resulting equations are coupled systems of PDEs (see, e.g.,

[21–23]). Coupled systems of PDEs also occur in modeling
of some chemical and material engineering processes such as
system containing a continuous stirred tank reactor (CSTR)
and a plug flow reactor (PFR) in series (see [24, 25]). Various
applications of coupled systems can be found in solid state
physics and mechanics; for example, dynamics of multide-
formable bodies coupled by standard light fractional order
discrete continuum layers is described by coupled systems of
fractional order partial differential equations [7, 26–28]. The
coupled systems of PDEs also appear in modeling of some
important electromagnetic and gravitational problems, (see,
e.g., [29, 30]).

Most of the FPDEs do not have exact analytical solu-
tions; therefore researchers need some appropriate numer-
ical technique for the approximate solutions of such types
(FPDEs). For the numerical solutions numerous techniques
are available in the literature; for example, some of them
are eigenvector expansion, Adomian decomposition method
(ADM), fractional differential transform method (FDTM)
[31, 32], generalized block pulse operational matrix method
[33], and so on. In recent years many attentions have been
devoted to develop operational matrices for fractional order
differentiation and integrations. Such types of operational
matrices are obtained by using Haar wavelets, Legendre
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wavelets, Sine Cosine, Chebyshev wavelets, and so on. Based
on these operational matrices, some approximate methods
for numerical solutions to FDEs have been developed (we
refer to [34–36] and the references therein). In [37], the
authors established a new numerical scheme based on the
Haar wavelet for solving (FPDEs). More recently, the authors
[38] developed some new results related to the Jacobi
polynomials for operational matrices. All the operational
matrices methods are used to solve FDEs and FPDEs. As
much as we know they are not well studied and neither is
properly applied to solve coupled systems of PFDEs. To the
best of our knowledge very few articles are devoted to the
numerical solutions of coupled systems of integral equations
and ordinary and partial differential equations of fractional
order; for details see [39–41].

This manuscript is devoted to bring out the numerical
solutions to a coupled system of FPDEs on an unbounded
domain. The concerned coupled system contains mixed
partial order derivative with respect to 𝑥, 𝑦 as given by

𝑐𝐷𝑝𝑥𝑈(𝑥, 𝑦) + 𝜔1𝑐𝐷𝑝1𝑥𝑦𝑉 (𝑥, 𝑦) + 𝜔2𝑐𝐷𝑞1𝑦 𝑈 (𝑥, 𝑦)= 𝜃 (𝑥, 𝑦) ,
𝑐𝐷𝑝𝑥𝑉 (𝑥, 𝑦) + 𝜌1𝑐𝐷𝑝2𝑥𝑦𝑈 (𝑥, 𝑦) + 𝜌2𝑐𝐷𝑞2𝑦 𝑉 (𝑥, 𝑦)= 𝜓 (𝑥, 𝑦) ,

(1)

corresponding to the conditions𝑈(𝑖) (0, 𝑦) = 𝜃𝑖 (𝑦) ,𝑉(𝑖) (0, 𝑦) = 𝜓𝑖 (𝑦) ,𝑖 = 1 ⋅ ⋅ ⋅ 𝑚, (2)

where 𝑐𝐷𝑝𝑧 = 𝜕𝑝/𝜕𝑧𝑝 represents partial derivative, 𝑝 ∈ (𝑘 −1, 𝑘], 𝑘 − 2 < 𝑝𝑖, 𝑞𝑖 ≤ 𝑘 − 1, the real constants are denoted by𝜔𝑖, 𝜌𝑖 (𝑖 = 1, 2), 𝜃𝑖, 𝜓𝑖, and𝑈 (𝑥, 𝑦) , 𝑉 (𝑥, 𝑦) , 𝜃 (𝑥, 𝑦) , 𝜓 (𝑥, 𝑦)∈ 𝐶 ([0, 1] × [0, 1]) . (3)

It is remarkable that the proposed system contains the
coupled system investigated in [38] as a special case. If we
take 𝜃(𝑥, 𝑦) = 𝜓(𝑥, 𝑦) = 0 together with 𝜔1 = 0, 𝜔2 =1 and 𝜌1 = 0, 𝜌2 = 1, the proposed system becomes a
coupled system of Laplace equations of fractional order by
taking 𝑝 = 𝑞1 = 𝑞2 ∈ (1, 2]. Further, if we involve the
external (source) terms and consider 𝜔1 = 𝜌1 = 0, the
proposed coupled systemassumes the formof coupled system
of Poisson’s equation of arbitrary order. Poisson’s equations
have many applications in physics as well as in other various
disciplines including electrostatics, mechanical engineering,
and theoretical physics. For example, it has been applied to
describe the potential energy field caused by a given charge
or mass density distribution (see for details [42]).

With the use of shifted Legendre polynomials in two vari-
ables, some operational matrices corresponding to fractional
order differentiations and integrations are developed.Thanks

to these operational matrices, the coupled system under
consideration is transformed to a system of Sylvester type
algebraic equations. Here, we remark that no discretization
like for Tau-collocations method is required. By doing so,
the proposed system (1) corresponding to the initial condi-
tions is transformed to a system of Sylvester type algebraic
equations. Our proposed method is simple and there is no
computational complexity in the resulting algebraic system
to solve. Further, we remark that our present method is a
numerical method based on shifted Jacobi polynomials while
the method discussed in [43] is an iterative method based on
monotone iterative technique. Further we can easily establish
a simple relationship for convergence of the proppedmethod.
The aforesaid procedure has now recently being applied for
some nonlinear fractional order differential equations and
some fruitful results were obtained; for details see [44]. In
our future work we will use operational matrices method to
compute approximate solutions of nonlinear FPDEs and their
system.

The manuscript is organized as follows: Section 2 is
concerning some basic definitions and preliminaries results
related to fractional calculus and Legendre polynomials
which are needed to form the proposed method. Section 3
is concerning the operational matrices corresponding to
the fractional order derivatives and integration. Further,
Section 4 is related to the application of the operational
matrices to covert coupled system (1) to the corresponding
system of algebraic equations. Section 5 is devoted to the
numerical examples, and in the last section, we have provided
a brief conclusion.

2. Preliminaries

Definition 1. The Mittag-Leffler function subjected to one
parameter is recalled by

𝐸𝑝 (𝑥) = ∞∑
𝑛=0

𝑥𝑛Γ (𝑛𝑝 + 1) . (4)

The extension of (4) to two parameters is given as

𝐸𝑝,𝑞 (𝑥) = ∞∑
𝑛=0

𝑥𝑛Γ (𝑛𝑝 + 𝑞) . (5)

Definition 2 (see [45, 46]). The fractional integral of
Riemann-Liouville type of order 𝑝 ∈ (0,∞) of a function𝜃 ∈ 𝐿1([0, 𝑎],R) is defined as𝐼𝑝𝑎+𝜃 (𝑥) = 1Γ (𝑝) ∫𝑥𝑎 (𝑥 − 𝜂)𝑝−1 𝜃 (𝜂) 𝑑𝜂, (6)

provided that the right-hand side is pointwise defined on(0,∞).
Definition 3. For a given function 𝜃(𝑥, 𝑦), the Caputo frac-
tional derivative of order 𝑝 is defined as

𝑐𝐷𝑝𝜃 (𝑥, 𝑦) = 1Γ (𝑘 − 𝑝) ∫𝑥𝑎 (𝑥 − 𝜂)𝑘−𝑝−1 𝜃(𝑘) (𝜂, 𝑦) 𝑑𝜂,𝑝 ∈ (𝑘 − 1, 𝑘] , 𝑘 ∈ 𝑁, (7)
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provided that the right side is pointwise defined on (𝑎,∞),
where 𝑘 = [𝑝] + 1.

Hence, it follows that

𝑐𝐷𝑝𝑥𝑛 = Γ (1 + 𝑛)Γ (1 + 𝑛 − 𝑝)𝑥𝑛−𝑝,
𝐼𝑝𝑥𝑛 = Γ (1 + 𝑛)Γ (1 + 𝑛 + 𝑝)𝑥𝑛+𝑝,

𝑐𝐷𝑝𝐶 = 0, for a constant 𝐶.
(8)

Theorem 4 (see [45]). The solution of FDE
𝑐𝐷𝑝𝑥𝑈 (𝑥, 𝑦) = ℎ (𝑥) , 𝑘 − 1 < 𝑝 ≤ 𝑘, (9)

is given by

𝑈 (𝑥, 𝑦) = 𝐼𝑝ℎ (𝑥) + 𝑒0 + 𝑒1𝑥 + ⋅ ⋅ ⋅ + 𝑒𝑘−1𝑥𝑘−𝑝, (10)

where each 𝑒𝑖 is a real number for 𝑖 = 0, 1, 2, . . . , 𝑘 − 1, where𝑘 = [𝑝] + 1, such that [𝑝] represents integer part of 𝑝.
Remark 5. We will use Caputo derivative throughout this
paper, because Caputo fractional derivative has clear geo-
metrical representations like classical derivative. Further, it
turns out that the Riemann-Liouville derivatives have certain
disadvantages when trying to model real-world phenomena
with fractional differential equations. For further details, see
[45, 47].

2.1. The Shifted Legendre Polynomials. The well-known Leg-
endre polynomials described over [−1, 1] are representing as
P𝑖+1 (𝑡) = 2𝑖 + 1𝑖 + 1 𝑡P𝑖 (𝑡) − 𝑖𝑖 + 1P𝑖−1 (𝑡) ,𝑖 = 1, 2, 3, . . . , where P0 (𝑡) = 1, P1 (𝑡) = 𝑡. (11)

The transformation 𝑥 = (𝑡 + 1)/2 transforms the interval[−1, 1] to J = [0, 1] and the corresponding polynomials
known as shifted Legendre polynomials are given as

L𝑖 (𝑥) = 𝑖∑
𝑛=0

(−1)𝑖+𝑛 Γ (𝑖 + 𝑛 + 1)Γ (𝑖 − 𝑛 + 1) Γ2 (𝑛 + 1)𝑥𝑛, 𝑖 = 1, 2, 3, . . . . (12)

The orthogonality condition is

∫1
0
L𝑖 (𝑥)L𝑗 (𝑥) 𝑑𝑥 = {{{

12𝑖 + 1 , if 𝑖 ̸= 𝑗,0, if 𝑖 = 𝑗. (13)

Therefore, any function 𝜃(𝑥) ∈ 𝐶(J) can be approximated in
terms of shifted Legendre polynomials as

𝜃 (𝑥) ≈ 𝑚∑
𝜇=0

C𝜇L𝜇 (𝑥) ,
where C𝜇 = ⟨𝜃 (𝑥) ,L𝜇 (𝑥)⟩ = (2𝜇 + 1)∫1

0
𝜃 (𝑥)L𝜇 (𝑥) 𝑑𝑥. (14)

In matrix form, we may write (14) as

𝜃 (𝑥) = A𝑇𝐾Υ𝐾2 (𝑥, 𝑦) , where 𝐾 = 𝑚 + 1, (15)

whereA𝐾 is the matrix of functions whileΥ𝐾2(𝑥, 𝑦) is𝐾 term
columnmatrix.The shifted Legendre polynomials of order𝐾
for two dimensions are recalled by

L𝑘 (𝑥, 𝑦) = L𝜇 (𝑥)L] (𝑦) ,𝑘 = 𝐾𝜇 + ] + 1, 𝜇, ] = 0, 1, 2, . . . , 𝑚 (16)

and the corresponding orthognathic relation is provided as

∫1
0
∫1
0
L𝜇

1
(𝑥)L]

1

(𝑦)L𝜇
2
(𝑥)L]

2

(𝑦) 𝑑𝑥 𝑑𝑦
= {{{

1(2𝜇 + 1) (2] + 1) , if 𝜇1 = 𝜇2, ]1 = ]2,0, if 𝜇1 ̸= 𝜇2, ]1 ̸= ]2.
(17)

Therefore any function 𝑈(𝑥, 𝑦) ∈ 𝐶(J × J) can be approxi-
mated in terms of L𝑘(𝑥, 𝑦) as

𝑈 (𝑥, 𝑦) ≈ 𝑚∑
𝜇=0

𝑚∑
]=0

C𝜇]L𝜇 (𝑥)L] (𝑦) , (18)

where

C𝜇] = (2𝜇 + 1) (2] + 1)
⋅ ∫1
0
∫1
0
𝑈 (𝑥, 𝑦)L𝜇 (𝑥)L] (𝑦) 𝑑𝑥 𝑑𝑦. (19)

In matrix notation, we may write (18) as

𝑈(𝑥, 𝑦) ≈ 𝐾2∑
𝑘=1

C𝜇]L𝑛 (𝑥, 𝑦) = A𝑇𝐾2Υ𝐾2 (𝑥, 𝑦) , (20)

where the column vector of coefficients with order 𝐾2 × 1 is
represented as A𝐾2 , 𝑘 = 𝐾𝜇 + ] + 1. Also column vector of
order 𝐾2 × 1 is represented by Υ𝐾2(𝑥, 𝑦) and provided as

Υ𝐾2 (𝑥, 𝑦) = [𝜑11 (𝑥, 𝑦) ⋅ ⋅ ⋅ 𝜑1𝐾 (𝑥, 𝑦) 𝜑21 (𝑥, 𝑦) ⋅ ⋅ ⋅ 𝜑2𝐾 (𝑥, 𝑦) ⋅ ⋅ ⋅ 𝜑𝐾𝐾 (𝑥, 𝑦)]𝑇 , (21)

where 𝜑𝑖+1,𝑗+1(𝑥, 𝑦) = (L𝑖(𝑥))(L𝑗(𝑦)), 𝑖, 𝑗 = 0, 1, 2, . . . , 𝑚.
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2.2. Maximum Absolute Error ([48]). Consider a sufficiently
smooth function 𝑈(𝑥, 𝑦) on J × J; then the error in the
numerical solutions is provided as󵄩󵄩󵄩󵄩𝑈 (𝑥, 𝑦) − L(𝐾,𝐾) (𝑥, 𝑦)󵄩󵄩󵄩󵄩2≤ (C1 + C2 + C3

1𝐾𝐾+1 ) 1𝐾𝐾+1 , (22)

where

C1 = 14 max
(𝑥,𝑦)∈J×J

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝐾+1𝜕𝑥𝐾+1𝑈(𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
C2 = 14 max

(𝑥,𝑦)∈J×J

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝐾+1𝜕𝑦𝐾+1𝑈 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
C3 = 116 max

(𝑥,𝑦)∈J×J

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕2𝐾+2𝜕𝑥𝐾+1𝜕𝑦𝐾+1𝑈 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(23)

The above relation also holds at points (𝑥𝑖, 𝑦𝑖) for interpolat-
ing polynomial L(𝐾,𝐾)(𝑥, 𝑦).
3. Operational Matrices of Integrations
and Differentiations

Extending the notion of the operationalmatrices of fractional
order integration and differentiation from one dimension

[36, 49] to two dimensions, the construction of the aforesaid
operational matrices is provided as follows.

Theorem 6. The operational matrix corresponding to frac-
tional integration of order 𝑝 of Υ𝐾2(𝑥, 𝑦) defined in (21) with
respect to 𝑥 is provided as

𝐼𝑝𝑥 [Υ𝐾2 (𝑥, 𝑦)] ≃ H(𝑝,𝑥)
𝐾2×𝐾2

Υ𝐾2 (𝑥, 𝑦) , (24)

where H(𝑝,𝑥)
𝐾2×𝐾2

is the operational matrix of fractional integra-
tion given as

H(𝑝,𝑥)
𝐾2×𝐾2

=(((((((
(

¥1,1,𝑛 ¥1,2,𝑛 ⋅ ⋅ ⋅ ¥1,𝑢,𝑛 ⋅ ⋅ ⋅ ¥1,𝐾2 ,𝑛
¥2,1,𝑛 ¥2,2,𝑛 ⋅ ⋅ ⋅ Ω2,𝑢,𝑛 ⋅ ⋅ ⋅ ¥2,𝐾2 ,𝑛... ... ... ... ... ...
¥V,1,𝑛 ¥V,2,𝑛 ⋅ ⋅ ⋅ ¥V,𝑢,𝑛 ⋅ ⋅ ⋅ ¥V,𝐾2 ,𝑛... ... ... ... ... ...
¥𝐾2 ,1,𝑛 ¥𝐾2 ,2,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝑢,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝐾2,𝑛

)))))))
)

, (25)

𝑢 = 𝐾𝑖+ 𝑗+1, V = 𝐾𝜇+ ]+1, ¥V,𝑢,𝑛 = ∏𝑖,𝑗,𝜇,],𝑛 for 𝑖, 𝑗, ], 𝜇 =0, 1, 2, . . . , 𝑚,
E𝑖,𝑗,𝜇,],𝑛 = 𝜇∑

𝑛=0

𝛿𝑖,] (2𝑖 + 1) 𝑖∑
𝑙=0

(−1)𝑖+𝑙+𝜇+𝑛 Γ (𝑖 + 𝑙 + 1) Γ (𝜇 + 𝑛 + 1)Γ (𝑖 − 𝑙 + 1) Γ2 (𝑙 + 1) Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 𝑝 + 1) (𝑛 + 𝑙 + 𝑝 + 1) , 𝛿𝑖,] = {{{
0, if 𝑖 ̸= ],1, if 𝑖 = ]. (26)

Proof. Consider L𝑘(𝑥, 𝑦) as given in (16); then the arbitrary
order integral with order 𝑝 of L𝑘(𝑥, 𝑦) corresponding to 𝑥 is
provided as

𝐼𝑝𝑥L𝑘 (𝑥, 𝑦) = 𝐼𝑝𝑥L𝜇 (𝑥)L] (𝑦)
= 𝜇∑
𝑛=0

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ2 (𝑛 + 1)𝐼𝑝𝑥𝑥𝑛L] (𝑦) , (27)

which gives that

𝐼𝑝𝑥L𝜇 (𝑥)L] (𝑦)
= 𝜇∑
𝑛=0

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ2 (𝑛 + 1) Γ (𝑛 + 𝑝 + 1)𝑥𝑛+𝑝𝑃] (𝑦) . (28)

Further approximating 𝑥𝑛+𝑝L](𝑦) in terms of shifted Legen-
dre polynomials, we have

𝑥𝑛+𝑝L] (𝑦) ≈ 𝑚∑
𝑖=0

𝑚∑
𝑗=0

E𝑖,𝑗L𝑖 (𝑥)L𝑗 (𝑦) , (29)

whereE𝑖,𝑗 = (2𝑖+1)(2𝑗+1) ∫10 ∫10 𝑥𝑛+𝑝L](𝑦)L𝑖(𝑥)L𝑗(𝑦)𝑑𝑥 𝑑𝑦.
Thanks to orthogonality condition, we have

E𝑖,𝑗

= {{{{{{{
0, if 𝑗 ̸= ],
(2𝑖 + 1) 𝑗∑

𝑙=0

(−1)𝑖+𝑙 Γ (𝑖 + 𝑙 + 1)Γ (𝑖 − 𝑙 + 1) Γ2 (𝑙 + 1) (𝑛 + 𝑙 + 𝑝 + 1) , if𝑗 = ]

= 𝛿𝑖,] (2𝑖 + 1) 𝑖∑
𝑙=0

(−1)𝑖+𝑙 Γ (𝑖 + 𝑙 + 1)Γ (𝑖 − 𝑙 + 1) Γ2 (𝑙 + 1) (𝑛 + 𝑙 + 𝑝 + 1) ,
where 𝛿𝑖,] = {{{

0, if 𝑗 ̸= ],1, if 𝑗 = ].

(30)

Therefore (28) yields𝐼𝑝𝑥L𝜇 (𝑥)L] (𝑦)
= 𝜇∑
𝑛=0

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ2 (𝑛 + 1) Γ (𝑛 + 𝑝 + 1)
⋅ 𝑚∑
𝑖=0

𝑚∑
𝑗=0

E𝑖,𝑗,]L𝑖 (𝑥)L𝑗 (𝑦)
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= 𝑚∑
𝑖=0

𝑚∑
𝑗=0

𝜇∑
𝑛=0

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)E𝑖,𝑗,]Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1) Γ (𝑛 + 𝑝 + 1)L𝑖 (𝑥)
⋅ L𝑗 (𝑦) = 𝑚∑

𝑖=0

𝑚∑
𝑗=0

E𝑖,𝑗,𝜇,],𝑛L𝑖 (𝑥)L𝑗 (𝑦) ,
(31)

where

E𝑖,𝑗,𝜇,],𝑛 = 𝜇∑
𝑛=0

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)E𝑖,𝑗,]Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1) Γ (𝑛 + 𝑝 + 1) . (32)

We use these notations for easiness of 𝑢 = 𝐾𝑖 + 𝑗 + 1, V =𝐾𝜇 + ] + 1, ¥V,𝑢,𝑛 = E𝑖,𝑗,],𝜇,𝑛 for 𝑖, 𝑗, 𝜇, ] = 0, 1, 2, 3, . . . , 𝑚.
Thus, we received the required result

Theorem 7. The fractional order derivative of Υ𝐾2(𝑥, 𝑦) can
be written as

𝑐𝐷𝑝𝑥 [Υ𝐾2 (𝑥, 𝑦)] ≃W(𝑝,𝑥)
𝐾2×𝐾2

Υ𝐾2 (𝑥, 𝑦) , (33)

such that W(𝑝,𝑥)
𝐾2×𝐾2

is the operational matrix corresponding to
arbitrary order derivative of order 𝑝 with respect to 𝑥 provided
as

W(𝑝,𝑥)
𝐾2×𝐾2

=
(((((((((((
(

¥1,1,𝑛 ¥1,2,𝑛 ⋅ ⋅ ⋅ ¥1,𝑢,𝑛 ⋅ ⋅ ⋅ ¥1,𝐾2 ,𝑛

¥2,1,𝑛 ¥2,2,𝑛 ⋅ ⋅ ⋅ ¥2,𝑢,𝑛 ⋅ ⋅ ⋅ ¥2,𝐾2 ,𝑛... ... ... ... ... ...
¥V,1,𝑛 ¥V,2,𝑛 ⋅ ⋅ ⋅ ¥V,𝑢,𝑛 ⋅ ⋅ ⋅ ¥𝑞,𝐾2,𝑛... ... ... ... ... ...
¥𝐾2 ,1,𝑛 ¥𝐾2 ,2,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝑢,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝐾2 ,𝑛

)))))))))))
)

, (34)

where V = 𝐾𝑖 + 𝑗 + 1, 𝑢 = 𝐾𝜇 + ] + 1, ¥V,𝑢,𝑛 =Ω𝑖,𝑗,𝜇,],𝑛 for 𝑖, 𝑗, 𝜇, ] = 0, 1, 2, . . . , 𝑚,
℧𝑖,𝑗,𝜇,],𝑛 = ]∑

𝑙=[𝑝]

𝛿𝑗,] (2𝑖 + 1) 𝑖∑
𝑛=0

(−1)𝑖+𝑛+𝑙+𝜇 Γ (𝑖 + 𝑛 + 1) Γ (𝜇 + 𝑙 + 1)Γ (𝑖 − 𝑛 + 1) Γ2 (𝑛 + 1) Γ (𝜇 − 𝑛 + 1) Γ (𝑙 + 1) Γ (𝑙 − 𝑝 + 1) (𝑛 + 𝑙 − 𝑝 + 1)
with ℧𝑖,𝑗,𝜇,],𝑛 = 0, if 𝜇 < 𝑝. (35)

Proof. Take 𝑝 the order fractional derivative of L𝑛(𝑥, 𝑦)
corresponding to 𝑥 as
𝑐𝐷𝑝𝑥L𝑘 (𝑥, 𝑦) = 𝑐𝐷𝑝𝑥L𝜇 (𝑥)L] (𝑦)
= 𝜇∑
𝑛=0

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑝 + 1) Γ2 (𝑛 + 1) 𝑐𝐷𝑝𝑥𝑥𝑛L] (𝑦)
= ]∑
𝑙=[𝑝]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ2 (𝑛 + 1) Γ (1 + 𝑛 − 𝑝)𝑥𝑛−𝑝L] (𝑦) .
(36)

Approximate 𝑥𝑛−𝑝L](𝑦) in terms of shifted Legendre polyno-
mials as

𝑥𝑛−𝑝L] (𝑦) ≈ 𝑚∑
𝑖=0

𝑚∑
𝑗=0

D𝑖,𝑗L𝑖 (𝑥)L𝑗 (𝑦) . (37)

Applying orthogonality condition, we may write

D𝑖,𝑗

= {{{{{{{{{
0, if 𝑗 ̸= ],
(2𝑖 + 1) 𝑖∑

𝑛=0

(−1)𝑖+𝑛 Γ (𝑖 + 𝑛 + 1)Γ (𝑖 − 𝑛 + 1) Γ2 (𝑛 + 1) (𝑛 + 𝑙 − 𝑝 + 1) , if 𝑗 = ]. (38)

Therefore, we get

𝑐𝐷𝑝𝑥L𝑘 (𝑥, 𝑦) = 𝜇∑
𝑛=[𝑝]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1)2 Γ (𝑛 − 𝑝 + 1)
⋅ 𝑚∑
𝑖=0

𝑚∑
𝑗=0

D𝑖,𝑗L𝑖 (𝑥)L𝑗 (𝑦)
= 𝑚∑
𝑖=0

𝑚∑
𝑗=0

𝜇∑
𝑛=[𝑝]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1)2 Γ (𝑛 − 𝑝 + 1)D𝑖,𝑗L𝑖 (𝑥)
⋅ L𝑗 (𝑦) = 𝑚∑

𝑖=0

𝑚∑
𝑗=0

℧𝑖,𝑗,𝑛,𝜇,]L𝑖 (𝑥)L𝑗 (𝑦) , 𝜇 = [𝑝] , . . . , 𝐾,
(39)

where℧𝑖,𝑗,𝑛,𝜇,]
= 𝜇∑
𝑛=[𝑝]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1)2 Γ (𝑛 − 𝑝 + 1)D𝑖,𝑗. (40)

Denoting 𝑢 = 𝐾𝑖 + 𝑗 + 1, V = 𝐾𝜇 + ] + 1, ¥V,𝑢,𝑛 = ℧𝑖,𝑗,],𝜇,𝑛,
such that 𝑖, 𝑗, 𝜇, ] = 0, 1, 2, 3, . . . , 𝑚, for easiness, we get the
required.

Theorem8. The fractional derivativewith order𝑝 ofΥ𝐾2(𝑥, 𝑦)
with respect to 𝑦 can be written as

𝑐𝐷𝛼𝑦 [Υ𝐾2 (𝑥, 𝑦)] ≃ V(𝑝,𝑦)
𝐾2×𝐾2

¥𝐾2 (𝑥, 𝑦) , (41)
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such that V(𝑝,𝑦)
𝐾2×𝐾2

is the operational matrix given as

V(𝑝,𝑦)
𝐾2×𝐾2

=(((((((
(

¥1,1,𝑛 ¥1,2,𝑛 ⋅ ⋅ ⋅ ¥1,𝑢,𝑛 ⋅ ⋅ ⋅ ¥1,𝐾2 ,𝑛
¥2,1,𝑛 ¥2,2,𝑛 ⋅ ⋅ ⋅ ¥2,𝑢,𝑛 ⋅ ⋅ ⋅ ¥2,𝐾2 ,𝑛... ... ... ... ... ...
¥V,1,𝑛 ¥V,2,𝑛 ⋅ ⋅ ⋅ ¥V,𝑢,𝑛 ⋅ ⋅ ⋅ ¥V,𝐾2 ,𝑛... ... ... ... ... ...
¥𝐾2 ,1,𝑛 ¥𝐾2 ,2,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝑢,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝐾2 ,𝑛

)))))))
)

, (42)

𝑢 = 𝐾𝑖+ 𝑗+ 1, V = 𝐾𝜇+ ]+1, ¥V,𝑢,𝑛 = ℧𝑖,𝑗,𝜇,],𝑛 for 𝑖, 𝑗, 𝜇, ] =0, 1, 2, . . . , 𝑚 and

℧𝑖,𝑗,𝜇,],𝑛 = ]∑
𝑙=[𝑝]

𝛿𝑖,𝜇 𝑗∑
𝑙=0

(−1)𝑗+𝑙+]+𝑛 Γ (𝑗 + 𝑙 + 1) Γ (] + 𝑛 + 1)Γ (𝑗 − 𝑙 + 1) Γ2 (𝑙 + 1) Γ (] − 𝑛 + 1) Γ (𝑛 + 1) Γ (𝑛 − 𝑝 + 1) (𝑛 + 𝑙 − 𝑝 + 1) ,
where ℧𝑖,𝑗,𝜇,],𝑛 = 0, if ] < 𝑝. (43)

Proof. To prove this theorem it can be easily followed from
the proof of Theorem 7.

Theorem9. The fractional derivative ofΥ𝐾2(𝑥, 𝑦)with respect
to 𝑥, 𝑦 is provided as

𝑐𝐷𝑝𝑥𝑦 [Υ𝐾2 (𝑥, 𝑦)] ≃ Z(𝑝,𝑥,𝑦)
𝐾2×𝐾2

Υ𝐾2 (𝑥, 𝑦) , (44)

where Z(𝑝,𝑥,𝑦)
𝐾2×𝐾2

represents the operational matrix of fractional
derivative given as

Z(𝑝,𝑥,𝑦)
𝐾2×𝐾2

=((((((
(

¥1,1,𝑛 ¥1,2,𝑛 ⋅ ⋅ ⋅ ¥1,𝑢,𝑛 ⋅ ⋅ ⋅ ¥1,𝐾2 ,𝑛
¥2,1,𝑛 ¥2,2,𝑛 ⋅ ⋅ ⋅ ¥2,𝑢,𝑛 ⋅ ⋅ ⋅ ¥2,𝐾2 ,𝑛... ... ... ... ... ...
¥V,1,𝑛 ¥V,2,𝑛 ⋅ ⋅ ⋅ ¥V,𝑢,𝑛 ⋅ ⋅ ⋅ ¥V,𝐾2 ,𝑛... ... ... ... ... ...
¥𝐾2 ,1,𝑛 ¥𝐾2 ,2,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝑢,𝑛 ⋅ ⋅ ⋅ ¥𝐾2 ,𝐾2 ,𝑛

))))))
)

, (45)

and 𝑢 = 𝐾𝑖 + 𝑗 + 1, V = 𝐾𝜇 + 𝑏 + 1, ¥𝑢,V,𝑛 =℧𝑖,𝑗,𝜇,],𝑛 for 𝑖, 𝑗, 𝜇, ] = 0, 1, 2, . . . , 𝑚,
℧𝑖,𝑗,𝜇,],𝑛 = 𝜇∑

𝑛=0

E𝜇,],𝑛,𝑙,𝑝𝐷𝑖,𝑗,𝜇,],
𝐷𝑖,𝑗,𝜇,] = 𝛿𝑖,𝑗,𝜇,] (2𝑖 + 1) (2𝑗 + 1) 𝑖∑

𝑛=0

𝑗∑
𝑙=0

(−1)𝑖+𝑗+𝑛+𝑙 Γ (𝑗 + 𝑙 + 1) Γ (𝑖 + 𝑛 + 1)Γ (𝑗 − 𝑙 + 1) Γ (𝑖 − 𝑛 + 1) Γ2 (𝑛 + 1) Γ2 (𝑙 + 1) (𝑛 + 𝑙 − 𝑝/2 + 1)2 ,
E𝜇,],𝑛,𝑙,𝑝 = 𝜇∑

𝑛=[𝑝/2]

]∑
𝑙=[𝑝/2]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1) (−1)]+𝑙 Γ (] + 𝑙 + 1)Γ (] − 𝑙 + 1) Γ (𝑙 + 1) .
(46)

Proof. Take L𝑘(𝑥, 𝑦) given in (17) and apply fractional order
derivative of L𝑘(𝑥, 𝑦) corresponding to 𝑦 and 𝑥 as

𝑐𝐷𝑝𝑥𝑦L𝑘 (𝑥, 𝑦) = 𝑐𝐷𝑝𝑥𝑦𝑃𝜇 (𝑥)L] (𝑦) = 𝜇∑
𝑛=0

]∑
𝑙=0

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1) (−1)]+𝑙 Γ (] + 𝑙 + 1)Γ (] − 1 + 1) Γ (𝑙 + 1)𝐷𝑝/2𝑥 𝑥𝑛𝐷𝑝/2𝑦 𝑦𝑙
= 𝜇∑
𝑛=[𝑝/2]

]∑
𝑙=[𝑝/2]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1) (−1)]+𝑙 Γ (] + 𝑙 + 1)Γ (] − 𝑙 + 1) Γ (𝑙 + 1) 𝑥𝑛−𝑝/2𝑦𝑙−𝑝/2Γ (𝑛 − 𝑝/2 + 1) Γ (𝑙 − 𝑝/2 + 1) .
(47)
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We approximate 𝑥(𝑛−𝑝/2)𝑦(𝑙−𝑝/2) in terms of shifted Legendre
polynomials as

𝑥(𝑛−𝑝/2)𝑦(𝑙−𝑝/2) ≈ 𝑚∑
𝑖=0

𝑚∑
𝑗=0

𝐷(𝑖,𝑗,𝑛,𝑙)L𝑖 (𝑥)L𝑗 (𝑦) , (48)

such that

𝐷(𝑖,𝑗,𝑛,𝑙) = (2𝑖 + 1) (2𝑗 + 1) ∫1
0
∫1
0
L𝜇 (𝑥)L] (𝑦)L𝑖 (𝑥)⋅ L𝑗 (𝑦) 𝑥𝑛−𝑝/2𝑦𝑙−𝑝/2𝑑𝑥 𝑑𝑦. (49)

Thanks to the orthogonality conditions and convolution
theorem of Laplace transform, evaluating the integrals (49),
we get

𝐷(𝑖,𝑗,𝑛,𝑙) = 𝛿𝑖,𝑗,𝜇,] (2𝑖 + 1) (2𝑗 + 1) × 𝑖∑
𝑛=0

𝑗∑
𝑙=0

(−1)𝑖+𝑗+𝑛+𝑙 Γ (𝑗 + 𝑙 + 1) Γ (𝑖 + 𝑛 + 1)Γ (𝑗 − 𝑙 + 1) Γ (𝑖 − 𝑛 + 1) Γ2 (𝑛 + 1) Γ2 (𝑙 + 1) (𝑛 + 𝑙 − 𝑝/2 + 1)2 , (50)

where

𝛿𝑖,𝑗,𝜇,] = {{{
1, if 𝑖 = 𝜇, 𝑗 = ],0, if 𝑖 ̸= 𝜇, 𝑗 ̸= ]. (51)

Plugging (48) in (47), we may write

𝑐𝐷𝑝𝑥𝑦L𝑘 (𝑥, 𝑦) = 𝜇∑
𝑛=[𝑝/2]

]∑
𝑙=[𝑝/2]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1) (−1)]+𝑙 Γ (] + 𝑙 + 1)Γ (] − 𝑙 + 1) Γ (𝑙 + 1) 𝑚∑𝑖=0 𝑚∑𝑗=0𝐷(𝑖,𝑗,𝑛,𝑙)L𝑖 (𝑥)L𝑗 (𝑦)
= 𝑚∑
𝑖=0

𝑚∑
𝑗=0

𝑎∑
𝑛=[𝑝/2]

]∑
𝑙=[𝑝/2]

(−1)𝜇+𝑛 Γ (𝜇 + 𝑛 + 1)Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1) (−1)]+𝑙 Γ (] + 𝑙 + 1)Γ (] − 𝑙 + 1) Γ (𝑙 + 1)𝐷(𝑖,𝑗,𝑛,𝑙)L𝑖 (𝑥)L𝑗 (𝑦) .
(52)

Representing 𝑢 = 𝐾𝜇 = ] + 1, V = 𝐾𝑖 + 𝑗 + 1, and ¥V,𝑢,𝑛 =℧𝑖,𝑗,𝜇,],𝑛,𝑙 for 𝑖, 𝑗, 𝜇, ] = 0, 1, 2, . . . , 𝑚, we obtain the required
results.

4. Solutions of the Coupled
Systems of Equations

Thanks to the operational matrices established in previous
section, we now in position to obtain numerical solutions of
the proposed coupled system (1) of FPDEs.

With the help of operational matrices, we consider the
approximations as

𝑐𝐷𝑝𝑥𝑈(𝑥, 𝑦) = A𝐾2Υ𝐾2 (𝑥, 𝑦) ,
𝑐𝐷𝑝𝑥𝑉 (𝑥, 𝑦) = B𝐾2Υ𝐾2 (𝑥, 𝑦) . (53)

In view of Theorem 4, we can write

𝑈 (𝑥, 𝑦) − 𝑛∑
𝑖=0

𝑒𝑖𝑥𝑖 = A𝐾2H
(𝑝,𝑥)

𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦) ,

𝑉 (𝑥, 𝑦) − 𝑛∑
𝑖=0

𝑏𝑖𝑥𝑖 = B𝐾2H
(𝑝,𝑥)

𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦) . (54)

Applying initial conditions, we get

𝑈 (𝑥, 𝑦) = A𝐾2H
(𝑝,𝑥)

𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦) + X1𝐾2Υ𝐾2 (𝑥, 𝑦) ,𝑉 (𝑥, 𝑦) = B𝐾2H

(𝑝,𝑥)

𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦) + X2𝐾2Υ𝐾2 (𝑥, 𝑦) , (55)

where X1𝐾2Υ𝐾2(𝑥, 𝑦) = ∑𝑛𝑖=0 𝜃𝑖(𝑦)𝑥𝑖 and X2𝐾2Υ𝐾2(𝑥, 𝑦) =∑𝑛𝑖=0 𝜓𝑖(𝑦)𝑥𝑖. In simple notation, we may write

A𝐾2H
(𝑝,𝑥)

𝐾2×𝐾2
+ X1𝐾2 = Â𝐾2 ,

B𝐾2H
(𝑝,𝑥)

𝐾2×𝐾2
+ X2𝐾2 = B̂𝐾2 . (56)

Therefore (55) yields

𝑈 (𝑥, 𝑦) = Â𝐾2Υ𝐾2 (𝑥, 𝑦) ,𝑉 (𝑥, 𝑦) = B̂𝐾2Υ𝐾2 (𝑥, 𝑦) . (57)

Thanks to (57), the other terms of system (1) can be approxi-
mated as

𝑐𝐷𝑞1𝑦 𝑈(𝑥, 𝑦) = Â𝐾2V
(𝑞

1
,𝑦)

𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦) ,

𝑐𝐷𝑞2𝑦 𝑉 (𝑥, 𝑦) = B̂𝐾2V
(𝑞

2
,𝑦)

𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦) ,
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𝑐𝐷𝑝1𝑥𝑦𝑉 (𝑥, 𝑦) = B̂𝐾2Z
(𝑝

1
,𝑥,𝑦)

𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦) ,

𝑐𝐷𝑝2𝑥𝑦𝑈 (𝑥, 𝑦) = Â𝐾2Z
(𝑝

2
,𝑥,𝑦)

𝐾2×𝐾2
,𝜃 (𝑥, 𝑦) = X3𝐾2Υ𝐾2 (𝑥, 𝑦) ,𝜓 (𝑥, 𝑦) = X4𝐾2Υ𝐾2 (𝑥, 𝑦) .

(58)

Putting in (1), we get

A𝐾2Υ𝐾2 (𝑥, 𝑦) + 𝜔1B̂𝐾2Z(𝑝1 ,𝑥,𝑦)𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦)+ 𝜔2Â𝐾2V(𝑞1 ,𝑦)𝐾2×𝐾2Υ𝐾2 (𝑥, 𝑦) = X3𝐾2Υ𝐾2 (𝑥, 𝑦) ,

B𝐾2Υ𝐾2 (𝑥, 𝑦) + 𝜌1Â𝐾2Z(𝑝2 ,𝑥,𝑦)𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦)+ 𝜌2B̂𝐾2V(𝑞2 ,𝑦)𝐾2×𝐾2Υ𝐾2 (𝑥, 𝑦) = X4𝐾2Υ𝐾2 (𝑥, 𝑦) .

(59)

Now we write matrix form of system (59) as

[A𝐾2Υ𝐾2 (𝑥, 𝑦)
B𝐾2Υ𝐾2 (𝑥, 𝑦)] + [[

𝜔1B̂𝐾2Z(𝑝1 ,𝑥,𝑦)𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦)𝜌1Â𝐾2Z(𝑝2 ,𝑥,𝑦)𝐾2×𝐾2
Υ𝐾2 (𝑥, 𝑦)]]

+ [[
𝜔2Â𝐾2V(𝛾2,𝑦)𝐾2×𝐾2Υ𝐾2 (𝑥, 𝑦)𝜌2B̂𝐾2V(𝜌2 ,𝑦)𝐾2×𝐾2Υ𝐾2 (𝑥, 𝑦)]]

− [X3𝐾2Υ𝐾2 (𝑥, 𝑦)
X4𝐾2Υ𝐾2 (𝑥, 𝑦)] = O,

(60)

which further gives

[A𝐾2 B𝐾2] Ê
+ [Â𝐾2 B̂𝐾2] [[

O𝐾2×𝐾2 𝜌1Z(𝑝2,𝑥,𝑦)𝐾2×𝐾2𝜔1Z(𝑝1,𝑥,𝑦)𝐾2×𝐾2
O𝐾2×𝐾2

]] Ê

+ [Â𝐾2 B̂𝐾2] [[
𝜔2V(𝑞1 ,𝑦)𝐾2×𝐾2 O𝐾2×𝐾2

O𝐾2×𝐾2 𝜌2V(𝑞2 ,𝑦)𝐾2×𝐾2]] Ê

− [X3𝐾2 X4𝐾2] Ê = O

[A𝐾2 B𝐾2] + [Â𝐾2 B̂𝐾2] [[
𝜔2V(𝑞1 ,𝑦)𝐾2×𝐾2 𝜌1Z(𝑝2 ,𝑥,𝑦)𝐾2×𝐾2𝜔1Z(𝑝1 ,𝑥,𝑦)𝐾2×𝐾2

𝜌2V(𝑞2 ,𝑦)𝐾2×𝐾2]]− [X3𝐾2 X4𝐾2] = O,

(61)

where

Ê = [Υ𝐾2 (𝑥, 𝑦) O𝐾2
O𝐾2 Υ𝐾2 (𝑥, 𝑦)] . (62)

O𝐾2 is a column null matrix and other null matrices are
O𝐾2×𝐾2 andO.

Simplifying (61), we get

[A𝐾2 B𝐾2] − [Â𝐾2 B̂𝐾2] [[
𝜔2V(𝑞1 ,𝑦)𝐾2×𝐾2 𝜌1Z(𝑝2 ,𝑥,𝑦)𝐾2×𝐾2𝜔1Z(𝑝1 ,𝑥,𝑦)𝐾2×𝐾2

𝜌2V(𝑞2 ,𝑦)𝐾2×𝐾2]]− [X3𝐾2 X4𝐾2] = O. (63)

Therefore by using Â𝐾2 and B̂𝐾2 , the aforesaid equation can
be written as[A𝐾2 B𝐾2] − P̂ [A𝐾2 B𝐾2] − [X1𝐾2 X2𝐾2] P̂− [F1 F2] = O, (64)

where

P̂ = [[
𝜔2H(𝑝,𝑥)𝐾2×𝐾2V(𝑞1 ,𝑦)𝐾2×𝐾2 𝜌1H(𝑝,𝑥)𝐾2×𝐾2Z(𝑝2 ,𝑥,𝑦)𝐾2×𝐾2𝜔2H(𝑝,𝑥)𝐾2×𝐾2Z(𝑝1 ,𝑥,𝑦)𝐾2×𝐾2

𝜌2H(𝑝,𝑥)𝐾2×𝐾2V(𝑞2 ,𝑦)𝐾2×𝐾2]] ,
F1 = 𝜔2X1𝐾2V(𝑞1 ,𝑦)𝐾2×𝐾2 + 𝜔1X2𝐾2Z(𝑝1 ,𝑥,𝑦)𝐾2×𝐾2

− X3𝐾2 ,
F2 = 𝜌1X1𝐾2W(𝑝2,𝑥)𝐾2×𝐾2 + 𝜌2X2𝐾2V(𝑞2 ,𝑦)𝐾2×𝐾2 − X4𝐾2 .

(65)

Hence (64) is Sylvester type matrix equation, which on
solving for unknownmatrix [A𝐾2 B𝐾2] and using its value in
(57), we get the required numerical solution of the proposed
problem.

Remark 10. Here, we remark that we have used a machine
type DESKTOP-V8125H8 with processor intel(R) Core (TM)
i5-3210M CPU@ 2.50GHz and installed memory (RAM) is
4GB together with 64-bit operating system for computation
and numerical simulations.

5. Numerical Test Problems

This section is concerning to the numerical test problems and
their visualization.

Problem 1. Let the coupled system of FPDEs given as
𝑐𝐷1.8𝑥 𝑈(𝑥, 𝑦) − 𝑐𝐷2𝑥𝑦𝑉 (𝑥, 𝑦) − 4𝑐𝐷1.8𝑦 𝑈(𝑥, 𝑦)= 𝜃 (𝑥, 𝑦) ,
𝑐𝐷1.8𝑥 𝑉 (𝑥, 𝑦) − 6𝑐𝐷2𝑥𝑦𝑈(𝑥, 𝑦) + 3𝑐𝐷1.8𝑦 𝑉 (𝑥, 𝑦)= 𝜓 (𝑥, 𝑦) ,𝑈 (0, 𝑦) = 𝑈󸀠 (0, 𝑦) = 0,𝑉 (0, 𝑦) = 𝑉󸀠 (0, 𝑦) = 0,

(66)

such that the external functions 𝜃(𝑥, 𝑦) and 𝜙(𝑥, 𝑦) are given
as 𝜃 (𝑥, 𝑦) = 27𝑥2𝑦29 (𝑦 − 1) (𝑥 − 1)2 (7𝑥𝑦 − 2𝑦 − 3)− 4𝑥4𝑦3 (4 + 3𝑦) − 0.016𝑥2.5𝑦4 (𝑦 − 1)3 (125𝑥2− 175𝑥 + 56) ,
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Figure 2: Absolute error in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) using𝐾 = 10 of Problem 1.

𝜙 (𝑥, 𝑦) = −36𝑥2𝑦3 (𝑦 − 1) (𝑥 − 1)3 [1
− 2𝑥2 (𝑦 − 1𝑥 − 1)2 − 3𝑥2 (𝑦 − 1)2 (𝑥 − 1)2 + 3 (𝑦 − 1)2𝑦
− 𝑥 (𝑦 − 1)𝑥 − 1 − 𝑦 − 14𝑥 − 4𝑥 (𝑦 − 1𝑥 − 1)2 − 3𝑥𝑦𝑦 − 1𝑥 − 1]− 0.071𝑥1.2𝑦3 (𝑦 − 1)2 (1250𝑥3 − 2625𝑥2 + 1680𝑥− 308) .

(67)

The exact solution of the above system is

𝑈 (𝑥, 𝑦) = (𝑥𝑦 (1 − 𝑥))2 (1 − 𝑦)3 ,
𝑉 (𝑥, 𝑦) = 𝑥𝑦 (1 − 𝑦) (𝑥𝑦 − 𝑥2𝑦 − 𝑥𝑦2)2 . (68)

Evaluate the approximate solution of Problem 1 with our
proposed method. After applying the method to the given
problem, we see from Figure 1 that the considered scheme
provides close agreement between numerical and exact
solution. The comparison between exact and approximate
solution is shown in Figure 1, while the absolute error
corresponding to scale level 𝐾 = 10 is provided in Figure 2.
Further, to check the efficiency of the method, we have also
computed absolute error at various scale level and different
points of the spaces as given in Table 1.

Further in Table 2, we compute the CPU time for the
computational of solutions for the test Problem 1.

Problem 2. To support the aforesaid established results, we
consider the following problem:

𝑐𝐷1.8𝑥 𝑈 (𝑥, 𝑦) − 𝑐𝐷2𝑥𝑦𝑉 (𝑥, 𝑦) + 11𝑐𝐷0.99𝑦 𝑈 (𝑥, 𝑦)= 𝜃 (𝑥, 𝑦) ,
𝑐𝐷1.8𝑥 𝑉 (𝑥, 𝑦) + 𝑐𝐷2𝑥𝑦𝑈 (𝑥, 𝑦) − 11𝑐𝐷0.99𝑦 𝑉 (𝑥, 𝑦)= 𝜓 (𝑥, 𝑦) ,𝑈 (0, 𝑦) = 𝑦,𝑈󸀠 (0, 𝑦) = 𝑦,𝑉 (0, 𝑦) = 0,𝑉󸀠 (0, 𝑦) = exp (𝑦) .

(69)

The external source functions are provided as

𝜃 (𝑥, 𝑦) = 𝑦𝑥1.8𝐸1,−0.8 (𝑥) − exp (𝑦) + 11.046𝑦0.1,
𝜓 (𝑥, 𝑦) = 4.59 exp (𝑦) 𝑥0.8 + exp (𝑥)𝑥− 11𝑥𝑦−0.99𝐸1,0.1,

(70)

where the exact solution of the Problem 2 is 𝑈(𝑥, 𝑦) =𝑦 exp(𝑥), 𝑉(𝑥, 𝑦) = 𝑥 exp(𝑦). We approximate the given
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Table 1: Absolute error at various values of (𝑥, 𝑦) for 𝐾 = 10, 12 in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) of Problem 1.(𝑥, 𝑦) 󵄩󵄩󵄩󵄩𝑈 − 𝑈10󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑈 − 𝑈12󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑉 − 𝑉10󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑉 − 𝑉12󵄩󵄩󵄩󵄩(0.1, 0.1) 1.707 × 10−5 1.005 × 10−8 1.3250 × 10−6 8.006 × 10−9(0.1, 0.5) 1.956 × 10−5 6.006 × 10−8 1.596 × 10−6 7.508 × 10−9(0.1, 0.9) 2.236 × 10−5 5.803 × 10−8 4.773 × 10−6 6.009 × 10−9(0.5, 0.1) 1.873 × 10−5 4.600 × 10−8 5.385 × 10−6 7.036 × 10−9(0.5, 0.5) 1.887 × 10−5 3.008 × 10−8 7.858 × 10−6 5.005 × 10−9(0.5, 0.9) 2.092 × 10−5 2.519 × 10−8 6.619 × 10−6 4.001 × 10−9(0.9, 0.1) 1.973 × 10−5 2.363 × 10−8 5.363 × 10−6 2.506 × 10−9(0.9, 0.5) 2.907 × 10−5 5.009 × 10−8 6.009 × 10−6 3.005 × 10−9(0.9, 0.9) 2.306 × 10−5 6.000 × 10−8 5.000 × 10−6 2.500 × 10−9
Table 2: Absolute error and CPU times at various values of (𝑥, 𝑦) for 𝐾 = 12 in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) of Problem 1.(𝑥, 𝑦) CPU time 󵄩󵄩󵄩󵄩𝑈 − 𝑈12󵄩󵄩󵄩󵄩 CPU time 󵄩󵄩󵄩󵄩𝑉 − 𝑉12󵄩󵄩󵄩󵄩(0.1, 0.1) 55.78 s 1.005 × 10−8 57.88 s 8.006 × 10−9(0.1, 0.5) 56.71 s 6.006 × 10−8 57.98 s 7.508 × 10−9(0.1, 0.9) 56.91 s 5.803 × 10−8 57.99 s 6.009 × 10−9(0.5, 0.1) 56.98 s 4.600 × 10−8 58.70 s 7.036 × 10−9(0.5, 0.5) 57.31 s 3.008 × 10−8 58.72 s 5.005 × 10−9(0.5, 0.9) 57.62 s 2.519 × 10−8 58.88 s 4.001 × 10−9(0.9, 0.1) 58.11 s 2.363 × 10−8 59.23 s 2.506 × 10−9(0.9, 0.5) 59.41 s 5.009 × 10−8 59.38 s 3.005 × 10−9(0.9, 0.9) 59.88 s 6.000 × 10−8 60.08 s 2.500 × 10−9
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Figure 3: Evaluation of exact and numerical solutions 𝑈(𝑥, 𝑦), 𝑉(𝑥, 𝑦) corresponding to scale level𝐾 = 10 for test Problem 2.

test problem by using the proposed method. In Figure 3, we
have shown the comparison between exact and approximate
solutions at scale level𝐾 = 10. Further, to verify the efficiency
of the proposed method, also the absolute error at scale level𝐾 = 10 in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) has been shown in Figure 4.
To demonstrate the maximum absolute error at different
scale levels and various values of the space variables 𝑥, 𝑦 has
been provided in Table 3. From Table 3, it is clear that the
absolute error is below 10−8, which is a very small quantity.
The absolute error may further be decreased by enlarging
scale level. CPU time for test Problem 2 is provided in
Table 4.

Problem 3. Consider another coupled system of FPDEs as

𝑐𝐷1.8𝑥 𝑈 (𝑥, 𝑦) + 𝑐𝐷2𝑥𝑦𝑉 (𝑥, 𝑦) + 4𝑐𝐷0.8𝑦 𝑈 (𝑥, 𝑦)= 𝑓 (𝑥, 𝑦) ,
𝑐𝐷1.8𝑥 𝑉 (𝑥, 𝑦) + 9𝑐𝐷2𝑥𝑦𝑉 (𝑥, 𝑦) + 3𝑐𝐷0.8𝑦 𝑉 (𝑥, 𝑦)= 𝑔 (𝑥, 𝑦) ,
𝑈 (0, 𝑦) = −𝑦5,
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Figure 4: The maximum absolute error in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) at 𝐾 = 10 of Problem 2.

Table 3: Maximum absolute error at𝐾 = 10, 12 of 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) using various values of (𝑥, 𝑦) for Problem 2.(𝑥, 𝑦) 󵄩󵄩󵄩󵄩𝑈 − 𝑈10󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑈 − 𝑈12󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑉 − 𝑉10󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑉 − 𝑉12󵄩󵄩󵄩󵄩(0.1, 0.1) 1.000 × 10−5 2.005 × 10−7 1.006 × 10−5 7.908 × 10−8(0.1, 0.5) 7.000 × 10−5 1.596 × 10−7 2.000 × 10−5 7.009 × 10−8(0.1, 0.9) 006 × 10−5 1.003 × 10−7 2.126 × 10−5 5.019 × 10−8(0.5, 0.1) 6.003 × 10−5 5.000 × 10−7 2.451 × 10−5 5.008 × 10−8(0.5, 0.5) 1.448 × 10−5 4.000 × 10−7 1.081 × 10−5 4.052 × 10−8(0.5, 0.9) 2.500 × 10−5 8.619 × 10−7 5.003 × 10−6 4.051 × 10−8(0.9, 0.1) 1.527 × 10−5 7.063 × 10−7 6.050 × 10−6 3.094 × 10−8(0.9, 0.5) 2.5307 × 10−6 4.129 × 10−7 8.008 × 10−6 2.096 × 10−8(0.9, 0.9) 1.706 × 10−6 2.002 × 10−7 9.004 × 10−6 6.009 × 10−8
Table 4: Absolute error and CPU times at various values of (𝑥, 𝑦) for 𝐾 = 12 in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) of Problem 2.(𝑥, 𝑦) CPU time 󵄩󵄩󵄩󵄩𝑈 − 𝑈12󵄩󵄩󵄩󵄩 CPU time 󵄩󵄩󵄩󵄩𝑉 − 𝑉12󵄩󵄩󵄩󵄩(0.1, 0.1) 51.68 s 2.005 × 10−7 53.78 s 7.908 × 10−8(0.1, 0.5) 51.71 s 1.596 × 10−7 53.90 s 7.009 × 10−8(0.1, 0.9) 52.81 s 1.003 × 10−7 54.19 s 5.019 × 10−8(0.5, 0.1) 52.98 s 5.000 × 10−7 55.20 s 5.008 × 10−8(0.5, 0.5) 53.31 s 4.000 × 10−7 56.72 s 4.052 × 10−8(0.5, 0.9) 53.62 s 8.619 × 10−7 56.38 s 4.051 × 10−8(0.9, 0.1) 54.11 s 7.063 × 10−7 56.63 s 3.094 × 10−8(0.9, 0.5) 55.41 s 4.129 × 10−7 56.88 s 2.096 × 10−8(0.9, 0.9) 56.88 s 2.002 × 10−7 57.04 s 6.009 × 10−8

𝑈󸀠 (0, 𝑦) = 0,𝑉 (0, 𝑦) = 𝑦5,𝑉󸀠 (0, 𝑦) = 0.
(71)

While the external source term is given by

𝜃 (𝑥, 𝑦) = 4.54 (𝑥2 + 𝑦2) 𝑥2.8 + 9.18𝑥0.2+ 2𝑥𝑦 (3𝑥 − 2) + 58.08 (𝑥2 + 𝑦2) 𝑥2.5+ 10.632𝑥1.2 (𝑥3 − 𝑦3) ,

𝜓 (𝑥, 𝑦) = 5.508 (𝑦2 − 𝑥2) 𝑥1.2 − 1.836 (𝑥3 + 𝑦3) 𝑥0.2
+ 54𝑥𝑦 (𝑥 − 𝑦) + 82.62𝑦1.2 (𝑥2 − 𝑦2)
− 5.50 (𝑥3 + 𝑦3) 6𝑦0.2.

(72)

The exact solution of Problem 3 at 𝑝 = 2 is
𝑈 (𝑥, 𝑦) = (𝑥 − 𝑦) [(𝑥2 + 𝑦2)2 + (𝑥2 + 𝑦2) 𝑥𝑦] ,
𝑉 (𝑥, 𝑦) = (𝑥 + 𝑦)2 (𝑦 − 𝑥) (𝑥2 + 𝑦2 − 𝑥𝑦) . (73)
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Figure 5: Evaluation between exact and approximate solutions 𝑈(𝑥, 𝑦), 𝑉(𝑥, 𝑦) for scale level 𝐾 = 8 of test Problem 3.
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Figure 6: Maximum absolute error in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) at𝐾 = 8 for different values of 𝑥, 𝑦 for Problem 3.

Table 5: Maximum absolute error in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) of Problem 3 at 𝐾 = 10, 12 corresponding to various values of (𝑥, 𝑦).(𝑥, 𝑦) 󵄩󵄩󵄩󵄩𝑈 − 𝑈10󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑈 − 𝑈12󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑉 − 𝑉10󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑉 − 𝑉12󵄩󵄩󵄩󵄩(0.1, 0.1) 1.707 × 10−6 4.325 × 10−8 6.826 × 10−6 1.000 × 10−8(0.1, 0.5) 2.956 × 10−6 3.196 × 10−8 5.638 × 10−6 2.009 × 10−8(0.1, 0.9) 4.236 × 10−6 2.703 × 10−8 3.126 × 10−6 2.900 × 10−8(0.5, 0.1) 8.873 × 10−6 7.038 × 10−8 5.451 × 10−6 2.945 × 10−8(0.5, 0.5) 7.000 × 10−5 8.058 × 10−7 4.781 × 10−5 1.520 × 10−8(0.5, 0.9) 8.002 × 10−5 1.019 × 10−7 4.933 × 10−5 3.051 × 10−8(0.9, 0.1) 6.027 × 10−5 3.063 × 10−7 4.565 × 10−5 3.194 × 10−7(0.9, 0.5) 9.007 × 10−5 2.029 × 10−7 5.808 × 10−5 1.096 × 10−7(0.9, 0.9) 9.006 × 10−5 2.008 × 10−7 2.746 × 10−5 3.209 × 10−7
Apply the considered method to the given Problem 3 cor-
responding to a scale level 𝐾 = 8. Plot the exact and
approximate solution as in Figure 5.We see fromFigure 5 that
the adapted techniques work excellently and there is a close
agreement between approximate and exact solutions. Further,
we have computed maximum absolute error for Problem 3 in
Table 5 at scale level𝐾 = 10, 12.Themaximum absolute error
corresponding to the scale level 𝐾 = 8 has been provided
in Figure 6, which is below 10−3. The absolute error can be
further decreased by enlarging scale level with various values
of 𝑥, 𝑦.

CPU time for test Problem 3 is provided in Table 6.

6. Conclusion

In this article we have developed an efficient numerical
technique by using shifted Legendre polynomials. A new
operational matrix of mixed partial derivative Z(𝑝,𝑥,𝑦)

𝐾2×𝐾2
is

introduced to solve a multiterm coupled system of FPDEs.
We have also tested our method by some test problems. The
comparison between the exact and approximate solutions
of the problems has been provided. We observed that the
maximum absolute error is very small even at very small scale
level.This minimum value of the absolute error indicates that
the method is highly accurate and can be applied to a large
numbers of FPDEs.
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Table 6: Maximum absolute error and CPU times in 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) of Problem 3 at 𝐾 = 12 corresponding to various values of (𝑥, 𝑦).(𝑥, 𝑦) CPU time 󵄩󵄩󵄩󵄩𝑈 − 𝑈12󵄩󵄩󵄩󵄩 CPU time 󵄩󵄩󵄩󵄩𝑉 − 𝑉12󵄩󵄩󵄩󵄩(0.1, 0.1) 55.70 s 4.325 × 10−8 55.26 s 1.000 × 10−8(0.1, 0.5) 55.95 s 3.196 × 10−8 55.38 s 2.009 × 10−8(0.1, 0.9) 56.23 s 2.703 × 10−8 56.12 s 2.900 × 10−8(0.5, 0.1) 56.87 s 7.038 × 10−8 57.45 s 2.945 × 10−8(0.5, 0.5) 57.00 s 8.058 × 10−7 75.78 s 1.520 × 10−8(0.5, 0.9) 57.02 s 1.019 × 10−7 57.93 s 3.051 × 10−8(0.9, 0.1) 57.27 s 3.063 × 10−7 58.56 s 3.194 × 10−7(0.9, 0.5) 58.00 s 2.029 × 10−7 59.80 s 1.096 × 10−7(0.9, 0.9) 59.68 s 2.008 × 10−7 60.76 s 3.209 × 10−7
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