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An adaptive stochastic resonance and analytical mode decomposition-ensemble empirical mode decomposition (AMD-EEMD)
method is proposed for fault diagnosis of rotating machinery in this paper. Firstly, the stochastic resonance system is optimized
by particle swarm optimization (PSO), and the best structure parameters are obtained. Then, the signal with noise is put into the
stochastic resonance system and denoising and enhancing the signal. Secondly, the signal output from the stochastic resonance
system is extracted by analytical mode decomposition (AMD) method. Finally, the signal is decomposed by ensemble empirical
mode decomposition (EEMD) method. The simulation results show that the optimal stochastic resonance system can effectively
improve the signal-to-noise ratio, and the number of effective components of EEMD decomposition is significantly reduced after
using AMD, thus improving the decomposition results of EEMD and enhancing the amplitude of components frequency.Through
the extraction of the rolling bearing fault signal feature proved that the method has a good effect.

1. Introduction

Rotating machinery plays a significant role in a wide range
of industrial applications, such as aerospace, transporta-
tion vehicles, and power generators. The rotating machine
faults can cause violent vibration on the machine and even
endanger normal machine operation. Therefore, accurate
health monitoring and diagnosis system is needed to identify
incipient fault that may occur in a rotating machine [1–
4]. However, the defect-induced fault signal of the rotating
machine is often corrupted by the noise coming from other
coupled machine components and working environment,
which makes some incipient faults not easy to be recognized.
The challenge of fault recognition requires enhancing the
weak fault information from heavy background noise.

Stochastic resonance (SR) theory was proposed by Benzi
et al. in 1981 to explain the periodicity of the Earth’s ice
ages [5]. It can make part of the noise energy transfer to the
low frequency signal through a nonlinear system, so weak
signal drowned in the noise has been greatly strengthened
at the same time to reduce the noise, and greatly improve

the output signal-to-noise ratio (SNR) [6–11]. Therefore the
stochastic resonance method has strong immunity to noise
and can effectively extract weak signal under strong noise
background. Stochastic resonance is actually the optimal
matching relationship between signal, noise, and nonlinear
system. However, the amplitude of the signal and the noise
intensity may change over time in the actual engineering, so
it is necessary to automatically adjust the nonlinear system
parameters according to the different signal, in order to
achieve stochastic resonance and improve the output SNR.

Ensemble empirical mode decomposition (EEMD) is a
noise-assisted data analysis method which was proposed
based on empirical mode decomposition (EMD) [12] by
Huang et al. This method uses the Gauss white noise that
has the statistical characteristics of frequency distribution;
the signal after adding the Gauss white noise is continuous
in different scales. It can effectively solve the mode mixing
problem of EMD and successfully applied in some engineer-
ing practice [13–17].

Analytical modal decomposition (AMD) method was
proposed by Chen and Wang [18]. This method can separate
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different frequency components from the signal, but the
premise is to know the frequency components in the signal
and then determine the bisecting frequency.Therefore, if one
wants to extract the known part of the signal, the signal can
be processed by AMDmethod.

A method of rotating machinery fault diagnosis based on
adaptive stochastic resonance and AMD-EEMD is proposed
in this paper. Firstly, the bistable stochastic resonance system
is optimized by particle swarm optimization (PSO) and
putting the signal which containing noise into the stochastic
resonance system and then denoising and enhancing the
signal. Secondly, the signal output from the stochastic res-
onance system is extracted by AMD. Finally, the signal is
decomposed by EEMDmethod. The simulation results show
that the optimal stochastic resonance system can effectively
improve the SNR, and the number of effective components
of EEMD decomposition is significantly reduced after using
AMD, thus improving the decomposition results of EEMD
and enhancing the amplitude of components frequency.

The rest of the paper is organized as follows. The classical
bistable SR theory, the PSO algorithm, and the theories of
EEMD andAMD are given and the SR-AMD-EEMDmethod
is proposed in Section 2. Section 3 describes the advantage of
the proposedmethod by simulation experiment.The adaptive
stochastic resonance and AMD-EEMD method is applied to
the fault diagnosis of a rolling bearing in Section 4, and the
application result proves the effectiveness of the proposed
method. Finally, Section 5 provides the conclusion.

2. Adaptive Stochastic Resonance
and AMD-EEMD Algorithm

2.1. Bistable Stochastic Resonance Model. Stochastic reso-
nance is synergistic effect of the input signal and the noise
signal on the nonlinear system with certain parameters, and
then part of the energy of noise signal transfers to the input
signal, which can improve the SNR to achieve the purpose of
weak signal recognition.

The Langevin equation is to describe the typical model of
nonlinear bistable system [19–21]. The Langevin equation of
bistable system is considered as follows:

𝑑𝑥

𝑑𝑡
= −𝑈


(𝑥) + 𝑆 (𝑡) + 𝑁 (𝑡)

= 𝑎𝑥 − 𝑏𝑥
3
+ 𝑆 (𝑡) + 𝑁 (𝑡) ,

(1)

where 𝑎 and 𝑏 are the structural parameters of the bistable
system, 𝑆(𝑡) is the input signal, and 𝑁(𝑡) is the noise signal.
Let ⟨𝑁(𝑡)⟩ = 0, ⟨𝑁(𝑡)𝑁(𝑡 − 𝜏)⟩ = 2𝐷𝛿(𝑡), and 𝑁(𝑡) =

√2𝐷𝜉(𝑡), where 𝜉(𝑡) is white noise with zero mean and unit
variance and 𝐷 is the noise intensity. The potential function
for the above bistable system can be denoted as

𝑈 (𝑥) = −
1

2
𝑎𝑥
2
+

1

4
𝑏𝑥
4
. (2)

The above equation has two minimum values in 𝑥 =

±√𝑎/𝑏 and has a maximum value in 𝑥 = 0, corresponding
to the system of two lowest points and a barrier point,

corresponding to the two potential hydrazine points and a
barrier point of the system. And its barrier height is Δ𝑈 =

𝑎
2
/(4𝑏).

2.2. Particle Swarm Optimization Algorithm. Particle swarm
optimization (PSO) algorithm is an evolutionary computing
technology proposed by Eberhart and Kennedy. Assuming 𝑖

particle position and velocity in 𝑑 dimensional search space
are 𝑋

𝑖
= (𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑑
) and 𝑉

𝑖
= (V

𝑖1
, V
𝑖2
, . . . , V

𝑖𝑑
),

respectively, in each iteration, particles update their own by
tracking two optimal solutions, one is the optimal solution
𝑃
𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑑
) found by particle itself, and the other is

the optimal solution of current population 𝑃
𝑔
. When finding

the two best values, the particle updates its velocity and
position according to the following formula:

V
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(𝑡) + V
𝑖,𝑗

(𝑡 + 1) , 𝑗 = 1, 2, . . . , 𝑑,

(3)

where 𝜔 is inertia weight, 𝑐
1
and 𝑐
2
are the learning factors,

and 𝑟
1
and 𝑟
2
are random numbers between 0 and 1 uniform

distribution [22, 23].
Because the larger weights are conducive to jumping out

of the local minimum value, they are suitable for global
search. And smaller weights are conducive for accurate local
search in the current search area, which is helpful in the
convergence of the algorithm.

Therefore, in order to prevent the phenomenon of pre-
mature convergence and oscillation occurred in the vicinity
of the global optimal solution of PSO algorithm, you can use
the linear decreasing weight as follows:

𝜔 = 𝜔max −
𝑡 ∗ (𝜔max − 𝜔min)

𝑡max
, (4)

where 𝜔max and 𝜔min are maximum value and minimum
value of 𝜔, 𝑡 is the current number of iterations, and 𝑡max is
the maximum number of iterations. Usually, 𝜔max = 0.9 and
𝜔min = 0.4.

2.3. EEMD Based on AMD. A new signal decomposition
method calledAMDwas proposed byChen andWang in 2012
[18]. This method can decompose signals with closely spaced
frequency components, whichmeans being able to extract the
signal.

If a time series 𝑥(𝑡) is divided into two signals by bisecting
frequency 𝜔

𝑏

𝑥 (𝑡) = 𝑠
1
(𝑡) + 𝑠

1
(𝑡) . (5)

We can get that

𝑠
1
(𝑡) = sin (𝜔

𝑏
𝑡)𝐻 [𝑥 (𝑡) cos (𝜔

𝑏
𝑡)]

− cos (𝜔
𝑏
𝑡)𝐻 [𝑥 (𝑡) sin (𝜔

𝑏
𝑡)] ,

(6)

𝑠
1
(𝑡) = 𝑥 (𝑡) − 𝑠

1
(𝑡) , (7)
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where 𝐻[⋅] is Hilbert transformation of the function in
brackets.

So the original signal will get the two signals by using the
AMDmethod.

The essence of EEMD method is repeated EMD decom-
position added Gauss white noise. Finally, the original signal
is decomposed into several intrinsic mode functions (IMFs)
and a residue.

The specific steps of AMD-EEMDmethod are as follows:
(1) The signal is extracted by AMD method firstly.

Assuming there is a time series 𝑥(𝑡) = 𝑥
1
(𝑡) + 𝑥

2
(𝑡) +

𝑥
3
(𝑡), the frequencies are 𝑓

1
, 𝑓
2
, 𝑓
3
, respectively, and

𝑓
1

< 𝑓
2

< 𝑓
3
. If one wants to extract 𝑓

1
frequency

component of the signal, take between 𝑓
1
and 𝑓

2
as

the bisecting frequency. If one wants to extract 𝑓
2

frequency component of the signal, decompose the
first part of the signal which is taking frequency value
between 𝑓

2
and 𝑓

3
as the bisecting frequency, and

then subtract the first half part of the signal which
is taking frequency value between 𝑓

1
and 𝑓

2
as the

bisecting frequency.
(2) Assuming that the signal after the extraction is 𝑥

2
(𝑡),

one uses EEMDmethod to decompose it.
(3) Initialize the times of EMD decomposition 𝑀 and

white noise amplitude coefficient 𝐾, and let 𝑚 = 1.
(4) Perform the 𝑚 time of EMD decomposition. Con-

sider the following:

(a) Add a random sequence of Gauss white noise
𝑛
𝑖
(𝑡) on the input signal 𝑥

2
(𝑡), and then get the

signal with noise 𝑥
2
(𝑡) = 𝑥

2
(𝑡) + 𝑘 ∗ 𝑛

𝑖
(𝑡).

(b) Use EMD to decompose 𝑥
2
(𝑡) and get

𝐼 IMF
𝑗𝑚

(𝑗 = 1, 2, . . . , 𝐼), 𝑗𝑚 being the decom-
position of the first 𝑗 IMF in the𝑚 time of EMD
test.

(c) If 𝑚 < 𝑀, return to step (4), and let 𝑚 = 𝑚 + 1.

(5) Calculate themean value of each IMF in𝑀 times’ test.
(6) Take the output of IMF

𝑗
as the first 𝑗 IMFdecomposed

by EEMD.
Usually, 𝑀 is 100, 𝐾 takes 0.01∼0.5 times the standard
deviation of the original signal which is more appropriate.

2.4. Adaptive Stochastic Resonance and AMD-EEMD Algo-
rithm. Stochastic resonance output SNR formula is defined
as follows:

SNR = 10 lg 𝑆

𝑁
= 10 lg

2
𝑋 (𝑘
0
)

2

∑
𝐿−1

𝑘=0
|𝑋 (𝑘)|

2
− 2

𝑋 (𝑘
0
)

2
, (8)

where 𝑆 is the signal power, 𝑁 is the noise power, 𝐿 is data
length, and𝑋(𝑘

0
) is the unilateral amplitude of output signal

frequency component.
When the system input is a small parameter signal, the

output SNR approximately is as follows:

SNR =

√2𝑎
2
𝐴
2 exp (−𝑎

2
/4𝑏𝐷)

4𝑏𝐷2
. (9)

Equation (8) shows that the output SNR is relevant to signal
amplitude𝐴, noise intensity𝐷, and system parameters 𝑎 and
𝑏. A signal amplitude as well as the noise intensity is known,
so if one wants to get the maximum output SNR one needs to
adjust the parameters of 𝑎 and 𝑏.

A method of rotating machinery fault diagnosis based on
adaptive stochastic resonance and AMD-EEMD is proposed
in this paper. Firstly, the bistable stochastic resonance system
is optimized by particle swarmoptimization (PSO). Secondly,
the signal output from the stochastic resonance system is
intercepted and decomposed by AMD-EEMD method. The
main steps are as follows:

(1) Population initialization: Set up the PSO maximum
generation 𝑡max, population quantity 𝑀, learning
factors 𝑐

1
and 𝑐
2
, upper limit of inertia weight 𝜔max,

lower limit of inertia weight 𝜔min, upper limit of
flight speed𝑉max, lower limit of flight speed𝑉min, and
the search range of the system parameters 𝑎 and 𝑏.
Initialize a group of particles’ position and velocity
randomly.

(2) Thefitness evaluation of each particle: Calculate every
particle’s fitness value fitness(𝑥) according to the SNR.
Store the current position and fitness value of each
particle in pbest of each particle. Then, store the
position and fitness value of the best individual of all
pbest in the gbest.

(3) The velocity and position of particles being updated:
The position and velocity of all particles are updated
according to (3), and the weight value is updated
according to (4). Recalculate every particle’s fitness
value. If local optimal fitness value pbest or global
optimal fitness value gbest of the individual particle
is better than the pbest and gbest of the generation
particles, then update the corresponding individual
particle’s local optimal fitness value or global optimal
fitness value.

(4) To determine whether the end condition is met:
When the evolution times reached the maximum
number 𝑡max stop searching. Then output the optimal
system parameters 𝑎 and 𝑏 and put the original signal
into stochastic resonance system with the optimal
parameters.

(5) Using the AMD-EEMD method to intercept and
decompose the signal which is output from the
stochastic resonance system.

The specific process is shown as Figure 1.

3. Simulation Experiment

Assuming the input signal is

𝑥 (𝑡) = 𝐴 sin (2𝜋𝑓
0
𝑡) + 𝑁 (𝑡) , (10)

where 𝐴 = 0.3, 𝑓
0

= 0.01Hz, the strength 𝐷 of Gauss
white noise 𝑁(𝑡) is 0.31, the sampling frequency 𝑓

𝑠
is 5Hz,

the sampling points are 5000, the signal is decomposed by
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Use AMD to extract x2(t)
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i < M i = i + 1

IMF1 =
1

M

M

∑
i=1

IMF1i

IMF2 =
1

M

M

∑
i=1

IMF2i

· · ·

Figure 1: The flow chart of adaptive stochastic resonance and AMD-EEMD.

EEMDmethod directly and the first 8 components are taken,
and the result is shown as Figure 2.

First of all, use particle swarm optimization algorithm to
optimize parameters 𝑎 and 𝑏 of stochastic resonance system.
Set the population number as 40, the search range of 𝑎 and
𝑏 as [0, 2], the maximum value of flight speed as 0.01, and
the maximum number of evolutions as 100. Because the
signal amplitude as well as intensity of noise is known, (6)
is regarded as the fitness function. From Figure 3 one can get
that the maximum output SNR is 0.151 and the optimization
result is 𝑎 = 0.7381 and 𝑏 = 0.4393. Use stochastic resonance
system with the optimal parameters to process the original
signal, and then get time-domain waveform and frequency
spectrum which are shown as Figures 4(c) and 4(d). Figure 4

shows that the noise has been weakened and the 0.01Hz
frequency component has been greatly improved.

The 0∼0.02Hz band part of the original signal and the
signal output from stochastic resonance system are extracted
by theAMDmethod, respectively.Then they are decomposed
by EEMDmethod and the frequency spectrum of each com-
ponent is calculated; the decomposition results are shown as
Figures 5 and 6. Comparing with Figure 2, the component
is significantly reduced in Figure 5. Figure 5 shows that
component C1 contains the signal whose frequency is 0.01Hz
and its frequency amplitude is 0.2716. Figure 6 shows that also
component C1 contains the signal whose frequency is 0.01Hz,
but its frequency amplitude is 1.461. This shows that the
original signal is processed by stochastic resonance and then
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Figure 2: The EEMD components of original signal and its spectrum.
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Figure 3: The optimal convergence curve of PSO algorithm.

EEMD decomposition, which can make the signal whose
frequency is 0.01Hz outstanding.

4. Application Example

For the Case Western Reserve University rolling bearing
fault simulation test bench, the type of drive end bearing is
SKF6205, the motor speed is 1797 r/min (29.95Hz), and the
sampling frequency is 12 kHz. The main parameters of the
rolling bearing and the rolling bearing fault feature frequency
of the different parts are shown as Tables 1 and 2, respectively.

Take the inner race fault of rolling bearing as an example;
select a set of data for analysis and processing. By calcu-
lating the feature frequency is 162.18Hz. The time-domain
waveform of the bearing signal and its spectrum are shown
as Figure 7. The original signal is decomposed by EEMD
method and the first 8 components are taken; the result is
shown as Figure 8.
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Figure 4: The time-domain waveform and frequency spectrum of original signal and stochastic resonance signal.
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Figure 5: The AMD-EEMD components of original signal and its spectrum.

Because the bearing fault signal does not meet the
requirements of the small parameter, the signal needs sam-
pling second time. Set up the second sampling frequency
𝑓
𝑠𝑟

= 𝑓
𝑠
/𝑅 = 4Hz; that is to say the transformation

scale 𝑅 is 3000. Use particle swarm algorithm to optimize
the parameters of stochastic resonance system. The noise
strength of the bearing fault signal is unknown, so (5) is
regarded as the fitness function. After optimizing by PSO
algorithm the optimal parameters are 𝑎 = 0.15 and 𝑏 = 2.14.
Then put the bearing signal into stochastic resonance system
with the optimal parameters.

The 150∼180Hz band part of the original fault signal
and the signal output from stochastic resonance system are
extracted by the AMD method, respectively. Then they are
decomposed by EEMD method and the frequency spectrum
of each component is calculated. The decomposition results

are shown as Figures 9 and 10. Comparing with Figure 8, the
component is significantly reduced in Figure 9.

Figure 9 shows that themain frequency component of C2
is 162Hz, according to the inner race fault feature frequency,
and its frequency amplitude is 0.01481. Figure 10 shows that
the main frequency component of C2 is also 162Hz, but
its frequency amplitude is 0.02887, improving significantly
compared with Figure 9.

The comparative analysis outlined above indicates that
the adaptive stochastic resonance and AMD-EEMD method
may not only increase the output SNR but also reduce the
effective components of EEMD and improve the amplitude
of components frequency. Therefore, the adaptive stochastic
resonance and AMD-EEMD method and its application in
fault diagnosis of rotating machinery have practical signifi-
cance.
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Figure 6: The AMD-EEMD components of stochastic resonance signal and its spectrum.

Table 1: The main parameters of the rolling bearing of SKF6205.

Out diameter 𝑅 (mm) Inner diameter 𝑟 (mm) Pitch diameter 𝐷 (mm) Ball diameter 𝑑 (mm) Ball number 𝑍 Contact angle 𝑎

52.00 25.00 39.04 7.94 9 0∘

Table 2: Rolling bearing fault feature frequency of SKF6205.

Bearing element Inner ring Outer ring The retainer Rolling body
Feature frequency 5.4152𝑓

𝑟
3.5848𝑓

𝑟
0.39828𝑓

𝑟
4.7135𝑓

𝑟

Note. 𝑓
𝑟
= 𝑁/60 and𝑁 is bearing speed.

For the Case Western Reserve University rolling bearing
fault simulation test bench, the other type of fan end bearing
is SKF6203 and the sampling frequency is 12 kHz. The main
parameters of the rolling bearing and the rolling bearing fault
feature frequency of the different parts are shown as Tables 3
and 4, respectively.

Forty-four groups of bearing inner fault data were ana-
lyzed by EMD, EEMD, SR-EMD, SR-EEMD, AMD-EMD,
AMD-EEMD, and SR-AMD-EEMD method, respectively.
Among them, forty-two groups of data can effectively
increase the amplitude and reduce the number of compo-
nents after SR-AMD-EEMD method; that is, the accuracy of
this method is 95.45%.

Here take eight groups of bearing inner race fault of
SKF6205 and SKF6203 that are analyzed under 1797 r/min,
1772 r/min, 1750 r/min, and 1730 r/min different speed,
respectively. The frequency amplitude and component count
are shown in Tables 5 and 6. From Tables 5 and 6, we can
clearly see that the EMD and EEMD methods have similar
amplitude and number of components, the SR-EMD and SR-
EEMD methods increase the amplitude, but the number of
the components is not changed, the AMD-EMD and AMD-
EEMD methods reduce the number of components, but the
amplitude is almost unchanged, and the SR-AMD-EEMD
method has the largest amplitude, while the component is

the least.This shows the effectiveness of the proposedmethod
in this paper.

Calculate the average value of the amplitude increment of
eight groups which is compared with the EMD method. The
percentage increase is shown in Figure 11. And the average
number of components is shown in Figure 12. Figure 11 shows
that the amplitude increased by about 10% after EEMD,
AMD-EMD, andAMD-EEMDmethod comparedwith EMD
method. And the amplitude increased by 96.74%, 116.10%,
and 122.58% after SR-EMD, SR-EEMD, and SR-AMD-EEMD
method, respectively. From Figure 12 we can see that the
minimum average number of components is 3 processed by
the SR-AMD-EEMD method. To sum up we know that the
SR-AMD-EEMD method has the largest amplitude and the
minimum number of components.

5. Conclusions

Consider the following:

(1) This paper presents an adaptive stochastic resonance
and AMD-EEMDmethod for fault diagnosis of rotat-
ing machinery. The process is as follows: firstly, the
bistable stochastic resonance system is optimized by
PSO, and the best structure parameters are obtained;
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Figure 7: The bearing fault signal and its spectrum.
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Figure 8: The EEMD components of original fault signal and its spectrum.
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Figure 9: The AMD-EEMD components of original fault signal and its spectrum.
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Figure 10: The AMD-EEMD components of stochastic resonance signal and its spectrum.

EEMD AMD-
EMD

AMD-
EEMD

SR-
EMD

SR-
EEMD

0

0.5

1

1.5

A
m

pl
itu

de
 in

cr
em

en
t

(%
)

10.42% 10.62%9.43%

96.74%
116.10% 122.58%

SR-AMD-
EEMD

Figure 11: The column chart of percentage increase.

then, the signal with noise is put into the stochastic
resonance system in order to improve the SNR of the
signal; secondly, the signal output from the stochastic
resonance system is extracted by AMD method;
finally, the signal is decomposed by EEMDmethod.
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Figure 12: The average number of components.

(2) By processing the simulation signal and applica-
tion examples and comparing the SR-AMD-EEMD
method and EMD, EEMD, SR-EMD, SR-EEMD,
AMD-EMD, and AMD-EEMDmethod, respectively,
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Table 3: The main parameters of the rolling bearing of SKF6203.

Out diameter 𝑅 (mm) Inner diameter 𝑟 (mm) Pitch diameter 𝐷 (mm) Ball diameter 𝑑 (mm) Ball number 𝑍 Contact angle 𝑎

40.00 17.00 28.50 6.75 8 0∘

Table 4: Rolling bearing fault feature frequency of SKF6203.

Bearing element Inner ring Outer ring The retainer Rolling body
Feature frequency 4.9469𝑓

𝑟
3.0530𝑓

𝑟
0.3817𝑓

𝑟
3.9874𝑓

𝑟

Note. 𝑓
𝑟
= 𝑁/60 and𝑁 is bearing speed.

Table 5: The amplitude and component count of fault feature frequency of SKF6205 under different rotational speed.

Bearing type SKF6205
Motor speed 1797 r/min 1772 r/min 1750 r/min 1730 r/min
Frequency value 162Hz 159.6Hz 157.2Hz 154.8Hz

Amplitude Component
count Amplitude Component

count Amplitude Component
count Amplitude Component

count
SR-AMD-EEMD 0.02887 3 0.02164 2 0.02567 3 0.02608 2
AMD-EEMD 0.01481 3 0.01402 2 0.01518 3 0.00881 3
AMD-EMD 0.01536 3 0.01336 2 0.01528 4 0.00863 2
SR-EEMD 0.02880 11 0.02034 10 0.02555 10 0.02480 9
SR-EMD 0.02579 9 0.01738 9 0.02001 8 0.02729 10
EEMD 0.01324 10 0.01672 10 0.01314 10 0.00834 11
EMD 0.01163 10 0.01371 9 0.01224 9 0.00763 10

Table 6: The amplitude and component count of fault feature frequency of SKF6203 under different rotational speed.

Bearing type SKF6203
Motor speed 1797 r/min 1772 r/min 1750 r/min 1730 r/min
Frequency value 147.6Hz 146.4Hz 144Hz 142.8Hz

Amplitude Component
count Amplitude Component

count Amplitude Component
count Amplitude Component

count
SR-AMD-EEMD 0.01287 4 0.00858 3 0.00754 3 0.00748 4
AMD-EEMD 0.00524 4 0.00342 3 0.00323 4 0.00375 4
AMD-EMD 0.00529 4 0.00345 3 0.00335 4 0.00382 4
SR-EEMD 0.01208 10 0.00854 10 — — — —
SR-EMD 0.01228 9 0.00660 9 — — — —
EEMD 0.00574 10 0.00364 10 — — — —
EMD 0.00568 9 0.00469 9 — — — —
Note. “—” expresses no result.

the result shows that the SR-AMD-EEMD method
can effectively improve the SNR and also reduce
the number of EEMD effective components, thus
improving the quality and accuracy of EEMDdecom-
position and enhancing the amplitude of components
frequency. Therefore, it is valuable in engineering
applications.
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