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We compared and evaluated the performance of five methods for detecting abrupt climate changes using a time series with
artificially generated abrupt characteristics. Next, we analyzed these methods using annual mean surface air temperature records
from the Shenyang meteorological station. Our results show that the moving ¢-test (MTT), Yamamoto (YAMA), and LePage (LP)
methods can correctly and effectively detect abrupt changes in means, trends, and dynamic structure; however, they cannot detect
changes in variability. We note that the sample size of the subseries used in these tests can affect their results. When the sample size
of the subseries ranges from one-quarter to three-quarters of the jump scale, these methods can effectively detect abrupt changes;
they perform best when the sample size is one-half of the jump scale. The Cramer method can detect abrupt changes in the mean
and trend of a series but not changes in variability or dynamic structure. Finally, we found that the Mann-Kendall test could not
detect any type of abrupt change. We found no difference in the results of any of the methods following removal of the mean,
creation of an anomaly series, or normalization. However, detrending and study period selection affected the results of the Cramer

and Mann-Kendall methods; in the latter case, they could lead to a completely different result.

1. Introduction

Climate change includes not only continuous or gradual
changes in climate that can be defined by a trend but also
discontinuous or abrupt changes in climate [1]. Effectively
detecting and identifying points of abrupt climate change
in climate records are important for understanding climate
change and deducing causal relationships as well as predict-
ing future climate change.

Abrupt climate changes can be defined as abrupt shifts in
climate from one stable state (or stable and continuous trend)
to another stable state (or stable and continuous trend). These
shifts are associated with changes in the statistical charac-
teristics of climate variables in time and space. Common
types of abrupt climate change include changes to the mean
value, variability, seesaw behavior, and transitional change
[2]. Since the theory of abrupt change was established by
Thom in the 1960s [3], it has been widely used in various fields
[4-7]. Beginning in the 1990s, many climate regime shifts

have been detected in various regions of the world [8-10],
and studies have continued to focus on characterizing such
abrupt changes [11-15]. Abrupt climate changes have received
extensive attention because of the abrupt shift identified in
the North Pacific Ocean in 1977 (16, 17]; this abrupt change
could be related to a decadal-scale change in the Pacific Ocean
[18]. Similar to the shift in the North Pacific Ocean, an abrupt
change also occurred in the East Asian summer monsoon
at the end of the 1970s [19, 20]. Many studies have been
conducted on abrupt climate changes in China. For example,
Fu and Wang [21] analyzed the abrupt climate change in the
South Asian summer monsoon in the 1920s and discussed
three major abrupt climate shifts in the 20th century from
several perspectives. Ding and Zhang [22] investigated trends
and change points in temperature and precipitation on the
Qinghai-Tibet Plateau and six other regions in China, finding
that rapid warming in northeastern China occurred earlier
than in other regions and that rapid changes on the Qinghai-
Tibet Plateau lagged changes in the region north of the



Yangtze River in eastern China. Similarly, Zhao and Xu [23]
and Jia et al. [24] analyzed abrupt changes in climate in the
region north of Lanzhou along the Yellow River and in the
Hexi Corridor.

Since abrupt climate change has become the focus of
many studies, several statistical methods have been used to
detect abrupt climate changes and discontinuous points in
climate data [25-31]. Karl and Riebsame [32] used Student’s
t-test to study abrupt climate change in the United States.
Yamamoto et al. [33] analyzed abrupt changes in temperature
in Japan using the signal-to-noise ratio. Goossens and Berger
[34] used the Mann-Kendall method [35, 36] to analyze
global warming and abrupt climate changes during the
20th century. Other studies have compared the capability of
various statistical methods to detect breakpoints. Easterling
developed a new breakpoint detection method and compared
it to several common statistical methods [37, 38]. Rodionov
compared the ability of the L method and the R method to
detect several discontinuous points, showing that the two
methods yielded relatively consistent results when the time
series had no linear trend; when a time series had a linear
trend, the R method yielded better results [39]. Reeves et al.
[40] also systematically compared several breakpoint detec-
tion methods; they found that the two-phase regression and
Sawa’s Bayes methods performed best. In China, Zhang [41]
also used several methods to detect abrupt climate change.
However, these comparative analyses mainly addressed the
methods of detecting discontinuous points in meteorological
data and focused on detecting abrupt changes in the mean.
They did not systematically compare the methods tradition-
ally used to detect abrupt climate changes or assess their
ability to identify different types of abrupt climate change.

The climate system is nonlinear and nonstationary and
has many components. Abrupt climate change has multi-
dimensional characteristics and generally combines two or
more types of abrupt change [2]. It is difficult to determine
the presence of abrupt changes by simply analyzing measured
data, and this limits the ability to compare the strengths
and weaknesses of various detection methods. Therefore,
in the present study, we constructed artificial time series
with different types of abrupt climate changes. We used
various methods to detect abrupt changes in these time series
and explored their accuracy and effectiveness in identifying
different types of abrupt change. We also analyzed the effects
of data preprocessing on the performance of these methods.
We aimed to comprehensively compare the performance of
several methods in detecting abrupt climate changes and to
provide a basis for selecting an appropriate method.

The paper is organized as follows. In Section 2, we briefly
introduce the abrupt change detection methods and data used
in this paper. Section 3 compares five abrupt change detection
methods. Section 4 provides a summary and discussion.

2. Methods and Data

The most common methods for detecting abrupt climate
changes are the moving t-test (MTT), Cramer’s test (CRA),
the Yamamoto test (YAMA) [33], LePage’s test (LP) [42], and
the Mann-Kendall test (MK) [43]. The MTT and CRA share
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similar principles; they both use the ¢-statistic to determine
whether an abrupt change has taken place. The MTT detects
abrupt change by determining whether there is a significant
difference between the average values of two subseries
groups. The CRA detects abrupt changes by determining
the difference between a subseries and the general series
and concludes that abrupt change has taken place if the
difference exceeds a certain degree of significance. YAMA
detects abrupt change in a series by defining the signal-to-
noise ratio. This method has been used to detect abrupt
changes in temperature, precipitation, and sunshine duration
time series in Japan. The LP and MK methods are both
nonparametric statistical methods. The LP method considers
two subseries to be two independent entities and determines
whether abrupt change has occurred at a control point of
the subseries by evaluating whether the two subseries are
significantly different. The MK method was initially used to
detect the trend of a time series; following improvements,
it is now used for detecting abrupt changes in a time series.
The strength of the MK method is that it does not require
a time series to follow a certain distribution and its use is
not limited by abnormal values. All five methods depend to
some extent on the choice of subseries and require several
tests to improve the reliability of the results. Because the MK
method uses an entire time series and does not require the
artificial selection of subseries, it is widely applied.

The present study attempts to analyze the effectiveness
of the five methods for detecting abrupt climate change and
evaluate the capability of each to detect different types of
abrupt change. We aim to provide a guide that will help
researchers select an appropriate method for detecting abrupt
change. For further details about the methods, see Modern
Climatological Statistic Diagnostic and Predictive Technologies
[44].

The atmosphere is a complex system that is nonstationary
and nonlinear. There are two major types of abrupt climate
change: the first is characterized by abrupt change in climate
statistics but no change in dynamic structure. That is, the
climatic elements before and after a change point follow
a similar distribution; examples include abrupt changes in
the mean value or standard deviation. The second type is
abrupt change in the climate state that involves changes
in the dynamic state of the climate system; in this type
of abrupt change, the climatic elements may not have the
same distribution before and after a change point. To assess
the capability of each method for detecting abrupt climate
changes, we constructed an artificial time series with a time
span of 1000 years. We included abrupt changes in dynamics,
mean, standard deviation, and tendency (Figurel). The
series includes two distributions: the logistic distribution and
normal distribution. Samples t = [1, 100] and t = (800, 1000]
follow a logistic model distribution [45], whereas samples
t = (100, 800] follow a normal distribution. The mean and
standard deviation are M = 0 and SD =1 (100-200); M =
2 and SD =1 (200-300); M = 2 and SD = 4 (300-400);
and M = 0 and SD =1 (400-500). The linear trend of the
normal distribution is 0.18/10 years (for samples 500-600)
and —0.18/10 years (for samples 600-700). Thus, there are 8
abrupt changes in this time series: two changes in dynamic
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FIGURE 1: Time series with different abrupt characteristics generated artificially.

structure at + = 100 and t+ = 800; a change in mean at
t = 200; a change in standard deviation at t = 300; a change
in both the mean and the standard deviation at ¢ = 400; and
a change in trend at t = 500, 600, and 700. For the changes in
trend, no trend becomes an increasing trend at ¢ = 500, the
increasing trend switches to a decreasing trend at t = 600,
and the decreasing trend returns to no trend at t = 700.
Using this artificially constructed series allows us to clearly
determine the effectiveness, reliability, and accuracy of the
different methods for detecting various abrupt changes.
Additionally, to observe the effects of data normalization,
detrending, and study period selection on the ability to detect
abrupt changes, we analyze a measured meteorological data
series of annual temperature data from the Shenyang station
from 1906 to 2014. We compare the response of the five
methods to different data treatment methods when applied
to this Shenyang data series. We selected Shenyang station
because it was built early and has a long record of temper-
ature. Construction of the Shenyang station started on July 1,
1905, and the station did not move until 1950. The station has
been relocated four times since the founding of New China:
it was relocated to the Maguan Bridge, in Dongling District,
Shenyang, in October 1970; relocated to number 2, Section 2
of Wenhua Road, in Shenhe District, Shenyang, in October
1976; relocated to number 12, Yingpan Road, Wusan Town-
ship, in Dongling District, Shenyang; and relocated to Nan-
ping East Road, in Hunnan New District, Shenyang, in 2006.

3. Comparison of the Detection Capabilities of
the Five Methods

Of the five methods for detecting abrupt change, the moving
t-test (MTT), Cramer’s test (CRA), Yamamoto test (YAMA),
and LePage test (LP) use subseries of varying lengths to detect
abrupt changes. Therefore, for these four methods, we report
results for subseries with lengths of 50 and 100; we separately

analyze the effects of subseries length on the ability to detect
abrupt changes.

The MTT, YAMA, CRA, and LP tests detect abrupt
changes by constructing certain statistics. When a statistic
passes a significance test, an abrupt change is considered to
have occurred at a given point. Figure 2 shows the results of
abrupt change detection in the constructed series using the
MTT, YAMA, CRA, and LP methods for subseries with a
length of N = 50 and N = 100. We note that when N = 50,
the MTT, YAMA, and LP methods yield highly consistent
results. Except for the abrupt change in standard deviation
att = 300, they detect all the other points of abrupt change,
identifying the change in dynamic structure at ¢ = 100 and
800; the change in trend at t = 500, 600, and 700; and the
change in mean at t = 200 and 400. However, none of the
three methods detects the change in standard deviation, and
their ability to detect a simultaneous change in mean and
standard deviation (at t = 400) is reduced. Compared with
the MTT, YAMA, and LP methods, the CRA method yields
poorer results. The CRA method cannot detect changes in
dynamic structure (t = 100 and 800); although it detects the
change in trend at t = 600 and 700, it fails to detect the change
att = 500. As for the abrupt changes in mean value at t = 200
and 400, the CRA method does not detect the points in the
correct place. Like the other three methods, the CRA method
fails to detect the change in standard deviation. For N = 100,
due to the shortening of the effective period of detection,
neither the MTT, the YAMA, nor the LP method detects the
abrupt change att = 100. However, all three methods present
a high value at this point, consistent with the results for a
subseries length of N = 50. The three methods can detect
the abrupt changes in mean and trend but detect the abrupt
changes at t = 700 and 800 with lower accuracy. The CRA
method can accurately detect the abrupt changes in mean at
t = 200 and 400 and in trend at t = 500 and t = 700; however,
it does not detect the changes in dynamic structure.
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FIGURE 2: Abrupt changes detected by four different methods ((a) and (b), MTT; (c) and (d), CRA; (e) and (f), YAMA; (g) and (h), LP). Plots

(a), (c), (e), and (g) have N = 50 (the length of the subseries), and plots (b), (d), (f), and (h) have N' = 100; the red dashed lines indicate a
significance level of « = 0.01.
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FIGURE 3: Abrupt changes detected in the artificial time series by the
Mann-Kendall test.

Figure 3 shows the abrupt changes in the artificially
constructed time series detected using the MK method.
In the MK method, if the value of UF or UB is greater
than 0, the series has an increasing trend; if the value is
smaller than 0, the series has a decreasing trend. When these
parameters exceed critical values, a significant increase or
decrease is indicated, and the amount by which they exceed
the critical value indicates the time over which the abrupt
change occurred. If the UF and UB curves intersect and
the point of intersection is within the critical line, the time
at which they intersect is the time when an abrupt change
began [44]. Using these criteria demonstrates that the MK
test does not perform well in detecting abrupt changes. UF
and UB do not intersect within the confidence interval, and
the MK test fails to detect any abrupt changes in the artificially
constructed time series. However, because the period under
study has a large effect on the MK test’s results, when different
periods are selected for study, the MK test does detect some
abrupt changes. We discuss the effects of the study period on
the results of the MK test in a later section.

In summary, of the five methods used to detect abrupt
change, the MTT, YAMA, and LP methods are more effective,
with more consistent and accurate results. All three methods
can detect abrupt changes in the mean, dynamic structure,
and trend, though they cannot detect abrupt changes in
standard deviation. The CRA method cannot detect abrupt
changes in dynamic structure or standard deviation; it can
identify changes in the mean and trend, though it has lower
accuracy when detecting change in the mean. Of the five
methods, the MK test is least effective, failing to detect any
abrupt changes in the artificial series.

3.1. Effect of Subseries Length on the Detection of Abrupt
Changes. In the previous section, we showed that the MTT,
YAMA, and LP methods are sensitive to the choice of
subseries length. To further elucidate how to select an
appropriate subseries length when testing for abrupt changes,
we use the YAMA method as an example in this section.

T T T T T T
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FIGURE 4: Artificially generated time series with abrupt changes
every 100 time steps.

In the same artificially constructed time series with a
length of 1000, one abrupt change in mean value takes place
every 100 years, as shown in Figure 4. Therefore, there are 9
abrupt changes in the mean of the series, at t = 100, 200, 300,
400, 500, 600, 700, 800, and 900.

Figure 5 shows the results of using 9 different subseries
lengths. We note that, for a shorter subseries length, there are
more peaks in the statistics of the signal-to-noise ratio given
by the YAMA method. In contrast, for a longer subseries
length, the curve is smoother and there are fewer peak values.
When the subseries length is N = 10 (1/10 of the dimension
of abrupt change), the YAMA method can only detect abrupt
changes at t = 800 and 900; when the subseries length
increases to 15, the method also detects the changes att = 100
and 300 and the peak values at 200, 400, and 500 begin to
emerge, though they do not pass the significance test. When
N = 25 (1/4 of the dimension of abrupt change), all the
abrupt changes are detected except those at t = 400, 600,
and 700 and the testing efficiency begins to rise. When the
subseries length is 50 (1/2 of the dimension of abrupt change),
the YAMA method can accurately detect all the change points
and has a testing efficiency of 100%. When N = 75 (3/4 of
the dimension of abrupt change), the YAMA method can still
detect all the change points but its recognition is poorer than
at N = 50; in particular, the abrupt change at ¢ = 600 would
be easily missed if this point was not known to be a change
point in the artificially constructed time series. At N = 85,
the testing curve is smoother; the peak value at t = 600
disappears, and the peak values at + = 200, 300, 500, and
700 are not obvious, and the difficulty of identifying change
points increases; when the subseries length is 100, the effective
testing period is shortened and the abrupt changes at 100 and
900 are no longer within the scope of the test. Except for
an obvious peak value at t = 800, the peak values of other
change points are not clear. When N = 125 (exceeding the
dimension of abrupt change), the peak values of the testing
curve begin to drift; the peak values at 200 and 300 appear at
approximately t = 275, and the peak values at 400 and 500
appear at approximately t = 430. We conclude that subseries
length has a significant effect on the testing efficiency and
the ability to determine where abrupt changes occur. When



the subseries is 1/2 of the dimension of abrupt change, the
testing efficiency of the YAMA method is maximized and the
difficulty in identifying abrupt changes is minimized. For a
subseries length ranging from 1/4 to 3/4 of the dimension
of abrupt change, the testing efficiency is lower but points
of abrupt change can still be accurately determined. When
the subseries length is less than 1/4 or greater than 3/4 of
the dimension of abrupt change, the detection efficiency is
reduced. In particular, when the subseries length is greater
than the dimension of abrupt change, the effective test
period is shortened and the probability of misrecognition is
increased. Therefore, the subseries length should be from 1/4
to 3/4 of the dimension of abrupt changes in the series, with
the best length being 1/2 of the dimension of abrupt change.

3.2. Effects of Data Preprocessing on the Detection of Abrupt
Changes. In the above section, we analyzed the effective-
ness and reliability of five methods for detecting various
types of abrupt changes in an artificially constructed time
series. To further understand the effects of data preprocess-
ing (detrending, normalization, and selection of the study
period) on the results of the five methods, we analyze
measured meteorological data from the Shenyang station.
The previous section emphasizes the effect of subseries length
on the MTT, CRA, YAMA, and LP tests. A longer subseries
resulted in a shorter effective testing period. These results
imply that datasets must be of a sufficient length to reliably
detect abrupt changes [39]. Because the Shenyang station has
a longer record compared to the artificially constructed time
series, it is easy to use these data to analyze the effects of
detrending and normalization on the detection of change
points. Therefore, the Shenyang station has been used as
an example for analysis. Figure 6 shows the original series
of average temperature in Shenyang from 1906 to 2013, an
anomalous series (compared to the period 1961-1990), a
normalized series (compared with the period 1961-1990), and
a detrended series.

3.3. Effects of Detrending on Different Methods of Detecting
Abrupt Changes. Figure 7 shows abrupt changes detected in
the original and the detrended Shenyang series by the five
different methods. As in the above analysis of abrupt change
points, the subseries length affects the results of the MTT,
CRA, YAMA, and LP methods; here, we define a subseries
length as a period of 10 years.

The results demonstrate that, for the original series, the
MTT, CRA, YAMA, and LP methods detected abrupt changes
in temperature in 1917, whereas the MK method did not
identify a change point at this time. In addition to the obvious
abrupt change in 1917, the CRA method detected a change
point between 2004 and 2007. Because of the selection of
subseries, the period 2004-2013 is missing for the MTT,
YAMA, and LP methods, and therefore, they do not identify
an abrupt change during this period. We note that although
the MK method tests the entire time period, it does not
detect an abrupt change during this period either. Therefore,
further study is required to determine whether an abrupt
change occurred approximately in 2005. In the detrended
series, the MTT method can still detect the abrupt change in
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temperature near 1917; whereas the YAMA and LP methods
identify a peak near 1917, the peak value does not pass
the significance test. Detrending has a greater effect on the
CRA method than on the MTT, YAMA, and LP methods.
Throughout the test period, the CRA method does not detect
any change points. Finally, whereas the MK method does
not detect any change points in the original series, it does
detect a change point near 1915 in the detrended series;
this change point is earlier than the points detected by the
other methods. The UF and UB parameters also intersect at
approximately 1908 and 2010, but the period before and after
these intersections is too short to define an abrupt change.
We note that the MTT, CRA, YAMA, and LP methods all
detect an abrupt change in temperature in approximately 1917.
However, this change point may result from climate variation
or the relocation of the station, instrument replacement, or a
change in the time of observation. The purpose of this study
was not to differentiate between human versus natural causes
of abrupt change but, rather, to compare the ability of five
different methods to detect abrupt changes and to assess the
effects of detrending.

3.4. Effects of Normalization on Different Methods of Detecting
Abrupt Changes. To analyze the effects of removing the
mean and normalization on the detection of abrupt changes,
we examined the characteristics of abrupt change resulting
from testing the original Shenyang temperature series, an
anomalous series (with respect to the period 1961-1990), and
a normalized series (see Figure 8). The results are similar for
all three series, suggesting that normalization of the series
does not affect the detection of abrupt changes.

3.5. Effects of the Study Period on Different Methods of
Detecting Abrupt Changes. We selected two study periods,
1906-2013 and 1961-2013, to assess the effect of changing
the study period on the detection of abrupt changes in the
Shenyang time series. Figure 9 shows that the MTT, YAMA,
and LP tests are not sensitive to the choice of study period,
giving similar statistical results for both periods. The CRA
method yields similar curves for the different time periods,
but the statistical results vary. For the period 1906-2013, the
CRA method detects abrupt changes in 1917 and 2004, but for
the period 1961-2013, it identifies abrupt changes in 1972 and
2004. The choice of study period strongly affects the results of
the MK method. For the period 1906-2013, the MK method
fails to detect any change points; for the period 1961-2013,
the MK method detects a change point in approximately 1977.
This change point is not identified by the other methods.

To evaluate whether this study period effect always
applies to the results of the MK test, we applied the MK
method to the artificially constructed series shown in Figure 1
and selected 8 different study periods for analysis. The results
(Figure 10) show that different study periods indeed exert a
strong effect on the results of the MK test. For a study period
0f1-200, the MK test identifies the abrupt change in dynamic
structure at t = 100; for study periods of 1-300 and 1-400,
the MK test detects the abrupt change in mean at t = 200;
for study periods of 1-600 and 1-700, the MK test detects the
abrupt change in trend at t = 600, though with low accuracy;
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FIGURE 5: Abrupt changes in the artificial time series detected using different subseries lengths.
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FIGURE 6: Time series of temperature data from the Shenyang station from 1906 to 2013: (a) original series, (b) anomalous series, (c)

normalized series, and (d) detrended series.

for study periods of 1-800 and 1-900, the method detects
the abrupt changes in trend at ¢+ = 600 and ¢ = 500. We
conclude that selection of the study period has a strong effect
on the results of the MK test. Different study periods can lead
to completely different results, a conclusion consistent with
previous studies [46].

4. Summary and Discussion

In this study, we constructed an artificial time series with
different abrupt change characteristics. We used this series to
assess the strengths and weaknesses of five common methods
for detecting abrupt climate change: the moving t-test,
Yamamoto, LePage, Cramer’s, and Mann-Kendall methods.
We also used a temperature series from the Shenyang station
to analyze the effects of data preprocessing on the five abrupt
change detection methods. Our results show the following:

(1) The moving t-test (MTT), Yamamoto (YAMA), and
LePage (LP) methods are more effective and more
accurate; the Cramer (CRA) and Mann-Kendall
(MK) methods are less effective and accurate. The
MTT, YAMA, and LP methods can accurately detect

abrupt changes in mean, trend, and dynamic struc-
ture in a time series, though they cannot detect
abrupt changes in standard deviation. For these three
methods, the results are more sensitive to the method
used than to the subseries length. The CRA method
cannot detect abrupt changes in dynamic structure
or standard deviation but performs relatively well
in identifying abrupt changes in mean and trend.
The MK method is very sensitive to the selection of
study period, and therefore, the method is relatively
ineffective and its results are inconsistent. Compared
to the other four methods (MTT, CRA, YAMA, and
LP), the MK method performs the worst in detecting
abrupt changes when there are two or more change
points in a time series. This poor performance may
occur because the MK method is based on two series
of ranked values that are sorted in forward and
reverse directions. When a series includes two or
more change points, the ranked series may be affected
by the change points, causing the method to fail.

(2) The chosen subseries length affects the effectiveness of
the MTT, YAMA, and LP methods; longer subseries
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lengths imply shorter effective testing periods. When
the subseries length ranges between 1/4 and 3/4 of the
dimension of abrupt change in a series, the methods
can effectively detect the change points subseries
that are too long or too short which will increase
the probability of omission. Therefore, the subseries
length should be within 1/4-3/4 of the dimension
of abrupt change in the series; ideally, 1/2 of the
dimension of abrupt change should be chosen.

(3) Different data preprocessing methods have a rela-
tively minor influence on the results of the MTT,
YAMA, and LP methods. Detrending reduces the
statistical values of the CRA method and may give rise
to completely different results for the MK method.
Removal of the mean and normalization had no effect
on the results of any of the five methods. The choice
of study period had no effect on the MTT, YAMA,
and LP methods but caused inconsistent results for
the CRA method. Because the MK method strongly
depends on the selected study period, different study
periods led to completely different results. Relocation
of the Shenyang meteorological station may have
caused some of the observed change points in the time
series. The station was relocated in 1970, 1976, 1989,
and 2006. However, the MTT, CRA, YAMA and LP
methods indicate that an abrupt change occurred in
1917, suggesting that this change point is not related
to station relocation. The goal of this study was to
compare five methods of detecting abrupt climate
changes, and we therefore do not focus on the causes
of the change points detected in our analyses. These
causes will be discussed in a future study.

In this study, we compared the effectiveness of five
different abrupt change detection methods in an attempt to
guide researchers in selecting an appropriate abrupt change
detection method. We note, though, that our results are
preliminary and largely based on an artificially constructed
time series. Because the climate system is complex and
nonlinear, it may include a variety of abrupt changes on dif-
ferent timescales. Therefore, accurately determining abrupt
change points in climatic data series requires the use of
historical data and climate information. Many new methods
of detecting abrupt change have been developed in recent
years [47-49]. He et al. [50] used approximate atrophy and
detrending fluctuations to analyze various types of abrupt
changes in dynamic structure. Feng et al. [51] used the
heuristic segmentation algorithm to detect abrupt climate
change. These studies achieved relatively good results. The
abrupt climate change detection methods analyzed in the
present study are all traditional statistical methods. In a future
study, we will compare these traditional methods with newer
methods to provide a more reliable theoretical basis for the
study of abrupt climate change.
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