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It is difficult to analyze the nonstationary gyro signal in detail for the Allan variance (AV) analysis method. A novel approach
in the time-frequency domain for gyro signal characteristics analysis is proposed based on the empirical mode decomposition
and Allan variance (EMDAV). The output signal of gyro is decomposed by empirical mode decomposition (EMD) first, and then
the decomposed signal is analyzed by AV algorithm. Consequently, the gyro noise characteristics are demonstrated in the time-
frequency domain with a three-dimensional (3D) manner. Practical data of fiber optic gyro (FOG) and MEMS gyro are processed
by the AV method and the EMDAV algorithm separately. The results indicate that the details of gyro signal characteristics in
different frequency bands can be described with the help of EMDAV, and the analysis dimensions are extended compared with the
common AV.The proposed EMDAV, as a complementary tool of the AV, which provides a theoretical reference for the gyro signal
preprocessing, is a general approach for the analysis and evaluation of gyro performance.

1. Introduction

As a key device for angular velocity detection, gyro plays an
important role in inertial navigation system. However, the
errors caused by the influence of gyro working environment
will be accumulated with working time, and the navigation
accuracy will be deteriorated [1]. Consequently, it is impor-
tant to analyze the characteristic of gyro signal, which is
helpful to identify the performance of the gyros.

The traditional Allan variance (AV) algorithm, which
can reflect the characteristics of signal, is widely used to
evaluate the performance of gyro [2, 3]. However, it can only
achieve the signal characteristics analysis in the time domain.
Actually, due to the complexity of practical gyro signal, it
is difficult to obtain the signal species and distributions
comprehensively in time domain. So it is essential to analyze
the gyro signal in the time-frequency domain.

Wavelet transform and empirical mode decomposition
(EMD) are commonly adopted to implement the signal time-
frequency analysis. Nonetheless, the problems of frequency
overlapping, threshold instability, and decomposition and
reconstruction algorithm errors existing in the wavelet trans-
form bring some limitations for the gyro signal processing
[4]. While being an adaptive local time-frequency analysis
method [5], EMD does not possess the above disadvantages.
The signal can be decomposed by its characteristic to a finite
number of empirical mode functions by EMD, which is
commonly applied in signal denoising [6], trend extraction
[7], and so on.

In this paper, a gyro signal characteristic analysis
approach based on the empirical mode decomposition and
Allan variance (EMDAV) is proposed, which employs AV to
analyze the decomposed gyro signal of EMD. Compared with
the sole time domain characteristic of gyro signal obtained by
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traditional AV, the proposed method enriches the real gyro
performance evaluation approaches, supplies more detailed
gyro signal characteristics information in the joint time-
frequency domain, and provides the theoretical basis for the
denoising threshold determination in signal preprocessing.

2. Allan Variance Analysis

As a common analysis tool in the time domain, AV is widely
applied to identify the gyro errors characteristics. Assuming
that there is a gyro signal sample sequence of {𝑥(𝑡)} with the
length of𝑁 and the sampling frequency of𝑓, its discrete-time
AV can be expressed as [8]
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It is assumed that the various error sources are statistically

independent; then the AV can be described as the sum
of squares of quantization noise, angle random walk, bias
instability, rate random walk, and rate ramp [9, 10]:
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where 𝜎ARW, 𝜎RRW, 𝜎BI, 𝜎QN, and 𝜎RR are the variances of the
above five kinds of errors separately and 𝑄, 𝑁, 𝐵, 𝐾, and 𝑅

are the corresponding AV coefficients.

3. EMDAV Analysis

The traditional AV analysis method which presents the gyro
noise characteristics in the only timedomain cannot reflect its
distributions among different frequency bands. However, the
noise characteristics vary with the frequency. To reveal more
details of the gyro noise characteristic, the EMDAV method
is proposed in this paper.

As a method utilized to analyze the nonlinear and non-
stationary signal, EMD decomposes the signal on the basis
of time scale characteristics. There is no need to set the basic
functions in advance for EMDwhich can decompose any type
of signal. Thus EMD has obvious advantages in processing
nonlinear and nonstationary signal.

The EMDAV algorithm proposed in the paper is based
on the EMD and AV. After decomposing the gyro signal with
EMD, the AV can be obtained with the help of intrinsic mode
function (IMF). Lastly the AV logarithmic curve over time
and frequency can be depicted. The detailed algorithm flow
chart is shown in Figure 1.

The steps of the EMDAV based on gyro signal character-
istics analysis method can be summarized as follows:

(1) Find all the local maxima and minima of the original
signal 𝑥(𝑡).

Begin

Find the local maxima and
minima of signal

Fit an upper envelope and a
low envelope

Compute the mean of the
two envelopes

Obtain IMF

Stopping criterion

End 

No

Yes

Calculate the Allan
variance corresponding to the

IMF components

Depict the Allan variance
logarithmic curve

< one constant

Figure 1: Flow chart of AV algorithm based on EMD.

(2) Fit the estimated points of the first step using natural
cubic spline to form an upper envelope of 𝑒max(𝑡) and a lower
envelope of 𝑒min(𝑡).

(3) Compute the mean of the two envelopes:

𝑚
𝑖
(𝑡) =
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2
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where 𝑖 = 1, 2, . . . , 𝑛; 𝑛 is the number of decomposition levels.
(4) Refine the estimate ℎ
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(5) Proceed from step (1) again unless a stopping criterion
has been fulfilled. The stopping criterion is [11]
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Figure 2: FOG and MEMS gyros: (a) FOG on turntable and (b) MEMS gyro.

where SD is a screening threshold. The iteration stops when
SD is smaller than a constant. The constant value can be set
between 0.2 and 0.3 [12].

Eventually, the IMF components of ℎ
1
(𝑡), ℎ
2
(𝑡), . . . , ℎ

𝑛
(𝑡)

and the remainder of 𝑟
𝑛
(𝑡) can be obtained.Then the original

signal can be expressed as
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(6) Calculate the AV coefficients corresponding to the IMF
components and analyze the signal characteristics in different
frequency bands.

From the above EMDAV procedures, we can see that the
IMF of ℎ

𝑖
(𝑡) indicates the different frequency components.

With the increase of decomposition level, the frequency of
decomposed signal decreases gradually. Namely, the first IMF
represents the highest frequency component of the original
signal. The frequencies of subsequent IMFs reduce almost in
the form of the negative power of 2 [13] until the frequency
of the remainder is very small. Consequently, each IMF
corresponds to the signal component of different frequency.

Compared with the traditional AV analysis method, the
characteristics and distributions of gyro signal in different
frequency bands can be depicted in detail with EMDAV
algorithm. One more piece of dimensional information can
be shown in three-dimensional (3D) logarithmic graph of
EMDAV compared to that in 2D curve of traditional AV.

4. Experiment Results and Analysis

To verify the algorithm proposed in this paper, AV and
EMDAV are compared to analyze the FOG and MEMS gyro
signals. Practical fiber optical gyro (FOG) and microelectro-
mechanical system (MEMS) gyro static signals are acquired
with the sampling frequency of 100Hz and the sampling
duration of 600 s. The scene of experiment is shown in
Figure 2.

As we all know, traditional AV coefficients come from
original gyro signal, and we can compare them with EMDAV

coefficients at the same time. Figure 3 shows the original
signals and parts of IMF components decomposed by EMD.
It can be seen that the characteristics of FOG and MEMS
gyro signals are similar: the first level of decomposed signal
belongs to high frequency part, and the frequency decreases
with the increasing of decomposition level.

Theoriginal signals and IMF components decomposed by
EMD are analyzed with AV, and corresponding coefficients
(AV coefficients and EMDAV coefficients) are plotted in a
logarithmic graph as shown in Figure 4. FromFigure 4we can
find that the 16 curves in the first group from top to bottom
are the AV logarithm curves of MEMS gyro original signal
(the 0 level, traditional AV) and IMFs (1–15 levels, EMDAV),
respectively. Because of the poor accuracy of MEMS gyro,
the biggest AV value reaches 105. The 16 profiles in the
second group are the respective AV logarithm curves of FOG
gyro original signal (the 0 level, traditional AV) and IMFs
(EMDAV), where the biggest AV value reaches 1. Taking the
AV values at correlation time of 0.01 s for comparison, the
maximum is from the original signal for both gyros, by which
the first level of decomposed signals followed. The AV values
decrease until the decomposition level increases to the last
one, whose value corresponds to the minimum.

In addition, it can be seen from Table 1 and Figure 4
that the signal distributions of FOG and MEMS gyro are
similar; that is to say, with the increase of decomposition level,
the proportion of angle random walk is reduced while the
proportion of rate randomwalk is increased.Also it is obvious
that angle random walk is dominant in the high frequency
signal while rate randomwalk accounts for a large proportion
in the low frequency signal. In consequence, gyro signal can
be denoised specifically with the demand of the navigation
system.

Figure 5 shows the relationship between AV and EMDAV
coefficients, where the zero level means the AV coefficient of
original gyro signals. As mentioned before, the frequency of
each IMF is decreased in the form of negative power of 2
gradually, which indicates the fact that the higher the EMD
decomposition levels the smaller the signal frequency. It also
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Figure 3: IMFs from EMD of gyro signals: (a) EMD of FOG signal and (b) EMD of MEMS gyro signal.

Table 1: AV coefficients of gyro signals on some frequencies.

Signal AV coefficients
𝑁 (∘/h1/2) 𝐵 (∘/h) 𝐾 (∘/h3/2) 𝑅 (∘/h2) 𝑄 (𝜇rad)

FOG

AV (original signal) 1.40𝑒 − 3 5.71𝑒 − 1 1.22𝑒1 4.43𝑒1 3.55𝑒 − 2

EMDAV (signals
decomposed by
EMD)

Level 1 1.60𝑒 − 3 4.64𝑒 − 1 9.84𝑒0 3.56𝑒1 3.76𝑒 − 2

Level 4 4.15𝑒 − 4 1.75𝑒 − 1 3.95𝑒0 1.44𝑒1 7.40𝑒 − 3

Level 7 1.33𝑒 − 4 6.66𝑒 − 2 1.20𝑒0 4.25𝑒0 1.90𝑒 − 3

Level 10 2.19𝑒 − 5 1.02𝑒 − 2 3.20𝑒 − 1 1.24𝑒0 3.17𝑒 − 4

Level 15 4.32𝑒 − 7 2.10𝑒 − 4 2.36𝑒 − 2 7.72𝑒 − 2 6.15𝑒 − 6

MEMS gyro

AV (original signal) 5.91𝑒 − 1 3.10𝑒1 6.20𝑒2 2.24𝑒3 1.39𝑒0

EMDAV (signals
decomposed by
EMD)

Level 1 1.37𝑒 − 1 1.41𝑒1 2.10𝑒2 7.15𝑒2 8.78𝑒0

Level 4 1.01𝑒 − 1 9.85𝑒1 2.16𝑒3 7.85𝑒3 2.37𝑒0

Level 7 9.93𝑒 − 2 4.92𝑒1 8.50𝑒2 2.99𝑒3 1.40𝑒0

Level 10 1.59𝑒 − 2 7.36𝑒0 2.54𝑒2 9.81𝑒2 2.30𝑒 − 1

Level 15 1.30𝑒 − 3 6.12𝑒 − 1 6.54𝑒1 1.80𝑒2 1.81𝑒 − 2
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Table 2: Performance contrasts between AV and EMDAV.

AV EMDAV
Signal Stationary signal Stationary and nonstationary signal
Result presentation (fingerprint) 2D 3D
Domain of signal analysis Time domain Time-frequency domain
Ability of signal identification at different frequencies No Yes
Numbers of obtained parameters can be referenced Less More
Reference for signal denoising No Yes

Correlation time (s)

AV
EMDAV 1
EMDAV 2
EMDAV 3
EMDAV 4
EMDAV 5
EMDAV 6
EMDAV 7

EMDAV 8
EMDAV 9
EMDAV 10
EMDAV 11
EMDAV 12
EMDAV 13
EMDAV 14
EMDAV 15
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Figure 4: Logarithmic diagram of AV and EMDAV.

shows that the EMDAVcoefficients trend to decreasewith the
decrease of signal frequency.

From the comparison of Figures 5(a) and 5(b), the
coefficients of MEMS gyro are much larger than that of FOG;
namely, the accuracy of MEMS gyro is worse than FOG. As
for FOG (in Figure 5(a)), the EMDAV coefficients in the 5th
level are larger, which means that the angle random walk
noise, bias instability noise, rate random walk noise, and rate
ramp noise are more dominant. The EMDAV coefficients of
the 8th level and higher level are very small, and the EMD
denoising method will be effective when the decomposition
levels are larger than 7. As forMEMS gyro (in Figure 5(b)), the
EMDAV coefficients are dominant in the 2nd level and are
largest for 4 parameters, and reference decomposition level
of 9 will be applicable for EMD denoising method. Therefore
the algorithm proposed in this paper can provide guidance
for gyro denoising.

The relationships among AV values of IMFs, correlation
time, and EMD decomposition levels are shown in the AV

and EMDAV 3D logarithmic graph of Figure 6, where the
top curves are AV values of MEME gyro while the bottom
are of FOG. Traditional AV logarithmic diagram is the 2D
curve on the 0 level, and EMDAV logarithmic diagram is the
3D view on 1–15 levels. It can be found that though the AV
values of MEMS gyro are larger than that of FOG, the signal
magnitudes of the both gyros tend to reducewith the decrease
of frequency. The 3D figures of both FOG and MEMS gyro
signals show the special characteristics of the FOG and
MEMS gyro performance. The AV values decrease with the
increase of EMD levels and correlation time. The ridges,
which also can be seen from Figure 4, are the collections of
the points with a zero slope in logarithmic diagram of every
IMF signal. Obviously the ridge of FOG signal is consistent
with that of MEMS gyro signal.

The contrasts between AV and EMDAV are listed in
Table 2. As can be seen from the table, EMDAV can ana-
lyze the both stationary and nonstationary signals with the
analysis results showing the 3D relationship (served as the
3D fingerprint of a gyro) among AV, time, and frequency. In
addition, various kinds of noises can be identified to provide
more details about the signal characteristics of gyro. EMDAV
can obtain more referable parameters than AV and provide a
reference for signal denoising.

5. Conclusion

An AV analysis algorithm based on EMD for gyro error is
proposed in this paper. The AV value is calculated by the
signal decomposed based on the characteristic time scale, and
the signal characteristics of gyro error in different frequency
bands are revealed. Theoretical analysis and experiments of
practical FOG and MEMS gyro data indicate the following:

(1) Compared with the characteristic of gyro error in
the sole time domain given by the traditional AV,
the EMDAV algorithm can describe the distributions
on different kinds of gyro signals in time-frequency
domain.

(2) The EMDAV algorithm extends the dimensions of
gyro signal characteristics analysis and hence obtains
more parameters than traditional AV.

(3) The EMDAV algorithm is able to determine the
decomposition level for gyro signal denoising and
provide a theoretical guidance to the gyro signal
denoising and other preprocessing algorithms.
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Figure 5: Relationship between AV coefficients (level 0) and EMDAV coefficients: (a) FOG and (b) MEMS gyro.
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