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Themax-cut problem is NP-hard combinatorial optimization problemwithmany real world applications. In this paper, we propose
an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving
the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of
distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a
path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments
were carried out on two sets of benchmark instances with 800 to 20000 vertices from the literature. Computational results and
comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut
problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution
quality.

1. Introduction

Themax-cut problem is one of the most classical combinato-
rial optimization problems. It is formally defined as follows.
Given an undirected graph 𝐺(𝑉, 𝐸), with vertices set 𝑉 =

{1, . . . , 𝑛} and edges set 𝐸, each edge (𝑖, 𝑗) ∈ 𝐸 being asso-
ciated with a weight 𝑤

𝑖𝑗
, the max-cut problem is to find a

partition (𝑉
1
, 𝑉
2
) of 𝑉, so as to maximize the sum of the

weights of the edges between vertices in the different subsets.
Let 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇
∈ {1, −1}

𝑛 denote a solution of the
max-cut problem. 𝑥

𝑖
= 1 (𝑥

𝑖
= −1) indicates that vertex 𝑖 is

partitioned into 𝑉
1
(𝑉
2
). Let𝑊 = (𝑤

𝑖𝑗
)
𝑛×𝑛

be the symmetric
weighted adjacencymatrix of𝐺.Themax-cut problem can be
formulated as the following discrete quadratic optimization
problem [1]:

(MC)

max 𝑓 (𝑥) = 𝑥
𝑇
𝐿̂𝑥

s.t. 𝑥
𝑖
∈ {1, − 1} , 𝑖 ∈ {1, . . . , 𝑛} ,

(1)

where 𝐿̂ = Diag(𝑊𝑒) −𝑊 is the Laplace matrix of 𝐺.

Themax-cut problemhas long served as a challenging test
for researchers testing new methods for combinatorial algo-
rithms [2] and has a wide range of practical applications such
as numerics, scientific computing, circuit layout design, and
statistical physics. It is one of the Karp’s original NP-complete
problems [3].

Due to the significance of the max-cut problem in aca-
demic research and real applications, it has gainedmuch atten-
tion over the last decade. Because of the NP-hardness of
the max-cut problem, heuristics have a crucial role for the
solution of large scale instances in acceptable computing
time. Various heuristic methods have been proposed includ-
ing rank-two relaxation heuristic [4], GRASP [5, 6], scatter
search [7], filled function method [1], dynamic convexized
method [8], tabu Hopfield network and estimation of distri-
bution [9], tabu search [2], particle swarm optimization [10],
path relinking [11], breakout local search [12], and tabu search
based hybrid evolutionary algorithm [13]. Among the above
heuristic algorithms, breakout local search, path relinking,
and tabu search based hybrid evolutionary algorithm are the
best heuristics for solving challenging max-cut problems.
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Require: A graph 𝐺.
Ensure: A solution 𝑥∗.
(1) Set 𝑔 = 1, Pop(𝑔) = {𝑥

1
, . . . , 𝑥

𝑠
} is generated randomly.

(2) for each 𝑥𝑖 ∈ Pop(𝑔) do
(3) 𝑥

𝑖
= 𝐿𝑆(𝑥

𝑖
).

(4) end for
(5) Let 𝑥̂𝑖 = 𝑥

𝑖, and 𝑥∗ = argmax {𝑓(𝑥𝑖), 𝑖 = 1, . . . , 𝑠.}.
(6) Initialize the probability vector 𝑝𝑔−1 = (0.5, . . . , 0.5).
(7) while 𝑔 ≤ Maxcount do
(8) if 𝑔 can be divided by 2 then
(9) PSO procedure is executed to generate a new population Pop󸀠(𝑔).
(10) else
(11) EDA procedure is performed to generate a new population Pop󸀠(𝑔).
(12) end if
(13) Let Pop(𝑔 + 1) = Pop󸀠(𝑔).
(14) if 𝑥∗ is not improved after 𝐺no continuous generations then
(15) for each 𝑥̂

𝑖
(𝑖 = 1, . . . , 𝑠) do

(16) 𝑥̂
𝑖
= mutation(𝑥̂𝑖).

(17) 𝑥̂
𝑖
= 𝐿𝑆(𝑥̂

𝑖
).

(18) end for
(19) end if
(20) Let 𝑔 = 𝑔 + 1.
(21) end while
(22) return 𝑥

∗

Algorithm 1: General structure of PSO-EDA.

Particle swarm optimization (PSO) [14] is one of themost
popular population-based algorithms. In this technique, all
particles search for food in the search space based on their
positions and velocities. Every particle can adjust its flying
direction by learning from its own experience and the
performance of its peers [15]. Different variants of PSO have
been shown to offer good performance in a variety of contin-
uous and discrete optimization problems [16, 17]. Although
information between particles is shared with each other to
some extent, it is performed in a strictly limited fashion, and
the global information about the search space is not utilized.

Estimation of distribution algorithm (EDA) [18] is a new
paradigm in the field of evolutionary computation and has
been applied to solve many optimization problems [19–21].
It uses a probability model, which gathers the global infor-
mation of the search space, to generate promising offsprings.
The probabilitymodel is updated at each generation using the
global statistical information. However, the local information
of the solutions found so far is not utilized.The algorithmmay
get stuck at local optima due to lack of diversity.

Blum et al. [22] observed that complementary character-
istics of different optimization heuristics benefit fromhybrid-
ization; for example, see [23, 24]. In this work, we focus
on developing an integrated algorithm (PSO-EDA) based on
PSO and EDA to benefit from the advantages of PSO and
EDA.The integrated algorithmPSO-EDAconsists of hybridi-
zation of PSO, EDA, local search procedure, path relinking,
and mutation procedure. PSO is utilized to find local infor-
mation of the search space quickly, while EDA is used to guide
the search by the global information. Local search procedure
and path relinking are applied to further improve the solution

quality. To maintain the diversity, mutation procedure is
adopted. The integrated algorithm overcomes the shortcom-
ings of PSO and EDA and keeps a proper balance between
diversification and intensification during the search. We use
two sets of 91 benchmark instances from the literature to test
the performances of the PSO-EDA.The comparisons of PSO-
EDAwith the existing PSO-based and EDA-based algorithms
for the max-cut problem show that PSO-EDA significantly
outperforms these algorithms in terms of solution quality
and solution time. Compared with other metaheuristic algo-
rithms, including GRASP, breakout local search, path relink-
ing, and tabu search based hybrid evolutionary algorithm,
PSO-EDA can find very competitive results in terms of
solution quality. Moreover, PSO-EDA finds the best known
solutions on 62 instances out of total 91 instances. In addition,
its deviations range from 0.01% to 0.47%. It shows that the
proposed algorithm is able to find high quality solutions of
the max-cut problem.

The remainder of this paper is organized as follows.
Section 2 describes a detailed explanation of the PSO-EDA.
The computational results and comparisons are given in
Section 3. The conclusion remarks are made in Section 4.

2. The Proposed Algorithm

2.1. The Framework of PSO-EDA. The general structure of
the PSO-EDA is given in Algorithm 1. Essentially, PSO-
EDA alternates between PSO procedure and EDA procedure.
PSO procedure and EDA procedure play different roles
in PSO-EDA. PSO procedure is used to gather the local
information. The obtained local information is then used to
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update the probability vector while EDA procedure is used to
guide the search by the global information. It generates new
promising solutions. These two complementary procedures
are iteratively performed to obtain high quality solutions.

In the PSO-EDA, (𝑛 − 1)-dimensional probability vector
𝑝 = (𝑝

2
, . . . , 𝑝

𝑛
) ∈ [0, 1]

𝑛−1 is used to represent the
probability model of the solution space, where 𝑝

𝑗
(𝑗 =

2, . . . , 𝑛) is the probability of 𝑥
𝑗
= 𝑥
1
. Let 𝑔 be the current

generation. At the beginning of PSO-EDA, a population
Pop(𝑔) consisting of 𝑠 particles is generated randomly, and
each particle is further improved by a local search procedure.
Let 𝑥̂𝑖 be the personal best position of particle 𝑖, and let 𝑥∗

be the best solution found so far. We initialize 𝑥̂𝑖 = 𝑥
𝑖 and

𝑥
∗
= argmax{𝑓(𝑥𝑖), 𝑖 = 1, . . . , 𝑠.}. The probability vector

is initialized as 𝑝 = (0.5, . . . , 0.5). Then, PSO procedure and
EDA procedure are executed alternately. If 𝑔 can be divided
by 2, EDAprocedure is performed; otherwise, PSOprocedure
is executed. After that, a new population Pop󸀠(𝑔) is generated
and is used to form the next population Pop(𝑔 + 1). If the
current best solution 𝑥∗ is not improved after𝐺no continuous
generations, the current personal best solutions can not guide
the search efficiently. Each 𝑥̂

𝑖 is perturbed by a mutation
procedure and improved by the local search procedure. The
obtained solution is used to replace the personal best solution
of particle 𝑖. The above process is repeated until Maxcount of
generations is reached.

The PSO-EDA consists of five main components: PSO
procedure, EDA procedure, local search procedure, path
relinking procedure, and mutation procedure. These proce-
dures are described in detail in the following subsections.

2.2. PSO Procedure. The standard PSO is introduced for solv-
ing continuous optimization problems. To deal with discrete
optimization problems, Kennedy and Eberhart [26] devel-
oped a binary version of PSO. After that, many discrete
versions of PSO [27–29] have been proposed. Recently, Qin et
al. [28] proposed an algorithmic framework of discrete PSO
(denoted by DPSO for short), and the application of DPSO
to number partitioning problem has demonstrated the effec-
tiveness of the proposed algorithm.

The basic idea of canonical PSO is that any particle moves
close to the best of its neighbors and returns to the best
position of itself so far. The DPSO follows the basic idea of
canonical PSO. It uses one of the following equations to
generate a new position for particle 𝑖 in the swarm:

𝑥
𝑖
= 𝑥
𝑖
⊕ (𝑟
1
∙ (𝑥̂
𝑖
∼ 𝑥
𝑖
)) , (2)

𝑥
𝑖
= 𝑥
𝑖
⊕ (𝑟
2
∙ (𝑥̂
𝑖𝑁
∼ 𝑥
𝑖
)) , (3)

𝑥
𝑖
= 𝑥
𝑖
⊕ (𝑟
3
∙ (𝑥
𝑟
∼ 𝑥
𝑖
)) , (4)

where 𝑥̂𝑖 and 𝑥̂𝑖𝑁 are personal best position of particle 𝑖 and
the neighborhood best position, respectively; 𝑟

1
, 𝑟
2
, and 𝑟

3
are

three random numbers in [0, 1]; 𝑥𝑟 is chosen at random from
the current swarm; and ∼, ∙, and ⊕ are three operators, and
their definitions are as follows.

Difference operator (∼): given any positions 𝑥 and 𝑦, the
difference of them, denoted by 𝑥 ∼ 𝑦, is a sequence of

least number of consecutive flip operators. Difference of two
positions is used to act as velocity in the DPSO; that is, V =

𝑥 ∼ 𝑦.
Product operator (∙): supposing that 𝜎 is a real number

and V is a velocity (i.e., the difference of two positions), the
product of them, denoted by 𝜎 ∙ V, is a subsequence of V such
that the length of this subsequence is [𝜎|V|], where |V| is the
length of V.

Sum operator (⊕): given a position 𝑥 and a velocity V, 𝑥⊕V
starts with 𝑥 and flips all the variables in V to obtain a new
position.

Equations (2) and (3) try to make particle moves close to
the best position of itself so far and the best of its neighbors,
respectively. Equation (4) introduces a stochastic factor to
avoid premature convergence of DPSO. In each iteration,
exactly one of the three equations is employed to update a
particle.

Inspired by the idea in [28], our PSO procedure employs
the basic structure of DPSO [28] and redefines the operators
of DPSO based on the specific structure of the max-cut prob-
lem. Supposing that 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
)

are two solutions of max-cut problem, we define 𝑥 ∼ 𝑦 = {𝑗 |

𝑥
𝑗

̸= 𝑦
𝑗
, 𝑗 ∈ {1, . . . , 𝑛}}. It is used to determine the differences

between 𝑥 and 𝑦. In our PSO procedure, the velocity V is
denoted as a set of variables, that is, 𝑥 ∼ 𝑦. Different from the
definition of operator ∙ in DPSO, our operation 𝜎∙V generates
a variable subset of V by removing each variable 𝑗 ∈ V from V
with a probability 𝜎. This operator increases the exploration
ability of our PSO procedure.The operation 𝑥⊕ V generates a
new solution. It starts from 𝑥 and flips all the variables in V.

In (3), particle 𝑖 tries to reduce the distance to the best of
its neighbors 𝑥̂𝑖𝑁. It is time consuming to update 𝑥̂𝑖𝑁 for each
particle 𝑖 in each generation, especially for large scale prob-
lems. In addition, the landscape analysis of max-bisection
problem [30] shows that, inmost cases, the distances between
high quality solutions are very small. Their research result
[30] indicates that the degree of similarity between 𝑥̂

𝑖𝑁 and
the current best solution 𝑥

∗ is very large. To speed up the
search, each particle tries to move close to 𝑥∗. The search can
concentrate fast around 𝑥

∗. In our PSO procedure, (3) is
replaced by

𝑥
𝑖
= 𝑥
𝑖
⊕ (𝑟
2
∙ (𝑥
∗
∼ 𝑥
𝑖
)) . (5)

The pseudocode of our PSO procedure is given in
Algorithm 2. For each solution 𝑥𝑖 in the population Pop(𝑔), a
new position is updated by (2), (5), and (4) with probabilities
prob
𝑝
, prob

𝑛
, and prob

𝑟
, respectively (lines (1)–(11)). We have

prob
𝑝
+ prob

𝑛
+ prob

𝑟
= 1; that is, updating of a particle is

influenced by exactly one of (2), (5), and (4). Then, the newly
obtained position is further improved by a local search
procedure (line (12)). We use a path relinking procedure,
which will be described in Section 2.5, to intensify the search.
And 𝑥̂𝑖 and 𝑥∗ are updated (line (13)).

2.3. EDA Procedure. EDAs produce offsprings through sam-
pling according to a probability model. Probability models
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Require: A population Pop(𝑔) = {𝑥
1
, . . . , 𝑥

𝑠
}.

Ensure: A new population Pop󸀠(𝑔).
(1) for each 𝑥𝑖 ∈ Pop(𝑔) do
(2) Generate a random number 𝛿 ∈ [0, 1).
(3) if 0 ≤ 𝛿 < prob

𝑝
then

(4) Use (2) to generate a new position 𝑥𝑖.
(5) end if
(6) if prob

𝑝
≤ 𝛿 < prob

𝑝
+ prob

𝑛
then

(7) Use (5) to generate a new position 𝑥𝑖.
(8) end if
(9) if prob

𝑝
+ prob

𝑛
≤ 𝛿 < 1 then

(10) Use (4) to generate a new position 𝑥𝑖.
(11) end if
(12) 𝑥

𝑖
= 𝐿𝑆(𝑥

𝑖
).

(13) A path relinking procedure is executed to intensify the search.
(14) Update 𝑥̂𝑖 and 𝑥∗.
(15) end for
(16) Pop󸀠(𝑔) = Pop(𝑔).
(17) return Pop󸀠(𝑔).

Algorithm 2: PSO procedure.

identify the remarkable features of promising candidate solu-
tions from the population. A probability model has a great
effect on the performance of EDA.

Notice that 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and its symmetric solution

𝑥 = (−𝑥
1
, . . . , −𝑥

𝑛
) correspond to the same partition of

𝑉. Since the solution space of the max-cut problem is
symmetric, the traditional probability models used in other
binary optimization problems can not be directly applied.

We propose a probability model according to the sym-
metric solution space of the max-cut problem. Our EDA
procedure uses (𝑛 − 1)-dimensional vector 𝑝 = (𝑝

2
, . . . , 𝑝

𝑛
)

to characterize the distribution of promising solutions in the
search space, where 𝑝

𝑗
(𝑗 ̸= 1) is the probability of 𝑥

𝑗
= 𝑥
1
.

At the beginning of the PSO-EDA, vector 𝑝 is initialized
as 𝑝 = (0.5, . . . , 0.5). The PSO-EDA performs the PSO
procedure and EDA procedure alternately. After the PSO
procedure, a new population Pop(𝑔), which contains 𝑠 new
local optimal solutions, is obtained. The EDA procedure
identifies the best𝑁 solutions in Pop(𝑔), and the probability
vector 𝑝𝑔−1 is updated according to the following equation:

𝑝
𝑔

𝑗
= (1 − 𝛼) 𝑝

𝑔−1

𝑗
+ 𝛼

1

𝑁

𝑁

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘

𝑗
+ 𝑥
𝑘

1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, 𝑗 = 2, . . . , 𝑛, (6)

where 𝑝𝑔 is the probability vector in the 𝑔th generation, 𝑥𝑘 =
(𝑥
𝑘

1
, . . . , 𝑥

𝑘

𝑛
) is the 𝑘th individual of the best 𝑁 solutions in

Pop(𝑔), and 𝛼 ∈ (0, 1) is the learning speed. Since 𝑥𝑘
𝑗
∈

{1, −1}, |(𝑥𝑘
𝑗
+ 𝑥
𝑘

1
)/2| is binary. If 𝑥𝑘

𝑗
= 𝑥
𝑘

1
, it holds |(𝑥𝑘

𝑗
+

𝑥
𝑘

1
)/2| = 1; otherwise, we have |(𝑥𝑘

𝑗
+ 𝑥
𝑘

1
)/2| = 0.

Wu andHao [30] concluded from their experimental tests
that the degrees of similarity between high quality solutions
are very large. The best 𝑁 solutions, which are selected to
update 𝑝𝑔, may be very similar. It leads the EDA procedure
to produce very similar new solutions.The range of the value

of probability𝑝𝑔
𝑗
is limited to an interval [𝑝min, 𝑝max]with the

aim of avoiding search stagnation. More formally, the proba-
bility vector 𝑝𝑔 is reset as follows:

𝑝
𝑔

𝑗
=

{{{{

{{{{

{

𝑝min if 𝑝𝑔
𝑗
< 𝑝min,

𝑝
𝑔

𝑗
if 𝑝min ≤ 𝑝

𝑔

𝑗
≤ 𝑝max

𝑝max if 𝑝𝑔
𝑗
> 𝑝max.

𝑗 = 2, . . . , 𝑛, (7)

In each generation of the PSO-EDA, EDA procedure gen-
erates new solutions via sampling according to the probability
vector 𝑝𝑔. A new solution 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) is generated

as follows. First, EDA procedure randomly generates 𝑥
1
∈

{1, −1}. Then, for every 𝑥
𝑗
, 𝑗 ̸= 1, to be determined, a random

number 𝜇 ∈ (0, 1) is generated. Let 𝑥
𝑗
= 𝑥
1
if 𝜇 < 𝑝

𝑔

𝑗
;

otherwise, let 𝑥
𝑗
= −𝑥
1
.

The pseudocode of EDA procedure is given in
Algorithm 3. In the procedure, firstly we identify𝑁 best solu-
tions in population Pop(𝑔) (line (1)). The probability vector
𝑝
𝑔 is generated according to (6), as well as (7) in line (2).

Then, 𝑠 new solutions are generated by the probability vector
𝑝
𝑔, and they are further improved by local search procedure

(lines (3)–(13)). A path relinking procedure is employed to
intensify the search. Line (14) updates 𝑥̂𝑖 and 𝑥

∗ if a new
better solution is found.

2.4. Local Search Procedure. Local search has been proven to
be very helpful when incorporated in PSO and EDA [29, 31].
To enhance the exploitation ability, a local search procedure
is adopted. It is a simple modification of the local search
method (denoted by FMMB) [32] for the max-bisection
problem. Experimental results show that the FMMB is very
effective. The max-bisection problem consists in partitioning
the vertices into two equally sized subsets so as to maximize
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Require: A population Pop(𝑔) = {𝑥
1
, . . . , 𝑥

𝑠
}, a probability vector 𝑝𝑔−1 = (𝑝

𝑔−1

2
, . . . , 𝑝

𝑔−1

𝑛
).

Ensure: A new population Pop󸀠(𝑔).
(1) The𝑁 best solutions in Pop(𝑔) are identified.
(2) Use (6) and (7) to obtain the probability vector 𝑝𝑔.
(3) for 𝑖 = {1, . . . , 𝑠} do
(4) Generate 𝑥𝑖

1
∈ {1, −1} at random.

(5) for 𝑗 = {2, . . . , 𝑛} do
(6) Generate 𝜇 ∈ (0, 1) at random.
(7) if 𝜇 < 𝑝

𝑔

𝑗
then

(8) Let 𝑥𝑖
𝑗
= 𝑥
𝑖

1
.

(9) else
(10) Let 𝑥𝑖

𝑗
= −𝑥
𝑖

1
.

(11) end if
(12) end for
(13) 𝑥

𝑖
= 𝐿𝑆(𝑥

𝑖
).

(14) A path relinking procedure is executed to intensify the search.
(15) Update 𝑥̂𝑖 and 𝑥∗.
(16) end for
(17) Pop󸀠(𝑔) = Pop(𝑔).
(18) return Pop󸀠(𝑔).

Algorithm 3: EDA procedure.

Require: An initial solution 𝑥0.
Ensure: An improved solution 𝑥best.
(1) 𝑥

best
= 𝑥
0, flag = 1.

(2) while flag = 1 do
(3) Let flag = 0, and 𝐹 = {1, . . . , 𝑛}.
(4) Calculate gains 𝑔

𝑗
, 𝑗 ∈ 𝑉, according to (8).

(5) for 𝑘 = {0, . . . , 𝑛/10} do
(6) Let 𝑔

𝑎
= max {𝑔

𝑗
, 𝑗 ∈ 𝐹}.

(7) Move vertex 𝑎 from its current belonged subset 𝑉
𝑐
to the other subset 𝑉

𝑜
. Let 𝑥󸀠 = (𝑥

𝑘

1
, . . . , −𝑥

𝑘

𝑎
, . . . , 𝑥

𝑘

𝑛
).

(8) Let 𝐹 = 𝐹 − {𝑎}, and update the gains of the affected vertices.
(9) if 𝑓(𝑥󸀠) > 𝑓(𝑥

best
) then

(10) Let 𝑥best
= 𝑥
󸀠, flag = 1.

(11) end if
(12) Let 𝑔

𝑏
= max {𝑔

𝑗
, 𝑗 ∈ 𝐹 ∩ 𝑉

𝑜
}.

(13) Move vertex 𝑏 from its current belonged subset 𝑉
𝑜
to the other subset 𝑉

𝑐
. Let 𝑥𝑘+1 = (𝑥

󸀠

1
, . . . , −𝑥

󸀠

𝑏
, . . . , 𝑥

󸀠

𝑛
).

(14) Let 𝐹 = 𝐹 − {𝑏}, and update the gains of the affected vertices.
(15) if 𝑓(𝑥𝑘+1) > 𝑓(𝑥

best
) then

(16) Let 𝑥best
= 𝑥
𝑘+1, flag = 1.

(17) end if
(18) end for
(19) end while
(20) return 𝑥

best.

Algorithm 4: Local search procedure.

the sum of the weights of crossing edges. It is a special case of
the max-cut problem.

The steps for our local search procedure are presented
in Algorithm 4. The local search procedure performs passes
repeatedly until a pass fails to generate a better solution. Each
pass is described between lines (2) and (19). Let 𝑥best be the

current best solution found in a pass and let 𝐹 be the set of
unlocked vertices. Suppose that 𝑥0 is a starting solution and
its corresponding partition is (𝑉

1
, 𝑉
2
). A pass progresses in

epochs. At the beginning of a pass, all vertices are unlocked
(i.e., are free to bemoved).Wemove free vertices according to
their gains. The gain 𝑔

𝑗
of a vertex 𝑗 is the objective function
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Require: An initiating solution 𝑥 and the current best solution 𝑥∗.
Ensure: 𝑥∗.
(1) Calculate the distance 𝑑(𝑥, 𝑥∗) according to (10).
(2) if 𝑑(𝑥, 𝑥∗) > 𝑛/2 then
(3) Let 𝑥 = 𝑥.
(4) end if
(5) Calculate gains 𝑔

𝑗
, 𝑗 ∈ 𝑉, according to (8).

(6) The difference set Δ(𝑥, 𝑥∗) is determined according to (9).
(7) while Δ(𝑥, 𝑥∗) ̸= ⌀ do
(8) Let 𝑎 = max {𝑔

𝑗
, 𝑗 ∈ 𝑉}, 𝑥󸀠 = (𝑥

1
, . . . , −𝑥

𝑎
, . . . , 𝑥

𝑛
).

(9) if 𝑓(𝑥󸀠) > 𝑓(𝑥
∗
) then

(10) Let 𝑥∗ = 𝑥
󸀠. Return 𝑥∗.

(11) else
(12) Let 𝑏 = max {𝑔

𝑗
, 𝑗 ∈ Δ(𝑥, 𝑥

∗
)} (Assume that 𝑏 ∈ 𝑉

𝑐
).

(13) Set 𝑥
𝑏
= −𝑥
𝑏
, Δ(𝑥, 𝑥∗) = Δ(𝑥, 𝑥

∗
) − {𝑏}, and update the gains of affected vertices.

(14) if Δ(𝑥, 𝑥∗) ̸= ⌀ then
(15) Let 𝑐 = max {𝑔

𝑗
, 𝑗 ∈ Δ(𝑥, 𝑥

∗
) ∩ 𝑉
𝑜
}.

(16) Set 𝑥
𝑐
= −𝑥
𝑐
, Δ(𝑥, 𝑥∗) = Δ(𝑥, 𝑥

∗
) − {𝑐}, and update the gains of affected vertices.

(17) end if
(18) end if
(19) end while
(20) return 𝑥

∗.

Algorithm 5: Path relinking procedure.

value and would increase if vertex 𝑗 is moved from its current
belonged subset to the other. More formally,

𝑔
𝑗
=

{{{

{{{

{

∑

{𝑗,𝑘}∈𝐸,𝑘∈𝑉
1

𝑤
𝑗𝑘
− ∑

{𝑗,𝑘}∈𝐸,𝑘∈𝑉
2

𝑤
𝑗𝑘
, 𝑗 ∈ 𝑉

1
;

∑

{𝑗,𝑘}∈𝐸,𝑘∈𝑉
2

𝑤
𝑗𝑘
− ∑

{𝑗,𝑘}∈𝐸,𝑘∈𝑉
1

𝑤
𝑗𝑘
, 𝑗 ∈ 𝑉

2
.

(8)

Line (4) calculates the gains of all free vertices according to
(8). There are two steps in each epoch. An epoch consists of
lines (6)–(17). Firstly, the local search procedure moves an
unlocked vertex with the highest gain in 𝐹 from its current
belonged subset (denoted by𝑉

𝑐
) to the other subset (denoted

by 𝑉
𝑜
). And the current moved vertex is not allowed to be

moved again during this pass. Line (8) updates the gains
of the affected vertices. Then, an unlocked vertex with the
highest gain in 𝑉

𝑜
is moved to 𝑉

𝑐
. It is locked in this pass.

The gains of the affected vertices are updated. To speed up
our local search procedure, a pass ends if 𝑛/10 epochs have
been performed.The best partition 𝑥best observed during the
pass is returned.Then, another pass starts with𝑥0 = 𝑥

best.The
local search procedure terminates when a pass fails to find a
better solution.

2.5. Path Relinking Procedure. Path relinking is originally
introduced in [33]. It explores trajectories that connect initi-
ating solutions and guiding solutions to find better solutions.
Our path relinking procedure uses the current best solution
𝑥
∗ as the guiding solution. Algorithm 5 presents the path

relinking procedure in detail. Suppose that 𝑥 is an initiating
solution, which is generated by the PSO procedure or the

EDAprocedure. Given two solutions𝑥1 and𝑥2, the difference
set Δ(𝑥1, 𝑥2) between 𝑥1 and 𝑥2 is defined as

Δ (𝑥
1
, 𝑥
2
) = {𝑗 : 𝑥

1

𝑗
̸= 𝑥
2

𝑗
} . (9)

The distance 𝑑(𝑥1, 𝑥2) between 𝑥
1 and 𝑥

2 is defined as the
number of flipping variables for transforming 𝑥1 to 𝑥2. More
formally,

𝑑 (𝑥
1
, 𝑥
2
) =

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥
1

𝑗
− 𝑥
2

𝑗

󵄨󵄨󵄨󵄨󵄨

2
. (10)

Notice that the solution space of the max-cut problem is
symmetric; that is, 𝑥 and 𝑥 = −(𝑥

1
, . . . , −𝑥

𝑛
) represent the

same partition. In order to reduce the difference set and
speed up the path relinking procedure, we set 𝑥 = 𝑥 when
𝑑(𝑥, 𝑥

∗
) > 𝑛/2. The gains of all vertices are calculated

according to (8) in line (5). The difference set Δ(𝑥, 𝑥∗) is
determined (line (6)). In each iteration, a vertex 𝑎 with the
highest gain in 𝑉 is identified (line (8)). If flipping 𝑥

𝑎
will

result in finding a better solution than 𝑥
∗, we let 𝑥

𝑎
= −𝑥
𝑎

and stop the path relinking procedure (line (10)). Otherwise,
a vertex 𝑏 with the highest gain in Δ(𝑥, 𝑥∗) is identified (line
(12)), and the vertex 𝑏 is moved from its current belonged
subset 𝑉

𝑐
to the other subset 𝑉

𝑜
; that is, 𝑥

𝑏
is flipped. The

gains of the affected vertices are then updated, and 𝑏 is deleted
from Δ(𝑥, 𝑥

∗
) (line (13)). After that, vertex 𝑐 with the highest

gain in Δ(𝑥, 𝑥
∗
) ∩ 𝑉

𝑜
is determined (line (15)). The gains

of the affected vertices are updated, and 𝑐 is deleted from
Δ(𝑥, 𝑥

∗
) (line (16)). The above process is repeated until a

better solution is found or Δ(𝑥, 𝑥∗) = ⌀.
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Table 1: Combinations of parameter values.

Parameters Factor level
1 2 3 4

𝑠 10 15 20 25
𝛼 0.1 0.2 0.3 0.4
𝑁 (% 𝑠) 10 20 30 40
(𝑝min, 𝑝max) (0.1, 0.9) (0.15, 0.85) (0.2, 0.8) (0.25, 0.75)

Table 2: Orthogonal array and average cut values.

Experiment number Factor Average cut values Time
𝑠 𝛼 𝑁(% 𝑠) (𝑝min, 𝑝max)

1 1 1 1 1 6023.2 114.344
2 1 2 2 2 6023.0 109.912
3 1 3 3 3 6028.6 107.587
4 1 4 4 4 6008.6 101.788
5 2 1 2 3 6026.8 202.359
6 2 2 1 4 6010.8 186.061
7 2 3 4 1 6019.6 163.295
8 2 4 3 2 6025.0 161.659
9 3 1 3 4 6007.6 289.387
10 3 2 4 3 6014.8 266.276
11 3 3 1 2 6025.4 281.829
12 3 4 2 1 6020.4 267.050
13 4 1 4 2 6024.6 371.903
14 4 2 3 1 6026.4 398.358
15 4 3 2 4 6017.4 376.975
16 4 4 1 3 6026.2 434.746

2.6. Mutation Procedure. The PSO-EDA uses the personal
best position 𝑥̂

𝑖 (𝑖 = 1, . . . , 𝑠) and the current best solution
𝑥
∗ found so far to guide the search. At the beginning of

the search, the degrees of the similarity between 𝑥̂
𝑖 and 𝑥

∗

are relatively small, which guides the search to find good
solutions quickly. However, with progress of the search, the
degrees of the similarity between 𝑥̂𝑖 and 𝑥∗ become large. It
makes the search to find a better solution hard.

To make the search retain in a long term, we apply a
simple mutation procedure to 𝑥̂𝑖. It diversifies the search.The
mutation procedure flips a variable with a probability 𝜅 = 0.2.
In other words, for every 𝑥̂𝑖

𝑗
, a random number 𝜇 ∈ (0, 1) is

generated. The mutation procedure set 𝑥̂𝑖
𝑗
= −𝑥̂
𝑖

𝑗
if 𝜇 < 𝜅.

3. Computational Results and Analysis

In this section, we report the computational experiments to
show the efficiency and effectiveness of the PSO-EDA. The
PSO-EDA was programmed in C and the experiments were
run on PC with AMD processor (3.4GHz CPU and 4GB
RAM).

3.1. Test Instances and Parameter Settings. We use two sets of
benchmark instances to test the PSO-EDA. They have been

used to test many algorithms for the max-cut problem and
max-bisection problem in the last two decades.The first set is
G-set graphs [34]. The second set is from [4]. The instances
of the second set arise from Ising Spin glasses cubic lattice
graphs.

There are several parameters in our proposed PSO-EDA.
The values of the population size 𝑠 and the learning speed 𝛼
and 𝑁 and 𝑝min and 𝑝max highly affect the performance of
PSO-EDA. To investigate the influence of those parameters
on the performance of PSO-EDA, we fixed Maxcount = 100,
𝐺no = 6, prob

𝑝
= 0.25, prob

𝑛
= 0.05, and prob

𝑟
= 0.7 and

implemented the Taguchi method of design of experiment
(DOE) [31, 35] by using problem G59. Combinations of
different values of those parameters are given in Table 1.

For each parameter combination, we run PSO-EDA 5
times independently. We use the orthogonal array 𝐿

16
(4
4
)

and the orthogonal array and the obtained average cut values
and average CPU time (time) are listed in Table 2.

From Table 2, one can observe that the PSO-EDA with
the third parameter combination (i.e., 𝑠 = 10, 𝛼 = 0.3, 𝑁 =

3, 𝑝min = 0.2, and 𝑝max = 0.8) performed better than other
parameter combinations in terms of average solution quality
and solution time. In the following experiments, the values of
parameters in PSO-EDA are given in Table 3.
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Table 3: Settings of parameters.

Parameters Section Values
𝑠 2.1 10
𝐺no 2.1 6
Maxcount 2.1 100
prob
𝑝

2.2 0.25
prob
𝑛

2.2 0.05
prob
𝑟

2.2 0.7
𝛼 2.3 0.3
𝑁 2.3 3
𝑝min 2.3 0.2
𝑝max 2.3 0.8

Table 4: Comparison of the results obtained by the GPSO-CDHNN, DHNN-EDA, THNN-EDA, and PSO-EDA on instances from the first
set.

Instances GPSO-CDHNN [10] DHNN-EDA [25] THNN-EDA [9] PSO-EDA
𝑓best 𝑓avg time 𝑓best 𝑓avg Std. 𝑓best 𝑓avg Std. time 𝑓best 𝑓avg Std. time

G1 — — — 11614 11580.6 16.58 11624 11621.6 6.9 9.76 11624 11624.0 0.0 23.714
G2 — — — 11599 11584.3 10.22 11620 11612.6 7.0 9.76 11620 11613.3 4.84 24.067
G3 — — — 11617 11582.5 20.50 11622 11619.5 2.6 9.76 11622 11620.0 2.45 24.091
G11 564 562.56 9.51 494 476.9 5.41 564 563.7 0.7 9.76 564 564.0 0.0 2.281
G12 556 554.4 9.46 476 464.7 7.07 556 554.7 0.9 9.76 556 556.0 0.0 2.378
G13 580 579.92 9.30 520 501.9 7.35 582 579.8 1.4 9.76 582 582.0 0.0 2.273
G14 3058 3057.43 9.47 3027 3017.3 3.86 3061 3055.5 3.3 9.76 3061 3057.3 2.58 4.296
G15 3047 3046.67 9.90 2988 2980.9 2.67 3050 3043.2 4.5 9.76 3050 3045.4 3.84 4.521
G16 — — — 3001 2991.1 5.72 3052 3043.0 3.5 9.76 3052 3045.2 4.54 4.003
G20 940 939.58 9.90 — — — — — — — 941 941.0 0.0 3.702
G21 928 926.65 9.79 — — — — — — — 931 927.9 1.60 3.643
G22 13346 13344.4 56.70 13318 13271.7 19.34 13359 13354.0 9.7 65.04 13359 13347.4 9.97 28.986
G23 13323 13321.3 58.70 13306 13273.6 19.45 13344 13337.8 4.0 65.04 13339 13327.6 9.36 28.747
G24 13329 13321.8 58.72 13296 13265.7 16.48 13337 13333.7 2.6 65.04 13337 13323.0 9.36 30.084
G30 3405 3394.62 56.90 — — — — — — — 3413 3407.5 5.19 29.905
G31 3293 3290.73 58.65 — — — — — — — 3306 3298.0 5.27 33.429
G32 1392 1391.86 56.52 1218 1198.8 9.43 1408 1406.1 1.6 65.04 1410 1406.6 1.90 6.304
G33 1368 1367.58 58.41 1200 1160.7 10.69 1382 1377.2 2.0 65.04 1382 1377.0 3.16 6.236
G34 1370 1367.57 58.58 1180 1158.2 8.46 1384 1380.8 1.9 65.04 1384 1380.8 1.69 6.453
G35 — — — 7528 7512.5 7.41 7680 7670.0 3.7 65.04 7667 7658.2 6.91 17.696
G36 — — — 7532 7518.3 5.75 7671 7663.3 4.7 65.04 7657 7643.7 6.81 17.988
G37 — — — 7533 7525.8 3.28 7687 7677.5 6.6 65.04 7672 7657.8 9.05 17.953
G43 — — — 6655 6625.9 13.26 6660 6658.0 2.5 19.51 6660 6658.3 1.89 8.556
G44 — — — 6641 6623.0 11.23 6650 6644.6 4.3 19.51 6650 6650.0 0.0 8.268
G45 — — — 6633 6616.1 11.49 6654 6646.3 6.0 19.51 6654 6648.6 2.46 8.758
G48 — — — 6000 5899.3 58.02 6000 6000.0 0.0 9.76 6000 6000.0 0.0 7.799
G49 — — — 6000 5928.2 41.79 6000 6000.0 0.0 9.76 6000 6000.0 0.0 7.892
G50 — — — 5868 5815.0 29.40 5880 5880.0 0.0 9.76 5880 5880.0 0.0 7.653

3.2. Comparison of the PSO-EDA with Existing PSO-Based
and EDA-Based Algorithms. In this subsection, we compared
PSO-EDAwith three PSO-based and EDA-based algorithms,
that is, a memetic algorithm with genetic particle swarm
optimization and neural network (GPSO-CDHNN) [10], a
discrete Hopfield network with estimation of distribution

algorithm (DHNN-EDA) [25], and tabu Hopfield neural
network with estimation of distribution algorithm (THNN-
EDA) [9].

We have run PSO-EDA 10 times with parameters listed
in Table 3 on some instances used in [9, 25]. Tables 4 and
5 list the best objective function value (𝑓best), the average
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Table 5: Comparison of the results obtained by the DHNN-EDA, THNN-EDA, and PSO-EDA on instances from the second set.

Instances DHNN-EDA [25] THNN-EDA [9] PSO-EDA
𝑓best 𝑓avg Std. 𝑓best 𝑓avg Std. time 𝑓best 𝑓avg Std. time

3dl101000 804 779.93 7.97 894 890.73 3.44 19.51 896 892.8 3.01 2.971
3dl102000 802 789.13 5.79 900 898.00 2.07 19.51 900 899.2 1.40 2.802
3dl103000 790 778.33 6.02 892 887.00 3.30 19.51 892 892.0 0.0 2.776
3dl104000 810 796.47 6.84 898 896.27 1.61 19.51 898 897.6 0.84 2.794
3dl105000 804 787.27 8.27 886 882.20 1.81 19.51 886 883.8 1.48 2.834
3dl106000 802 797.13 3.25 888 884.67 3.03 19.51 888 886.2 2.57 2.765
3dl107000 790 783.13 4.61 898 895.40 1.94 19.51 900 896.8 2.53 2.772
3dl108000 794 769.47 8.94 882 877.93 2.28 19.51 882 880.0 0.94 2.961
3dl109000 808 797.33 5.47 902 897.20 3.12 19.51 902 899.6 2.46 2.849
3dl1010000 812 793.87 9.76 894 889.67 2.74 19.51 894 891.4 1.65 2.770
3dl141000 2176 2137.87 14.89 2438 2429.27 5.62 97.56 2442 2436.2 3.58 11.827
3dl142000 2192 2155.00 16.09 2454 2440.33 6.63 97.56 2458 2452.4 3.63 11.671
3dl143000 2148 2128.27 10.02 2434 2427.07 4.70 97.56 2438 2433.0 3.30 11.923
3dl144000 2180 2147.73 11.85 2442 2433.93 5.64 97.56 2442 2439.4 2.50 12.077
3dl145000 2128 2097.93 11.55 2440 2428.93 5.72 97.56 2446 2437.8 3.46 12.012
3dl146000 2176 2151.40 10.25 2448 2437.73 4.91 97.56 2448 2441.6 3.75 12.101
3dl147000 2166 2147.80 8.90 2440 2428.20 5.52 97.56 2440 2435.6 3.37 11.892
3dl148000 2140 2106.87 13.80 2442 2432.60 5.14 97.56 2448 2440.2 3.94 12.922
3dl149000 2112 2090.40 9.80 2420 2412.40 5.30 97.56 2422 2416.8 4.64 11.975
3dl1410000 2172 2150.07 9.80 2452 2440.73 5.17 97.56 2452 2442.8 4.34 12.515

objective function value (𝑓avg), standard deviation values
(Std.), and average time (time) in seconds produced by the
GPSO-CDHNN,DHNN-EDA,THNN-EDA, andPSO-EDA,
respectively. The mark “—” means that the experimental
result is not reported. The best objective function value for
each selected instance obtained by these algorithms has been
indicated in boldface in Tables 4 and 5.The average objective
function value with italic indicates the best average objective
function value obtained by all algorithms.

The detailed results of GPSO-CDHNN shown in Table 4
are taken from [10]. The data of DHNN-EDA and THNN-
EDA is from [9]. Both DHNN-EDA and THNN-EDA were
terminated within the same run time, which is shown in the
subcolumn “time” under the column “THNN-EDA.” Note
that GPSO-CDHNN was tested on DELL-PC (Pentium 4
2.80GHz), and DHNN-EDA and THNN-EDA were run on
a PC (Pentium 4 2.9GHz with 2.0G of RAM). According
to the CPU speed data from http://www.cpubenchmark.net/,
their computers are 6.15 times slower than our computer.
Considering the difference between their computers and our
computer, we normalize the CPU times of GPSO-CDHNN,
DHNN-EDA, and THNN-EDA by dividing them by 6.15.

From Table 4, we observe that PSO-EDA is able to find
better solutions compared toGPSO-CDHNN for 14 instances
out of 15 selected instances from the first set. In addition,
the average objective function values of PSO-EDA are better
compared to GPSO-CDHNN for all tested instances from
the first set. The CPU time of PSO-EDA is smaller than that
of GPSO-CDHNN. These mean that PSO-EDA has a better
performance than GPSO-CDHNN.

From Tables 4 and 5, we can see that the best objective
function value and the average objective function value of
PSO-EDA are much better than those of DHNN-EDA for
all 24 considered instances from the first set, as well as 20
instances from the second set. The PSO-EDA takes less CPU
time compared toDHNN-EDA for all tested instances, expect
for G1, G2, andG3.Therefore, PSO-EDA significantly outper-
forms DHNN-EDA for these instances.

THNN-EDA and PSO-EDA found the best objective
function values on 23 and 40 out of the total 44 tested instan-
ces, respectively.The average objective function value of PSO-
EDA is better compared to THNN-EDA for 13 instances from
the first set, while it fails to match the average results of
THNN-EDA for 6 instances from the first set. PSO-EDA is
able to find better average results than THNN-EDA for all
instances from the second set. The PSO-EDA takes less CPU
time compared to THNN-EDA for all tested instances, expect
for G1, G2, and G3. These observations reveal that PSO-EDA
performs better than THNN-EDA.

From all the results mentioned above, we can conclude
that the performance of PSO-EDA is much better than the
existing PSO-based and EDA-based algorithms for the max-
cut problem.

3.3. Comparison of the PSO-EDA with Other Metaheuristic
Algorithms. In this subsection, the PSO-EDA is compared
with several metaheuristic algorithms for the max-cut prob-
lem, including grasp based heuristic (GRASP-TS/PM) [6],
path relinking based heuristic (PR2) [11], breakout local
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Table 6: Comparison of the results obtained by the GRASP-TS/PM, PR2, BLS, TSHEA, and PSO-EDA on instances from the first set.

Instances 𝑛 Best GRASP-TS/PM [6] PR2 [11] BLS [12] TSHEA [13] PSO-EDA
𝑓best 𝑓avg 𝑓best 𝑓avg 𝑓best 𝑓avg 𝑓best 𝑓avg 𝑓best 𝑓avg Gap (%)

G1 800 11624 11624 11624.0 11624 11624.0 11624 11612.4 11624 11624.0 11624 11624.0 0
G2 800 11620 11620 11620.0 11620 11620.0 11620 11615.0 11620 11620.0 11620 11614.0 0
G3 800 11622 11620 11620.0 11620 11620.0 11622 11621.1 11622 11622.0 11622 11622.0 0
G4 800 11646 11646 11646.0 11646 11646.0 11646 11642.8 11646 11646.0 11646 11642.3 0
G5 800 11631 11631 11631.0 11631 11631.0 11631 11631.0 11631 11631.0 11631 11631.0 0
G6 800 2178 2178 2177.9 2178 2178.0 2178 2178.0 2178 2178.0 2178 2178.0 0
G7 800 2006 2006 2006.0 2006 2006.0 2006 2001.05 2006 2006.0 2006 2006.0 0
G8 800 2005 2005 2004.9 2005 2005.0 2005 2004.4 2005 2005.0 2005 2002.7 0
G9 800 2054 2054 2053.6 2054 2054.0 2054 2049.95 2054 2054.0 2054 2047.1 0
G10 800 2000 2000 1999.3 2000 1999.8 2000 1996.05 2000 2000.0 2000 1997.5 0
G11 800 564 564 564.0 564 564.0 564 564.0 564 564.0 564 564.0 0
G12 800 556 556 556.0 556 556.0 556 556.0 556 556.0 556 556.0 0
G13 800 582 582 581.8 582 582.0 582 582.0 582 582.0 582 582.0 0
G14 800 3064 3063 3062.1 3064 3062.6 3064 3062.85 3064 3064.0 3062 3060.4 0.03
G15 800 3050 3050 3049.1 3050 3049.3 3050 3050.0 3050 3050.0 3050 3047.6 0
G16 800 3052 3052 3050.9 3052 3051.4 3052 3051.1 3052 3052.0 3052 3051.4 0
G17 800 3047 3047 3045.8 3047 3046.4 3047 3046.7 3047 3047.0 3047 3045.1 0
G18 800 992 992 992.0 992 992.0 992 991.7 992 992.0 992 990.5 0
G19 800 906 906 906.0 906 906.0 906 904.55 906 906.0 906 904.4 0
G20 800 941 941 941.0 941 941.0 941 941.0 941 941.0 941 941.0 0
G21 800 931 931 930.6 931 931.0 931 930.2 931 931.0 931 930.3 0
G22 2000 13359 13349 13342.4 13359 13354.5 13359 13344.45 13359 13359.0 13359 13353.1 0
G23 2000 13344 13332 13322.4 13342 13331.6 13344 13340.6 13344 13344.0 13344 13331.8 0
G24 2000 13337 13324 13317.3 13333 13325.3 13337 13329.8 13337 13337.0 13337 13325.1 0
G25 2000 13340 13326 13318.1 13339 13328.2 13340 13333.4 13340 13340.0 13338 13324.2 0.01
G26 2000 13328 13313 13303.3 13326 13312.3 13328 13320.0 13328 13328.0 13326 13319.1 0
G27 2000 3341 3325 3318.1 3336 3326.9 3341 3332.25 3341 3341.0 3341 3323.7 0
G28 2000 3298 3287 3277.4 3296 3288.9 3298 3293.85 3298 3298.0 3298 3290.3 0
G29 2000 3405 3394 3384.5 3405 3391.9 3405 3388.2 3405 3405.0 3405 3388.5 0
G30 2000 3413 3402 3393.4 3411 3404.8 3412 3404.85 3413 3413.0 3412 3405.4 0.03
G31 2000 3310 3299 3287.7 3306 3299.5 3309 3305.3 3310 3310.0 3308 3301.3 0.06
G32 2000 1410 1406 1397.3 1410 1404.6 1410 1409.3 1410 1410.0 1410 1408.6 0
G33 2000 1382 1374 1369.1 1382 1376.1 1382 1380.1 1382 1382.0 1382 1380.4 0
G34 2000 1384 1376 1372.5 1384 1378.2 1384 1384.0 1384 1384.0 1384 1383.2 0
G35 2000 7687 7661 7657.4 7679 7670.8 7684 7680.85 7687 7685.6 7685 7673.5 0.03
G36 2000 7680 7660 7652.1 7671 7658.7 7678 7673.6 7680 7677.5 7671 7660.2 0.12
G37 2000 7691 7670 7662.0 7682 7667.9 7689 7685.85 7691 7688.05 7678 7668.2 0.17
G38 2000 7688 7670 7659.8 7682 7670.4 7687 7684.95 7688 7688.0 7688 7670.8 0
G39 2000 2408 2397 2387.1 2407 2391.1 2408 2405.35 2408 2408.0 2408 2396.7 0
G40 2000 2400 2397 2384.3 2399 2383.3 2400 2394.6 2400 2399.6 2395 2385.3 0.21
G41 2000 2405 2398 2383.7 2404 2388.9 2405 2403.0 2405 2405.0 2405 2387.8 0
G42 2000 2481 2474 2461.7 2478 2466.2 2481 2475.4 2481 2478.45 2478 2470.6 0.12
G43 1000 6660 6660 6659.4 6660 6659.9 6660 6658.15 6660 6659.0 6660 6658.7 0
G44 1000 6650 6649 6647.7 6650 6649.9 6650 6647.7 6650 6650.0 6650 6649.4 0
G45 1000 6654 6654 6652.6 6654 6653.9 6654 6652.15 6654 6654.0 6654 6650.1 0
G46 1000 6649 6649 6646.0 6649 6648.8 6649 6647.75 6649 6649.0 6649 6646.2 0
G47 1000 6657 6656 6655.4 6657 6656.8 6657 6654.35 6657 6657.0 6657 6650.8 0
G48 3000 6000 6000 6000.0 6000 6000.0 6000 6000.0 6000 6000.0 6000 6000.0 0
G49 3000 6000 6000 6000.0 6000 6000.0 6000 6000.0 6000 6000.0 6000 6000.0 0
G50 3000 5880 5880 5880.0 5880 5880.0 5880 5879.9 5880 5880.0 5880 5880.0 0
G51 1000 3848 3847 3843.8 3848 3846.4 3848 3847.85 3848 3848.0 3848 3844.6 0
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Table 6: Continued.

Instances 𝑛 Best GRASP-TS/PM [6] PR2 [11] BLS [12] TSHEA [13] PSO-EDA
𝑓best 𝑓avg 𝑓best 𝑓avg 𝑓best 𝑓avg 𝑓best 𝑓avg 𝑓best 𝑓avg Gap (%)

G52 1000 3851 3850 3846.8 3851 3848.4 3851 3850.85 3851 3851.0 3851 3845.5 0
G53 1000 3850 3848 3845.8 3850 3847.7 3850 3849.5 3850 3849.55 3850 3845.1 0
G54 1000 3852 3850 3847.8 3851 3847.8 3852 3850.6 3852 3851.25 3850 3846.1 0.05
G55 5000 10299 — — 10265 10234.0 10294 10282.4 10299 10291.75 10293 10267.3 0.06
G56 5000 4017 — — 3981 3959.2 4012 3998.65 4017 4008.6 4004 3990.0 0.32
G57 5000 3494 — — 3472 3462.0 3492 3488.6 3494 3488.7 3492 3486.6 0.06
G58 5000 19276 — — 19205 19182.0 19263 19255.6 19276 19266.0 19251 19213.8 0.13
G59 5000 6085 — — 6027 6006.2 6078 6067.9 6085 6070.45 6060 6028.2 0.41
G60 7000 14186 — — 14112 14091.8 14176 14166.8 14186 14173.5 14161 14142.2 0.18
G61 7000 5796 — — 5730 5695.7 5789 5773.35 5796 5776.0 5769 5756.7 0.47
G62 7000 4868 — — 4836 4830.2 4868 4863.8 4866 4860.2 4860 4856.2 0.16
G63 7000 27018 — — 26916 26879.3 26997 26980.7 27018 26993.6 26958 26908.6 0.22
G64 7000 8735 — — 8641 8594.1 8735 8735.0 8735 8717.95 8710 8672.2 0.29
G65 8000 5560 — — 5526 5515.9 5558 5551.2 5560 5555.4 5546 5543.4 0.25
G66 9000 6364 — — 6314 6302.4 6360 6350.2 6364 6353.7 6350 6338.4 0.22
G67 10000 6944 — — 6902 6884.6 6940 6935.3 6944 6937.3 6932 6927.6 0.17
G70 10000 9548 — — 9463 9434.0 9541 9527.1 9548 9539.6 9530 9518.4 0.19
G72 10000 6998 — — 6946 6933.8 6998 6935.3 6990 6979.7 6984 6977.2 0.20
G77 14000 9926 — — — — 9926 9916.1 9902 9890.8 9904 9896.0 0.22
G81 20000 14030 — — — — 14030 14021.7 14010 13993.2 13980 13976.5 0.36

search (BLS) [12], and tabu search based hybrid evolution-
ary algorithm (TSHEA) [13]. To compare PSO-EDA with
these state-of-the-art algorithms, the maximum generation
Maxcount is increased to 2000. We run PSO-EDA 10 times.
Tables 6 and 7 report the best known solutions (Best),
the best values (𝑓best), and average solution values (𝑓avg)
obtained by GRASP-TS/PM, PR2, BLS, TSHEA, and PSO-
EDA, respectively. Since GRASP-TS/PM and BLS do not
report their results on the instances of the second set, we
do not include comparisons with GRASP-TS/PM and BLS
on the instances of the second set. The mark “—” in Tables
6 and 7 means that the experimental result is not reported.
The subcolumn “gap” under the column “PSO-EDA” lists
the deviation of the best solution value obtained by PSO-
EDA with respect to the best known solution value Best. The
deviation is calculated as follows: ((Best − 𝑓best)/Best) × 100.

Since GRASP-TS/PM, PR2, BLS, TSHEA, and PSO-EDA
were coded on different programming languages and run on
different hardware platforms, it is very difficult to make a
completely fair comparison of the computing time.Therefore,
similar to [13], we only compare algorithms based on the solu-
tion quality.

We can make the following observations on the results in
Tables 6 and 7:

(1) Table 6 shows that GRASP-TS/PM, PR2, BLS,
TSHEA, and PSO-EDA find the best known solutions
on 25, 36, 48, 54, and 43 instances out of the first
54 small or medium instances from the first set,
respectively. For 17 large instances from the first set,
BLS and TSHEA find the best known solutions on

5 and 13 instances, respectively. The experimental
results in Tables 6 and 7 show that BLS and TSHEA
are the best performing algorithms.

(2) Compared with GRASP-TS/PM and PR2, PSO-EDA
finds very competitive results on the first 54 small or
medium instances from the first set. In terms of best
solution quality and average solution quality, PSO-
EDA is better than PR2 on 15 large instances from the
first set.

For 20 instances from the second set, in terms of best
solution quality, PSO-EDA is better than PR2 on 9 instances
and same as PR2 on 11 instances. In terms of average solution
quality, PSO-EDA is better than PR2 on 15 instances, same as
PR2 on 3 instances, and worse than PR on 2 instances.

(3) PSO-EDAfinds the best knownsolutionson62 instan-
ces out of total 91 instances. In addition to the other 29
instances, PSO-EDA can obtain the best solutionwith
very small deviations to the best known solutions.The
range of deviations is only from 0.01% to 0.47%.

(4) For the large scale instances, the performance of PSO-
EDA is not stable. Twomain reasons are as follows: (I)
with the increase of the instance size, the number of
the local optima increases rapidly and (II) the degree
of similarity between high quality solutions is gener-
ally very large [30].

The above computational results show that the proposed
algorithm is very effective for solving the max-cut problem.
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Table 7: Comparison of the results obtained by the PR2, TSHEA, and PSO-EDA on instances from the second set.

Instances 𝑛 Best PR2 [11] TSHEA [13] PSO-EDA
𝑓best 𝑓avg 𝑓best 𝑓avg 𝑓best 𝑓avg Gap (%)

3dl101000 1000 896 896 894.6 896 896.0 896 896.0 0
3dl102000 1000 900 900 900.0 900 900.0 900 900.0 0
3dl103000 1000 892 892 891.3 892 892.0 892 892.0 0
3dl104000 1000 898 898 898.0 898 898.0 898 898.0 0
3dl105000 1000 886 886 885.4 886 886.0 886 886.0 0
3dl106000 1000 888 888 888.0 888 888.0 888 888.0 0
3dl107000 1000 900 900 898.2 900 900.0 900 898.8 0
3dl108000 1000 882 882 881.2 882 882.0 882 880.6 0
3dl109000 1000 902 902 901.5 902 902.0 902 902.0 0
3dl1010000 1000 894 894 893.7 894 894.0 894 892.6 0
3dl141000 2744 2446 2444 2437.6 2446 2446.0 2446 2443.0 0
3dl142000 2744 2458 2456 2452.4 2458 2458.0 2458 2455.8 0
3dl143000 2744 2442 2438 2435.5 2442 2442.0 2442 2438.4 0
3dl144000 2744 2450 2448 2440.0 2450 2449.4 2448 2443.2 0.08
3dl145000 2744 2446 2444 2438.7 2446 2446.0 2446 2444.0 0
3dl146000 2744 2452 2448 2442.3 2452 2451.4 2452 2445.8 0
3dl147000 2744 2444 2440 2435.0 2444 2444.0 2444 2439.2 0
3dl148000 2744 2448 2444 2438.9 2448 2447.6 2448 2443.6 0
3dl149000 2744 2428 2422 2417.3 2428 2426.3 2428 2422.4 0
3dl1410000 2744 2460 2454 2448.8 2460 2458.4 2456 2451.8 0.16

4. Conclusions

We have presented an integrated method based on particle
swarm optimization and estimation of distribution algorithm
(PSO-EDA) for the max-cut problem. It utilized both the
global information and local information. A fast local search
procedure was employed to enhance the performance of
PSO-EDA. In addition, a path relinking procedure was devel-
oped to intensify the search. These strategies achieve a good
balance between intensification and diversification.

Two sets of benchmark instances were used to test the
performance of PSO-EDA. The comparison of PSO-EDA
with the counterpart algorithms in the literatures, includ-
ing GPSO-CDHNN, DHNN-EDA, and THNN-EDA, shows
that PSO-EDA significantly outperforms these algorithms in
terms of solution quality and solution time. We also com-
pared our PSO-EDA with other existing metaheuristic algo-
rithms, including GRASP-TS/PM, PR2, BLS, and TSHEA.
The computational results showed that the PSO-EDA is able
to find high quality solutions on these tested instances. In
future work, we look forward to apply this approach to other
combinatorial optimization problems.
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