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The time-harmonic elastodynamic half-space Green’s function derived by Banerjee and Mamoon by way of superposition is
discussed and examined against another semianalytical solution and a numerical solution. It is shown that Banerjee andMamoon’s
solution gives infinite z-displacement response when the depth of the source goes to infinity, which is unreasonable and does
not agree with other solutions. A possible problem in the derivation is that it is inappropriate to directly extend the results of
Mindlin’s superposition method for the elastostatic half-space problem to the dynamic case.The superposition of the six full-space
elastodynamic solutions does not satisfy the required boundary conditions of the half-space elastodynamic problem as in the static
case and thus does not solve the dynamic half-space problem.

1. Introduction

The elastodynamic Green’s function for the half-space is fun-
damental to the application of boundary element method
(BEM) to situations involving semi-infinite media. Various
derivations of the elastic displacement due to a subsurface
transient or time-harmonic point force can be found in the
literature [1–4]. Often expressed in Fourier-Bessel integral
forms, numerical evaluation and application of these solu-
tions are usually complex and time-consuming [5–7]. The
time-harmonic elastodynamic half-space Green’s function
under discussion, proposed by Banerjee and Mamoon [4],
is derived by extending the superposition technique devised
by Mindlin [8] for the elastostatic half-space problem to the
dynamic case of a periodic point force in a semi-infinite solid.

2. Banerjee and Mamoon’s Green’s Function

Consider the situation where the periodic force is normal to
the free boundary of the half-space, as depicted in Figure 1.
The semi-infinite solid is bounded by the plane 𝑧 = 0, with
the positive 𝑧-axis pointing to the interior of the body. A
periodic force𝑃𝑒𝑖𝜔𝑡 is applied at point (0, 0, +𝑐) in the positive
𝑧-direction, where 𝜔 is the circular frequency and 𝑖 is the

imaginary unit. The displacements at point 𝜉(𝑥, 𝑦, 𝑧) are to
be found. The distance between 𝜉 and the real source point
is given by 𝑅

1
= {𝑟
2
+ (𝑧 − 𝑐)

2
}
1/2, whereas the distance

between 𝜉 and the image point (0, 0, −𝑐) is denoted by 𝑅
2
=

{𝑟
2
+ (𝑧 − 𝑐)

2
}
1/2.

According to Banerjee andMamoon (B&M for short) [4],
the solution to this problem is composed of six individual
components, corresponding to solutions to six problems in an
infinite solid.The first two problems represent single periodic
forces at (0, 0, +𝑐) and (0, 0, −𝑐), respectively; the third, fourth,
and sixth problems represent a dynamic double force, a
dynamic center of compression, and a dynamic doublet [9] at
(0, 0, −𝑐), respectively; and the fifth problem represents a line
of dynamic centers of compression extending from 𝑧 = −𝑐 to
𝑧 = −∞. To facilitate the ensuing discussion and save space,
here only the 𝑧-displacement component of the sixth problem
is given:

𝑢
6

𝑧
= 𝐾
6
[𝐴
6
(

𝜕𝑅
2

𝜕𝑧

)

2

+ 𝐵
6
] , (1a)

𝐾
6
= −

𝑐
2

2𝜋𝜇 (3 − 4])
, (1b)

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 2717810, 7 pages
http://dx.doi.org/10.1155/2016/2717810



2 Mathematical Problems in Engineering

Plane z = 0

y

z

z

x

c

c

r

R1

R2

(x, y, z)

(0, 0, −c)

Pe
i𝜔t

Figure 1: Periodic force normal to the boundary in the interior of a
semi-infinite solid (after Banerjee and Mamoon [4]).
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where 𝜇 is the shear modulus, ] is the Poisson’s ratio, 𝑐
1
and 𝑐
2

are the pressure and shear wave velocities, respectively, and
𝑠 = 𝑖𝜔 is the Laplace transformed parameter (note that, in
the digital copy of the original paper, the square in (1a) is
missing).

3. A Possible Problem and Comparison with
Other Solutions

A close inspection on (1a)–(1d) reveals that, after substituting
𝐴
6
and𝐾

6
into (1a), the third term in the second component

of 𝐴
6
yields

−

𝑐
2

2

2𝜋𝜇𝑐
4

1
(3 − 4])

⋅

𝑐
2
(𝑧 + 𝑐)

2

𝑅
3

2

⋅ 𝑒
−𝑠𝑅
2
/𝑐
1
. (2)

When the depth of the periodic point force goes to infinity,
that is, 𝑐 → ∞, this term also goes to infinity. Further exam-
ination shows that this term cannot be cancelled out when

summing up all the six solutions, whichmeans that the 𝑧-dis-
placement at 𝜉(𝑥, 𝑦, 𝑧) goes to infinity as 𝑐 → ∞. However,
the displacements at a given point 𝜉(𝑥, 𝑦, 𝑧) with finite 𝑧 are
expected to vanish when 𝑐 → ∞, since the distance between
source and receiver goes to infinity.

To demonstrate the discrepancy between B&M’s solution
and other solutions, a test problem is used. The semi-infinite
solid is characterized by mass density 𝜌 = 2000 kg/m3, shear
modulus 𝜇 = 180MPa, and Poisson’s ratio ] = 0.2. The exci-
tation frequency 𝑓 = 10Hz, and thus the shear wavelength
is 𝜆
2
= 30m. The amplitude of the periodic force is 𝑃 =

1N. The free surface 𝑧-displacement responses at different
radii as the depth of the source changes from 𝑐 = 0 to 𝑐 =

10𝜆
2
are calculated using B&M’s solution and a semi-ana-

lytical solution presented by Maurel et al. in [6]. Both solu-
tions are coded in MATLAB. The results are compared in
Figure 2, where the 𝑧-displacement calculated using the
former solution oscillates and tends to increase when 𝑐

increases, while that obtained using the latter solution decays
quickly with increasing 𝑐.

For further comparison, a numerical solution is com-
puted using the commercial FEM software ABAQUS. As
shown in Figure 3, a 2D axisymmetricmodel of size 2000m ×

2000m is built. The top surface is free; the bottom and side
surfaces are fixed. A periodic force 𝑃 = 1N of frequency 𝑓 =

10Hz is applied along the axis of symmetry in the positive
𝑧-direction. The 𝑃 wave speed is approximately 490m/s. To
avoid reflections from the fixed boundaries, the simulation
time is set to be 4 s. The time-dependent free surface 𝑧-dis-
placement responses at radii 𝑟 = 𝜆

2
and 𝑟 = 10𝜆

2
are plotted

in Figure 4, from which it can be seen that the surface points
begin to oscillate periodically and stably in a short time after
the initial arrival of the wave. Therefore, the discrete inverse
Fourier transform is applied to the time series between 2 s and
4 s to obtain the displacement response at 10Hz.

Figure 5 compares the frequency-domain 𝑧-displacement
responses along the free surface when the source is buried
at different depths computed using these three methods.
In general, the numerical solution agrees with Maurel’s
solution, while B&M’s solution is different. And the difference
increases with source depth. In [4], Banerjee and Mamoon
compared their solution with those obtained by Whittaker
and Christiano [10] and Kobayashi and Nishimura [11] for
the time-harmonic Boussinesq problem; that is, 𝑐 = 0. The
results for 𝑎

0
= 𝜔𝑟/𝑐

2
= 2𝜋𝑟/𝜆

2
between 0 and 2.0 are shown

in Figures 7–10 in [4] and good agreement is displayed. The
position of 𝑎

0
= 2.0 is denoted by a vertical line in Figure 5(a),

from which it can be seen that when 𝑐 = 0, B&M’s solution
agrees reasonably well with other solutions as 𝑎

0
< 2.0 and

deviates from other solutions as 𝑎
0
> 2.0.

4. Discussion

The above comparison indicates that Banerjee andMamoon’s
solution for the elastodynamic half-space problem is incor-
rect. The reason might be that the results of Mindlin’s super-
position method for the elastostatic problem cannot be
simply extended to the dynamic case.
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Figure 2: Comparison of free surface responses at different radii for 𝑐 = 0 to 𝑐 = 10𝜆
2
: (a) B&M’s solution and (b) solution of Maurel et al.

[6].
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Figure 3: The 2D axisymmetric model for numerical simulation.

For the static problem, the coefficients of the six solution
components are determined by imposing the boundary con-
ditions and equilibrium condition [8]. The boundary condi-
tions for the free surface 𝑧 = 0 are

[𝜎
𝑧𝑧
]
𝑧=0

= [𝜎
𝑧𝑟
]
𝑧=0

= 0, (3)
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Figure 4:The time-dependent free surface 𝑧-displacement respons-
es at different radii.

where𝜎
𝑧𝑧
and𝜎
𝑧𝑟
are the normal and shear stresses.The equi-

librium condition is given by

𝑃 = −∫

∞

0

2𝜋𝑟𝜎
𝑧𝑧
d𝑟, (𝑧 > 𝑐) , (4)

where 𝑃 is the static point force applied at (0, 0, +𝑐).
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Figure 5: Comparison of free surface responses computed using different methods and for different source depths: (a) 𝑐 = 0, (b) 𝑐 = 𝜆
2
/4,

(c) 𝑐 = 𝜆
2
/2, and (d) 𝑐 = 𝜆

2
.

For the dynamic case, the boundary conditions still hold.
However, whether these boundary conditions can be satisfied
is not explicitly stated in [4]. Furthermore, the equilibrium
condition given by (4) will be inapplicable to the dynamic
case due to the presence of the inertia force that is associated
with acceleration. To consider the inertia force caused by

time-harmonic excitation, the equilibrium condition can be
rewritten as

𝑃 = −∫

∞

0

2𝜋𝑟𝜎
𝑧𝑧
d𝑟 − ∫

𝑧

0

∫

∞

0

2𝜋𝑟𝜌𝜔
2
𝑢
𝑧
d𝑟 d𝑧,

(𝑧 > 𝑐) ,

(5)

where 𝑢
𝑧
is the displacement in 𝑧-direction.
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The boundary conditions are examined first. The expres-
sions of the stresses are derived. Since these expressions are
lengthy, only the stress components 𝜎

𝑧𝑧
and 𝜎

𝑧𝑟
on the free

surface, that is, 𝑧 = 0, for the first and fifth problems are
presented here:
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where 𝜆 = 2𝜇]/(1 − 2]) is the Lame constant:
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is the distance from the virtue
source point (0, 0, −𝜁) to the point 𝜉(𝑥, 𝑦, 𝑧):
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As shown in (6a)–(9b), it is difficult to analytically determine
where 𝜎

𝑧𝑧
or 𝜎
𝑧𝑟

equals zero on the free surface. To further
simplify the expressions, let the depth of the source point be
zero; that is, 𝑐 = 0. The expressions for the stress components
can be rewritten as follows:
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From (10) and (11), it can be seen that although𝜎
𝑧𝑧
of the other

five problems are zero, the value of 𝜎5
𝑧𝑧

cannot be evaluated
analytically since it involves nonintegrable integrands. As
for 𝜎
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given by (12a)–(14), 𝜎1
𝑧𝑟
, 𝜎2
𝑧𝑟
, and 𝜎
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Whether they can be cancelled out when summing up cannot
be determined analytically either.
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Figure 6: 𝜎
𝑧𝑧
on the free surface for different source depths: (a) 𝑐 = 0 and (b) 𝑐 = 𝜆

2
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Figure 7: 𝜎
𝑧𝑟
on the free surface for different source depths: (a) 𝑐 = 0 and (b) 𝑐 = 𝜆

2
.

With (6a)–(14) in hand, 𝜎
𝑧𝑧

and 𝜎
𝑧𝑟

on the free surface
are computed numerically usingMATLAB.The distributions
of 𝜎
𝑧𝑧

and 𝜎
𝑧𝑟

on the free surface for different source
depths are displayed in Figures 6 and 7, respectively, from
which it can be seen clearly that the normal and shear

stresses are nonzero. Therefore, the boundary conditions
for the free surface given by (3) are not satisfied, which
means that the superposition of the six full-space elasto-
dynamic solutions does not solve the dynamic half-space
problem.
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