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Abstract

A reduction process to construct hidden hierarchies corresponding to the Gelfand–
Dickey ones is outlined in a specific example, not yet treated in the literature.

1 Introduction

In a series of recent papers (see [4, 5] and references therein) integrable hierarchies as-
sociated with second order (“Schrödinger”) or third order linear differential operators
with energy-dependent potentials, usually called hidden hierarchies have been presented
and studied. In the setting of Gelfand Dickey hierarchies (GD) they turn out to be the
“hidden” hierarchies generalizing the well known KdV and Boussinesq hierarchies. Since
these last are the two first GD hierarchies, it would be interesting to consider also some
examples of higher dimension. But to the best of our knowledge no hidden hierarchies
corresponding to Gelfand–Dickey hierarchies of dimension bigger then three has been until
now examined.

On the other hand in [2, 3] it has been shown how to recover from a system of ordinary
partial differential equations (called Central System (CS)) defined on the Sato Grass-
manian, the GD hierarchies (as well the fractional ones) performing suitable reduction
processes. It is therefore natural to wonder if there exist “Generalized Central Systems”
(in what follows called Hidden Central Systems) which give rise to these new hidden hier-
archies by performing the same reduction processes. It can be shown that these systems
actually exist, but in these notes we can neither explain the general theory, which lies be-
hind this results, nor recover the already known hidden hierarchies. The aim of this paper
will be only to show through an example how this method allows to construct new hidden
hierarchies corresponding to Gelfand–Dickey hierarchies of higher dimension, possibly not
yet been considered in the literature. More precisely we will perform the reduction process
leading to the most simple hidden hierarchy associated with the GD4 hierarchy. I want to
thank Marco Pedroni, Boris Konopelchenko, Franco Magri and Gregorio Falqui for many
useful discussions and suggestions on this subject.

2 The Hidden Central System

The aim of this section is to define, in the general setting of the Sato Grassmanian,
a particular set of systems of ordinary differential equations, which through a suitable
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reduction process give rise to hierarchies of soliton equations, which contain among others
those studied in the papers [4, 5].

Let us first briefly define the Sato Grassmanian. Let L be the set of all Laurent series
in a variable z, which are truncated from above, i. e.the space

L :=




N(l)∑
−∞

liz
−i| N(l) ∈ Z


 . (2.1)

(In what follows the coefficients li are thought as depending on an infinite numbers of
variables, later identified with the times of our dynamical systems.)

The space L has a natural decomposition in the direct sum

L = L+ ⊕L− (2.2)

of a positive part L+: the subspace of all polynomials in z, and of a negative one L−: the
subspace of all Laurent series with only negative terms. Let us denote by π± : L :→ L±
the projection associated with the decomposition (2.2).

Definition 2.1. The Sato Grassmanian S is the set of all hyperplanes W in L such that
the restriction π+|W on W of the projection π+ : L → L+ along L− has finite kernel and
cokernel [1]. The big cell of the Sato Grassmanian S is the subset of all points W of S,
for which the restriction of π+ is a bijection. (Therefore W belongs to the big cell if and
only if dim(ker(π+|W)) = dim(coker(π+|W)) = 0). Any points of the Grassmanian, which
does not satisfy this condition is said to belong to the singular set of the Grassmanian.

The singular set can be further decomposed in the Birkhoff strata. It can be shown (and
this will be the subject of a forthcoming paper) that with every Birkhoff stratum one can
associate systems of ordinary differential equations. For example to the big cell, which
can be thought as the “trivial” Birkhoff stratum corresponds the usual central system
studied in [2, 3]. Unfortunately we cannot pursue here this general approach, so let us
simply define a new particular Central System, called in the following the Hidden Central
System (HCS), which actually corresponds to a Birkhoff stratum of codimension one in
the Grassmanian [4].

To this aim let us consider the set N = {0, 2, 3, . . .} and for any element n in N let us
define a Laurent series in L, called current, of the type

H(n) = zn+
∑
i∈N c

Hn
−iz

i, n ∈ N , (2.3)

where N c denotes the complementary set of N in Z i.e., the set {1,−1,−2, . . . }. For
example the first current will be

H(0) = H0
1z + 1 +

∑
i>0

H0
i z−i,

H(2) = z2 + H2
1z +

∑
i>0

H2
i z−i,

H(3) = z3 + H3
1z +

∑
i>0

H3
i z−i.

(2.4)

Notice that contrary to what happens in the case of the currents of the usual central system,
here the current H(1) is missing and moreover each current (even H(0)) has an element
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of the type az. The set of currents (2.3) span a subspace of L which will be denoted by
H+. Then, exactly as in the case of usual central system the following proposition defines
uniquely our Hidden Central System.

Proposition 2.2. The invariance relation
(

∂

∂tj
+ H(j)

)
(H+) ⊂ H+, j ∈ N (2.5)

define uniquely systems of ordinary differential equations called the Hidden Central System.

Proof. We have to show that this relation completely defines the action of the vector
fields ∂

∂tj
on the currents H(n). Since the currents H(k) form a basis of H+, the invariance

property (2.5) entails the existence of coefficients cjk
l independent of z such that

∂H(k)

∂tj
+H(j)H(k) =

j+k∑
l=0

cjk
l H(l). (2.6)

These coefficients are easily determined by comparing the expansion in powers of z of both
sides of equation (2.6). The final result are the following equations defining the hidden
central system:

∂H(k)

∂tj
+ H(j)H(k) = H(j+k) +

k−2∑
l=1

Hj
l H(k−l) +

j−2∑
l=1

Hk
l H(j−l) + Hj

k

+Hk
j + Hj

−1H
(k+1) + Hk−1H

(j+1) + Hk−1H
j
−1H

(2) + Hk−1H
j
1 + Hj

−1H
k
1 .

(2.7)

Observe that in the equations (2.7) the time–derivative are defined (like the currents)
only for j ∈ N , therefore there is no time t1.

3 The general reduction scheme

Although the equations (2.7) looks a little complicate, it can be easily shown that the
general theory developed for the usual CS still holds in this case (and in fact in any
Hidden case). The main output of this fact is that the flows of (2.7) pairwise commute.
This allows us to compose different kinds of reduction processes in order to obtain new
integrable systems.

First of all let us remark that the submanifold defined by H(0) = 1 is left invariant by
the flows of the hierarchy so that in the following we can restrict equation (2.7) to this
submanifold. Furthermore, it is easy to see that for any n in N the submanifold Sn of L
defined by the equations

H(n) = zn and zn(H+) ⊂ H+ (3.1)

is invariant with respect equations (2.7). Therefore we can restrict the HCS on Sn getting
a new hierarchy called the HCSn. Finally it is possible to show that if m is an element of
of N and we denote by x the corresponding time tm, then any other vector field of HCS
induces on the space Qm of all solutions of the m-th a flow so that we can project on Qm

our HCS getting again a different new hierarchy denoted by HKPn. Explicitly that means
that on Qm the coefficients of

{
H(m+1), H(m+2), . . .

}
are polynomials in the coefficients
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of
{
H(2), H(3), . . . , H(m)

}
and their x-derivatives. (This procedure has been called in the

literature the spatialization of the time tm.) We can indeed use the equations (2.7) for
j = m as recursion relations in the form:

H(m+k) =
∂H(k)

∂x
+ H(m)H(k) −

k−2∑
l=1

Hm
l H(k−l) −

m−2∑
l=1

Hk
l H(m−l) − Hm

k + Hk
m

− Hm
−1H

(k+1) − Hk
−1H

(m+1) − Hk
−1H

m
−1H

(2) − Hk
−1H

m
1 − Hm

−1H
k
1 .

(3.2)

As stated before this two reduction processes can be composed to define the Hidden
Gelfand–Dickey hierarchies which we are looking for.

For example if we reduce first HCS on the submanifold HCS2 and then we spatialize
the time t3 = x, by performing the two reduction briefly described above we obtain the
first hidden KdV hierarchies studied in [4] and [5]. On the other hand, if we reduce
the HCS on the submanifold HCS3 and spatialize the time t2 = x we obtain the hidden
Boussinesq equation presented in [4]. Here we want to show that this reduction process
can be applied also in higher dimensions giving rise to possibly new hidden hierarchies.
More precisely let us show how to construct an hidden hierarchy for the GD4, namely the
one corresponding to the restriction to the submanifold S4 and to the spatialization of the
time t3. It should be noticed that in principle the first hidden hierarchy to be considered
for the GD4 hierarchy is that corresponding to the spatialization of the time t2 and not
the one which we are going to consider. But unfortunately this first hierarchy seems to
be more difficult to be handled, for reasons apparently related to the fact that 2 and 4
are not coprime, a problem which arises also in the theory of the fractional hierarchies [3]
and [6], and which deserves further investigations.

Let us now return to the case we want present here. The first step in this direction is
to restrict the HCS to the submanifold S4 i.e., to impose the constraints

H(4) = z4,
∂H(j)

∂t4
= 0. (3.3)

Equations (3.3) allows us to write all the currents in terms of the currents H(2), H(3),
H(5).Indeed we have:

H(4j) = z4j , (3.4)

H(j) = pj
1

(
z4

)
H(5)+pj

2

(
z4

)
H(3)+pj

3

(
z4

)
H(2)+pj

4

(
z4

)
j �= 0 mod 4, (3.5)

where the pj
i

(
z4

)
are polynomials in z4.

We should now spatialize with respect to the time t3; as briefly explained before, this
amounts to take into account equations (3.2). Since we have only three free currents left
(namely H(2), H(3), H(5)) only the equations with k = 1, 2, 3 must be considered. The
first one allows us to write H(5) in terms of the currents H(2) = h = z2 + h−1z +

∑
i<0

hiz
−i

and H(3) = k = z3 + k−1z +
∑
i<0

kiz
−i as

H(5) = hx+hk−h1k−h3−k2−h−1z
4−k−1k−k−1k−k−1h−1h−k−1h1−k1h−1. (3.6)

The last two give the constraints

kx + k2 = H(6) + 2k1h + 2k3 + 2k1z
4 + k2

1h + 2k−1k1,

H
(5)
x + kH(5) = z8 + H5

1h + k1z
4 + k2k + h3h + k5 + H5

3

+ H5−1z
4 + k−1H

(6) + H5−1k−1h + H5−1k1 + k−1H
5
1

(3.7)
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on the coefficients of h and k. H(5) and its coefficients can be computed by using (3.6),
and H(6) is determined by (3.5), which in this explicit case reads

H(6) = −h−1H
(5)−h1k+

(
z4 − h2

)
h−h4. (3.8)

To solve equations (3.7) we must decompose them in the powers of z. Then it is possible
to prove, after some long computations, that h3 and k4 can be written in the terms of h−1

h1, h2 and k−1, k1, k2, k3, while for i ≥ 6 they can be written in the normal form

2ki − hi+1 = · · · ,
2ki + hi+1 = · · · .

(3.9)

So finally all the coefficients of h and k can be written in terms of the coefficients
h−1, h1, h2, h4; k−1, k1, k2, k3, k5. Therefore we finally obtain a hierarchy in 9 fields, in
an infinite numbers of times, whose explicit form, even for the simplest ones, are too com-
plicate to be written here. What is important here, and this can hold as a final remark,
is that the reduction process above described allows us to obtain hidden hierarchies until
now apparently not considered in the literature.
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