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When rolling bearings fail, it is usually difficult to determine the degree of damage. To address this problem, a new fault diagnosis
method was developed to perform feature extraction and intelligent classification of various fault position and damage degree of
rolling bearing signals. Firstly, Multifractal Detrended Fluctuation Analysis (MFDFA) was used to compute five MFDFA features
while five Alpha Stable Distribution (ASD) features were obtained by fitting the distribution to the vibration signals of each status
and calculating the Probability Density Function (PDF). Secondly, Kernel Principle Component Analysis (KPCA) was used to
achieve dimensionality reduction fusion of the combination of original features to gain the Kernel Principle Component Fusion
Features (KPCFFs).Thirdly, the KPCFFs served as the input of Least Squares Support Vectors Machine (LSSVM) based on Particle
Swarm Optimization (PSO) to assess rolling bearings’ fault position and damage severity. Finally, the effectiveness of the method
was validated by bench test data. The results demonstrated that the developed method can achieve intelligent diagnosis of rolling
bearings’ fault position and damage degree and can yield better diagnosis accuracy than single feature method or corresponding
single feature fusion method.

1. Introduction

Rolling bearings are the key components of rotating machin-
ery and their operational status directly influences the perfor-
mance of the whole machine [1]. Critical work environment,
such as high speed, heavy load, and repeated action of contact
stress, makes it easy to deteriorate the operationalstatus of
rolling bearings. The performance degradation of rolling
bearings is a development process from minor faults to
serious faults. In some cases, if rolling bearings appear as early
minor faults, they do not need to be replaced. In order to
effectively guide themaintenance of rolling bearings and save
cost, the research on the defect severity of rolling bearings
has caused wide attention. Bourdon et al. in [2] studied
deeply the correlation between the length of the defect
and Instantaneous Angular Speed (IAS) variations and then
proposed a signal processing tool to reconstruct the IAS

variations caused by the damage of rolling bearings. Finally,
the effectiveness of the proposed tool is verified by different
severities of spall defects. Ali et al. in [3], Zhang et al.
in [4], and Kang et al. in [5], respectively, used empirical
mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD), and wavelet transform (WT) to
extract the fault features, revealed the relationship between
entropy energy and defect severity, and then successfully
distinguished the rolling bearings with different defect types
and severities.Moreover, Rauber et al. in [6] and Sharma et al.
in [7] considered the time-domain and frequency-domain
indexes as the fault features, studied the changes of these
indexes under various defect severities, and also obtained
good results.

In addition to the above methods, the common fault fea-
ture extraction methods of rolling bearings include Wigner
Ville distribution, spectral kurtosis, and envelope analysis.
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However, these methods tend to become unstable when
used in complex signal processing [8–10]. Recently, Multi-
fractal Detrended Fluctuation Analysis (MFDFA) method
and Alpha Stable Distribution (ASD) method have been
investigated to address this limitation. On one hand, there
is a link between the multifractal spectrum parameters and
the ASD parameters. Many groups have studied this connec-
tion and combined the advantages of both methods to make
some achievements in human behavior analysis and signal
modulation recognition [11–13]. On the other hand, MFDFA
is able to characterize the internal dynamics mechanism of
fault signal and to detect slight changes in complex environ-
ment of rotating machinery. The widely used ASD has good
robustness in the modeling of pulse shape in non-Gauss sig-
nals. Therefore, both are very suitable for the fault diagnosis
of rotating machinery, especially the rolling bearings [14–17].
Success combining of both methods may comprehensively
utilize various information of fault features, reduce the
uncertainty of diagnosis, and further improve the precision
of diagnostic model.

The goal of this paper is to make further exploration on
the fault feature extraction of rolling bearings with MFDFA
and ASD and to achieve intelligent classification of different
fault position and damage severity of rolling bearing signals.

2. Basic Theory

2.1. MFDFA and MFDFA Features Extraction

2.1.1. A Brief Introduction of MFDFA. The details about the
theory and procedure of MFDFA were covered in [22, 23]. Its
relationship to the classical multifractal theory is described
below:

(1) If the mean value of 𝑞th order fluctuation function
𝐹𝑞(𝑠) and the equal length 𝑠 have the relationship as
follows:

𝐹𝑞 (𝑠) ∼ 𝑠
𝐻(𝑞)
, (1)

the series is of multifractality, where 𝐻(𝑞) is the
generalized Hurst exponent.

(2) The relationship between𝐻(𝑞) and the scaling expo-
nent 𝜏(𝑞) is as follows:

𝜏 (𝑞) = 𝑞𝐻 (𝑞) − 1. (2)

(3) The relationship between the singularity exponent ℎ𝑞
and the multifractal spectrum 𝑓(ℎ𝑞) is as follows:

ℎ𝑞 = 𝜏
󸀠
(𝑞) = 𝐻 (𝑞) + 𝑞𝐻

󸀠
(𝑞) ,

𝑓 (ℎ𝑞) = 𝑞ℎ𝑞 − 𝜏 (𝑞) = 𝑞 [ℎ𝑞 − 𝐻 (𝑞)] + 1.

(3)

2.1.2.MFDFAFeatures Extraction. Themultifractal spectrum
calculated by MFDFA is a parameter set that can fully
describe the dynamics behavior of multifractal time series.
The failure of rolling bearings will lead to changes in the para-
meters of multifractal spectrum. This paper adopts five

common multifractal spectrum parameters as the MFDFA
features (as shown in Figure 1).

The spectral width Δℎ𝑞 = ℎ𝑞max − ℎ𝑞min reflects the une-
venness of probability distribution of the fractal structure.
The larger theΔℎ𝑞, the greater the unevenness degree and the
stronger the multifractality.

The singularity exponent corresponding to the pole
ℎ𝑞0(𝑓max = 𝑓(ℎ𝑞0), ℎ𝑞0 ∈ [ℎ𝑞min, ℎ𝑞max]) reflects the random-
ness of the vibration signal.The larger the ℎ𝑞0, themore irreg-
ular the vibration signal and the stronger the randomness.

The fractal dimension difference of probability subset
Δ𝑓 = 𝑓(ℎ𝑞max) − 𝑓(ℎ𝑞min) reflects the proportion of small
peak and large peak of the vibration signal. If Δ𝑓 < 0, the
maximum probability subset number is greater than the
minimum probability subset number, and vice versa.

The left endpoint ℎ𝑞min and the right endpoint ℎ𝑞max rep-
resent themaximum andminimum fluctuation of singularity
exponent, respectively.

2.2. ASD and ASD Features Extraction

2.2.1. A Brief Introduction of ASD. ASD was developed from
the generalized central limit theorem. It has more extensive
applicability than the Gaussian distribution. Gaussian distri-
bution, Cauchy distribution, and Levy distribution are three
special cases of it. The theory and procedure of ASD can be
found in document [24, 25].

ASD does not have a closed expression of PDF. Hence
generally characteristic function is used to describe its statis-
tical properties. Its characteristic function can be expressed
as

𝜑 (𝑢) = exp {𝑗𝛿𝑢 − 𝛾 |𝑢|𝛼 [1 + 𝑗𝛽 sgn (𝑢) 𝜔 (𝑢, 𝛼)]} , (4)

where

𝜔 (𝑢, 𝛼) =

{{{

{{{

{

tan(𝜋𝛼
2
) , 𝛼 ̸= 1

(
2

𝜋
) log |𝑢| , 𝛼 = 1,

sgn (𝑢) =
{{{{

{{{{

{

1, 𝑢 > 0

0, 𝑢 = 0

−1, 𝑢 < 0.

(5)

2.2.2. ASD Features Extraction. As (4) shows, the statistical
characteristics of ASD are completely determined by four
parameters (𝛼, 𝛽, 𝛾, 𝛿). In [16], it has been proved that the
use of the four parameters of ASD as the fault features in
fault diagnosis of rolling bearings is operable. In addition, the
author found that if a rolling bearing fault occurs, not only
will the above four parameters change, but also the extremum
of PDF ℎ has a clear variation. Therefore, this paper will use
the following five parameters as ASD features (as shown in
Figure 1).

The characteristic exponent 𝛼 (0 < 𝛼 ≤ 2) reflects the tail
thickness of ASD. The smaller the 𝛼, the thicker the tail, and
the stronger the signal pulse.
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Figure 1: Schematic diagram of MFDFA features and ASD features.

The skewness parameter 𝛽 (−1 ≤ 𝛽 ≤ 1) represents the
skewness of ASD. When 𝛽 = 0, the PDF is symmetric about
the location parameter 𝛿 (−∞ ≤ 𝛿 ≤ ∞).

The scale factor 𝛾 (𝛾 > 0) determines the scattered degree
of ASD.

The extremum of PDF ℎ (ℎ > 0) equals the probability
when transient amplitude is zero. The smaller the ℎ, the
greater the probability density of large amplitude of vibration
signals, and the more scattered the curve.

2.3. Other Theories

2.3.1. Brief Introduction of KPCA, PSO, and LSSVM. Kernel
Principle Component Analysis (KPCA) is the nonlinear gen-
eralization of principle component analysis (PCA). The data
samples of input space are mapped to a high-dimensional
feature space by nonlinear mapping; then the nonlinear
structure information of data samples can be extracted by
PCA. The procedure of KPCA can be found in [26, 27].

Particle Swarm Optimization (PSO) originated in the
study of birds feeding behavior, which is a kind of widely used

evolutionary computation theory. The theory and procedure
of PSO were covered in [28]. The update equation is

𝑋
𝑡+1
= 𝑋
𝑡
+ 𝑉
𝑡+1
,

𝑉
𝑡+1
= 𝑉
𝑡
+ 𝑐1𝑟1 (𝑃

𝑡

𝑖𝑑
− 𝑥
𝑡
) + 𝑐2𝑟2 (𝑃

𝑡

𝑔𝑑
− 𝑥
𝑡
) ,

(6)

where 𝑡 is iteration number. 𝑋𝑡 and 𝑉𝑡 are, respectively, the
position and velocity of particles. 𝑟1 and 𝑟2 are two indepen-
dent random numbers in the range of [0, 1]. 𝑐1 and 𝑐2 are two
positive constants named acceleration coefficients. 𝑃𝑖𝑑 and
𝑃𝑔𝑑 are, respectively, the local best and global best.

The algorithm of Least Squares Support Vectors Machine
(LSSVM) proposed by Suykens and Vandewalle [29] is a
generalization of the support vectors machine (SVM). It is
also a kind of regression prediction algorithm but is more
efficient than SVM.The selection of kernel function is the key
of LSSVM method. The common kernel function includes
radial basis function (RBF), polynomial kernel function, and
sigmoid kernel function. Because RBF requires the least
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Figure 2: Process of optimizing the LSSVM parameters with PSO.

parameters (only the regularization parameter 𝜆 and kernel
parameter 𝜎), we select it to construct the LSSVM.

2.3.2. The Parameter Optimization Method of LSSVM Based
on PSO. Parameters 𝜆 and 𝜎 have a great impact on the clas-
sification accuracy of LSSVM. At present, besides the PSO,
the optimizedmethods of the two parameters mainly include
cross validation method and modeling experience statistics
method [30].

Cross validation method is difficult to determine a rea-
sonable parameter range in advance to a certain extent and
hence will affect the speed and accuracy of fault diagnosis.
Modeling experience statistics method requires the accumu-
lation of long-term experiment. Therefore, this paper uses
PSO to optimize the two parameters of LSSVM. Figure 2 is
the parameter optimization process.

The specific steps are illustrated as follows:

(1) Initialization settings are as follows: set population
size, iteration number, initial position and velocity,
and so forth.

(2) Compute the particle fitness value: using LSSVM
corresponding to each particle vector to predict the
training samples. The prediction error value of the
current position of the particle is used as the fitness
value.

(3) Find the optimal particle location: comparing current
fitness value with the best fitness value of the particle
and updating the optimal position of the particle
based on the fitness value.

(4) Find the optimal population location: comparing the
best fitness value of the particle with the best fitness
value of the population and updating the optimal
position of the population based on the fitness value.

KPCFFs KPCFFs

KPCA KPCA

Training samples

Feature extraction of 
MFDFA and ASD

Test samples 

Feature extraction of 
MFDFA and ASD

Parameter optimization of 
LSSVM based on PSO

of LSSVM 

PSO-LSSVM model

Optimum parameters (𝜆, 𝛿)

Vibration signals of each status (S1, S2, S3, . . . , Sn)

· · · SnS3S2S1

Figure 3: The diagnosis model based on feature fusion of MFDFA
and ASD.

(5) Update the position and velocity of particles: iterative
calculation according to formula (6).

(6) Check the end condition; if not met, return to step (2)
to the further iterative calculation until meeting the
end conditions, and then output the results.

3. A Fault Diagnosis Method for
Rolling Bearings Based on Feature
Fusion of MFDFA and ASD

MFDFA features and ASD features contain the fault infor-
mation of rolling bearings in different status space. Fuse the
two kinds of features and heterogeneous information can
complement each other. More abundant information than
single signal feature can be obtained.

Combining the two features in a serial manner is the sim-
plest feature fusion method, but the high dimensionality and
redundancy of combined features easily result in the decline
of classifier’s recognition ability. KPCA has a strong capacity
of dimension reduction fusion and redundant elimination.
Use KPCA on the combined features; the KPCFFs which are
beneficial for fault classification can be easily obtained.

Finally, PSO-LSSVM was applied to the KPCFFs to
identify the status of rolling bearings. The diagnosis model
constructed in this paper is shown in Figure 3.

The specific process is described as follows:

(1) Obtain 𝑛 status of vibration signals of rolling bearings,
including normal, inner-race faults (different damage
degree), outer-race faults (different damage degree),
and ball faults (different damage degree), labeled as
𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑛, respectively.
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Table 1: The detailed descriptions of seven vibration signals.

Data label Operational status Fault size (mm) Speed (r/min) Sampling frequency (kHZ)
𝑆1 Normal 0 1797 12
𝑆2 Slight inner-race faults 0.18 1797 12
𝑆3 Serious inner-race faults 0.54 1797 12
𝑆4 Slight outer-race faults 0.18 1797 12
𝑆5 Serious outer-race faults 0.54 1797 12
𝑆6 Slight ball faults 0.18 1797 12
𝑆7 Serious ball faults 0.54 1797 12

(a) Experimental setup

Induction motor

Accelerometer sensor

Dynamometer

Drive end

Drive end bearing encoder coupling
Torque transducer/

Fan end

(b) Schematic diagram of the experimental setup

Figure 4: Experimental system.

(2) Divide the vibration signal of each status into training
samples and test samples.

(3) ExtractMFDFA features and ASD features of training
samples; combine the ten features in a serial manner
to get a combined feature set.

(4) Use KPCA on the combined features to obtain the
KPCFFs.

(5) Consider the fusion feature as input samples; opti-
mize two parameters of LSSVM by PSO. Obtain the
optimal parameters 𝜆 and 𝜎; then establish the PSO-
LSSVMmodel.

(6) Take the same processing on the test samples, put
the KPCFFs of test samples into the PSO-LSSVM
model which was well trained, and determine the
working condition and fault type of the roller bearings
according to the output of the classifier.

4. Applications

4.1. Data Source. The data of rolling bearing is obtained from
the Bearing Data Center of Case Western Reserve University
(CWRU) [31]. The data is acquired by the bench test after
setting some artificial faults. The type of test bearing is deep
groove ball bearing (SKF 6205-2RS JEM). Figure 4 shows the
experimental system.

It can be seen from Figure 4 that the rolling bearing is
installed in the mechanical system driven by a motor; the
vibration acceleration sensor is vertically fixed on the shell at

the top of drive end bearing; the types of collected vibration
signal of rolling bearing include normal, inner-race faults,
outer-race faults, and the ball faults. In this paper, seven kinds
of status data will be selected (sample length of each status is
120000) to verify the effectiveness of the proposed method.
The detailed descriptions of seven vibration signals are shown
in Table 1.

The waveforms of seven vibration signals are shown in
Figure 5. The figure shows that only from the time-domain
signal is it very difficult to distinguish the seven statuses of
the bearing.

4.2. MFDFA Features Extraction. Dividing evenly each status
data item into twenty segments, the length of each segment is
6000. Ten segments were randomly selected (as the training
samples) from the twenty segments to perform MFDFA
analysis. After averaging, the multifractal spectrums shown
in Figure 6 can be obtained. Five MFDFA features were
extracted from each signal in all seven kinds of signals, as
shown in Table 2 (due to space limitations, only the top five
sets of data were listed here).

It can be seen from Figure 6 that the size, shape, and
location of multifractal spectrums of the vibration signal in
each status are different. Also obvious difference exists in five
parameters of multifractal spectrums (Table 2). It shows that
the seven signals have different intrinsic dynamicmechanism
and multifractal properties.

Table 2 shows, under different statuses, the values of five
MFDFA features of each status are not identical.The values of
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Figure 5: The waveforms of seven vibration signals (ordinate unit:
m/s2).

ℎ𝑞0 or ℎ𝑞min are not only able to distinguish whether there is
a fault in the rolling bearing (normal≫ failure), but also can
describe the fault degree under the same fault position (slight
faults > serious faults).

The values of ℎ𝑞max are not only able to distinguish
whether there is a fault in the rolling bearing (normal ≫
failure), but also can describe the fault degree under the same
fault position (slight faults < serious faults).

4.3. ASD Features Extraction. We estimated the parameters
of ASDby using the empirical characteristic functionmethod
[32] and calculated the PDFs of the above ten segments data.
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Figure 6: The multifractal spectrum.

0 0.5 1 1.5
0

1

2

3

4

5

6

Normal

Serious ball faults

Slight outer-race faults
Slight inner-
race faults 

Slight ball faults 

Serious outer-
race faults Serious inner-

race faults

x

−1.5 −1 −0.5

p
(x
)
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After averaging, the PDFs of each status as shown in Figure 7
can be obtained. We extracted five ASD features from seven
kinds of signals, such as shown in Table 3 (similarly, only the
top five sets of data were listed here).

It can be seen from Figure 7 that the size, shape, and
location of PDFs of the vibration signal in each status
are different, so is the obvious difference in the extremum
of PDFs ℎ. It shows that the seven signals have different
statistical properties.

Table 3 shows, under different statuses, that the values of
the five ASD features of each status are not identical. The
normal signal, 𝛼 = 2, can be considered to be subject to
Gaussian normal distribution; the fault signals, 𝛼 < 2, are
non-Gaussian signals.

The values of 𝛼 are not only able to distinguish whether
there is a fault in the rolling bearing (normal > ball faults >
inner-race faults > outer-race faults), but also can describe
the fault degree under the same fault position (slight faults >
serious faults ).

The values of ℎ are not only able to distinguish whether
there is a fault in the rolling bearing (normal ≫ failure),



Shock and Vibration 7

Table 2: The MFDFA features of seven vibration signals.

Operational status ℎ
𝑞0

ℎ
𝑞min ℎ

𝑞max Δℎ
𝑞

Δ𝑓

Normal (𝑆1)

1.4725 1.2808 1.8472 0.5664 0.3800
1.4722 1.2654 1.8168 0.5514 0.2748
1.4877 1.2772 1.8705 0.5933 0.3545
1.4799 1.2853 1.8272 0.5419 0.2783
1.4800 1.2574 1.8204 0.5629 0.2135

Slight inner-race faults (𝑆2)

0.6210 0.3895 1.0487 0.6592 0.5408
0.6206 0.3845 1.0313 0.6468 0.5008
0.6211 0.3975 1.0288 0.63145 0.5117
0.6258 0.3873 1.0008 0.6136 0.3667
0.6169 0.3924 1.0073 0.6149 0.4744

Serious inner-race faults (𝑆3)

0.4979 0.1277 1.1092 0.9815 0.3466
0.5089 0.1648 1.1146 0.9498 0.4304
0.4974 0.1403 1.1050 0.9648 0.3707
0.5001 0.1439 1.0918 0.9479 0.3793
0.5020 0.1406 1.1218 0.9812 0.3815

Slight outer-race faults (𝑆4)

0.7213 0.4941 1.0430 0.5488 0.2776
0.7266 0.5327 1.0283 0.4956 0.3233
0.7145 0.5035 1.0283 0.5249 0.3175
0.7342 0.5209 1.0896 0.5688 0.4295
0.7380 0.5308 1.0284 0.4976 0.2593

Serious outer-race faults (𝑆5)

0.6497 0.2285 1.2242 0.9957 0.3342
0.6627 0.2446 1.1853 0.9407 0.2665
0.6344 0.2275 1.1913 0.9638 0.3470
0.6567 0.2769 1.2264 0.9494 0.4663
0.6442 0.2652 1.1654 0.9002 0.3383

Slight ball faults (𝑆6)

0.8228 0.5595 1.1391 0.5796 0.1190
0.8236 0.5575 1.1098 0.5523 0.0146
0.8184 0.5595 1.1428 0.5833 0.1309
0.8178 0.5507 1.0857 0.5350 −0.0412
0.8225 0.5657 1.1536 0.5879 0.1741

Serious ball faults (𝑆7)

0.6992 0.2357 1.2144 0.9787 0.0401
0.6995 0.2265 1.2210 0.9945 0.0243
0.6966 0.2496 1.2081 0.9584 0.0908
0.6901 0.2328 1.2155 0.9827 0.0868
0.6978 0.2295 1.2201 0.9906 0.0592

but also can describe the fault degree under the same fault
position (slight faults > serious faults ).

Except for the normal signal, the value of 𝛽 of all the rest
signals is close to zero, indicating that not only is the PDF of
normal signal symmetric, but also all the PDFs of fault signals
are almost symmetric.This is because of the actual symmetric
structure of the bearing.

4.4. Feature Fusion. By combining the MFDFA features and
ASD features of the training samples in a serial manner, a
feature matrix with size of 70 × 10 can be obtained. 70 lines
represent all samples of seven statuses signals; 10 columns
represent the feature vector of each sample. We used KPCA

to fuse the combined features and selected kernel principal
component according to the cumulative contribution rate
higher than or equal to 95%; a KPCFF matrix with size of
70 × 5 can be obtained, as shown in Table 4 (similarly, only
the top five sets of fusion feature were listed here).

If we choose the first and second KPCFFs to be abscissa
and ordinate, respectively, the result of classification of seven
vibration signals can be obtained as shown in Figure 8. It
can be seen from Figure 8 that the training samples are well
classified only relying on the first two KPCFFs, and the seven
vibration signals dispersed in seven distinct areas, which
further demonstrates the correctness and effectiveness of the
proposed method in this paper.
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Table 3: The ASD features of seven vibration signals.

Operational status 𝛼 𝛽 𝛾 𝛿 ℎ

Normal (𝑆1)

2.0000 −1.0000 0.0530 0.0120 5.4785
2.0000 −1.0000 0.0513 0.0104 5.5043
2.0000 −1.0000 0.0517 0.0113 5.3190
2.0000 −1.0000 0.0527 0.0119 5.4111
2.0000 −1.0000 0.0528 0.0097 5.4430

Slight inner-race faults (𝑆2)

1.6510 0.0351 0.1676 0.0147 1.7729
1.6462 0.0431 0.1667 0.0149 1.7670
1.6439 0.0443 0.1663 0.0152 1.7762
1.6412 0.0478 0.1659 0.0154 1.7890
1.6482 0.0368 0.1681 0.0146 1.8081

Serious inner-race faults (𝑆3)

1.4628 −0.0055 0.2322 0.0113 1.1271
1.4615 −0.0388 0.2323 0.0057 1.2140
1.4572 −0.0244 0.2306 0.0081 1.0944
1.4638 −0.0169 0.2342 0.0098 1.1112
1.4571 −0.0134 0.2288 0.0102 1.0653

Slight outer-race faults (𝑆4)

1.1366 0.0144 0.1991 0.0319 2.3344
1.1338 0.0024 0.1974 0.0215 2.3226
1.1315 0.0232 0.1977 0.0384 2.3404
1.1277 0.0210 0.1962 0.0371 2.2661
1.1432 0.0368 0.1881 0.0146 2.2963

Serious outer-race faults (𝑆5)

1.0429 0.0300 0.1293 0.0586 1.4839
1.0406 0.0427 0.1287 0.0864 1.4733
1.0482 0.0313 0.1292 0.0544 1.4918
1.0447 0.0265 0.1299 0.0498 1.4810
1.0446 0.0394 0.1296 0.0735 1.4785

Slight ball faults (𝑆6)

1.9577 0.3325 0.0784 0.0225 3.8988
1.9572 0.2264 0.0788 0.0209 3.8121
1.9528 0.3042 0.0785 0.0197 3.8065
1.9452 0.3021 0.0783 0.0182 3.9182
1.9612 0.3226 0.0788 0.0217 3.8847

Serious ball faults (𝑆7)

1.7828 0.0582 1.3278 0.0125 3.4243
1.7746 0.0608 1.3192 0.0034 3.4013
1.7843 0.0667 1.3177 −0.0043 3.4117
1.7920 0.0674 1.3194 −0.0094 3.4339
1.7896 0.0644 1.3081 −0.0113 3.4218

4.5. Intelligent Diagnosis. We then put the KPCFFs obtained
in Section 4.4 into the PSO-LSSVMclassifier for training.The
initial parameters of PSO are as follows: population size is 40;
the maximum iteration is 200; the initial position and initial
velocity are generated randomly; acceleration coefficients 𝑐1
and 𝑐2 are both 2; optimal ranges of 𝜆 and 𝜎 are 0.1∼100 and
0.01∼1000, respectively. After the iteration, we obtained the
optimal parameters for LSSVM: 𝜆 = 0.1 and 𝜎 = 0.67895.

At the same time, we used the remaining ten segments
data as the test samples to extract the MFDFA features and
ASD features, then got the five-dimensional KPCFFs through
KPCA, and finally put it into the PSO-LSSVM model which
was well trained to classify. In order to reduce the amount
of calculation, we chose the minimum output coding (MOC)
as the coding method. For seven different statuses, adopting

three classifiers can meet the requirement of diagnosis. The
specific coding is as follows:

𝑐𝑏 =
[
[

[

−1 −1 −1 −1 1 1 1

−1 −1 1 1 −1 −1 1

−1 1 −1 1 −1 1 −1

]
]

]

. (7)

In the formula above, column 1 to column 7, respectively,
correspond to seven statuses of rolling bearing (S1∼S7). In
order to clearly show the advantages of this feature fusion
method in the fault diagnosis of rolling bearing, we also feed
the original MFDFA features, original ASD features, MFDFA
features with KPCA, and ASD features with KPCA into the
same PSO-LSSVMmodel for the comparison of classification
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Table 4: Kernel Principle Component Fusion Features.

Operational status The first KPCFF The second KPCFF The third KPCFF The fourth KPCFF The fifth KPCFF

Normal (𝑆1)

4.9573 −1.0961 −1.2839 0.9007 −0.1812
5.0354 −0.8159 −1.0046 0.5238 −0.0966
4.9983 −0.9952 −1.3666 0.7806 −0.2376
5.0838 −0.8831 −1.0041 0.5002 −0.0809
5.0996 −0.6343 −0.9436 0.2673 −0.0982

Slight inner-race faults (𝑆2)

−1.1187 −0.7731 0.2512 1.6153 −0.2885
−1.1032 −0.6949 0.3918 1.4490 −0.2378
−1.0877 −0.7556 0.4253 1.5020 −0.1996
−0.9460 −0.4249 0.7763 0.8910 −0.1002
−1.0461 −0.6578 0.5738 1.3861 −0.1424

Serious inner-race faults (𝑆3)

−1.9727 0.2010 −0.7469 0.5437 −0.6306
−1.9041 0.0533 −0.8268 1.1150 −0.5201
−1.9308 0.1812 −0.7419 0.7634 −0.5559
−1.9250 0.1193 −0.6717 0.7631 −0.5341
−1.9555 0.1244 −0.8327 0.7224 −0.6227

Slight outer-race faults (𝑆4)

−0.7860 −1.1351 0.6127 −0.3092 1.0381
−0.6851 −1.1030 0.7347 0.2631 1.2416
−0.8711 −1.4199 0.6346 −0.3111 1.0466
−0.9288 −1.6412 0.1951 0.1508 0.9099
−0.5976 −1.7833 0.9016 0.1909 1.2657

Serious outer-race faults (𝑆5)

−1.9878 −1.4426 −1.2981 −1.3160 −0.2770
−2.0303 −2.0079 −1.0134 −2.3885 −0.2986
−2.0095 −1.4012 −1.1461 −1.0860 −0.1815
−1.9680 −1.6459 −1.3654 −0.4349 −0.1411
−2.0229 −1.9337 −0.9398 −1.6368 −0.1383

Slight ball faults (𝑆6)

0.6667 0.2965 1.7823 −0.5872 −0.7083
0.8826 0.5191 1.9752 −0.9107 −0.5503
0.6924 0.3294 1.7192 −0.4468 −0.6831
0.8585 0.7214 2.2533 −1.0845 −0.4724
0.6424 0.1901 1.6329 −0.3335 −0.7461

Serious ball faults (𝑆7)

−0.3411 2.8973 −0.5789 −1.1231 0.2425
−0.2971 3.1559 −0.5847 −0.9404 0.2741
−0.2901 3.1244 −0.5308 −0.3762 0.3756
−0.2722 3.3138 −0.5837 −0.2720 0.3358
−0.2391 3.4092 −0.5689 −0.3363 0.3301

results. After decoding, the diagnosis results with various
methods are shown in Table 5.

It can be seen from Table 5, under the condition of
training samples and test samples which are both 70, that five
methods based on MFDFA features or ASD features can
effectively distinguish the status of the test samples. This
once again shows that the vibration signals of rolling bearing
have multifractal properties and obey the Alpha Stable Dis-
tribution and that their parameters can be used as the fault
features to describe the variation trend of operational status
and to distinguish different fault position and fault degree of
rolling bearing.

Regarding the generalization ability, the feature fusion
method based onMFDFA features and ASD features has only

one mistake (a sample originally belongs to S4 but was clas-
sified as another category); the diagnostic accuracy is 98.6%,
significantly higher than the single feature method and the
corresponding single feature fusion method. It demonstrated
that, comparedwith the single featuremethod, KPCFFsmake
full use of the redundant and complementary information
of heterogeneous source and the nonlinear relation between
the original features, gain more comprehensive information
in the operational status of rolling bearing, enhance the
recognition ability of the classifier, and hence improve the
accuracy of the diagnosis.

4.6. Discussion and Comparison with Some Previous Works.
To further show the effectiveness of the proposed method,
a comparison between the present work and the works



10 Shock and Vibration

430 1 2 5 6−2 −1−3

The first kernel principle component

−3

−2

−1

0

1

2

3

4

Th
e s

ec
on

d 
ke

rn
el

 p
rin

ci
pl

e c
om

po
ne

nt

Normal
Slight inner-race faults
Serious inner-race faults
Slight outer-race faults

Serious outer-race faults
Slight ball faults 
Serious ball faults

Figure 8: The result of classification of seven vibration signals.

published in the recent two years that use the same real
data from CWRU is detailed in Table 6. Rauber et al. in [6]
used various feature models which are based on the time-
domain and frequency-domain parameters, complex enve-
lope spectrum, and wavelet packet analysis, utilized SVM,
the k-nearest neighbor classifier (k-NN), and multilayer
perceptron (MLP) for classification of seven failures (normal,
two different severities of ball faults, two different severities
of inner-race faults, and two different severities of outer-
race faults), and reported an accuracy of 98.13%, 99.96%, and
99.97%, respectively. Saidi et al. in [18] used the higher order
statistics analysis (HOSA) features with feature reduction
using PCA and classified the rolling bearing faults into four
classes (normal, ball faults, inner-race faults, and outer-race
faults) with an accuracy of 96.98%. Zhu et al. in [19] used
multiscale entropy (MSE) and hierarchical entropy (HE) and
classified ten faults into normal, two different severities of ball
faults, four different severities of inner-race faults, and three
different severities of outer-race faults, using the PSO-SVM
method with an accuracy of 97.75% and 100%, respectively.

All in all, evaluation of ourmethod versus previous works
given in Table 6 shows that our experiment demonstrates
the fusion features of MFDFA and ASD, including sufficient
fault information of the vibration signals, and suggests that
fusion features have good potential for improving diagnostic
accuracy of rolling bearings.The fusion feature with the PSO-
LSSVMclassifier produces a good classification performance:
the average diagnostic result is 98.6% in small samples, and
the results could be improved if we adopt more data. The
method proposed in this paper is promising for a more
excellent diagnosis of rolling bearings.

Table 5: The diagnosis results comparison of five methods.

Feature type Diagnostic accuracy (%)
𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 Average

MFDFA features 100 80 100 90 70 90 70 85.7
ASD features 80 100 100 80 90 70 100 88.6
MFDFA + KPCA 100 100 100 90 70 100 90 92.9
ASD + KPCA 90 100 100 90 100 80 100 92.9
MFDFA + ASD +
KPCA 100 100 100 90 100 100 100 98.6

5. Conclusions and Future Works

When rolling bearings fail, the weak fault features are usually
buried and make it fairly difficult to determine the damage
degree. To solve the problem, this paper introduces a new
fault diagnosis method to achieve feature extraction and
intelligent classification of different fault position and damage
degree of rolling bearing signals based on feature fusion of
MFDFA and ASD. Based on the analysis of different oper-
ational status data, the following conclusions can be drawn:

(1) By performing MFDFA on the vibration signals of
rolling bearing in seven different statuses, the results
showed that the values of the fiveMFDFA features are
different from each other and hence can be used as the
fault features of rolling bearings.

(2) By fitting ASD to the vibration signals of rolling
bearing in seven different statuses and calculating the
PDFs, the results showed that the values of the five
ASD features are different from each other and can be
used as the fault features of rolling bearings too.

(3) By fusing the MFDFA features and ASD features
by KPCA, heterogeneous information can comple-
ment each other. More abundant information can
be obtained while recognition ability of the classifier
is improved. The feature fusion method based on
MFDFA and ASD can not only achieve the intelligent
diagnosis of rolling bearings’ fault position and dam-
age degree, but also have better diagnosis accuracy
than single feature method and the corresponding
single feature fusion method.

There are two possible directions for future works. First,
this work has classified the faults of rolling bearings into
seven classes under the condition of small samples and
should complement more data sets (more fault signals, more
training and test samples) to further test its capacity for
multiclassification. Secondly, the bearings data from CWRU
is relatively clean, and this approach should be applied to
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Table 6: Comparison of this work with some previous researches using CWRU bearings data set.

Reference Features Classifier Defects considered Classified
states Accuracy (%)

[4]

Permutation entropy of
intrinsic mode functions
(IMFs) decomposed by
ensemble empirical mode
decomposition (EEMD)

SVM + parameter
optimized by intercluster
distance (ICD)

N, B (0.18, 0.36, 0.54,
and 0.72mm), IR (0.18,
0.36, 0.54, and 0.72mm),
and OR (0.18, 0.36, and
0.54mm)

2, 3, 4, 11 97.91–100

[6]

Statistical features from the
time and frequency domains,
wavelet packet energy, and
complex envelope magnitudes

SVM, the 𝑘-nearest
neighbor classifier (𝑘-NN),
and multilayer perceptron
(MLP)

N, B (0.18, 0.54mm), IR
(0.18, 0.54mm), and OR
(0.18, 0.54mm)

7 98.13–99.97

[7]

Skewness, kurtosis, standard
deviation, root mean square
(RMS), crest factor, and five
entropies

SVM and artificial neural
network (ANN) with
different attribute filters

N, B (0.18, 0.54mm), IR
(0.18, 0.54mm), and OR
(0.18, 0.54mm)

7 100

[18]

Features derived from higher
order statistics analysis
(HOSA) with feature
reduction using PCA

SVM + one against all
(OAA)

N, B (0.18, 0.36, 0.54,
and 0.72mm), IR (0.18,
0.36, 0.54, and 0.72mm),
and OR (0.18, 0.36, and
0.54mm)

4 96.98

[19] Multiscale entropy (MSE),
hierarchical entropy (HE)

SVM + parameter
optimized by PSO

N, B (0.18, 0.72mm), IR
(0.18, 0.36, 0.54, and
0.72mm), and OR (0.18,
0.36, and 0.54mm)

10 MSE + SVM: 97.75
HE + SVM: 100

[20]

Statistical features from the
time and frequency domains,
the energy of empirical mode
decomposition (EMD)

Statistical locally linear
embedding (S-LLE) +
𝑘-NN, classification and
regression trees (CART),
and RBF-SVM

N, B (0.54mm), IR
(0.54mm), and OR
(0.54mm)

4 97.26

[21]
Features extracted from
wavelet kurtogram and
quefrency cepstrum

Swarm Rapid Centroid
Estimation (SRCE) +
Hidden Markov Model
(HMM)

N, B (0.54mm), IR
(0.54mm), and OR
(0.54mm located at
three different positions)

Drive end: 5
Fan end: 5

Drive end: 95.08
Fan end: 100

Present work
Features derived from
MFDFA and ASD with feature
fusion using KPCA

LSSVM + parameter
optimized by PSO

N, B (0.18, 0.54mm), IR
(0.18, 0.54mm), and OR
(0.18, 0.54mm)

7 98.6

N denotes normal, B denotes ball faults, IR denotes inner-race faults, and OR denotes outer-race faults.

detect the various fault signals of rolling bearings in actual
projects which contain a lot of noise.
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