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The understanding of the target radar cross section (RCS) is significant for target identification and for radar designing and
optimization. In this paper, a numerical algorithm for calculating target RCS is presented which is based on Legendre wavelet
model-based parameter estimation (LW-MBPE). The Padé rational function fitting model applied for MBPE in the frequency
domain is enhanced to include spatial dependence on the numerator and denominator coefficients. This allows the function to
interpolate target RCS in both the frequency and spatial domains simultaneously.The combination of Legendre wavelets guarantees
the convergence of the algorithm. The method is convergent by increasing the sampling frequency and spatial points. Numerical
results are provided to demonstrate the validity and applicability of the new technique.

1. Introduction

In modern electronic warfare, stealth technology is the main
technique used to reduce radar detection probability and
enhance the survivability of aircrafts [1, 2]. RCS reduction is
the key factor to measure stealth performance of the aircraft.
RCS reduction techniques of aircraft generally fall into one
of four categories [3, 4]: materials selection and coating,
target shaping, passive cancellation, and active cancellation.
Active cancellation stealth is a significant research direction
in the field of stealth. The creation of a large RCS database
of target is the key process in active cancellation [5–7].
However, although the parallel technology of computer is
rapidly developing, it is still an arduous task to create a large
RCS database containing both frequency and spatial domain
information. In recent years, the model-based parameter
estimation (MBPE) [8–10] is combined with the method
of moments (MoM) to minimize the computational cost.
This method is widely used in solving the calculation of
target RCS problems [11, 12]. Since it includes the frequency
and spatial domain information, it is also used to store and

predict target RCS and create RCS database. A lot of articles
describe in detail the theory behind the MBPE interpolation
process [13, 14]. In [12], the modeling, sampling, and solution
of MBPE for both frequency and domain problems are
described.

Wavelet analysis is a new and an emerging area in engi-
neering and mathematical research [15]. Wavelets are used in
optimal control, system analysis, signal analysis, numerical
analysis, and fast algorithms for easy implementation. Func-
tions are decomposed into summation of “basic functions,”
and every “basic function” is achieved by compression and
translation of amother wavelet functionwith good properties
of smoothness and locality, which makes people analyze the
properties of locality and integer in the process of expressing
functions [16, 17].

In this work, a numerical method based on the Leg-
endre wavelets MBPE is proposed to compute target RCS
approximately. A generalized Padé rational function fitting
model that can be used to interpolate both frequency and
spatial characteristics of RCS simultaneously is enhanced.
Convergence analysis of the Legendre wavelets MBPE is
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investigated. Numerical results demonstrate the efficiency of
this method in solving target RCS.

2. Legendre Wavelets

The Legendre wavelets 𝜓
𝑛𝑚

(𝑥) are expressed as follows [18,
19]:

𝜓
𝑛𝑚

(𝑥)

=

{{

{{

{

(
2𝑚 + 1

2
)

1/2
2𝑘/2𝑃
𝑚

(2𝑘𝑥 − 𝑛) ,
𝑛 − 1
2𝑘

≤ 𝑥 <
𝑛 + 1
2𝑘

,

0, otherwise,

(1)

where 𝑘 = 1, 2, . . . , 𝑛 = 2𝑛 − 1, 𝑛 = 1, 2, . . . , 2𝑘−1, 𝑚 =

0, 1, . . . , 𝑀 − 1 is the degree of the Legendre polynomials,
𝑀 is a fixed positive integer, and 𝑃

𝑚
(𝑥) are the Legendre

polynomials of degree 𝑚.
For any function 𝑓(𝑥) ∈ 𝐿

2
[0, 1) may be given by the

Legendre wavelets as

𝑓 (𝑥) =

∞

∑

𝑛=1

∞

∑

𝑚=0
𝑐
𝑛𝑚

𝜓
𝑛𝑚

(𝑥) , (2)

where 𝑐
𝑛𝑚

= ⟨𝑓(𝑥), 𝜓
𝑛𝑚

(𝑥)⟩ and ⟨, ⟩ is the inner product of
𝑓(𝑥) and 𝜓

𝑛𝑚
(𝑥).

If the infinite series in (2) is truncated, then we have

𝑓 (𝑥) ≈

2𝑘−1

∑

𝑛=1

𝑀−1
∑

𝑚=0
𝑐
𝑛𝑚

𝜓
𝑛𝑚

(𝑥) = 𝐶
𝑇

Ψ (𝑥) , (3)

where 𝐶 and Ψ(𝑥) are �̂� = 2𝑘−1𝑀 column vectors:

𝐶 = [𝑐10, 𝑐11, . . . , 𝑐1𝑀−1, 𝑐20, 𝑐21, . . . , 𝑐2𝑀−1, . . . , 𝑐2𝑘−10,

𝑐2𝑘−11, . . . , 𝑐2𝑘−1𝑀−1]
𝑇

,

Ψ (𝑥) = [𝜓10, 𝜓11, . . . , 𝜓1𝑀−1, 𝜓20, 𝜓21, . . . , 𝜓2𝑀−1, . . . ,

𝜓2𝑘−10, 𝜓2𝑘−11, . . . , 𝜓2𝑘−1𝑀−1]
𝑇

.

(4)

For simplicity, we write (3) as

𝑓 (𝑥) ≈

�̂�

∑

𝑖=1
𝑐
𝑖
𝜓
𝑖
(𝑥) = 𝐶

𝑇

Ψ (𝑥) , (5)

where 𝑐
𝑖

= 𝑐
𝑛𝑚
, 𝜓
𝑖

= 𝜓
𝑛𝑚
. The index 𝑖 is determined by the

relation 𝑖 = 𝑀(𝑛 −1) + 𝑚 +1.Therefore, we can also write the
vectors

𝐶 = [𝑐1, 𝑐2, . . . , 𝑐𝑀, 𝑐
𝑀+1, . . . , 𝑐2𝑀, . . . , 𝑐

𝑀(2𝑘−1−1)+1, . . . ,

𝑐
�̂�

]
𝑇

,

Ψ (𝑥) = [𝜓1, 𝜓2, . . . , 𝜓𝑀, 𝜓
𝑀+1, . . . , 𝜓2𝑀, . . . ,

𝜓
𝑀(2𝑘−1−1)+1, . . . , 𝜓�̂�]

𝑇

.

(6)

Similarly, for the two variables, function 𝑢(𝑥, 𝑦) defined over
[0, 1)×[0, 1)may be expressed as the Legendre wavelets basis:

𝑢 (𝑥, 𝑦) ≈

�̂�

∑

𝑖=1

�̂�

∑

𝑗=1
𝑢
𝑖𝑗
𝜓
𝑖
(𝑥) 𝜓
𝑗
(𝑦) = Ψ

𝑇

(𝑥) 𝑈Ψ (𝑦) , (7)

where 𝑈 = [𝑢
𝑖𝑗
] and 𝑢

𝑖𝑗
= ⟨𝜓
𝑖
(𝑥), ⟨𝑢(𝑥, 𝑦), 𝜓

𝑗
(𝑦)⟩⟩.

3. Legendre Wavelets Model-Based Parameter
Estimation Method

The Padé rational function in the form of a fractional
polynomial function of the 𝑛 order numerator and the𝑑 order
denominator employed commonly in MBPE is given by

𝐹 (𝑠) =
𝑁
𝑛

(𝑠)

𝐷
𝑑

(𝑠)

=
𝑁0 + 𝑁1𝑠 + 𝑁2𝑠

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑛
𝑠
𝑛

𝐷0 + 𝐷1𝑠 + 𝐷2𝑠
2 + ⋅ ⋅ ⋅ + 𝐷

𝑑−1𝑠
𝑑−1 + 𝑠𝑑

,

(8)

where 𝐹(𝑠) represents a frequency domain fitting model
appropriate for the set of complex data and 𝑠 represents the
complex frequency 𝑗𝜔 = 𝑗2𝜋𝑓, where 𝑓 is the frequency
of interest. The function has 𝑛 + 𝑑 + 1 unknown complex
coefficients. To obtain accurate spatial resolution, the number
of separate interpolations required and the overall number
of resulting interpolation coefficients become very large.
Therefore, we may write (8) in the more general form

𝐹 (𝜃, 𝑠) =
𝑁 (𝜃, 𝑠)

𝐷 (𝜃, 𝑠)

=
𝑁0 (𝜃) + 𝑁1 (𝜃) 𝑠 + 𝑁2 (𝜃) 𝑠

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑛
(𝜃) 𝑠
𝑛

𝐷0 (𝜃) + 𝐷1 (𝜃) 𝑠 + 𝐷2 (𝜃) 𝑠2 + ⋅ ⋅ ⋅ + 𝐷
𝑑−1 (𝜃) 𝑠𝑑−1 + 𝑠𝑑

,

(9)

where

𝑁0 (𝜃) = 𝑁
0
0 + 𝑁

1
0𝜃 + 𝑁

2
0𝜃

2
+ ⋅ ⋅ ⋅ + 𝑁

̂
𝑘

0𝜃
̂
𝑘

,

𝑁1 (𝜃) = 𝑁
0
1 + 𝑁

1
1𝜃 + 𝑁

2
1𝜃

2
+ ⋅ ⋅ ⋅ + 𝑁

̂
𝑘

1𝜃
̂
𝑘

,

.

.

.

𝑁
𝑛

(𝜃) = 𝑁
0
𝑛

+ 𝑁
1
𝑛
𝜃 + 𝑁

2
𝑛
𝜃
2

+ ⋅ ⋅ ⋅ + 𝑁
̂
𝑘

𝑛
𝜃
̂
𝑘

,

𝐷0 (𝜃) = 𝐷
0
0 + 𝐷

1
0𝜃 + 𝐷

2
0𝜃

2
+ ⋅ ⋅ ⋅ + 𝐷

̂
𝑘

0𝜃
̂
𝑘

,

𝐷1 (𝜃) = 𝐷
0
1 + 𝐷

1
1𝜃 + 𝐷

2
1𝜃

2
+ ⋅ ⋅ ⋅ + 𝐷

̂
𝑘

1𝜃
̂
𝑘

,

.

.

.

𝐷
𝑑−1 (𝜃) = 𝐷

0
𝑑−1 + 𝐷

1
𝑑−1𝜃 + 𝐷

2
𝑑−1𝜃

2
+ ⋅ ⋅ ⋅ + 𝐷

̂
𝑘

𝑑−1𝜃
̂
𝑘

,

(10)
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where �̂� represents the polynomial order of each coefficient.
In (9), the 𝑛 + 𝑑 + 1 unknown numerator and denominator
coefficients now possess dependence on a spatial variable
𝜃. Thus (9) can be used to interpolate target radar cross
section (RCS) as a function of both frequency and angle
approximately. There are several possible models, which
could be adopted to solve the coefficients 𝑁

𝑗

𝑖
and 𝐷

𝑗

𝑖
. In this

paper, we apply Legendrewavelets coefficients to approximate
the coefficients 𝑁

𝑗

𝑖
and 𝐷

𝑗

𝑖
.

By sampling the set of measured or calculated complex
target RCS at 𝑛 + 𝑑 + 1 frequency points and at �̂� points
in space, the expression in (9) can be written as partitioned
matrix equations of the form

a
𝑖
x
𝑖
= b
𝑖
, (𝑖 = 1, 2, ⋅ ⋅ ⋅ , �̂�) , (11)

where

a
𝑖
=

[
[
[
[
[
[
[

[

1 𝑠1 ⋅ ⋅ ⋅ 𝑠
𝑛

1 −𝐹 (𝜃
𝑖
, 𝑠1) −𝐹 (𝜃

𝑖
, 𝑠1) 𝑠1 ⋅ ⋅ ⋅ −𝐹 (𝜃

𝑖
, 𝑠1) 𝑠
𝑑−1
1

1 𝑠2 ⋅ ⋅ ⋅ 𝑠
𝑛

2 −𝐹 (𝜃
𝑖
, 𝑠2) −𝐹 (𝜃

𝑖
, 𝑠2) 𝑠2 ⋅ ⋅ ⋅ −𝐹 (𝜃

𝑖
, 𝑠2) 𝑠
𝑑−1
2

.

.

.
.
.
. d

.

.

.
.
.
.

.

.

. d
.
.
.

1 𝑠
𝑛+𝑑+1 ⋅ ⋅ ⋅ 𝑠

𝑛

𝑛+𝑑=1 −𝐹 (𝜃
𝑖
, 𝑠
𝑛+𝑑+1) −𝐹 (𝜃

𝑖
, 𝑠
𝑛+𝑑+1) 𝑠

𝑛+𝑑+1 ⋅ ⋅ ⋅ −𝐹 (𝜃
𝑖
, 𝑠
𝑛+𝑑+1) 𝑠

𝑑−1
𝑛+𝑑+1

]
]
]
]
]
]
]

]

,

b
𝑖
=

[
[
[
[
[
[
[

[

𝐹 (𝜃
𝑖
, 𝑠1) 𝑠
𝑑

1

𝐹 (𝜃
𝑖
, 𝑠2) 𝑠
𝑑

2

.

.

.

𝐹 (𝜃
𝑖
, 𝑠
𝑛+𝑑+1) 𝑠

𝑑

𝑛+𝑑+1

]
]
]
]
]
]
]

]

,

x
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑁0 (𝜃
𝑖
)

𝑁1 (𝜃
𝑖
)

.

.

.

𝑁
𝑛

(𝜃
𝑖
)

𝐷0 (𝜃
𝑖
)

𝐷1 (𝜃
𝑖
)

.

.

.

𝐷
𝑑−1 (𝜃
𝑖
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(12)

x
𝑖

(𝑖 = 1, 2, . . . , �̂�) will be got by solving (11).
Substituting x

𝑖
into (9), we have

𝐹 (𝜃
𝑖
, 𝑠) =

𝑁 (𝜃
𝑖
, 𝑠)

𝐷 (𝜃
𝑖
, 𝑠)

=
𝑁0 (𝜃
𝑖
) + 𝑁1 (𝜃

𝑖
) 𝑠 + 𝑁2 (𝜃

𝑖
) 𝑠

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑛
(𝜃
𝑖
) 𝑠
𝑛

𝐷0 (𝜃
𝑖
) + 𝐷1 (𝜃

𝑖
) 𝑠 + 𝐷2 (𝜃

𝑖
) 𝑠2 + ⋅ ⋅ ⋅ + 𝐷

𝑑−1 (𝜃
𝑖
) 𝑠𝑑−1 + 𝑠𝑑

.

(13)

For arbitrary 𝑠
𝑙
, we use Legendre wavelets method to obtain

function 𝐹(𝜃, 𝑠
𝑙
), which is expressed as

𝐹 (𝜃


, 𝑠
𝑙
) ≈

2𝑘−1

∑

𝑛=1

𝑀−1
∑

𝑚=0
𝑐
𝑛𝑚

𝜓
𝑛𝑚

(𝜃


) , (14)

where 𝜃


= 2𝜃/𝜋. Due to the arbitrariness of 𝑠
𝑙
, we can acquire

the function 𝐹(𝜃, 𝑠) approximately.

In this part, in order to illustrate the effectiveness of (14),
we have given the following theorem. Let 𝐹

𝑘,𝑀
(𝜃


, 𝑠
𝑙
) be the

following approximation of 𝐹(𝜃


, 𝑠
𝑙
):

𝐹
𝑘,𝑀

(𝜃


, 𝑠
𝑙
) =

2𝑘−1
∑

𝑛=0

𝑀−1
∑

𝑚=0
𝑐
𝑛𝑚

𝜓
𝑛𝑚

(𝜃


) . (15)

Then we have 𝐹(𝜃


, 𝑠
𝑙
) − 𝐹

𝑘,𝑀
(𝜃


, s
𝑙
) =

∑
+∞

𝑛=2𝑘 ∑
+∞

𝑚=𝑀
𝑐
𝑛𝑚

𝜓
𝑛𝑚

(𝜃


).

Theorem 1. Suppose that the function 𝐹
𝑘,𝑀

(𝜃


, 𝑠
𝑙
) obtained by

using Legendre wavelets is the approximation of 𝐹(𝜃


, 𝑠
𝑙
), and

𝐹(𝜃


, 𝑠
𝑙
) is with bounded second derivative; then one has the

following upper bound of error:
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𝐹 (𝜃


, 𝑠
𝑙
) − 𝐹
𝑘,𝑀

(𝜃


, s
𝑙
)
𝐸

≤ (
�̃�

2

31
1

25𝑘+3
(

Γ


(𝑀 − 1.5)

Γ (𝑀 − 1.5)
)



)

1/2

,

(16)

where ‖𝐹(𝜃


, 𝑠
𝑙
)‖
𝐸

= (∫
1
0 𝐹

2
(𝜃


, 𝑠
𝑙
)𝑑𝜃


)
1/2, 𝑐
𝑛𝑚

= ⟨𝐹(𝜃


, 𝑠
𝑙
),

𝜓
𝑛𝑚

(𝜃


)⟩, and ⟨, ⟩ is inner product of 𝐹(𝜃


, 𝑠
𝑙
) and 𝜓

𝑛𝑚
(𝜃


).
Γ


(𝜃


)/Γ(𝜃


) is double gamma function.

Proof. See Appendix A.

From this theorem, we can see clearly that ‖𝐹(𝜃


, 𝑠
𝑙
) −

𝐹
𝑘,𝑀

(𝜃


, s
𝑙
)‖
𝐸

→ 0 when 𝑀 is fixed and 𝑘 → +∞.
The fitting model proposed in (9) may be extended to

include target RCS which not only have a dependence on 𝜃,
but also vary with 𝜑. The general form of the fitting model
under these conditions will be given as

𝐹 (𝜃, 𝜑, 𝑠) =
𝑁 (𝜃, 𝜑, 𝑠)

𝐷 (𝜃, 𝜑, 𝑠)

=
𝑁0 (𝜃, 𝜑) + 𝑁1 (𝜃, 𝜑) 𝑠 + 𝑁2 (𝜃, 𝜑) 𝑠

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑛
(𝜃, 𝜑) 𝑠

𝑛

𝐷0 (𝜃, 𝜑) + 𝐷1 (𝜃, 𝜑) 𝑠 + 𝐷2 (𝜃, 𝜑) 𝑠2 + ⋅ ⋅ ⋅ + 𝐷
𝑑−1 (𝜃, 𝜑) 𝑠𝑑−1 + 𝑠𝑑

,

(17)

where

𝑁
𝑖
(𝜃, 𝜑) =

𝑝𝑛+1

∑

𝑗=1

𝑗

∑

𝑘=1
𝑁
(𝑗−𝑘,𝑘−1)
𝑖

𝜃
𝑗−𝑘

𝜑
𝑘−1

,

𝐷
𝑖
(𝜃, 𝜑) =

𝑝𝑛+1

∑

𝑚=1

𝑚

∑

𝑛=1
𝑁
(𝑚−𝑛,𝑛−1)
𝑖

𝜃
𝑚−𝑛

𝜑
𝑛−1

,

(18)

where 𝑝
𝑛
is the class of the binomials or the highest power of

𝜃 and 𝜑 present in the binomial expansion.
As in the previous case, the Padé rational function defined

by (17) is expanded using the set of coefficients given in (18)
and then sampled at the appropriate number of data points
in order to construct matrix equations of the form (11). Then
(13) can be transformed into

𝐹 (𝜃
𝑖
, 𝜑
𝑗
, 𝑠) =

𝑁 (𝜃
𝑖
, 𝜑
𝑗
, 𝑠)

𝐷 (𝜃
𝑖
, 𝜑
𝑗
, 𝑠)

=
𝑁0 (𝜃

𝑖
, 𝜑
𝑗
) + 𝑁1 (𝜃

𝑖
, 𝜑
𝑗
) 𝑠 + 𝑁2 (𝜃

𝑖
, 𝜑
𝑗
) 𝑠

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑛
(𝜃
𝑖
, 𝜑
𝑗
) 𝑠
𝑛

𝐷0 (𝜃
𝑖
, 𝜑
𝑗
) + 𝐷1 (𝜃

𝑖
, 𝜑
𝑗
) 𝑠 + 𝐷2 (𝜃

𝑖
, 𝜑
𝑗
) 𝑠2 + ⋅ ⋅ ⋅ + 𝐷

𝑑−1 (𝜃
𝑖
, 𝜑
𝑗
) 𝑠𝑑−1 + 𝑠𝑑

. (19)

Similarly, for arbitrary 𝑠
𝑙
, we apply Legendre wavelets method

to get function 𝐹(𝜃, 𝜑, 𝑠
𝑙
), which is given by

𝐹 (𝜃, 𝜑, 𝑠
𝑙
) ≈

�̂�

∑

𝑖=1

�̂�

∑

𝑗=1
𝑢
𝑖𝑗
𝜓
𝑖
(𝜃) 𝜓
𝑗
(𝜑) . (20)

Due to the arbitrariness of 𝑠
𝑙
, we can obtain the function

𝐹(𝜃, 𝜑, 𝑠) approximately.
Next, we will discuss the effectiveness of 𝐹(𝜃, 𝜑, 𝑠

𝑙
) ≈

∑
�̂�

𝑖=1 ∑
�̂�

𝑗=1 𝑐
𝑖𝑗
𝜓
𝑖
(𝜃)𝜓
𝑗
(𝜑); we have given Theorem 2. Let

𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
) be the following approximation of 𝐹(𝜃, 𝜑, 𝑠

𝑙
):

𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
) =

�̂�

∑

𝑖=1

�̂�

∑

𝑗=1
𝑐
𝑖𝑗
𝜓
𝑖
(𝜃) 𝜓
𝑗
(𝜑) . (21)

Then we have 𝐹(𝜃, 𝜑, 𝑠
𝑙
) − 𝐹

�̂�
(𝜃, 𝜑, 𝑠

𝑙
) =

∑
∞

𝑖=�̂�+1 ∑
∞

𝑗=�̂�+1 𝑢
𝑖𝑗
𝜓
𝑖
(𝜃)𝜓
𝑗
(𝜑).

Theorem 2. Suppose that the function 𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
) obtained

by using Legendre wavelets is the approximation of 𝐹(𝜃, 𝜑, 𝑠
𝑙
),

and 𝐹(𝜃, 𝜑, 𝑠
𝑙
) has bounded mixed fractional partial derivative

|𝜕
4
𝐹(𝜃, 𝜑, 𝑠

𝑙
)/𝜕𝜃

2
𝜕𝜑

2
| ≤ �̂�; then one has the following upper

bound of error:

𝐹 (𝜃, 𝜑, 𝑠
𝑙
) − 𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
)
𝐸 ≤

�̂� ⋅ �̂�
1/2

24𝑘
, (22)

where ‖𝐹(𝜃, 𝜑, 𝑠
𝑙
)‖
𝐸

= (∫
1
0 ∫

1
0 𝐹

2
(𝜃, 𝜑, 𝑠

𝑙
)𝑑𝜃 𝑑𝜑)

1/2, 𝑢
𝑖𝑗

=

⟨𝜓
𝑖
(𝜃), ⟨𝐹(𝜃, 𝜑, 𝑠

𝑙
), 𝜓
𝑗
(𝜑)⟩⟩, and �̂� is a constant.

Proof. See Appendix B.

From this theorem, we can see that ‖𝐹(𝜃, 𝜑, 𝑠
𝑙
) − 𝐹
�̂�

(𝜃, 𝜑,

𝑠
𝑙
)‖
𝐸

→ 0 when 𝑘 → +∞.

4. Numerical Results

RCS, as understood in this paper, will represent the reflective
strength of a radar target. RCS, denoted by the Greek letter 𝜎

and measured in m2, is defined as [20]

𝜎 = 4𝜋
𝑃
𝑠

𝑃
𝑖

. (23)

RCS has a wide spread ranging from 10−5 for small insects
to 106 for large targets. Hence, RCS is often expressed as the
logarithmic decibel scale:

𝜎dBsqm = 10 log(
𝜎

1 ⋅ 𝑚2 ) ; (24)

the unit of (24) is dB (decibel).
The LW-MBPE technique described in the above section

was first applied to an elliptical cylinder (Figure 1) over a
frequency range of 0.5–2GHz.The symmetry of this problem
may be investigated such that it is only necessary to use the
interpolation over the limited range 0∘ ≤ 𝜃 ≤ 90∘. The
Padé rational function was chosen to have a numerator
order 𝑛 = 8 and a denominator order 𝑛 = 7. The fitting
frequencies selected were 0.5, 0.6, 0.7, . . . , 1.9 and 2GHz.
These conditions were used to construct a matrix of the form
given in (11), where 𝑛 + 𝑑 + 1 = 16.The nonnormal incidence
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Figure 2: Backscattered RCS for an elliptical cylinder of 𝑘 = 4 and
𝜑 = 45∘.

backscattered RCS for an elliptical cylinder due to a linearly
polarized incident wave is given by [20]

𝜎 =
𝜆𝑟

2
2𝑟

2
1 sin 𝜃

8𝜋 (cos 𝜃)
2

[𝑟21 (cos𝜑)
2

+ 𝑟22 (sin𝜑)
2
]
1.5 . (25)

Figures 2, 3, 4, and 5 show the elliptical cylinder (𝑟1 =

0.125m, 𝑟2 = 0.05m) backscattered RCS using (25) and
the reproduced RCS using LW-MBPE method for different
𝑘, 𝑀 = 2. The absolute errors for the reproduced RCS and
original RCS in Figures 2–5 are shown in Figure 6. From
Figure 6, we can find easily that the absolute errors are rather
small.

Table 1 shows the absolute errors between the original
RCS and the reproduced RCS. From Table 1, we can also see
that the errors are smaller and smaller when 𝑘 increases.

The interpolated RCS as a function of azimuth angle
𝜃 and pitching angle 𝜑 is shown in Figures 7–10 for
�̂� = 16, 32, 64, 128. The elliptical cylinder backscat-
tered RCS using (23) is also shown in Figure 11. Table 2
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Figure 3: Backscattered RCS for an elliptical cylinder of 𝑘 = 5 and
𝜑 = 45∘.
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Figure 4: Backscattered RCS for an elliptical cylinder of 𝑘 = 6 and
𝜑 = 45∘.
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Figure 5: Backscattered RCS for an elliptical cylinder of 𝑘 = 7 and
𝜑 = 45∘.
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Figure 6: Absolute errors for different 𝑘 and 𝜑 = 45∘.

Table 1: The absolute errors between original RCS and reproduced
RCS for different 𝑘 (dB).

𝜃 × 90∘ 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7
0.1 0.00874 0.00540 0.00079 0.00035
0.2 0.02334 0.00354 0.00157 0.00019
0.3 0.03044 0.00348 0.00177 0.00024
0.4 0.02269 0.00924 0.00112 0.00055
0.5 0.25790 0.05183 0.01178 0.00281
0.6 0.03000 0.01726 0.00251 0.00113
0.7 0.11124 0.01937 0.00794 0.00097
0.8 0.32609 0.02837 0.01630 0.00237
0.9 6.49094 0.32208 0.02801 0.01609

shows the absolute errors between the original RCS and
the reproduced RCS for different values of 𝜃, 𝜑, and
�̂�.

We can see that the reproduced RCS is more and more
close to the original RCS with the value of �̂� becom-
ing large by taking a closer look at Figures 7–11 and
Table 2.

The second example used to demonstrate this new LW-
MBPE procedure was a triangular flat defined by the isosceles
triangle as oriented in Figure 12 (𝑎 = 0.2m, 𝑏 = 0.75m).
The RCS interpolation used the rational function with a
numerator order 𝑛 = 8 and a denominator order 𝑛 = 7. The
frequency domain sampling was done at sixteen frequencies
(i.e., 0.5, 0.6, . . . , 1.9 and 2GHz). The backscattered RCS can
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Figure 7: Backscattered RCS for an elliptical cylinder for 𝜃, 𝜑 of �̂� =

16.
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Figure 8: Backscattered RCS for an elliptical cylinder for 𝜃, 𝜑 of �̂� =

32.
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Figure 9: Backscattered RCS for an elliptical cylinder for 𝜃, 𝜑 of �̂� =

64.
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Figure 10: Backscattered RCS for an elliptical cylinder for 𝜃, 𝜑 of
�̂� = 128.
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Figure 11: The elliptical cylinder backscattered RCS for 𝜃, 𝜑.

be approximated for small aspect angles (less than 30∘) by
[20]

𝜎 =
4𝜋𝐴

2

𝜆2 (cos 𝜃)
2

𝜎0,

𝜎0 =
[(sin𝛼)

2
− (sin (𝛽/2))

2
]
2

+ 𝜎01

𝛼2 − (𝛽/2)
2 ,

𝜎01

= 0.25 (sin𝜑)
2

[(
2𝑎

𝑏
) cos𝜑 sin𝛽 − sin𝜑 sin 2𝛼]

2
,

(26)

where 𝛼 = 𝑘𝑎 sin 𝜃 cos𝜑, 𝛽 = 𝑘𝑏 sin 𝜃 sin𝜑, and 𝐴 = 𝑎𝑏/2.
Based on a perfectly conducting isosceles triangular

flat plate, Figures 13, 14, 15, and 16 show the normalized
backscattered RCS using (26) and the reproduced RCS using
LW-MBPE for 𝑘 = 4, 5, 6, 7. The absolute errors for the

Table 2: The absolute errors between original RCS and reproduced
RCS for different �̂� (dB).

(𝜃 × 90∘, 𝜑 × 45∘) �̂� = 16 �̂� = 32 �̂� = 64 �̂� = 128
(0.1, 0.1) 0.01014 0.00610 0.00084 0.00041
(0.2, 0.2) 0.02629 0.00398 0.00176 0.00021
(0.3, 0.3) 0.03376 0.00383 0.00208 0.00031
(0.4, 0.4) 0.02468 0.01020 0.00132 0.00059
(0.5, 0.5) 0.27407 0.05570 0.01286 0.00302
(0.6, 0.6) 0.03233 0.01845 0.00270 0.00122
(0.7, 0.7) 0.11657 0.01995 0.00828 0.00102
(0.8, 0.8) 0.33268 0.02912 0.01669 0.00241
(0.9, 0.9) 6.49592 0.32396 0.02837 0.01616

Table 3: The absolute errors between reproduced RCS and original
RCS for different 𝑘 (dB).

𝜃 × 90∘ 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7
0.1 8.54737 5.98691 0.86121 0.56261
0.2 6.56903 1.79307 1.08659 0.14338
0.3 3.55198 0.15870 0.04182 0.01021
0.4 0.69205 0.03673 0.03452 0.00126
0.5 0.33927 0.10280 0.02992 0.01416
0.6 2.76694 0.71435 0.21953 0.00813
0.7 0.61607 0.03730 0.01911 0.00141
0.8 0.04907 0.01372 0.00938 0.00182
0.9 0.09652 0.07825 0.05342 0.04251

reproduced RCS and original RCS in Figures 13–16 are shown
in Figure 17.

Table 3 shows the absolute errors between the original
RCS and the reproduced RCS. From Table 3, we can also find
that the errors are smaller and smaller with 𝑘 increasing.

The interpolated RCS as a function of azimuth angle
𝜃 and frequency is shown in Figures 18–21 for different
�̂�.

According to the above analysis, we can acquire the
approximate backscattered RCS of the perfectly conduct-
ing triangular flat plate for arbitrary 𝜃 and frequency by
using LW-MBPE method. What is more, the approxima-
tions are more and more accurate with �̂� increasing. It is
evident from the examples that the LW-MBPE method is
convergent.

In the two examples, the approximate formulas of the
target backscattered RCS are known. However, in practical,
the majority of targets backscattered RCS are unknown, and
approximate formulas cannot be found. We can also obtain
the value of RCS of sampling points by using the method of
moments (MoM).
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Figure 13: Backscattered RCS for a perfectly conducting triangular
flat plate, 𝑘 = 4 and 𝜑 = 60∘.
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Figure 14: Backscattered RCS for a perfectly conducting triangular
flat plate, 𝑘 = 5 and 𝜑 = 60∘.
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Figure 15: Backscattered RCS for a perfectly conducting triangular
flat plate, 𝑘 = 6 and 𝜑 = 60∘.
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Figure 16: Backscattered RCS for a perfectly conducting triangular
flat plate, 𝑘 = 7 and 𝜑 = 60∘.

5. Conclusion

In this paper, a scheme to interpolate target RCS in both
the frequency and spatial domains simultaneously using LW-
MBPE method was proposed. The Padé rational function
fitting model used for MBPE in the frequency domain can
be easily modified to include spatial dependence on its
numerator and denominator coefficients. This interpolation
technique was applied to two examples, an elliptical cylinder
and a perfectly conducting triangular flat plate; in each
case, the modified Padé rational function yielded excellent
coincidence with the exact results calculated using their RCS
formulas. The results also show that the proposed method is
convergent with sampling points increasing.
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Figure 17: Absolute errors for different 𝑘 and 𝜑 = 60∘.
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flat plate for 𝜃 and frequency of �̂� = 16.

Appendices

A. The proof of Theorem 1

Proof. Let 𝐹(𝜃


, 𝑠
𝑙
) be a function defined on [0, 1] such that


𝐹


(𝜃


, 𝑠
𝑙
)

≤ �̃�, (A.1)

where �̃� is a positive constant.
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Figure 19: Backscattered RCS for a perfectly conducting triangular
flat plate for 𝜃 and frequency of �̂� = 32.
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Figure 20: Backscattered RCS for a perfectly conducting triangular
flat plate for 𝜃 and frequency of �̂� = 64.

The orthonormality of sequence {𝜓
𝑛𝑚

(𝜃


)} on [0, 1)

implies that ∫
1
0 Ψ(𝜃



)[Ψ(𝜃


)]
𝑇

𝑑𝜃


= 𝐼, where 𝐼 is the identity
matrix; then


𝐹 (𝜃


, 𝑠
𝑙
) − 𝐹
𝑘,𝑀

(𝜃


, 𝑠
𝑙
)


2
𝐸

= ∫

1

0
(𝐹 (𝜃


, 𝑠
𝑙
) − 𝐹
𝑘,𝑀

(𝜃


, 𝑠
𝑙
))

2
𝑑𝜃


= ∫

1

0
(

+∞

∑

𝑛=2𝑘

+∞

∑

𝑚=𝑀

𝑐
𝑛𝑚

𝜓
𝑛𝑚

(𝜃


))

2

𝑑𝜃


=

+∞

∑

𝑛=2𝑘

+∞

∑

𝑚=𝑀

𝑐
2
𝑛𝑚

∫

1

0
𝜓
2
𝑛𝑚

(𝜃


) 𝑑𝜃


=

+∞

∑

𝑛=2𝑘

+∞

∑

𝑚=𝑀

𝑐
2
𝑛𝑚

,

(A.2)
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Figure 21: Backscattered RCS for a perfectly conducting triangular
flat plate for 𝜃 and frequency of �̂� = 128.

where 𝑐
𝑛𝑚

= ⟨𝐹(𝜃


, 𝑠
𝑙
), 𝜓
𝑛𝑚

(𝜃


)⟩ = ∫
1
0 𝐹(𝜃


, 𝑠
𝑙
) ⋅ 𝜓
𝑛𝑚

(𝜃


)𝑑𝜃
;

then we can get

𝑐
𝑛𝑚

= ∫

1

0
𝐹 (𝜃


, 𝑠
𝑙
) 𝜓
𝑛𝑚

(𝜃


) 𝑑𝜃


= ∫

(𝑛+1)/2𝑘
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𝐹 (𝜃


, 𝑠
𝑙
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⋅ (
2𝑚 + 1

2
)

1/2
2𝑘/2𝑃
𝑚

(2𝑘𝜃 − 𝑛) 𝑑𝜃


.

(A.3)

Now, let 2𝑘𝜃 − 𝑛 = 𝑡; then

𝑐
𝑛𝑚

= ∫

1

−1
𝐹 (

𝑛 + 𝑡

2𝑘
, 𝑠
𝑙
) (

2𝑚 + 1
2

)

1/2
2𝑘/2𝑃
𝑚

(𝑡)
1
2𝑘

𝑑𝑡

= − (
1

23𝑘+1 (2𝑚 + 1)
)

1/2
∫

1

−1
𝐹


(
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2𝑘
, 𝑠
𝑙
) (𝑃
𝑚+1 (𝑡)

− 𝑃
𝑚−1 (𝑡)) 𝑑𝑡 = − (

1
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)

1/2
∫
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−1
𝐹


(
𝑛 + 𝑡

2𝑘
,

𝑠
𝑙
) 𝑑 (

𝑃
𝑚+2 (𝑡) − 𝑃

𝑚
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2𝑚 + 3
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𝑃
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𝑙
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𝑃
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(A.4)
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∫

1

−1
𝐹


(
𝑛 + 𝑡

2𝑘
, 𝑠
𝑙
) (

𝑃
𝑚+2 (𝑡) − 𝑃

𝑚
(𝑡)

2𝑚 + 3
−

𝑃
𝑚

(𝑡) − 𝑃
𝑚−2 (𝑡)

2𝑚 − 1
) 𝑑𝑡



2

=
1

25𝑘+1 (2𝑚 + 1)


∫

1

−1
𝐹


(
𝑛 + 𝑡

2𝑘
, 𝑠
𝑙
)

(2𝑚 − 1) 𝑃
𝑚+2 (𝑡) − (4𝑚 + 2) 𝑃

𝑚
(𝑡) + (2𝑚 + 3) 𝑃

𝑚−2 (𝑡)

(2𝑚 + 3) (2𝑚 − 1)
𝑑𝑡



2

≤
1

25𝑘+1 (2𝑚 + 1)
∫

1

−1


𝐹


(
𝑛 + 𝑡

2𝑘
, 𝑠
𝑙
)



2
𝑑𝑡 ∫

1

−1



(2𝑚 − 1) 𝑃
𝑚+2 (𝑡) − (4𝑚 + 2) 𝑃

𝑚
(𝑡) + (2𝑚 + 3) 𝑃

𝑚−2 (𝑡)

(2𝑚 + 3) (2𝑚 − 1)



2
𝑑𝑡

<
12�̃�

2

(2𝑛)
5

(2𝑚 − 3)
4 .

(A.5)

Therefore, we have

+∞

∑

𝑛=2
𝑘

+∞

∑

𝑚=𝑀

𝑐
2

𝑛𝑚
<

+∞

∑

𝑛=2
𝑘

+∞

∑

𝑚=𝑀

12�̃�
2

(2𝑛)
5

(2𝑚 − 3)
4

= 12�̃�
2

+∞

∑

𝑛=2
𝑘

1

(2𝑛)
5

+∞

∑

𝑚=𝑀

1

(2𝑚 − 3)
4

=
�̃�
2

31

1

25𝑘+3
(

Γ


(𝑀 − 1.5)

Γ (𝑀 − 1.5)
)



.

(A.6)

Then we obtain

𝐹 (𝜃


, 𝑠
𝑙
) − 𝐹
𝑘,𝑀

(𝜃


, 𝑠
𝑙
)


2

𝐸

≤
�̃�
2

31

1

25𝑘+3
(

Γ


(𝑀 − 1.5)

Γ (𝑀 − 1.5)
)



;

(A.7)

namely,

𝐹 (𝜃


, 𝑠
𝑙
) − 𝐹
𝑘,𝑀

(𝜃


, 𝑠
𝑙
)
𝐸

≤ (
�̃�
2

31

1

25𝑘+3
(

Γ


(𝑀 − 1.5)

Γ (𝑀 − 1.5)
)



)

1/2

.

(A.8)

This completes the proof.
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B. The proof of Theorem 2

Proof. The orthonormality of the sequence {𝜓
𝑖
(𝜃)} on [0, 1)

implies that ∫
1
0 Ψ(𝜃)[Ψ(𝜃)]

𝑇

𝑑𝑥 = 𝐼, where 𝐼 is the identity
matrix; then

𝐹 (𝜃, 𝜑, 𝑠
𝑙
) − 𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
)

2
𝐸

=

∞

∑

𝑖=�̂�+1

∞

∑

𝑗=�̂�+1

∞

∑

𝑖

=�̂�+1

∞

∑

𝑗

=�̂�+1

𝑢
𝑖𝑗
𝑢
𝑖

𝑗


⋅ ∫

1

0
∫

1

0
𝜓
𝑖
(𝜃) 𝜓
𝑗
(𝜑) 𝑑𝜃 𝑑𝜑

⋅ ∫

1

0
∫

1

0
𝜓
𝑖
 (𝜃) 𝜓

𝑗
 (𝜑) 𝑑𝜃 𝑑𝜑 =

∞

∑

𝑖=�̂�+1

∞

∑

𝑗=�̂�+1
𝑢
2
𝑖𝑗
.

(B.1)

The Legendre wavelets coefficients of function 𝐹(𝜃, 𝜑, 𝑠
𝑙
) are

defined by

𝑢
𝑖𝑗

= ∫

1

0
∫

1

0
𝐹 (𝜃, 𝜑, 𝑠

𝑙
) 𝜓
𝑖
(𝜃) 𝜓
𝑗
(𝜑) 𝑑𝜃 𝑑𝜑

= ∫

1

0
∫
𝐼𝑛𝑘

𝐹 (𝜃, 𝜑, 𝑠
𝑙
) (

2𝑚 + 1
2

)

1/2

⋅ 2𝑘/2𝑃
𝑚

(2𝑘𝜃 − 𝑛) 𝜓
𝑗
(𝜑) 𝑑𝜃 𝑑𝜑.

(B.2)

Let 2𝑘𝜃 − 𝑛 = 𝑡; by change of 2𝑘𝜃 − 𝑛 = 𝑡 and 𝑑𝜃 = (1/2𝑘)𝑑𝑡,
we obtain

𝑢
𝑖𝑗

= (
2𝑚 + 1

2
)

1/2
2−𝑘/2 ∫

1

0
𝜓
𝑗
(𝜑) ∫

1

−1
𝐹 (

𝑛 + 𝑡

2𝑘
, 𝜑, 𝑠
𝑙
) 𝑃
𝑚

(𝑡) 𝑑𝑡 𝑑𝜑

= (
1

2𝑘+1 (2𝑚 + 1)
)

1/2
∫

1

0
𝜓
𝑗
(𝜑) ∫

1

−1
𝐹 (

𝑛 + 𝑡

2𝑘
, 𝜑,

𝑠
𝑙
) 𝑑 (𝑃

𝑚+1 (𝑡) − 𝑃
𝑚−1 (𝑡)) 𝑑𝜑

= − (
1

23𝑘+1 (2𝑚 + 1)
)

1/2
∫

1

0
𝜓
𝑗
(𝜑) ∫

1

−1

𝜕

𝜕𝑡
𝐹 (

𝑛 + 𝑡

2𝑘
, 𝜑,

𝑠
𝑙
) 𝑑 (

𝑃
𝑚+2 (𝑡) − 𝑃

𝑚
(𝑡)

2𝑚 + 3
−

𝑃
𝑚

(𝑡) − 𝑃
𝑚−2 (𝑡)

2𝑚 − 1
) 𝑑𝜑

= (
1

25𝑘+1 (2𝑚 + 1)
)

1/2
∫

1

0
𝜓
𝑗
(𝜑) ∫

1

−1

𝜕
2

𝜕𝑡2
𝐹 (

𝑛 + 𝑡

2𝑘
, 𝜑, 𝑠
𝑙
)

⋅ (
𝑃
𝑚+2 (𝑡) − 𝑃

𝑚
(𝑡)

2𝑚 + 3
−

𝑃
𝑚

(𝑡) − 𝑃
𝑚−2 (𝑡)

2𝑚 − 1
) 𝑑𝑡 𝑑𝜑.

(B.3)

Now, let 𝜏
𝑚

(𝑡) = (2𝑚 − 1)𝑃
𝑚+2(𝑡) − 2(2𝑚 + 1)𝑃

𝑚
(𝑡) + (2𝑚 +

3)𝑃
𝑚−2(𝑡); then we have

𝑢
𝑖𝑗

= (
1

25𝑘+1 (2𝑚 + 1)
)

1/2 1
(2𝑚 − 1) (2𝑚 + 3)

⋅ ∫

1

0
𝜓
𝑗
(𝜑) ∫

1

−1

𝜕
2

𝜕𝑡2
𝐹 (

𝑛 + 𝑡

2𝑘
, 𝜑, 𝑠
𝑙
) 𝜏
𝑚

(𝑡) 𝑑𝑡 𝑑𝜑.

(B.4)

By solving this equation, we have

𝑢
𝑖𝑗

= 𝐴 (𝑘, 𝑚) ∫

1

−1
∫

1

−1

𝜕
4

𝜕𝑡2𝜕𝑠2
𝐹 (

𝑛 + 𝑡

2𝑘
,
𝑛 + 𝑠

2𝑘
, 𝑠
𝑙
)

⋅ 𝜏
𝑚

(𝑡) 𝜏
𝑚

(𝑠) 𝑑𝑡 𝑑𝑠,

(B.5)

where 𝐴(𝑘, 𝑚) = (1/25𝑘+1(2𝑚 + 1))(1/(2𝑚 − 1)
2
(2𝑚 + 3)

2
).

So we have

𝑢
𝑖𝑗


≤ 𝐴 (𝑘, 𝑚) ∫

1

−1
∫

1

−1



𝜕
4

𝜕𝑡2𝜕𝑠2
𝐹 (

𝑛 + 𝑡

2𝑘
,
𝑛 + 𝑠

2𝑘
, 𝑠
𝑙
)



⋅
𝜏𝑚 (𝑡)


𝜏𝑚 (𝑠)

 𝑑𝑡 𝑑𝑠.

(B.6)

Moreover, it was shown in the above equation that

∫

1

−1

𝜏𝑚 (𝑡)
 𝑑𝑡 ≤ √24 2𝑚 + 3

√2𝑚 − 3
; (B.7)

thus, we have


𝑢
𝑖𝑗


≤ 𝐴 (𝑘, 𝑚)

24�̂� (2𝑚 + 3)
2

2𝑚 − 3

≤
1

25𝑘 (2𝑚 + 1)

1
(2𝑚 − 3) (2𝑚 − 1)

2

≤
12�̂�

(2𝑛)
5

(2𝑚 − 3)
4 .

(B.8)

Namely,


𝑢
𝑖𝑗



2
≤

144�̂�
2

(2𝑛)
10

(2𝑚 − 3)
8 . (B.9)

Therefore, we have

𝐹 (𝜃, 𝜑, 𝑠
𝑙
) − 𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
)

2
𝐸

≤

∞

∑

𝑖=�̂�

∞

∑

𝑗=�̂�

𝑢
2
𝑖𝑗

≤

∞

∑

𝑖=�̂�

∞

∑

𝑗=�̂�

144�̂�
2

(2𝑛)
10

(2𝑚 − 3)
8

≤

∞

∑

𝑀=1

∞

∑

𝑝=𝑘−1
(

𝑀2𝑝+1−1
∑

𝑖=𝑀2𝑝

𝑀2𝑝+1−1
∑

𝑗=𝑀2𝑝

144�̂�
2

(2𝑘)10 (2𝑀 − 5)
8 )

≤

∞

∑

𝑀=1

∞

∑

𝑝=𝑘−1
(

144�̂�
2

(2𝑝+1)10 (2𝑀 − 5)
8 𝑀

222𝑝)

≤
�̂�

2
�̂�

21+8𝑘
,

(B.10)

where �̂� is a constant.
Then we get

𝐹 (𝜃, 𝜑, 𝑠
𝑙
) − 𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
)

2
𝐸

≤
�̂�

2
�̂�

28𝑘
; (B.11)

thus,

𝐹 (𝜃, 𝜑, 𝑠
𝑙
) − 𝐹
�̂�

(𝜃, 𝜑, 𝑠
𝑙
)
𝐸 ≤

�̂� ⋅ �̂�
1/2

24𝑘
. (B.12)

This completes the proof.
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Nomenclature

𝜓
𝑛𝑚

(𝑥): Legendre wavelets function
𝑃
𝑚

(𝑥): Legendre polynomials
𝑐
𝑖
, 𝑢
𝑖𝑗
: Wavelets coefficients

𝐹(𝑠): Padé rational function
𝑁
𝑗

𝑖
, 𝐷
𝑗

𝑖
: Padé rational function coefficients

𝜃: Azimuth angle
𝜑: Pitching angle
𝜎: Radar cross section
𝑓: Frequency
�̂�: Positive integer
𝑃
𝑖
: Power density, or intensity, of a plane wave

striking the target
𝑃
𝑠
: Power per unit solid angle reflected by the

target.
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