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The influence of quasiperiodic gravitational modulation on convective instability of polymerization front with liquid monomer
and liquid polymer is studied. The model includes the heat equation, the concentration equation, and the Navier-Stokes equations
under the Boussinesq approximation.The linear stability analysis of the problem is carried out and the interface problem is derived.
Using numerical simulations, the convective instability threshold is determined and the boundary of the convective instability is
obtained for different amplitudes and frequencies ratio.

1. Introduction

Frontal polymerization is the process of polymer production
in propagating reaction fronts [1–4]. In the absence of vibra-
tion, the influence of convective instability on polymerization
front when the monomer is liquid and the polymer is solid
was studied in [5], while the case of liquid polymer was
considered in [6]. The influence of periodic gravitational
modulation on the convective instability in the case of liquid-
solid polymerization front was studied [7] and it was shown
that the propagation of polymerization reaction front is
strongly affected by the amplitude and the frequency of vibra-
tions. In particular, the polymerization front can be stable
or unstable depending on the values of vibration parameters.
The influence of periodic vibrations on convective instability
of reaction front was also studied in the case of liquids [8]
and it was concluded that, for small vibration amplitudes,
the reaction front remains stable and it loses its stability for
sufficiently large amplitude of vibrations.

Recent works were devoted to the influence of a qua-
siperiodic (QP) gravitational modulation on the convective
instability of reaction front. For instance, the influence
of the QP gravitational modulation on reaction front was
examined in the case of porousmedia described by the Darcy
equation [9]. On the other hand, the case of liquid-solid

polymerization front was considered in [10] using theNavier-
Stokes equations instead of the Darcy equation and it was
revealed that both the amplitudes and the frequencies ratio
influence the stability domain of the polymerization front.
Specifically, for appropriate values of vibration amplitudes
and increasing values of the frequencies ratio, a stabilizing
effect is observed. The effect of the wave number on the
reaction front was also examined showing that increasing the
wave number widens the stability domain.

The present work studies the effect of QP gravitational
modulation on the convective instability of the polymeriza-
tion front, but in the case of liquid-liquid frontal polymer-
ization. This case is different from the previous one [10] in
the sense that in [10] the equation of motion is considered
only after the reaction zone since the polymer is in the solid
phase. In the present work instead, the equation of motion is
considered before and after the reaction zone because both
the monomer and the polymer are liquids.

The next section presents the frontal polymerization
model. Section 3 develops the perturbation analysis, while
the interface problem is examined in Section 4. The linear
stability analysis is discussed in Section 5 and numerical
investigations are carried out in Section 6. The last section
concludes the work.
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2. Frontal Polymerization Model

We consider a polymerization process with a liquid reactant
and a liquid product by assuming that the reaction front prop-
agates in the direction opposite to the direction of gravity. In
this case, the model of the frontal polymerization is given by
the system of equations:

𝜕𝑇

𝜕𝑡
+ (V ⋅ ∇) 𝑇 = 𝜅Δ𝑇 + 𝑞𝑊,

𝜕𝛼

𝜕𝑡
+ (V ⋅ ∇) 𝛼 = 𝑊,

𝜕V
𝜕𝑡

+ (V ⋅ ∇) V = −
1

𝜌
∇𝑝 + ]ΔV

+ 𝑔 (1 + 𝑏 (𝑡)) 𝛽 (𝑇 − 𝑇
0
) 𝛾,

div (V) = 0,

(1)

with the following boundary conditions:

𝑧 󳨀→ +∞: 𝑇 = 𝑇
𝑖
, 𝛼 = 0, V = 0, (2)

𝑧 󳨀→ −∞: 𝑇 = 𝑇
𝑏
, 𝛼 = 1, V = 0. (3)

The gradient, divergence, and Laplace operators are
defined by

∇V = (
𝜕V
𝜕𝑥

,
𝜕V
𝜕𝑦
,
𝜕V
𝜕𝑧
) ,

div k⃗ = 𝜕k
1

𝜕𝑥
+
𝜕k
2

𝜕𝑦
+
𝜕k
3

𝜕𝑧
,

ΔV =
𝜕
2V
𝜕2𝑥

+
𝜕
2V
𝜕2𝑦

+
𝜕
2V
𝜕2𝑧

,

(4)

where the variables (𝑥, 𝑦, and 𝑧) are the spatial coordinates
such that −∞ < 𝑥, 𝑦, 𝑧 < +∞, 𝑇 is the temperature, 𝛼 is the
concentration of the reaction product, V is the velocity, 𝑝 is
the pressure, 𝜅 is the coefficient of thermal diffusivity, 𝑞 is the
adiabatic temperature heat release, 𝜌 is an average value of the
density, ] is the coefficient of kinematic viscosity, 𝛾 is the unit
vector in the upward direction, 𝛽 is the coefficient of thermal
expansion, 𝑔 is the gravitational acceleration, and 𝑏(𝑡) is the
QP acceleration acting on the fluid which is given by 𝑏(𝑡) =
𝜆
1
sin(𝜎
1
𝑡) + 𝜆

2
sin(𝜎
2
𝑡) such that 𝜆

1
, 𝜆
2
are the amplitudes

and 𝜎
1
, 𝜎
2
are the incommensurate frequencies of the QP

gravitational modulation. The quantity 𝑇
0
is a mean value of

temperature, 𝑇
𝑖
is the initial temperature, and 𝑇

𝑏
= 𝑇
𝑖
+ 𝑞

is the temperature of the reacted mixture. We consider one-
step reaction of zero order where the reaction rate is defined
as follows:

𝑊 = 𝑘 (𝑇) 𝜙 (𝛼) , 𝜙 (𝛼) =
{

{

{

1 if 𝛼 < 1

0 if 𝛼 = 1.

(5)

The temperature dependence of the reaction rate is given
by the Arrhenius law [11]

𝑘 (𝑇) = 𝑘
0
exp(− 𝐸

𝑅
0
𝑇
) , (6)

where 𝑘
0
is the preexponential factor, 𝐸 is the activation

energy, and 𝑅
0
is the universal gas constant. We assume

that the two liquids are incompressible and the diffusivity
coefficient is very small comparing to the thermal diffusivity
coefficient such that the diffusivity will be neglected in the
concentration equation.

To obtain the dimensionless model, we introduce the
dimensionless spatial variables as

𝑥
1
=
𝑥𝑐
1

𝜅
,

𝑦
1
=
𝑦𝑐
1

𝜅
,

𝑧
1
=
𝑧𝑐
1

𝜅
,

𝑡
1
=
𝑡𝑐
2

1

𝜅
,

𝑝
1
=

𝑝

𝑐2
1
𝜌
,

𝑐
1
=

𝑐

√2
,

V
1
=

V
𝑐
1

,

𝜃 =
𝑇 − 𝑇
𝑏

𝑞
,

𝑐
2
=
2𝑘
0
𝜅𝑅
0
𝑇
2

𝑏

𝑞𝐸
exp(− 𝐸

𝑅
0
𝑇
𝑏

) ,

(7)

where 𝑐 defines the stationary reaction front velocity and
can be calculated asymptotically for large Zeldovich number
[12]. For simplicity, we keep the same notation for the other
variables and pressure. System (1) with the two boundary
conditions (2)-(3) can be written in the form

𝜕𝜃

𝜕𝑡
+ (V ⋅ ∇) 𝜃 = Δ𝜃 + 𝑍 exp( 𝜃

𝑍−1 + 𝛿𝜃
)𝜙 (𝛼) , (8)

𝜕𝛼

𝜕𝑡
+ (V ⋅ ∇) 𝛼 = 𝑍 exp( 𝜃

𝑍−1 + 𝛿𝜃
)𝜙 (𝛼) , (9)

𝜕V
𝜕𝑡

+ (V ⋅ ∇) V

= −∇𝑝 + 𝑃ΔV

+ 𝑃𝑅 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) (𝜃 + 𝜃

0
) 𝛾,

(10)

div (V) = 0, (11)

with the following conditions at infinity:

𝑧 󳨀→ +∞: 𝜃 = −1, 𝛼 = 0, V = 0,

𝑧 󳨀→ −∞: 𝜃 = 0, 𝛼 = 1, V = 0

(12)

and 𝑃 = ]/𝜅 is the Prandtl number, 𝑅 = 𝑔𝛽𝑞𝜅
2
/(]𝑐3) is the

Rayleigh number,𝑍 = 𝑞𝐸/𝑅
0
𝑇
2

𝑏
is the Zeldovich number, and
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𝛿 and 𝜃
0
are given, respectively, by 𝛿 = 𝑅

0
𝑇
𝑏
/𝐸 and 𝜃

0
= (𝑇
𝑏
−

𝑇
0
)/𝑞 and 𝜇 = 2𝜅𝜎/𝑐

2.
Next, we perform the linear stability analysis to tackle the

interface problem.

3. Approximation of Infinitely Narrow
Reaction Zone

To study the interface problem analytically, we use a singular
perturbation analysis where the reaction zone is infinitely
narrow and the reaction term is neglected outside the zone
[13]. In this way, the problem can be reduced to an interface
problem.

To perform a formal asymptotic analysis, 𝜖 = 𝑍
−1 is

considered as a small parameter. The new independent var-
iable is given by 𝑧

1
= 𝑧 − 𝜁(𝑥, 𝑦, 𝑡) where 𝜁(𝑥, 𝑦, 𝑡) defines the

location of the reaction zone. Introducing new functions 𝜃
1
,

𝛼
1
, V
1
, and 𝑝

1
as

𝜃 (𝑥, 𝑦, 𝑧, 𝑡) = 𝜃
1
(𝑥, 𝑦, 𝑧

1
, 𝑡) ,

𝛼 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛼
1
(𝑥, 𝑦, 𝑧

1
, 𝑡) ,

V (𝑥, 𝑦, 𝑧, 𝑡) = V
1
(𝑥, 𝑦, 𝑧

1
, 𝑡) ,

𝑝 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑝
1
(𝑥, 𝑦, 𝑧

1
, 𝑡) .

(13)

The system of (8)–(11) can be written in the form (index 1 for
the new function is omitted)
𝜕𝜃

𝜕𝑡
−
𝜕𝜃

𝜕𝑧
1

𝜕𝜁

𝜕𝑡
+ (V ⋅ ∇̃) 𝜃

= Δ̃𝜃 + 𝑍 exp( 𝜃

𝑍−1 + 𝛿𝜃
)𝜙 (𝛼) ,

𝜕𝛼

𝜕𝑡
−
𝜕𝛼

𝜕𝑧
1

𝜕𝜁

𝜕𝑡
+ (V ⋅ ∇̃) 𝛼 = 𝑍 exp( 𝜃

𝑍−1 + 𝛿𝜃
)𝜙 (𝛼) ,

𝜕V
𝜕𝑡

−
𝜕V
𝜕𝑧
1

𝜕𝜁

𝜕𝑡
+ (V ⋅ ∇̃) V

= −∇̃𝑝 + 𝑃Δ̃V

+ 𝑄 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) (𝜃 + 𝜃

0
) 𝛾,

𝜕V
𝑥

𝜕𝑥
−
𝜕V
𝑥

𝜕𝑧
1

𝜕𝜁

𝜕𝑥
+
𝜕V
𝑦

𝜕𝑦
−
𝜕V
𝑦

𝜕𝑧
1

𝜕𝜁

𝜕𝑦
+
𝜕V
𝑧

𝜕𝑧
1

= 0,

(14)

where Δ̃, ∇̃, and 𝑄 are given by

Δ̃ =
𝜕
2

𝜕𝑥2
+

𝜕
2

𝜕𝑦2
+

𝜕
2

𝜕𝑧2
1

− 2
𝜕
2

𝜕𝑥𝜕𝑧
1

𝜕𝜁

𝜕𝑥
− 2

𝜕
2

𝜕𝑦𝜕𝑧
1

𝜕𝜁

𝜕𝑦

+
𝜕
2

𝜕𝑧2
1

((
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−
𝜕

𝜕𝑧
1

(
𝜕
2
𝜁

𝜕𝑥2
+
𝜕
2
𝜁

𝜕𝑦2
) ,

∇̃ = (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑧
1

𝜕𝜁

𝜕𝑥
,
𝜕

𝜕𝑦
−

𝜕

𝜕𝑧
1

𝜕𝜁

𝜕𝑦
,
𝜕

𝜕𝑧
1

) ,

𝑄 = 𝑃𝑅.

(15)

To approximate the jump conditions and resolve the
interface problem, we use the matched asymptotic expansion
by seeking the outer solution of problem (14) in the form

𝜃 = 𝜃
0
+ 𝜖𝜃
1
+ ⋅ ⋅ ⋅ ,

𝛼 = 𝛼
0
+ 𝜖𝛼
1
+ ⋅ ⋅ ⋅ ,

V = V
0
+ 𝜖V
1
+ ⋅ ⋅ ⋅ ,

𝑝 = 𝑝
0
+ 𝜖𝑝
1
+ ⋅ ⋅ ⋅ .

(16)

Introducing the stretched coordinate 𝜂 = 𝑧
1
𝜖
−1 where 𝜖 =

𝑍
−1, the inner solution, can be approximated in the following

form:

𝜃 = 𝜖𝜃
1
+ ⋅ ⋅ ⋅ ,

𝛼 = 𝛼̃
0
+ 𝜖𝛼̃
1
+ ⋅ ⋅ ⋅ ,

V = Ṽ
0
+ 𝜖Ṽ
1
+ ⋅ ⋅ ⋅ ,

𝑝 = 𝑝
0
+ 𝜖𝑝
1
+ ⋅ ⋅ ⋅ ,

𝜁 = 𝜁
0
+ 𝜖𝜁
1
+ ⋅ ⋅ ⋅ .

(17)

Substituting the inner and outer solutions in (14) leads to

Order 𝜖−2:

𝑃(1 + (
𝜕𝜁
0

𝜕𝑥
)

2

+ (
𝜕𝜁
0

𝜕𝑦
)

2

)
𝜕
2Ṽ
0

𝜕𝜂2
= 0. (18)

Order 𝜖−1:

(1 + (
𝜕𝜁
0

𝜕𝑥
)

2

+ (
𝜕𝜁
0

𝜕𝑦
)

2

)
𝜕
2
𝜃
1

𝜕𝜂2

+ exp( 𝜃
1

1 + 𝛿𝜃
1

)𝜙 (𝛼̃
0
) = 0,

(19)

−
𝜕𝛼̃
0

𝜕𝜂

𝜕𝜁
0

𝜕𝑡
−
𝜕𝛼̃
0

𝜕𝜂
(Ṽ
0𝑥

𝜕𝜁
0

𝜕𝑥
+ Ṽ
0𝑦

𝜕𝜁
0

𝜕𝑦
− Ṽ
0𝑧
)

= exp( 𝜃
1

1 + 𝛿𝜃
1

)𝜙 (𝛼̃
0
) ,

(20)

−
𝜕Ṽ
0𝑥

𝜕𝜂

𝜕𝜁
0

𝜕𝑡
− Ṽ
0𝑥

𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
− Ṽ
0𝑦

𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
+ Ṽ
0𝑧

𝜕Ṽ
0

𝜕𝜂

= 𝑡
0

𝜕𝑝
0

𝜕𝜂
+ 𝑃(𝐴

𝜕
2Ṽ
1

𝜕𝜂2
+ 𝐹
0

𝜕Ṽ
0

𝜕𝜂
) ,

(21)

−
𝜕Ṽ
0𝑥

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
−
𝜕Ṽ
0𝑦

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
+
𝜕Ṽ
0𝑧

𝜕𝜂
= 0. (22)
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Order 𝜖0:

𝜕Ṽ
0

𝜕𝑡
−
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
0

𝜕𝑡
−
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
1

𝜕𝑡
+ Ṽ
0𝑥
(
𝜕Ṽ
0

𝜕𝑥
−
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
0

𝜕𝑥

−
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
1

𝜕𝑥
) + Ṽ
1𝑥

𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
+ Ṽ
1𝑦

𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
0

𝜕𝑦

+ Ṽ
0𝑦
(
𝜕Ṽ
0

𝜕𝑦
−
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
−
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
1

𝜕𝑦
) + Ṽ
0𝑧

𝜕Ṽ
1

𝜕𝜂
+ Ṽ
1𝑧

⋅
𝜕Ṽ
0

𝜕𝜂
= −∇
0
𝑝
0
+ 𝑡
1

𝜕𝑝
0

𝜕𝜂
+ 𝑡
0

𝜕𝑝
1

𝜕𝜂
+ 𝑃(𝐴

𝜕
2Ṽ
2

𝜕𝜂2

+ 𝑡
3

𝜕
2Ṽ
1

𝜕𝜂2
+ 𝐹
0

𝜕Ṽ
1

𝜕𝜂
+ 𝑡
4

𝜕
2Ṽ
0

𝜕𝜂2
+ 𝐹
1

𝜕Ṽ
0

𝜕𝜂
+ Δ
1
Ṽ
0
)

+ 𝑄 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) 𝛾𝜃

0
,

(23)

𝜕Ṽ
0𝑥

𝜕𝑥
−
𝜕Ṽ
1𝑥

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
−
𝜕Ṽ
0𝑥

𝜕𝜂

𝜕𝜁
1

𝜕𝑥
+
𝜕Ṽ
0𝑦

𝜕𝑦
−
𝜕Ṽ
1𝑦

𝜕𝜂

𝜕𝜁
0

𝜕𝑦

−
𝜕Ṽ
0𝑦

𝜕𝜂

𝜕𝜁
1

𝜕𝑦
+
𝜕Ṽ
1𝑧

𝜕𝜂
= 0.

(24)

Order 𝜖1:

𝜕Ṽ
1

𝜕𝑡
− (

𝜕Ṽ
2

𝜕𝜂

𝜕𝜁
0

𝜕𝑡
+
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
1

𝜕𝑡
+
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
2

𝜕𝑡
) + Ṽ
0𝑥
(
𝜕Ṽ
1

𝜕𝑥

−
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
1

𝜕𝑥
−
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
2

𝜕𝑥
−
𝜕Ṽ
2

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
) + Ṽ
1𝑥
(
𝜕Ṽ
0

𝜕𝑥

−
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
1

𝜕𝑥
−
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
) − Ṽ
2𝑥

𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
+ Ṽ
0𝑦
(
𝜕Ṽ
1

𝜕𝑦

−
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
1

𝜕𝑦
−
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
2

𝜕𝑦
−
𝜕Ṽ
2

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
) + Ṽ
1𝑦
(
𝜕Ṽ
0

𝜕𝑦

−
𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
1

𝜕𝑦
−
𝜕Ṽ
1

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
) − Ṽ
2𝑦

𝜕Ṽ
0

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
+ Ṽ
0𝑧

𝜕Ṽ
2

𝜕𝜂

+ Ṽ
1𝑧

𝜕Ṽ
1

𝜕𝜂
+ Ṽ
2𝑧

𝜕Ṽ
0

𝜕𝜂
= 𝑡
0

𝜕𝑝
2

𝜕𝜂
+ 𝑡
1

𝜕𝑝
1

𝜕𝜂
− ∇
0
𝑝
1
+ 𝑡
2

⋅
𝜕𝑝
0

𝜕𝜂
+ 𝑃(𝐴

𝜕
2Ṽ
3

𝜕𝜂2
+ 𝑡
3

𝜕
2Ṽ
2

𝜕𝜂2
+ 𝐹
0

𝜕Ṽ
2

𝜕𝜂
+ 𝐹
1

𝜕Ṽ
1

𝜕𝜂

+ Δ
1
Ṽ
1
+ 𝐹
2

𝜕Ṽ
0

𝜕𝜂
) + 𝑄 (1 + 𝜆

1
sin (𝜎

1
𝑡)

+ 𝜆
2
sin (𝜎

2
𝑡)) 𝜃
0
𝛾,

(25)

𝜕Ṽ
1𝑥

𝜕𝑥
−
𝜕Ṽ
2𝑥

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
−
𝜕Ṽ
1𝑥

𝜕𝜂

𝜕𝜁
1

𝜕𝑥
−
𝜕Ṽ
0𝑥

𝜕𝜂

𝜕𝜁
2

𝜕𝑥
+
𝜕Ṽ
1𝑦

𝜕𝑦

−
𝜕Ṽ
2𝑦

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
−
𝜕Ṽ
1𝑦

𝜕𝜂

𝜕𝜁
1

𝜕𝑦
−
𝜕Ṽ
0𝑦

𝜕𝜂

𝜕𝜁
2

𝜕𝑦
+
𝜕Ṽ
2𝑧

𝜕𝜂
= 0.

(26)

Order 𝜖2:

𝜕Ṽ
2𝑥

𝜕𝑥
−
𝜕Ṽ
3𝑥

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
−
𝜕Ṽ
2𝑥

𝜕𝜂

𝜕𝜁
1

𝜕𝑥
−
𝜕Ṽ
1𝑥

𝜕𝜂

𝜕𝜁
2

𝜕𝑥
−
𝜕Ṽ
0𝑥

𝜕𝜂

𝜕𝜁
3

𝜕𝑥

+
𝜕Ṽ
2𝑦

𝜕𝑦
−
𝜕Ṽ
3𝑦

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
−
𝜕Ṽ
2𝑦

𝜕𝜂

𝜕𝜁
1

𝜕𝑦
−
𝜕Ṽ
1𝑦

𝜕𝜂

𝜕𝜁
2

𝜕𝑦

−
𝜕Ṽ
0𝑦

𝜕𝜂

𝜕𝜁
3

𝜕𝑦
+
𝜕Ṽ
3𝑧

𝜕𝜂
= 0,

(27)

where

Δ
1
=

𝜕
2

𝜕𝑥2
+

𝜕
2

𝜕𝑦2
,

∇
0
= (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
, 0) ,

𝐹
𝑖
= −2(

𝜕𝜁
𝑖

𝜕𝑥

𝜕

𝜕𝑥
+
𝜕𝜁
𝑖

𝜕𝑦

𝜕

𝜕𝑦
) − (

𝜕
2
𝜁
𝑖

𝜕𝑥2
+
𝜕
2
𝜁
𝑖

𝜕𝑦2
) 𝐼,

𝑖 = 0, 1, 2,

𝑡
0
= (

𝜕𝜁
0

𝜕𝑥
,
𝜕𝜁
0

𝜕𝑦
, −1) ,

𝑡
𝑖
= (

𝜕𝜁
𝑖

𝜕𝑥
,
𝜕𝜁
𝑖

𝜕𝑦
, − 1) 𝑖 = 1, 2,

𝑡
3
= 2(

𝜕𝜁
1

𝜕𝑥

𝜕𝜁
0

𝜕𝑥
+
𝜕𝜁
0

𝜕𝑦

𝜕𝜁
1

𝜕𝑦
) ,

𝑡
4
= (

𝜕𝜁
1

𝜕𝑥
)

2

+ (
𝜕𝜁
1

𝜕𝑦
)

2

+
𝜕𝜁
0

𝜕𝑥

𝜕𝜁
2

𝜕𝑥
+
𝜕𝜁
0

𝜕𝑦

𝜕𝜁
2

𝜕𝑦
,

𝐴 = (1 + (
𝜕𝜁
0

𝜕𝑥
)

2

+ (
𝜕𝜁
0

𝜕𝑦
)

2

)

(28)

and 𝐼 is the identity operator. The matching conditions as
𝜂 → ±∞ are given by

Ṽ
0
∼ V
0

󵄨󵄨󵄨󵄨𝑧
1
=±0

, (29)

Ṽ
1
∼ (

𝜕V
0

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=±0

)𝜂 + V
1

󵄨󵄨󵄨󵄨𝑧
1
=±0

, (30)

Ṽ
2
∼
1

2
(
𝜕
2V
0

𝜕𝑧2
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=±0

)𝜂
2
+ (

𝜕V
1

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=±0

)𝜂

+ V
2

󵄨󵄨󵄨󵄨𝑧
1
=±0

,

(31)

Ṽ
3
∼
1

6
(
𝜕
3V
0

𝜕𝑧3
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=±0

)𝜂
3
+
1

2
(
𝜕
2V
1

𝜕𝑧2
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=±0

)𝜂
2

+ (
𝜕V
2

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=±0

)𝜂 + V
3

󵄨󵄨󵄨󵄨𝑧
1
=±0

.

(32)
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As 𝜂 → +∞

𝜃
1
≈ 𝜃
1

󵄨󵄨󵄨󵄨𝑧
1
=+0

+ (
𝜕𝜃
0

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

)𝜂, 𝛼̃
0
󳨀→ 0. (33)

As 𝜂 → −∞

𝜃
1
∼ 𝜃
1

󵄨󵄨󵄨󵄨𝑧
1
=−0

, 𝛼̃
0
󳨀→ 1. (34)

From (18), we obtain

𝜕
2Ṽ
0

𝜕𝜂2
= 0. (35)

Consequently, we can conclude that Ṽ
0
(𝜂) is a linear

function of 𝜂 and identically constant since the velocity is
bounded. Equation (29) becomes

V
0

󵄨󵄨󵄨󵄨𝑧
1
=+0

= V
0

󵄨󵄨󵄨󵄨𝑧
1
=−0

, (36)

𝜕Ṽ
0

𝜕𝜂
= 0. (37)

From (36)-(37), we deduce that the first term in the
expression of the velocity V

0
is continuous at the front. By

substituting (37) into (21), we find

𝑃𝐴
𝜕
2Ṽ
1

𝜕𝜂2
+ 𝑡
0

𝜕𝑝
0

𝜕𝜂
= 0, (38)

𝜕Ṽ
0𝑥

𝜕𝑥
−
𝜕Ṽ
1𝑥

𝜕𝜂

𝜕𝜁
0

𝜕𝑥
+
𝜕Ṽ
0𝑦

𝜕𝑦
−
𝜕Ṽ
1𝑦

𝜕𝜂

𝜕𝜁
0

𝜕𝑦
+
𝜕Ṽ
1𝑧

𝜕𝜂
= 0. (39)

Differentiating (39) with respect to 𝜂, one obtains

𝜕
2Ṽ
1𝑥

𝜕𝜂2

𝜕𝜁
0

𝜕𝑥
+
𝜕
2Ṽ
1𝑦

𝜕𝜂2

𝜕𝜁
0

𝜕𝑦
−
𝜕
2Ṽ
1𝑧

𝜕𝜂2
= 0. (40)

As a result, (38) is a vectorial equation with three com-
ponents. We multiply the first component by 𝜕𝜁

0
/𝜕𝑥, the

second by 𝜕𝜁
0
/𝜕𝑦, and the third by −1 and adding we have

𝑃𝐴(
𝜕
2Ṽ
1𝑥

𝜕𝜂2

𝜕𝜁
0

𝜕𝑥
+
𝜕
2Ṽ
1𝑦

𝜕𝜂2

𝜕𝜁
0

𝜕𝑦
−
𝜕
2Ṽ
1𝑧

𝜕𝜂2
) + 𝐴

𝜕𝑝
0

𝜕𝜂
= 0. (41)

Considering the two equations (38) and (40), we obtain

𝜕𝑝
0

𝜕𝜂
= 0, (42)

𝜕
2Ṽ
1

𝜕𝜂2
= 0. (43)

From the boundedness of the velocity and (30), the con-
tinuity of the first order term of the outer expansion and of
the first derivative of the zero-order term, we can write

𝜕V
0

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

=
𝜕V
0

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

,

V
1

󵄨󵄨󵄨󵄨𝑧
1
=+0

= V
1

󵄨󵄨󵄨󵄨𝑧
1
=−0

.

(44)

Differentiating (23) once and (26) twice with respect to 𝜂
and using the three equations (37), (42), and (43), we get

𝑡
0

𝜕
2
𝑝
1

𝜕𝜂2
+ 𝑃𝐴

𝜕
3Ṽ
2

𝜕𝜂3
= 0, (45)

𝜕
3Ṽ
2𝑥

𝜕𝜂3

𝜕𝜁
0

𝜕𝑥
+
𝜕
3Ṽ
2𝑦

𝜕𝜂3

𝜕𝜁
0

𝜕𝑦
−
𝜕
3Ṽ
2𝑧

𝜕𝜂3
= 0. (46)

As above, we multiply the three components of (45),
respectively, by 𝜕𝜁

0
/𝜕𝑥, 𝜕𝜁

0
/𝜕𝑦, and −1 and adding, we get

𝑃𝐴(
𝜕
3Ṽ
2𝑥

𝜕𝜂3

𝜕𝜁
0

𝜕𝑥
+
𝜕
3Ṽ
2𝑦

𝜕𝜂3

𝜕𝜁
0

𝜕𝑦
−
𝜕
3Ṽ
2𝑧

𝜕𝜂3
) + 𝐴

𝜕
2
𝑝
1

𝜕𝜂2
= 0. (47)

From the previous equation and using (45)-(46), we have

𝜕
2
𝑝
1

𝜕𝜂2
= 0,

𝜕
3Ṽ
2

𝜕𝜂3
= 0.

(48)

Knowing that the velocity is bounded and considering
(31), we obtain the jump conditions in the following forms:

𝜕
2V
0

𝜕𝑧2
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

=
𝜕
2V
0

𝜕𝑧2
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

,

𝜕V
1

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

=
𝜕V
1

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

,

V
2

󵄨󵄨󵄨󵄨𝑧
1
=+0

= V
2

󵄨󵄨󵄨󵄨𝑧
1
=−0

.

(49)

Differentiating (25) twice and (27) three times with
respect to 𝜂 and taking into account (37), (42), (48), we obtain

𝑡
0

𝜕
3
𝑝
2

𝜕𝜂3
+ 𝑃𝐴

𝜕
4Ṽ
3

𝜕𝜂4

+ 𝑄 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) 𝛾

𝜕
2
𝜃
1

𝜕𝜂2
= 0,

𝜕
4Ṽ
3𝑥

𝜕𝜂4

𝜕𝜁
0

𝜕𝑥
+
𝜕
4Ṽ
3𝑦

𝜕𝜂4

𝜕𝜁
0

𝜕𝑦
−
𝜕
4Ṽ
3𝑧

𝜕𝜂4
= 0,

(50)

𝑃𝐴(
𝜕
4Ṽ
3𝑥

𝜕𝜂4

𝜕𝜁
0

𝜕𝑥
+
𝜕
4Ṽ
3𝑦

𝜕𝜂4

𝜕𝜁
0

𝜕𝑦
−
𝜕
4Ṽ
3𝑧

𝜕𝜂4
) + 𝐴

𝜕
3
𝑝
2

𝜕𝜂3

− 𝑄 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡))

𝜕
2
𝜃
1

𝜕𝜂2
= 0.

(51)

From the last equation and using (50), we can write

𝐴
𝜕
3
𝑝
2

𝜕𝜂3
− 𝑄 (1 + 𝜆

1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡))

𝜕
2
𝜃
1

𝜕𝜂2

= 0,

(52)

𝛾
0

𝜕
2
𝜃
1

𝜕𝜂2
=
𝜕
4Ṽ
3

𝜕𝜂4
, (53)
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where 𝛾
0
is defined by

𝛾
0
= (−

𝜕𝜁
0

𝜕𝑥

𝑅

𝐴2
, −
𝜕𝜁
0

𝜕𝑦

𝑅

𝐴2
,
𝑅

𝐴2
−
𝑅

𝐴
)

⋅ (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) .

(54)

Now, integrating (53) with respect to 𝜂 using the system
(32)–(34) lead to

𝜕
3V
0

𝜕𝑧3
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

−
𝜕
3V
0

𝜕𝑧3
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

= −𝛾
0

𝜕𝜃
0

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

. (55)

As a first conclusion, the velocity jump conditions across
the reaction front are given by (36), (44), (49), and (55).

From (20), (22), (37), we conclude that 𝛼̃
0
is a monotonic

function satisfying 0 < 𝛼̃
0
< 1. Therefore, the reaction is of

zero order and 𝜙(𝛼̃
0
) ≡ 1. Multiplying (19) by 𝜕𝜃

1
/𝜕𝜂 and

integrating the result yield

(
𝜕𝜃
1

𝜕𝜂
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨+∞

− (
𝜕𝜃
1

𝜕𝜂
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−∞

= 2𝐴
−1
∫

𝜃
1
|𝑧
1
=−0

−∞

exp( 𝜏

1 + 𝜏𝛿
) 𝑑𝜏.

(56)

Subtracting (19) from (20) and integrating the result one
obtains

𝜕𝜃
1

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨+∞

−
𝜕𝜃
1

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−∞

= −𝐴
−1
(
𝜕𝜁
0

𝜕𝑡
+ 𝑠) , (57)

where 𝑠 is given by

𝑠 = Ṽ
0𝑥

𝜕𝜁
0

𝜕𝑥
+ Ṽ
0𝑦

𝜕𝜁
0

𝜕𝑦
− Ṽ
0𝑧
. (58)

As a second conclusion, the temperature jump conditions
across the reaction front are given by the two last equations
(56)-(57). By using the matching conditions above and
truncating the expansion as

𝜃 ≈ 𝜃
0
,

𝜃
1

󵄨󵄨󵄨󵄨𝑧
1
=−0

≈ 𝑍𝜃|𝑧
1
=+0

,

𝜁 ≈ 𝜁
0
,

V ≈ V
0
,

(59)

the jump conditions can be written as

(
𝜕𝜃

𝜕𝑧
1

)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨+0

− (
𝜕𝜃

𝜕𝑧
1

)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−0

= 2𝑍(1 + (
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

⋅ ∫

𝜃
1
|
𝑧1=−0

−∞

exp ( 𝜏

𝑍−1 + 𝜏𝛿
) 𝑑𝜏,

𝜕𝜃

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

−
𝜕𝜃

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

= −(1 + (
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

⋅ (
𝜕𝜁

𝜕𝑡
+ (V
𝑥

𝜕𝜁

𝜕𝑥
+ V
𝑦

𝜕𝜁

𝜕𝑦
− V
𝑧
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

) ,

V
𝑧

󵄨󵄨󵄨󵄨𝑧
1
=+0

= V
𝑧

󵄨󵄨󵄨󵄨𝑧
1
=−0

,

𝜕V
𝑧

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

=
𝜕V
𝑧

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

,

𝜕
2V
𝑧

𝜕𝑧2
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

=
𝜕V
𝑧

𝜕𝑧2
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

,

𝜕
3V
𝑧

𝜕𝑧3
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=−0

−
𝜕
3V
𝑧

𝜕𝑧3
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

= −𝑅(1 + (
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

⋅ ((1 + (
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

− 1)

⋅ (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡))

𝜕𝜃

𝜕𝑧
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
1
=+0

.

(60)

4. The Interface Problem and Perturbation

To study the propagation of polymerization front with a
liquid reactant and liquid product, the equation of motion
has been considered before and after the reaction zone. This
changes the jump conditions and influences the stability
conditions of the frontal polymerization process. Notice that
in the case of liquid-solid polymerization front, the equation
of motion is considered after the reaction zone. The original
system (2), (3), (8), (9) leads to the following interface
problem:

In the liquid monomer 𝑧 > 𝜁

𝜕𝜃

𝜕𝑡
+ (V ⋅ ∇) 𝜃 = Δ𝜃, (61)

𝛼 = 0, (62)
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𝜕V
𝜕𝑡

+ (V ⋅ ∇) V

= −∇𝑝 + 𝑃ΔV

+ 𝑄 (1 + 𝜆
1
sin𝜎
1
𝑡 + 𝜆
2
sin𝜎
2
𝑡) (𝜃 + 𝜃

0
) 𝛾,

(63)

div (V) = 0. (64)

In the liquid polymer 𝑧 < 𝜁

𝜕𝜃

𝜕𝑡
+ (V ⋅ ∇) 𝜃 = Δ𝜃, (65)

𝛼 = 1, (66)

𝜕V
𝜕𝑡

+ (V ⋅ ∇) V

= −∇𝑝 + 𝑃ΔV

+ 𝑄 (1 + 𝜆
1
sin𝜎
1
𝑡 + 𝜆
2
sin𝜎
2
𝑡) (𝜃 + 𝜃

0
) 𝛾,

(67)

div (V) = 0. (68)

At the interface 𝑧 = 𝜁

𝜃|𝜁−0 = 𝜃|𝜁+0 ,

𝜕𝜃

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=−0
−
𝜕𝜃

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=+0
= (1 + (

𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

⋅ (
𝜕𝜁

𝜕𝑡
+ (V
𝑥

𝜕𝜁

𝜕𝑥
+ V
𝑦

𝜕𝜁

𝜕𝑦
− V
𝑧
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁

) ,

(
𝜕𝜃

𝜕𝑧
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁−0

− (
𝜕𝜃

𝜕𝑧
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁
1
+0

= −2𝑍(1 + (
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

⋅ ∫

𝜃|
𝜁

−∞

exp ( 𝜏

𝑍−1 + 𝛿𝜏
) 𝑑𝜏,

V
𝑧

󵄨󵄨󵄨󵄨𝜁=−0 = V
𝑧

󵄨󵄨󵄨󵄨𝜁=+0 ,

𝜕V
𝑧

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=−0
=
𝜕V
𝑧

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=+0
,

𝜕
2V
𝑧

𝜕𝑧2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=−0

=
𝜕
2V
𝑧

𝜕𝑧2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=+0

,

𝜕
3V
𝑧

𝜕𝑧3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=−0

−
𝜕
3V
𝑧

𝜕𝑧3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=+0

= −𝑅(1 + (
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

⋅ ((1 + (
𝜕𝜁

𝜕𝑥
)

2

+ (
𝜕𝜁

𝜕𝑦
)

2

)

−1

− 1)

⋅ (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) (

𝜕𝜃

𝜕𝑧
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁=+0

,

(69)

with the conditions at infinity

𝑧 = −∞: 𝜃 = 0, V = 0,

𝑧 = +∞: 𝜃 = −1, V = 0.

(70)

5. Stability Analysis

The interface problem analyzed in Section 4 has a travelling
wave solution in the following form:

(𝜃 (𝑥, 𝑦, 𝑧, 𝑡) , 𝛼 (𝑥, 𝑦, 𝑧, 𝑡) , V)

= (𝜃
𝑠
(𝑧 − 𝑢𝑡) , 𝛼

𝑠
(𝑧 − 𝑢𝑡) , 0) ,

(𝜃
𝑠 (𝑧 − 𝑢𝑡) , 𝛼𝑠 (𝑧 − 𝑢𝑡))

=
{

{

{

(0, 1) , 𝑧
2
< 0

(exp (−𝑢𝑧
2
) − 1, 0) , 𝑧

2
> 0,

(71)

where 𝑧
2
= 𝑧−𝑢𝑡 and 𝑢 is the speed of the stationary reaction

front.This solution is a basic and stationary solution of inter-
face problem (61)–(70) written in the moving coordinates.
Then, (61), (63), (65), and (67) can be replaced by

𝜕𝜃

𝜕𝑡
+ (V ⋅ ∇) 𝜃 = Δ𝜃 + 𝑢

𝜕𝜃

𝜕𝑧
2

,

𝜕V
𝜕𝑡

+ (V∇) V

= −∇𝑝 + 𝑃ΔV + 𝑢
𝜕𝜃

𝜕𝑧
2

+ 𝑄 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) (𝜃 + 𝜃

0
) 𝛾.

(72)

The other equations remain unchanged. To study the
stability of reaction front, we seek the solution of the problem
as follows:

𝜃 = 𝜃
𝑠
+ 𝜃,

𝑝 = 𝑝
𝑠
+ 𝑝,

V = V
𝑠
+ Ṽ,

(73)

where 𝜃, 𝑝, and Ṽ are, respectively, small perturbation of
temperature, pressure, and velocity.
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Subtituting (73) into (64), (72), one obtains the first-order
terms as follows:

In the liquid monomer 𝑧
2
> 𝜉

𝜕𝜃

𝜕𝑡
= Δ𝜃 + 𝑢

𝜕𝜃

𝜕𝑧
2

− Ṽ
𝑧
𝜃
󸀠

𝑠
, (74)

𝜕Ṽ
𝜕𝑡

= −∇𝑝 + 𝑃ΔṼ + 𝑢
𝜕𝜃

𝜕𝑧
2

+ 𝑄 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) 𝜃𝛾,

(75)

div (Ṽ) = 0. (76)

In the liquid polymer 𝑧
2
< 𝜉

𝜕𝜃

𝜕𝑡
= Δ𝜃 + 𝑢

𝜕𝜃

𝜕𝑧
2

, (77)

𝜕Ṽ
𝜕𝑡

= −∇𝑝 + 𝑃ΔṼ + 𝑢
𝜕Ṽ
𝜕𝑧
2

+ 𝑄 (1 + 𝜆
1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) 𝜃𝛾,

(78)

div (Ṽ) = 0, (79)

where 𝜉 is defined by 𝜉 = 𝜁 − 𝑢𝑡.
We note

(𝜃, Ṽ
𝑧
) =

{

{

{

(𝜃
1
, V̂
𝑧1
) for 𝑧

2
< 𝜉

(𝜃
2
, V̂
𝑧2
) for 𝑧

2
< 𝜉

(80)

and consider the perturbation as follows:

𝜃
𝑖
= 𝜃
𝑖
(𝑧
2
, 𝑡) exp (𝑗 (𝑘

1
𝑥 + 𝑘
2
𝑦)) ,

V̂
𝑧𝑖
= V
𝑧𝑖
(𝑧
2
, 𝑡) exp (𝑗 (𝑘

1
𝑥 + 𝑘
2
𝑦)) ,

𝜉 = 𝜖
1
(𝑡) exp (𝑗 (𝑘

1
𝑥 + 𝑘
2
𝑦)) ,

(81)

where 𝑘
𝑖
, 𝑖 = 1, 2, and 𝜖

1
denote, respectively, the wave

numbers (in 𝑥 and 𝑦 directions) and the amplitude of the
perturbation and 𝑗

2
= −1. Then, jump conditions (69) are

linearized by taking into account the fact that

𝜃|𝜉=±0 = 𝜃
𝑠
(±0) + 𝜉𝜃

󸀠

𝑠
(±0) + 𝜃 (±0) ,

𝜕𝜃

𝜕𝑧
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=±0

= 𝜃
󸀠

𝑠
(±0) + 𝜉𝜃

󸀠󸀠

𝑠
(±0) +

𝜕𝜃

𝜕𝑧
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=±0

.

(82)

Then the higher-order terms are given as

𝜃
2

󵄨󵄨󵄨󵄨󵄨𝑧
2
=0
− 𝜃
1

󵄨󵄨󵄨󵄨󵄨𝑧
2
=0
= 𝑢𝜉, (83)

𝜕𝜃
2

𝜕𝑧
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

−
𝜕𝜃
1

𝜕𝑧
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

= −𝑢
2
𝜉 −

𝜕𝜉

𝜕𝑡
+ Ṽ
𝑧

󵄨󵄨󵄨󵄨𝑧
2
=0
, (84)

𝑢
2
𝜉 +

𝜕𝜃
2

𝜕𝑧
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

= −
𝑍

𝑢
𝜃
1

󵄨󵄨󵄨󵄨󵄨𝑧
2
=0
, (85)

V̂
2𝑧

󵄨󵄨󵄨󵄨𝑧
2
=0
= V̂
1𝑧

󵄨󵄨󵄨󵄨𝑧
2
=0
, (86)

𝜕V̂
𝑧
2

𝜕𝑧
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

=
𝜕V̂
1𝑧

𝜕𝑧
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

, (87)

𝜕
2V̂
2𝑧

𝜕𝑧2
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

=
𝜕
2V̂
1𝑧

𝜕𝑧2
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

, (88)

𝜕
3V̂
2𝑧

𝜕𝑧3
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

=
𝜕
3V̂
1𝑧

𝜕𝑧3
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧
2
=0

. (89)

Substituting (81) into (83)–(89) leads to

𝜃
2
(0, 𝑡) − 𝜃

1
(0, 𝑡) = 𝑢𝜖

1
(𝑡) ,

𝜃
󸀠

2
(0, 𝑡) − 𝜃

󸀠

1
(0, 𝑡) = −𝜖

1 (𝑡) 𝑢
2
− 𝜖
󸀠

1
(𝑡) + V

1 (0, 𝑡) ,

𝜖
1 (𝑡) 𝑢

2
+ 𝜃
󸀠

2
(0, 𝑡) = −

𝑍

𝑢
𝜃
1 (0, 𝑡) ,

V(𝑖)
2
(0, 𝑡) = V(𝑖)

1
(0, 𝑡) 𝑖 = 0, 1, 2, 3,

(90)

where

V(𝑖) =
𝜕
𝑖V
𝜕V𝑖

,

𝜃
󸀠
=
𝜕𝜃
𝑖

𝜕𝑧
,

𝜖
󸀠

1
(𝑡) =

𝑑𝜖
1
(𝑡)

𝑑𝑡
.

(91)

After simplification, (75) and (78) become

𝜕

𝜕𝑡
ΔṼ
𝑧
− 𝑢

𝜕

𝜕𝑧
2

ΔṼ
𝑧
= 𝑃ΔΔṼ

𝑧
+ 𝑄(1 + 𝜆

1
sin (𝜎

1
𝑡)

+ 𝜆
2
sin (𝜎

2
𝑡) (

𝜕
2

𝜕𝑥2
+

𝜕
2

𝜕𝑦2
))𝜃.

(92)

Substituting (71), (87), (88) into (74), (77), (92) and
introducing the variable 𝑤 = V󸀠󸀠 − 𝑘2V, where 𝑘 = √𝑘2

1
+ 𝑘2
2
,

one obtains two systems of equations as follows:

𝑧
2
< 𝜉:

𝜕𝑤

𝜕𝑡
− 𝑢𝑤
󸀠
− 𝑃 (𝑤

󸀠󸀠
− 𝑘
2
𝑤)

= −𝑄𝑘
2
(1 + 𝜆

1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) 𝜃,

𝑤 = V󸀠󸀠 − 𝑘2V,

𝜕𝜃

𝜕𝑡
− 𝜃
󸀠󸀠
− 𝑢𝜃
󸀠
+ 𝑘
2
𝜃 = 0.

(93)
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Figure 1: Critical Rayleigh number as a function of 𝜎
1
for different

frequencies ratio and for 𝜎
2
= 0, 𝜆

1
= 𝜆
2
= 5, 𝑃 = 0.5, 𝑍 = 8, and

𝑘 = 0.7.

𝑧
2
> 𝜉:

𝜕𝑤

𝜕𝑡
− 𝑢𝑤
󸀠
− 𝑃 (𝑤

󸀠󸀠
− 𝑘
2
𝑤)

= −𝑄𝑘
2
(1 + 𝜆

1
sin (𝜎

1
𝑡) + 𝜆

2
sin (𝜎

2
𝑡)) 𝜃,

𝑤 = V󸀠󸀠 − 𝑘2V,

𝜕𝜃

𝜕𝑡
− 𝜃
󸀠󸀠
− 𝑢𝜃
󸀠
+ 𝑘
2
𝜃 = 𝑢 exp (−𝑢𝑧

2
) V,

(94)

with the following boundary conditions:

𝜃
2
(0, 𝑡) − 𝜃

1
(0, 𝑡) = 𝑢𝜖

1
(𝑡) , (95)

𝜃
󸀠

2
(0, 𝑡) − 𝜃

󸀠

1
(0, 𝑡) = −𝑢

2
𝜀
1
(𝑡) − 𝜀

󸀠

1
(𝑡) + V

1
(0, 𝑡) , (96)

𝜃
󸀠

2
(0, 𝑡) +

𝑍

𝑢
𝜃
1 (0, 𝑡) = −𝑢

2
𝜀
1 (𝑡) , (97)

V(𝑖)
1
(0, 𝑡) = V(𝑖)

2
(0, 𝑡) , 𝑖 = 0, 1, 2, 3. (98)

Combining the three boundary conditions (95)–(97)
yields

𝜃
󸀠

1
(0, 𝑡) +

𝑍

𝑢
𝜃
1
(0, 𝑡) =

1

𝑢
(𝜃
2
(0, 𝑡) − 𝜃

1
(0, 𝑡))

󸀠

𝑡

− V
1
(0, 𝑡) .

(99)

6. Numerical Results

The numerical simulations of the problem are performed
using the finite-difference approximation with implicit
scheme. The algorithm is given in Appendix.

Evolution of maximum temperature versus time provides
the onset of stability of the polymerization front. The con-
vective instability occurs when a jump from bounded to
unbounded values of maximum temperature is achieved.

Figure 1 shows the critical Rayleigh number as a function
of the frequency 𝜎

1
for different frequencies ratio and for
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1
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1
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Figure 3: Critical Rayleigh number as a function of 𝜆
2
for different

frequencies ratio, 𝑘 = 0.7, 𝜆
1
= 5, 𝑃 = 0.5, 𝑍 = 8, and 𝜎

1
= 5.

𝜎
2
= 0. In the absence of gravitational modulation (𝜎

1
= 𝜎
2
=

0), we find the same result (𝑅
𝑐
≈ 27) as in [8, 14]. It can be

observed that the frequencies ratio of the QP gravitational
modulation has a significant influence on the convective
instability of the reaction front. As indicated, increasing the
frequencies ratio, the stability domain becomes larger. In
particular, this can be seen in the range of the frequency
𝜎
1
belonging to the interval (0, 10). For large values of the

frequency 𝜎
1
, the frequencies ratio 𝜎

2
/𝜎
1
has no effect on

the convective instability. It is also worthy to notice that
the QP gravitational modulation has a stabilizing effect for
sufficiently large frequencies ratio (𝜎

2
= √37𝜎

1
) comparing

to the periodic modulation case (𝜎
2
= 0).

The critical Rayleigh number as a function of the ampli-
tude 𝜆

2
is shown in Figure 2 for different values of 𝜆

1
. We can

conclude that, for a fixed value of 𝜆
2
and increased values of

𝜆
1
, the polymerization front loses its stability monotonically

revealing that the stability of the reaction front can be
controlled by acting on the amplitudes of the QPmodulation.

Figure 3 illustrates the critical Rayleigh number as a
function of the amplitude 𝜆

2
for different frequencies ratio.

It can be observed that increasing the frequencies ratio the
stability domain becomes large for certain values of 𝜆

2
. For

large values of 𝜆
2
(𝜆
2
≥ 100), the effect of the frequencies

ratio on the convective instability boundary is insignificant.
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different frequencies ratios, 𝑘 = 0.7, 𝜆
1
= 5, 𝑃 = 0.5, 𝑍 = 8, and

𝜎
1
= 10.

Figure 4 shows for a fixed frequencies ratio, 𝜎
2
/𝜎
1
= √7,

the influence of the wave number on the critical Rayleigh
number versus 𝜆

2
. The plots indicate that for large values of

the wave number the reaction front gains stability.
The influence of 𝜆

2
on the stability of the reaction front is

given in Figure 5 for two different frequencies ratio. From this
figure, one can conclude that an increase of the frequencies
ratio has a stabilizing effect.

7. Conclusion

In this work, we have studied the influence of the QP vibra-
tions on the convective instability of liquid-liquid polymer-
ization front.We have used themodel which includes the heat
equation, the concentration equation, and the Navier-Stokes
equations under Boussinesq approximation. The Zeldovich
Frank-Kamenetskii method has been used assuming that the
reaction occurs in a narrow zone. To obtain the convec-
tive instability threshold using the linear stability analysis,
the reduced system of equations has been discretized and
resolved using the finite-difference method with implicit
scheme. The results have shown that, for fixed values of
amplitudes, an increase of the frequencies ratio stabilizes the
reaction front, and for large values of the frequency 𝜎

1
the

critical Rayleigh number tends to the unmodulated critical
value. In addition, it is observed that for a fixed frequencies

ratio and for a given amplitude 𝜆
2
an increase of the ampli-

tude𝜆
1
destabilizes the reaction front. Also, the reaction front

becomes more stable by increasing the wave number.

Appendix

The algorithm of the considered problem uses the finite-
difference approximation with implicit scheme. The velocity
is computed from the previous time values of the problem.
The discretization in space is given by 𝑧

𝑖
= 𝑖ℎ, where ℎ is the

space step and 𝑖 is a positive integer.The discretization in time
is given by 𝑡

𝑖
= 𝑖𝜏, where 𝜏 is sufficiently small time step. The

variables of discretization are 𝑤𝑗
𝑖
= 𝑤(𝑧

𝑖
, 𝑡
𝑗
), V𝑗
𝑖
= V(𝑧

𝑖
, 𝑡
𝑗
),

and 𝜃𝑗
𝑖
= 𝜃(𝑧
𝑖
, 𝑡
𝑗
). One obtains the following:

In the liquid monomer 𝑧 < 𝜁

(
−1

ℎ2
) 𝜃
𝑗+1

𝑖−1
+ (

1

𝜏
+

2
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2
+
𝑢

ℎ
) 𝜃
𝑗+1

𝑖
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1

ℎ2
−
𝑢

ℎ
) 𝜃
𝑗+1

𝑖+1
=
1

𝜏
𝜃
𝑗

𝑖
,

(
−𝑃

ℎ2
)𝑤
𝑗+1

𝑖−1
+ (

1

𝜏
+
2𝑃

ℎ2
+ 𝑃𝑘
2
+
𝑢

ℎ
)𝑤
𝑗+1

𝑖

+ (−
𝑃
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−
𝑢
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)𝑤
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=
1
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2
(1 + 𝜆

1
sin (𝜎

1
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) + 𝜆
2
sin (𝜎

2
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1
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) V𝑗+1
𝑖−1

+ (−
2
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2
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𝑖

+ (
1

ℎ2
) V𝑗+1
𝑖+1

= 𝑤
𝑗

𝑖
.

(A.1)

In the liquid polymer 𝑧 > 𝜁
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(A.2)

From the jump conditions, we have also the following
systems:

(
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1

𝜏
+

2

ℎ2
+ 𝑘
2
+
𝑢

ℎ
+ (

𝑐
1

𝑐
2

)(
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0
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with
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−
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