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We study conditions under which the solutions of linear Volterra integrodynamic system of the form 𝑦
Δ
(𝑡) = 𝐴(𝑡)𝑦(𝑡) +

∫
𝑡

𝑡0

𝐾(𝑡, 𝑠)𝑦(𝑠)Δ𝑠 are stable on certain time scales. We construct a number of Lyapunov functionals on time scales from which
we obtain necessary and sufficient conditions for stability of Volterra integrodynamic system and also we prove several results
concerning qualitative behavior of this system.

1. Introduction

The theory of Volterra integrodifferential equation (VIDE)
has been studied extensively by several researchers [1–5]. In
[1], Becker investigates the variation of parameters formula
for a VIDE and its adjoint. The interesting and useful aspects
of VIDE have been shown in different articles of Burton
and Mahfoud (see [2, 3, 6]). Elaydi, in [5], discusses the
periodicity and stability of linear Volterra difference systems.

Time scale theory, introduced by Hilger [7] at the end of
the twentieth century as a means to unify the discrete and
the differential calculus, is now a well established subject. For
an excellent introduction to the calculus and to the theory
of dynamic equations on time scales we recommend the
books [8, 9]. Volterra and Fredholm type equations (both
integral and integrodynamic) on time scales become a new
field of interest; for example, see [5, 10–22]. In [13], Adivar
contributes to principle matrix and variation of parameter
formula for VIDE. Recently, Lupulescu et al. [21] discuss the
resolvent asymptotic stability and boundedness of VIDE and
show that principle matrix and resolvent are equivalent to
linear VIDE on time scales.

Constructing Lyapunov functionals for integrodifferen-
tial equations has been a very challenging task, even in the
continuous case. Burton was the first one to construct such
functionals and utilize them to qualitatively analyze solutions
of integrodifferential equations.The study of integrodynamic

equations on time scales provides deeper and comprehensive
understanding of traditional integrodifferential equations
andVolterra difference equations.This paper generalize some
results of [4] for the continuous case (i.e., T = R) and all of
them are new for the other time scales. We begin by stating
some important facts and properties of time scales that we
will be using during our analysis.

2. Preliminaries

Let R𝑛 be the space of 𝑛-dimensional column vectors 𝑥 =
col(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) with a norm ‖ ⋅ ‖. Also, with the same

symbol ‖ ⋅ ‖ we will denote the corresponding matrix norm
in the space𝑀

𝑛
(R) of 𝑛 × 𝑛matrices. If 𝐴 ∈ 𝑀

𝑛
(R), then we

denote by 𝐴𝑇 its conjugate transpose. We recall that ‖𝐴‖ :=
sup{‖𝐴𝑥‖; ‖𝑥‖ ≤ 1} and the following inequality ‖𝐴𝑥‖ ≤
‖𝐴‖‖𝑥‖ holds for all 𝐴 ∈ 𝑀

𝑛
(R) and 𝑥 ∈ R𝑛.

By a time scale T we mean any closed subset ofR. Since a
time scale T is not connected in general, we need the concept
of jump operators. The forward jump operator 𝜎 : T → T is
defined by 𝜎(𝑡) := inf{𝑠 ∈ T : 𝑠 > 𝑡}, while the backward jump
operator 𝜌 : T → T is defined by 𝜌(𝑡) := sup{𝑠 ∈ T : 𝑠 < 𝑡}.
In this definition, we put inf 0 = sup T and sup 0 = inf T . If
𝜎(𝑡) > 𝑡, we say 𝑡 is a right-scattered point, while if 𝜌(𝑡) < 𝑡, we
say 𝑡 is a left-scattered point. Points that are right-scattered and
left-scattered at the same time will be called isolated points.
A point 𝑡 ∈ T such that 𝑡 < sup T and 𝜎(𝑡) = 𝑡 is called
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a right-dense point. A point 𝑡 ∈ T such that 𝑡 > inf T and
𝜌(𝑡) = 𝑡 is called a left-dense point. Points that are right-dense
and left-dense at the same timewill be called dense points.The
set T𝜅 is defined to be T𝜅 = T \ {𝑚} if T has a left-scattered
maximum 𝑚; otherwise T𝜅 = T . The graininess function 𝜇 :
T → [0,∞) is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡. Given a time scale
interval [𝑎, 𝑏]T := {𝑡 ∈ T : 𝑎 ≤ 𝑡 ≤ 𝑏}, [𝑎, 𝑏]𝜅T denotes the
interval [𝑎, 𝑏]T if 𝑎 < 𝜌(𝑏) = 𝑏 and denotes the interval [𝑎, 𝑏)T
if 𝑎 < 𝜌(𝑏) < 𝑏. In fact, [𝑎, 𝑏)T = [𝑎, 𝜌(𝑏)]T . Also, for 𝑎 ∈ T ,
we define [𝑎,∞)T = [𝑎,∞) ∩ T . If T is a bounded time scale,
then T can be identified with [inf T , sup T]T .

Throughout this work, we assume that sup T = ∞ with
bounded graininess; that is, 𝜇(𝑡) < ∞.

If 𝑡
0
∈ T and 𝛿 > 0, then we define the following

neighborhoods of 𝑡
0
: 𝑈T (𝑡0, 𝛿) := (𝑡0 − 𝛿, 𝑡0 + 𝛿) ∩ T .

Let us consider some examples of time scales (see [8]).

Example 1. (i) If ℎ > 0, T = ℎZ = {ℎ𝑘 : 𝑘 ∈ Z} is a time scale.
Then we have 𝜎(𝑡) = 𝑡 + ℎ, and 𝜌(𝑡) = 𝑡 − ℎ for all 𝑡 ∈ ℎZ.
Hence, each point 𝑡 ∈ ℎZ is isolated, 𝜇(𝑡) = ℎ for all 𝑡 ∈ ℎZ,
and T𝜅 = T .

(ii) Let T = P
1,1
= ⋃
𝑘∈Z[2𝑘, 2𝑘 + 1]. Then

𝜎 (𝑡) =

{{{

{{{

{

𝑡 + 1, if 𝑡 ∈ ⋃
𝑘∈Z

{2𝑘 + 1} ,

𝑡, if 𝑡 ∈ ⋃
𝑘∈Z

[2𝑘, 2𝑘 + 1) ,

𝜌 (𝑡) =

{{{

{{{

{

𝑡 − 1, if 𝑡 ∈ ⋃
𝑘∈Z

{2𝑘} ,

𝑡, if 𝑡 ∈ ⋃
𝑘∈Z

(2𝑘, 2𝑘 + 1] ,

𝜇 (𝑡) =

{{{

{{{

{

1, if 𝑡 ∈ ⋃
𝑘∈Z

{2𝑘 + 1} ,

0, if 𝑡 ∈ ⋃
𝑘∈Z

[2𝑘, 2𝑘 + 1) .

(1)

Definition 2 (see [8]). A function 𝑓 : T → R is called
regulated if its right-sided limits exist (finite) at all right-dense
points in T and its left-sided limits exist (finite) at all left-
dense points in T . A function 𝑓 : T → R is called rd-
continuous if it is continuous at all right-dense points in T

and its left-sided limits exist (finite) at all left-dense points in
T .

Obviously, a continuous function is rd-continuous, and a
rd-continuous function is regulated [8, Theorem 1.60].

Definition 3 (see [8]). Let 𝑓 : T → R and 𝑡 ∈ T𝜅. We define
𝑓
Δ
(𝑡) ∈ R (provided it exists) with the property that, for every

𝜀 > 0, there exists 𝛿 > 0 such that

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓

Δ
(𝑡) [𝜎 (𝑡) − 𝑠]


≤ 𝜀 ‖𝜎 (𝑡) − 𝑠‖ (2)

for all 𝑠 ∈ 𝑈T (𝑡, 𝛿). We call 𝑓Δ(𝑡) the delta derivative (Δ-
derivative for short) of𝑓 at 𝑡

0
. Moreover, we say that𝑓 is delta

differentiable (Δ-differentiable for short) on T𝜅 provided that
𝑓
Δ
(𝑡) exists for all 𝑡 ∈ T𝜅.

Nowwe recall some properties of the exponential function
on time scales. For definition of the exponential function on
time scales, see [8, Definition 2.30]. A function 𝑝 : T → R

is called positively regressive if 1 + 𝜇(𝑡)𝑝(𝑡) > 0 for all 𝑡 ∈ T𝜅.
If 𝑝 : T → R is a positively regressive function and 𝑡

0
∈ T ,

then (see [8,Theorem 2.33]) the exponential function 𝑒
𝑝
(⋅, 𝑡
0
)

is the unique solution of the initial value problem:

𝑦
Δ
= 𝑝 (𝑡) 𝑦, 𝑦 (𝑡0) = 1. (3)

The following properties of the exponential function holds:

(i) 𝑒
0
(𝑡, 𝑠) = 1 and 𝑒

𝑝
(𝑡, 𝑡) = 1.

(ii) 𝑒
𝑝
(𝜎(𝑡), 𝑠) = [1 + 𝜇(𝑡)𝑝(𝑡)]𝑒

𝑝
(𝑡, 𝑠).

(iii) 𝑒
𝑝
(𝑡, 𝑟)𝑒

𝑝
(𝑟, 𝑠) = 𝑒

𝑝
(𝑡, 𝑠).

(iv) 𝑒
𝑝
(𝑡, 𝑠) = 1/𝑒

𝑝
(𝑠, 𝑡).

In particular, if 𝑝 ∈ R is such that 1 + 𝜇(𝑡)𝑝 > 0 for all
𝑡 ∈ T𝑘, we have 𝑒

𝑝
(𝑡, 0) = 𝑒

𝑝𝑡 if T = R and 𝑒
𝑝
(𝑡, 𝑠) = (1+𝑝ℎ)

𝑡/ℎ

if T = ℎZ with ℎ > 0.
For more details, see [8]. Clearly, 𝑒

𝑝
(𝑡, 𝑠) never vanishes.

The next definitions are about shift and convolution of
functions on time scales (see [23]).

Definition 4. For a given function 𝑙 : T
0
→ C, the solution

of shifting problem

𝑤
Δ 𝑡 (𝑡, 𝜎 (𝑠)) = −𝑤

Δ 𝑠 (𝑡, 𝑠) , 𝑡, 𝑠 ∈ T , 𝑠 ∈ [𝑡0, 𝑡]T ,

𝑤 (𝑡, 𝑡
0
) = 𝑙 (𝑡) , 𝑡 ∈ T , 𝑡0 ∈ T0,

(4)

is denoted by �̃� and it is called shift (or delay) of 𝑙.

Example 5. For the regressive 𝜆, 𝑒
𝜆
(𝑡, 𝑠), satisfy the shift prob-

lem (4).

Definition 6. For given functions 𝑙, ℎ : T → R, their convo-
lution 𝑙 ∗ ℎ is defined by

(𝑙 ∗ ℎ) (𝑡) = ∫

𝑡

𝑡0

�̃� (𝑡, 𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠, 𝑡 ∈ T . (5)

Furthermore, reader can see the existence and uniqueness
of shift problem (4) and its properties in [23, Section 5]. Next
two results are needed for our proofs.

Lemma 7 (see [8, Theorem 1.117]). Let 𝑥 ∈ T𝑘, 𝑦 ∈ T and
assume that 𝑙 : T × T𝑘 → R is continuous at (𝑡, 𝑡), where 𝑡 ∈
T𝑘 with 𝑡 > 𝑥. Also assume that 𝑙Δ(𝑡, ⋅) is rd-continuous
on [𝑥, 𝜎(𝑡)]T . Suppose that, for each 𝜖 > 0, there exists a
neighborhood 𝑉 of 𝑡, independent of 𝜏 ∈ [𝑥, 𝜎(𝑡)]T , such that


𝑙 (𝜎 (𝑡) , 𝜏) − 𝑙 (𝑠, 𝜏) − 𝑙

Δ
(𝑡, 𝜏) [𝜎 (𝑡) − 𝑠]



≤ 𝜀 ‖𝜎 (𝑡) − 𝑠‖ , ∀𝑠 ∈ 𝑉.

(6)
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Then one has

(i) 𝑓 (𝑡) = ∫
𝑡

𝑥

𝑙 (𝑡, 𝜏) Δ𝜏 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑓
Δ
(𝑡)

= ∫

𝑡

𝑥

𝑙
Δ
(𝑡, 𝜏) Δ𝜏 + 𝑙 (𝜎 (𝑡) , 𝑡) ;

(ii) 𝑔 (𝑡) = ∫
𝑦

𝑡

𝑙 (𝑡, 𝜏) Δ𝜏 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑔
Δ
(𝑡)

= ∫

𝑦

𝑡

𝑙
Δ
(𝑡, 𝜏) Δ𝜏 − 𝑙 (𝜎 (𝑡) , 𝑡) .

(7)

Lemma 8 (see [8, Theorem 6.15]). Let 𝑥, 𝑦 ∈ T . For rd-con-
tinuous functions 𝑙, ℎ : [𝑥, 𝑦]T → R, one has the following
inequality:

∫

𝑦

𝑥

‖𝑙 (𝑡) ℎ (𝑡)‖ Δ𝑡 ≤ √{∫

𝑦

𝑥

‖𝑙 (𝑡)‖
2
Δ𝑡∫

𝑦

𝑥

‖ℎ (𝑡)‖
2
Δ𝑡}. (8)

Let us consider a linear Volterra integrodynamic system
of the form

𝑦
Δ
(𝑡) = 𝐴 (𝑡) 𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠, 𝑦 (𝑡0) = 𝑦0, (9)

where 𝐴(𝑡) is continuous and a regressive 𝑛 × 𝑛 matrix on
T
0
:= [𝑡
0
,∞)T , 0 ≤ 𝑡0 ∈ T𝑘 and 𝐾(𝑡, 𝑠) is continuous and a

regressive 𝑛 × 𝑛matrix onΩ = {(𝑡, 𝑠) : 𝑡
0
≤ 𝑠 ≤ 𝑡 < ∞}.

We develop the results about stability by using the
Lyapunov second (direct) method. The principal idea of
the second method is contained in the following physical
reasoning: if the rate of change, 𝑑𝐸(𝑥)/𝑑𝑡, of the energy
𝐸(𝑥) of an isolated physical system is negative for every
possible state 𝑥, except for a single equilibrium state 𝑥

𝑒
(i.e.,

𝑑𝐸(𝑥
𝑒
)/𝑑𝑡 = 0), then the energy will continually decrease

until it finally assumes its minimum value 𝐸(𝑥
𝑒
). In other

words, a system that is perturbed from its equilibrium state
will always return to it. This is intuitive concept of stability.
The mathematical counterpart of the preceding statement is
the following.

A solution of (9) will be denoted by 𝑦(𝑡) if no confusion
should arise. In the remainder of this paper when we say the
zero solution of (9) wemean the zero solution of (9) with𝑦

0
=

0.

Definition 9. The zero solution of (9) is stable, if for every 𝜀 >
0 there exist 𝛿 > 0 such that, for any solution 𝑦(𝑡) of (9), the
inequality ‖𝑦

0
‖ < 𝛿 implies ‖𝑦(𝑡)‖ < 𝜀 for 𝑡 ∈ T

0
.

Definition 10. Thezero solution of (9) is asymptotically stable,
if it is stable and attractive (i.e., if for any solution 𝑦(𝑡) of (9),
there exist 𝛿

0
≥ 0 such that ‖𝑦

0
‖ < 𝛿
0
implies ‖𝑦(𝑡)‖ → 0 as

𝑡 → ∞).

Definition 11. Thezero solution of (9) is unstable if there exists
𝜀 > 0 such that for any 𝛿 > 0, 𝛿 < 𝜀 if ‖𝑦

0
‖ < 𝛿, then, for any

solution 𝑦(𝑡) of (9), there is 𝑡
1
> 𝑡 ∈ T

0
with ‖𝑦(𝑡

1
)‖ ≥ 𝜀.

Let us consider new functions as follows:

𝐶 (𝑡) := ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠,

𝐸 (𝑡, 𝑠)

:= ∫

∞

𝑡

(1 + 𝜇 (𝑢) 𝐶 (𝑢) + 𝜇 (𝑢) ‖𝐴 (𝑢)‖) ‖𝐾 (𝑢, 𝑠)‖ Δ𝑢

(10)

assuming of course that 𝐸(𝑡, 𝑠) exists for (𝑡, 𝑠) ∈ Ω.

Definition 12 (see [14]). A dynamic system is stable if and only
if there exists a “Lyapunov functional,” that is, some scalar
function 𝑉(𝑥) of the state with the properties:

(a) 𝑉(𝑥) > 0, 𝑉Δ(𝑥) < 0, when 𝑥 ̸= 𝑥
𝑒
.

(b) 𝑉(𝑥) = 𝑉Δ(𝑥) = 0, when 𝑥 = 𝑥
𝑒
.

3. The Scalar Equation

In this section, we consider the scalar case of Volterra equa-
tion (9); that is, 𝐴 : T

0
→ R and𝐾 : Ω → R.

Theorem 13. Suppose that, for some 𝛼 > 0,

(1 + 𝜇 (𝑡) ‖𝐴 (𝑡)‖) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠 − 2 ‖𝐴 (𝑡)‖

+ 𝜇 (𝑡) 𝐴
2
(𝑡) + 𝐸 (𝜎 (𝑡) , 𝑡) ≤ −𝛼.

(11)

Then the zero solution of (9) is stable if and only if 𝐴(𝑡) < 0.

Proof. Suppose that 𝐴(𝑡) < 0 and consider the functional

𝑉 (𝑡, 𝑦 (⋅)) = 𝑦
2
(𝑡) + ∫

𝑡

𝑡0

𝐸 (𝑡, 𝑠) 𝑦
2
(𝑠) Δ𝑠. (12)

The derivative of 𝑉(𝑡, 𝑦(⋅)) along solution 𝑦(𝑡) of (9) satisfies

𝑉
Δ
(𝑡, 𝑦 (⋅)) = 2𝑦 (𝑡) 𝑦

Δ
(𝑡) + 𝜇 (𝑡) (𝑦

Δ
(𝑡))
2

+ 𝐸 (𝜎 (𝑡) , 𝑡) 𝑦
2
(𝑡) + ∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠) 𝑦

2
(𝑠) Δ𝑠

= 2𝑦 (𝑡) (𝐴 (𝑡) 𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

+ 𝜇 (𝑡) (𝐴 (𝑡) 𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

2

+ 𝐸 (𝜎 (𝑡) , 𝑡) 𝑦
2
(𝑡)

− ∫

𝑡

𝑡0

(1 + 𝜇 (𝑡) {‖𝐴 (𝑡)‖ + 𝐶 (𝑡)}) ‖𝐾 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠
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= 2𝑦
2
(𝑡) 𝐴 (𝑡) + 2𝑦∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠

+ 𝜇 (𝑡) (𝐴 (𝑡) 𝑦 (𝑡))
2
+ 𝜇 (𝑡) (∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

2

+ 2𝜇 (𝑡) 𝐴 (𝑡) 𝑦 (𝑡) ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠

− ∫

𝑡

𝑡0

(1 + 𝜇 (𝑡) {‖𝐴 (𝑡)‖ + 𝐶 (𝑡)}) ‖𝐾 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠

+ 𝐸 (𝜎 (𝑡) , 𝑡) 𝑦
2
(𝑡) .

(13)

Using Lemma 8, it follows that

𝑉
Δ
(𝑡, 𝑦 (⋅)) ≤ 2𝑦

2
(𝑡) 𝐴 (𝑡) + ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖

⋅ (𝑦
2
(𝑡) + 𝑦

2
(𝑠)) Δ𝑠 + 𝜇 (𝑡) (𝐴 (𝑡) 𝑦 (𝑡))

2
+ 𝜇 (𝑡)

⋅ (𝐶 (𝑡) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠) + 𝜇 (𝑡) ‖𝐴 (𝑡)‖

⋅ ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ (𝑦
2
(𝑡) + 𝑦

2
(𝑠)) Δ𝑠

− ∫

𝑡

𝑡0

(1 + 𝜇 (𝑡) {‖𝐴 (𝑡)‖ + 𝐶 (𝑡)}) ‖𝐾 (𝑡, 𝑠)‖

⋅ 𝑦
2
(𝑠) Δ𝑠 + 𝐸 (𝜎 (𝑡) , 𝑡) 𝑦

2
(𝑡) = (2𝐴 (𝑡) + 𝜇 (𝑡)

⋅ 𝐴
2
(𝑡) + (1 + 𝜇 (𝑡) ‖𝐴 (𝑡)‖) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠

+ 𝐸 (𝜎 (𝑡) , 𝑡)) 𝑦
2
(𝑡) .

(14)

Now by (11) we have the following estimation:

𝑉
Δ
(𝑡, 𝑦 (⋅)) ≤ −𝛼𝑦

2
(𝑡) . (15)

As 𝑉 is positive definite and 𝑉Δ ≤ 0, it follows that 𝑦 ≡ 0 is
stable.

Conversely, suppose on the contrary that 𝐴(𝑡) ̸< 0; that
is, 𝐴(𝑡) ≥ 0.

For 𝐴(𝑡) = 0 for 𝑡 ≥ 𝑡
0
assumption (11) does not hold.

For 𝐴(𝑡) > 0 consider the following functional:

𝑊(𝑡, 𝑦 (⋅)) = 𝑦
2
(𝑡) − ∫

𝑡

𝑡0

𝐸 (𝑡, 𝑠) 𝑦
2
(𝑠) Δ𝑠. (16)

Similar to the previous calculation, we obtain

𝑊
Δ
(𝑡, 𝑦 (⋅)) ≥ 2𝑦

2
(𝑡) 𝐴 (𝑡) − ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ (𝑦
2
(𝑡)

+ 𝑦
2
(𝑠)) Δ𝑠 − 𝜇 (𝑡) (𝐴 (𝑡) 𝑦 (𝑡))

2
− 𝜇 (𝑡)

⋅ (𝐶 (𝑡) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠) − 𝜇 (𝑡) ‖𝐴 (𝑡)‖

⋅ ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ (𝑦
2
(𝑡) + 𝑦

2
(𝑠)) Δ𝑠 − 𝐸 (𝜎 (𝑡) , 𝑡)

⋅ 𝑦
2
(𝑡) + ∫

𝑡

𝑡0

(1 + 𝜇 (𝑡) {‖𝐴 (𝑡)‖ + 𝐶 (𝑡)}) ‖𝐾 (𝑡, 𝑠)‖

⋅ 𝑦
2
(𝑠) Δ𝑠 = [2𝐴 (𝑡) − {𝜇 (𝑡) 𝐴

2
(𝑡)

+ (1 + 𝜇 (𝑡) ‖𝐴 (𝑡)‖)

⋅ ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠 + 𝐸 (𝜎 (𝑡) , 𝑡)}] 𝑦
2
(𝑡) ,

(17)

which implies

𝑊
Δ
(𝑡, 𝑦 (⋅)) ≥ 𝛼𝑦

2
(𝑡) . (18)

Now, any 𝛿 > 0, with ‖𝑦
0
‖ < 𝛿 and𝑊(𝑡, 𝑦(⋅)) > 0 so that if

𝑦(𝑡) is a solution of (9), then we have

𝑦
2
(𝑡) ≥ 𝑊

Δ
(𝑡, 𝑦 (⋅)) ≥ 𝑊 (𝑡0, 𝑦0) + 𝛼∫

𝑡

𝑡0

𝑦
2
(𝑠) Δ𝑠

≥ 𝑊(𝑡
0
, 𝑦
0
) + 𝛼∫

𝑡

𝑡0

𝑊(𝑡
0
, 𝑦
0
) Δ𝑠.

(19)

Hence,

𝑦
2
(𝑡) ≥ 𝑊 (𝑡0, 𝑦0) + 𝛼𝑊(𝑡0, 𝑦0) (𝑡 − 𝑡0) . (20)

As 𝑡 → ∞, ‖𝑦(𝑡)‖ → ∞ which is the contradiction to the
fact that the zero solution is stable. Hence, 𝐴(𝑡) < 0 which
completes our proof.

Corollary 14. If (11) holds and 𝐴(𝑡) < 0 and bounded, then
the zero solution of (9) is asymptotically stable.

Proof. By Theorem 13, it follows that 𝑉Δ(𝑡, 𝑦(⋅)) ≤ −𝛼𝑦2(𝑡).
This implies that 𝑦2(𝑡) is in 𝐿1(T

0
) and 𝑦2(𝑡) is bounded. It

follows from (11) and (9) that 𝑦Δ(𝑡) is bounded.Thus, 𝑦(𝑡) →
0 as 𝑡 → ∞. The proof is complete.

Remark 15. Notice that condition (11) would not hold if
𝐴(𝑡) is allowed to vanish at some point 𝑡 ∈ T

0
. Therefore,

Theorem 13 cannot apply unless𝐴(𝑡) ̸= 0 for all 𝑡 ∈ T
0
. In next

result we consider (9) where 𝐴(𝑡)may vanish at any 𝑡 ∈ T
0
.
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We select a continuous function 𝐿(𝑡, 𝑠) with

Δ
𝑡
𝐿 (𝑡, 𝑠) := 𝐾 (𝑡, 𝑠) (21)

and let

𝐵 (𝑡) := 𝐴 (𝑡) − 𝐿 (𝜎 (𝑡) , 𝑡) , (22)

so that (9) may be written as

𝑦
Δ
(𝑡) = 𝐵 (𝑡) 𝑦 (𝑡) + Δ 𝑡 ∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠. (23)

Theorem 16. Suppose that (21) holds and there are constants
𝐵
1
, 𝐵
2
, 𝐽, and 𝑅 with 𝑅 < 2 such that

(i) 0 < 𝐵
1
≤ ‖𝐵‖ ≤ 𝐵

2
,

(ii) ∫𝑡
𝑡0

‖𝐿(𝑡, 𝑠)‖Δ𝑠 ≤ 𝐽 < 1,

(iii) ∫𝑡
𝑡0

‖𝐿(𝑡, 𝑠)‖Δ𝑠 + ∫
∞

𝜎(𝑡)
‖𝐿(𝑢, 𝑡)‖Δ𝑢 + 𝜇(𝑡)𝐵

2

2
≤ 𝑅𝐵
1
/𝐵
2
,

for 𝑡 ∈ T
0
. Furthermore, suppose that there is a continuous

function 𝑙 : T
0
→ R+ with ‖𝐿(𝑡, 𝑠)‖ ≤ �̃�(𝑡, 𝜎(𝑠)) and 𝑙(𝑡) → 0

as 𝑡 → ∞. Then the zero solution of (23) is stable if and only
if 𝐵(𝑡) < 0.

Proof. Suppose that 𝐵(𝑡) < 0 and consider the functional

𝑉 (𝑡, 𝑦 (⋅)) = (𝑦 (𝑡) − ∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

2

+ 𝐵
2
∫

𝑡

𝑡0

∫

∞

𝑡

‖𝐿 (𝑢, 𝑠)‖ Δ𝑢𝑦
2
(𝑠) Δ𝑠.

(24)

The derivative of 𝑉(𝑡, 𝑦(⋅)) along a solution 𝑦(𝑡) of (23) satis-
fies

𝑉
Δ
(𝑡, 𝑦 (⋅)) = 2𝑦

2
(𝑡) 𝐵 (𝑡)

+ 2𝐵 (𝑡) 𝑦 (𝑡) ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠

+ 𝜇 (𝑡) (𝐵 (𝑡) 𝑦 (𝑡))
2

+ 𝐵
2
∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑡)‖ Δ𝑢𝑦
2
(𝑡)

− 𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠.

(25)

Using (i) and (iii), we may write

𝑉
Δ
(𝑡, 𝑦 (⋅)) ≤ 2𝑦

2
(𝑡) 𝐵 (𝑡)

+ 𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ (𝑦
2
(𝑡) + 𝑦

2
(𝑠)) Δ𝑠 + 𝜇 (𝑡)

⋅ (𝐵 (𝑡) 𝑦 (𝑡))
2
+ 𝐵
2
∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑡)‖ Δ𝑢𝑦
2
(𝑡)

− 𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠 = 2𝑦

2
(𝑡) 𝐵 (𝑡)

+ 𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠𝑦
2
(𝑡) + 𝜇 (𝑡) 𝐵

2

2
𝑦
2
(𝑡)

+ 𝐵
2
∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑡)‖ Δ𝑢𝑦
2
(𝑡) = [2𝐵 (𝑡)

+ 𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠

+ 𝐵
2
∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑡)‖ Δ𝑢 + 𝜇 (𝑡) 𝐵
2

2
] 𝑦
2
(𝑡) ≤ [2𝐵

+ 𝑅𝐵
1
] 𝑦
2
(𝑡) ≤ [−2𝐵1 + 𝑅𝐵1] 𝑦

2
(𝑡) = −𝛽𝑦

2
(𝑡) ,

𝛽 > 0.

(26)

Let 𝜀 > 0; we have to find 𝛿 > 0 so that if ‖𝑦
0
‖ < 𝛿, this implies

‖𝑦(𝑡)‖ < 𝜀 for all 𝑡 ∈ T
0
. Since 𝑉Δ(𝑡, 𝑦(⋅)) ≤ 0 for all 𝑡 ∈ T

0
,

then

𝑉 (𝑡, 𝑦 (⋅)) ≤ 𝑉 (𝑡0, 𝑦0) =
𝑦0

2
< 𝛿
2
. (27)

Hence,

𝑉 (𝑡, 𝑦 (⋅)) < 𝛿
2
. (28)

On the other hand, (24) yields

𝑉 (𝑡, 𝑦 (⋅)) ≥ (𝑦 (𝑡) − ∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

2

≥ (
𝑦 (𝑡)

 −



∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠



)

2

.

(29)

Combining (28) and (29) we obtain

𝑦 (𝑡)
 < 𝛿 + ∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖
𝑦 (𝑠)

 Δ𝑠. (30)

Now, as long as ‖𝑦(𝑡)‖ < 𝜀, we have

𝑦 (𝑡)
 < 𝛿 + 𝜀∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠 ≤ 𝛿 + 𝜀𝐽 < 𝜀, (31)

for all 𝑡 ∈ T
0
provided that 𝛿 < 𝜀(1− 𝐽). Since (9) and (23) are

the same equation, then the zero solution of (9) is stable.
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Conversely, suppose on the contrary that 𝐵(𝑡) ̸< 0; that is,
𝐵(𝑡) ≥ 0.

For 𝐵(𝑡) = 0 for all 𝑡 ≥ 𝑡
0
assumption (i) does not hold.

For 𝐵(𝑡) > 0 consider the following functional:

𝑊(𝑡, 𝑦 (⋅)) = (𝑦 (𝑡) − ∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

2

− 𝐵
2
∫

𝑡

𝑡0

∫

∞

𝑡

‖𝐿 (𝑢, 𝑠)‖ Δ𝑢𝑦
2
(𝑠) Δ𝑠.

(32)

Then it follows that

𝑊
Δ
(𝑡, 𝑦 (⋅)) = 2 (𝑦 (𝑡) − ∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)𝐵𝑦 (𝑡)

+ 𝜇 (𝑡) (𝐵 (𝑡) 𝑦 (𝑡))
2
− 𝐵
2
[∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑡)‖ Δ𝑢𝑦
2
(𝑡)

− ∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠] ≥ 2𝑦

2
(𝑡) 𝐵 (𝑡)

− 𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ (𝑦
2
(𝑡) + 𝑦

2
(𝑠)) Δ𝑠 − 𝜇 (𝑡)

⋅ (𝐵 (𝑡) 𝑦 (𝑡))
2
− 𝐵
2
∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑡)‖ Δ𝑢𝑦
2
(𝑡)

+ 𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠 = [2𝐵 (𝑡)

− {𝐵
2
∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠 + 𝐵2 ∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑡)‖ Δ𝑢

+ 𝜇 (𝑡) 𝐵
2

2
}]𝑦
2
(𝑡) ≥ [2𝐵1 − 𝑅𝐵1] 𝑦

2
(𝑡) = 𝛾𝑦

2
(𝑡) ,

𝛾 > 0.

(33)

Now, given any 𝛿 > 0, with ‖𝑦
0
‖ < 𝛿 and𝑊(𝑡, 𝑦(⋅)) > 0 so

that if 𝑦(𝑡) is a solution of (9), we have

(𝑦 (𝑡) − ∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

2

≥ 𝑊(𝑡, 𝑦 (⋅))

≥ 𝑊 (𝑡
0
, 𝑦
0
) + 𝛼∫

𝑡

𝑡0

𝑦
2
(𝑠) Δ𝑠.

(34)

We will show that 𝑦(𝑡) is unbounded. If 𝑦(𝑡) is bounded, then
as ∫𝑡
𝑡0

‖𝐿(𝑡, 𝑠)‖Δ𝑠 is bounded, we have that ∫𝑡
𝑡0

𝐿(𝑡, 𝑠)𝑦(𝑠)Δ𝑠 is

bounded; this implies that 𝑦2(𝑡) is in 𝐿1(T
0
). Using Lemma 8,

we have

(∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖
𝑦 (𝑠)

 Δ𝑠)

2

= (∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖
1/2
‖𝐿 (𝑡, 𝑠)‖

1/2 𝑦 (𝑠)
 Δ𝑠)

2

≤ ∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠 ∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ 𝑦
2
(𝑠) Δ𝑠

≤ ∫

𝑡

𝑡0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠 ∫

𝑡

𝑡0

�̃� (𝑡, 𝜎 (𝑠)) 𝑦
2
(𝑠) Δ𝑠.

(35)

The last integral is the convolution of 𝐿1(T
0
) function with a

function tending to zero. Thus, the integral tends to zero as
𝑡 → ∞ and hence

∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠 → 0, as 𝑡 → ∞. (36)

Since


𝑦 (𝑡) − ∫

𝑡

𝑡0

𝐿 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠



≥ 𝑊 [(𝑡
0
, 𝑦
0
)]
1/2
, (37)

then, for sufficiently large𝑇, ‖𝑦(𝑡)‖ ≥ 𝛼 for some𝛼 > 0 and all
𝑡 ≥ 𝑇. This contradicts the fact that 𝑦2(𝑡) is in 𝐿1(T

0
). Thus,

𝑦(𝑡) is unbounded and the zero solution of (9) is unstable,
which is the contradiction to the fact that the zero solution is
stable. Hence, 𝐵(𝑡) < 0 which completes our proof.

Example 17. For T
0
= 𝑞

N
∪ℎN∪{0}, ℎ ≥ 2, 0 < 𝑞 < 1, consider

the following Volterra integrodynamic equation:

𝑦
Δ
(𝑡) = 𝐴 (𝑡) 𝑦 (𝑡) + ∫

𝑡

ℎ

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠, (38)

where

𝐴 (𝑡) =

{{{{

{{{{

{

1 − 2ℎ
2

2ℎ3
, for 𝑡 ∈ 𝑞N ∪ {0} ,

1 − (𝑡 + 2ℎ) (𝑡 + ℎ)

ℎ (𝑡 + ℎ) (𝑡 + 2ℎ)
, for 𝑡 ∈ ℎN,

𝐾 (𝑡, 𝑠) =

{{

{{

{

0, for 𝑡 ∈ 𝑞N ∪ {0} ,
2

ℎ𝑡 (𝑡 + ℎ) (𝑡 + 2ℎ)
, for 𝑡 ∈ ℎN.

(39)

Let us consider the following function:

𝐿 (𝑡, 𝑠) =

{{

{{

{

1

2ℎ3
, for 𝑡 ∈ 𝑞N ∪ {0} ,
1

ℎ𝑡 (𝑡 + ℎ)
, for 𝑡 ∈ ℎN.

(40)

It is easy to see that Δ
𝑡
𝐿(𝑡, 𝑠) = 𝐾(𝑡, 𝑠) and

𝐵 (𝑡) := 𝐴 (𝑡) − 𝐿 (𝜎 (𝑡) , 𝑡) (41)

=
−1

ℎ
(42)



Advances in Mathematical Physics 7

so that (38) may be written as equation

𝑦
Δ
(𝑡) =

−𝑦 (𝑡)

ℎ
− Δ
𝑡
∫

𝑡

0

𝑦 (𝑠)

ℎ𝑡 (𝑡 + ℎ)
Δ𝑠, (43)

It follows from (41) that

‖𝐵 (𝑡)‖ =
1

ℎ
. (44)

Furthermore, for every 𝑡 ∈ T
0

∫

𝑡

0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠 ≤
1

ℎ2
= 𝐽 < 1. (45)

Since 𝜇(𝑡) ≤ ℎ for all 𝑡 ∈ T
0
, by using (45), we obtain that

∫

𝑡

0

‖𝐿 (𝑡, 𝑠)‖ Δ𝑠 + ∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑠)‖ Δ𝑢 + 𝜇 (𝑡) (𝐵2)
2

≤
1

ℎ2
+ ∫

∞

𝜎(𝑡)

‖𝐿 (𝑢, 𝑠)‖ Δ𝑢 +
1

ℎ

≤
1

ℎ2
+

1

ℎ (𝑡 + ℎ)
+
1

ℎ
< 2.

(46)

If we take �̃�(𝑡, 𝜎(𝑠)) = 1/ℎ𝑡(𝑡 + ℎ) for 𝑡 ∈ T
0
, then all the

assumptions of Theorem 16 satisfy so that the zero solution
of (38) is stable.

Our next result is about asymptotic stability of (9).
Assume for the present time that 𝐴(𝑡) and 𝐾(𝑡, 𝑠) are con-
tinuously differentiable and that both

∫

∞

𝑡

‖𝐾 (𝑢, 𝑠)‖ Δ𝑢,

∫

∞

𝑡

Δ
𝑡 ‖𝐾 (𝑢, 𝑡)‖ Δ𝑢 exist.

(47)

Theorem 18. Suppose that (21) holds and there are constants
𝐵
1
, 𝐵
2
, 𝐽,𝑁, and 𝑅 with 𝑅 < 2 such that, for 𝑡 ∈ T

0
, one has

(i) −𝐵
2
≤ 𝐵(𝑡) ≤ −𝐵

1
< 0,

(ii) ∫𝑡
𝑡0

‖𝐿(𝑡, 𝑠)‖Δ𝑠 ≤ 𝐽 < 1,

(iii) ∫𝑡
𝑡0

‖𝐿(𝑡, 𝑠)‖Δ𝑠 + ∫
∞

𝜎(𝑡)
‖𝐿(𝑢, 𝑡)‖Δ𝑢 + 𝜇(𝑡)𝐵

2

2
≤ 𝑅𝐵
1
/𝐵
2
,

(iv) ∫𝑡
𝑡0

‖𝐾(𝑡, 𝑠)‖Δ𝑠 + ‖ ∫
∞

𝜎(𝑡)
𝐾(𝑢, 𝑡)Δ𝑢‖ ≤ 𝑁,

and then the zero solution of (9) is asymptotic stable. Further-
more, every solution 𝑦(𝑡) of (9) is in 𝐿2(T

0
).

In addition, if

(v) 𝜇(𝑡)(2𝐵Δ + 𝐵2 + 𝜇2(𝑡)(𝐵Δ)2 + 2𝜇(𝑡)𝐵Δ𝐵) + ‖𝐵Δ − 𝐵𝐿 +
𝜇
2
(𝑡)×(𝐵

Δ
)
2
−𝜇(𝑡)𝐵

Δ
𝐿‖+‖𝐵+𝜇(𝑡)𝐵

Δ
‖∫
𝑡

𝑡0

‖𝐾(𝑡, 𝑠)‖Δ𝑠 ≤

𝑅𝐵
1
,

(vi) 𝐾(𝑡, 𝑠), ∫𝑡
𝑡0

Δ
𝑡
‖𝐾(𝑡, 𝑠)‖Δ𝑠, and ∫∞

𝑡
Δ
𝑡
‖𝐾(𝑢, 𝑡)‖Δ𝑢 are

bounded, then 𝑦Δ(𝑡) → 0 as 𝑡 → ∞ and 𝑦Δ(𝑡) is in
𝐿
2
(T
0
).

Proof. Stability of the zero solution is clear fromTheorem 16;
hence,

𝑉
Δ
(𝑡, 𝑦 (⋅)) ≤ −𝛽𝑦

2
(𝑡) , 𝛽 > 0 (48)

for all 𝑡 ∈ T
0
. As 𝑉(𝑡, 𝑦(⋅)) ≥ 0, we have 𝑦(𝑡) in 𝐿2(T

0
). To

show that the zero solution is asymptotically stable, we first
observe from (iv) that 𝐿(𝜎(𝑡), 𝑡) is bounded and since 𝐵(𝑡) is
bounded, hence 𝐴(𝑡) is bounded.

Now (9) yields that


𝑦
Δ
(𝑡)

≤ ‖𝐴 (𝑡)‖

𝑦 (𝑡)
 + ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖
𝑦 (𝑠)

 Δ𝑠 (49)

and, using (iv), that 𝑦Δ(𝑡) is bounded. Since 𝑦2(𝑡) is in 𝐿1(T
0
)

and [𝑦2(𝑡)]Δ = 2𝑦(𝑡)𝑦Δ(𝑡)+𝜇(𝑡)[𝑦Δ(𝑡)]2 is bounded, it follows
that 𝑦(𝑡) → 0 as 𝑡 → ∞. Hence, the zero solution is
asymptotically stable.

To show that 𝑦Δ(𝑡) is in 𝐿2(T
0
) and differentiate (23), we

obtain

𝑦
ΔΔ
(𝑡)

= (𝐵 (𝑡) 𝑦 (𝑡))
Δ

+ Δ
𝑡
[𝐿 (𝜎 (𝑡) , 𝑡) 𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠] .

(50)

Let 𝐵 = 𝐵(𝑡), 𝐿 = 𝐿(𝜎(𝑡), 𝑡) and consider the functional

𝑉(𝑡, 𝑦 (⋅) , 𝑦
Δ
(⋅)) = (𝐵𝑦 (𝑡))

2

+𝑀∫

𝑡

𝑡0

𝐸 (𝑡, 𝑠)
𝑦 (𝑠)


2
Δ𝑠

+ 𝐶∫

∞

𝑡

𝑦
2
(𝑠) Δ𝑠.

(51)

The derivative along a solution 𝑦(𝑡) of (23) for 𝑡 ∈ T
0
satisfies

𝑉
Δ
(𝑡, 𝑦 (⋅) , 𝑦

Δ
(⋅)) = 2 (𝐵𝑦 (𝑡)) (𝐵𝑦 (𝑡))

Δ

+ 𝜇 (𝑡) [(𝐵𝑦 (𝑡))
Δ
]
2

− 𝐶𝑦
2
(𝑡)

+ 𝑀𝐸 (𝜎 (𝑡) , 𝑡) 𝑦
2
(𝑡)

+ 𝑀∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠

= 2𝐵𝑦 (𝑡) 𝐵𝑦
Δ
(𝑡)

+ 2𝐵𝑦 (𝑡) 𝐵
Δ
𝑦 (𝑡)

+ 2𝜇 (𝑡) 𝐵𝑦 (𝑡) 𝐵
Δ
𝑦
Δ
(𝑡)

+ 𝜇 (𝑡) [(𝐵𝑦 (𝑡))
Δ
]
2

− 𝐶𝑦
2
(𝑡)

+ 𝑀𝐸 (𝜎 (𝑡) , 𝑡) 𝑦
2
(𝑡)

+ 𝑀∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠

(52)
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and, substituting the value of 𝐵𝑦(𝑡) from (23), we obtain

𝑉
Δ
(𝑡, 𝑦 (⋅) , 𝑦

Δ
(⋅)) = [2𝐵

+ 𝜇 (𝑡) (2𝐵
Δ
+ 𝐵
2
+ 𝜇
2
(𝑡) (𝐵

Δ
)
2

+ 2𝜇 (𝑡) 𝐵
Δ
𝐵)]

⋅ (𝑦
Δ
(𝑡))
2

+ 2 [𝐵
Δ
𝑦 (𝑡) + 𝜇

2
(𝑡) (𝐵

Δ
)
2

𝑦 (𝑡)

− (𝜇 (𝑡) 𝐵
Δ
+ 𝐵)(𝐿𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)]

⋅ 𝑦
Δ
(𝑡) + 𝑀∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠

+ [𝜇 (𝑡) [(𝐵)
Δ
]
2

+𝑀𝐸 (𝜎 (𝑡) , 𝑡) − 𝐶] 𝑦
2
(𝑡)

− 2 (𝐿𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)𝐵
Δ
𝑦 (𝑡) ≤ [2𝐵

+ 𝜇 (𝑡) (2𝐵
Δ
+ 𝐵
2
+ 𝜇
2
(𝑡) (𝐵

Δ
)
2

+ 2𝜇 (𝑡) 𝐵
Δ
𝐵)]

⋅ (𝑦
Δ
(𝑡))
2

+𝑀∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠 +


𝐵
Δ

⋅ ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ (𝑦
2
(𝑡) + 𝑦

2
(𝑠)) Δ𝑠 +


𝐵 + 𝜇 (𝑡) 𝐵

Δ

⋅ ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ ((𝑦
Δ
(𝑡))
2

+ 𝑦
2
(𝑠)) Δ𝑠 +


𝐵
Δ
− 𝐵𝐿

+ 𝜇
2
(𝑡) (𝐵

Δ
)
2

− 𝜇 (𝑡) 𝐵
Δ
𝐿

((𝑦
Δ
(𝑡))
2

+ 𝑦
2
(𝑡))

+ [𝜇 (𝑡) [(𝐵)
Δ
]
2

+𝑀𝐸 (𝜎 (𝑡) , 𝑡) − 𝐶 + 2

𝐵
Δ
𝐿

]

⋅ 𝑦
2
(𝑡) .

(53)

That implies

𝑉
Δ
(𝑡, 𝑦 (⋅) , 𝑦

Δ
(⋅)) ≤ [2𝐵

+ 𝜇 (𝑡) (2𝑄
Δ
+ 𝐵
2
+ 𝜇
2
(𝑡) (𝐵

Δ
)
2

+ 2𝜇 (𝑡) 𝐵
Δ
𝐵)

+

𝐵
Δ
− 𝐵𝐿 + 𝜇

2
(𝑡) (𝐵

Δ
)
2

− 𝜇 (𝑡) 𝐵
Δ
𝐿


+

𝐵 + 𝜇 (𝑡) 𝐵

Δ
∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠] (𝑦
Δ
(𝑡))
2

+ [

𝐵
Δ
− 𝐵𝐿 + 𝜇

2
(𝑡) (𝐵

Δ
)
2

− 𝜇 (𝑡) 𝐵
Δ
𝐿


+

𝐵
Δ
∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠 + 𝜇 (𝑡) [(𝐵)
Δ
]
2

+𝑀𝐸 (𝜎 (𝑡) , 𝑡) + 2

𝐵
Δ
𝐿

− 𝐶]𝑦

2
(𝑡)

+ (

𝐵 + 𝜇 (𝑡) 𝐵

Δ
+

𝐵
Δ
+𝑀)

⋅ ∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠.

(54)

By (v),𝐵Δ is bounded.Thus, by choosing𝐶 and𝑀 sufficiently
large, we obtain

𝑉
Δ
(𝑡, 𝑦 (⋅) , 𝑦

Δ
(⋅)) ≤ [2𝐵

+ 𝜇 (𝑡) (2𝐵
Δ
+ 𝐵
2
+ 𝜇
2
(𝑡) (𝐵

Δ
)
2

+ 2𝜇 (𝑡) 𝐵
Δ
𝐵)

+

𝐵
Δ
− 𝐵𝐿 + 𝜇

2
(𝑡) (𝐵

Δ
)
2

− 𝜇 (𝑡) 𝐵
Δ
𝐿


+

𝐵 + 𝜇 (𝑡) 𝐵

Δ
∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠] (𝑦
Δ
(𝑡))
2

≤ [−2𝐵
1
+ 𝑅𝐵
1
] (𝑦
Δ
(𝑡))
2

= −𝛼 (𝑦
Δ
(𝑡))
2

.

(55)

As 𝑉(𝑡, 𝑦(⋅), 𝑦Δ(⋅)) ≥ 0, we have 𝑦Δ(𝑡) in 𝐿2(T
0
). To show

𝑦
Δ
(𝑡) → 0, we differentiate (9) and obtain

𝑦
ΔΔ
(𝑡) = 𝐴 (𝑡) 𝑦

Δ
(𝑡) + 𝐴

Δ
(𝑡) 𝑦 (𝑡)

+ 𝜇 (𝑡) 𝐴
Δ
(𝑡) 𝑦
Δ
(𝑡) + 𝐾 (𝜎 (𝑡) , 𝑡) 𝑦 (𝑡)

+ ∫

𝑡

𝑡0

Δ
𝑡
𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠.

(56)

Since

𝐵 (𝑡) = 𝐴 (𝑡) − 𝐿 (𝜎 (𝑡) , 𝑡) = 𝐴 (𝑡) + ∫

∞

𝜎(𝑡)

𝐾 (𝑢, 𝑡) Δ𝑢, (57)

we have
𝐵
Δ
(𝑡) = 𝐴

Δ
(𝑡) − 𝐾 (𝜎 (𝑡) , 𝜎 (𝑡))

+ ∫

∞

𝜎(𝑡)

Δ
𝑡
𝐾 (𝑢, 𝑡) Δ𝑢.

(58)

Thus, by (v) and (vi), 𝐴Δ(𝑡) is bounded and hence, by (49)
and (56), 𝑦ΔΔ(𝑡) is bounded; therefore, ((𝑦Δ(𝑡))2)Δ =

2𝑦
Δ
(𝑡)𝑦
ΔΔ
(𝑡) + 𝜇(𝑡)[𝑦

ΔΔ
(𝑡)]
2 is bounded. As (𝑦Δ(𝑡))2 is in

𝐿
1
(T
0
), we have 𝑦Δ(𝑡) → 0 as 𝑡 → ∞. This completes the

proof.
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4. The Vector Equation

We now extend the results of Section 3 to the system of
Volterra equations; that is, 𝑛 ≥ 1. Owing to the greater com-
plexity of systems over scalars, it seems preferable to reduce
the generality of 𝐴 and𝐾.

Consider the system

𝑦
Δ
(𝑡) = 𝐴𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠, (59)

in which 𝐴 is constant 𝑛 × 𝑛 matrix and 𝐾 is 𝑛 × 𝑛 matrix of
functions continuos on Ω.

We suppose that there is a symmetric matrix 𝐷 which
satisfies the equation

𝐴
𝑇
𝐷 + 𝐷𝐴 = −𝐼. (60)

Theorem 19. Suppose that (60) holds for some symmetric
matrix 𝐷 and that there is a constant𝑀 > 0 such that

‖𝐷‖((1 + 𝜇 (𝑡) ‖𝐴‖) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠 + 𝜇 (𝑡) ‖𝐴‖
2

+ 𝐸 (𝜎 (𝑡) , 𝑡)) ≤ 𝑀 < 1.

(61)

Then the zero solution of (59) is stable if and only if𝐷 is positive
definite.

Proof. We consider the functional

𝑉 (𝑡, 𝑦 (⋅)) = 𝑦
𝑇
(𝑡) 𝐷𝑦 (𝑡)

+ ‖𝐷‖∫

𝑡

𝑡0

𝐸 (𝑡, 𝑠)
𝑦 (𝑠)


2
Δ𝑠.

(62)

The derivative of 𝑉(𝑡, 𝑦(⋅)) along a solution 𝑦(𝑡) of (59) satis-
fies

𝑉
Δ
(𝑡, 𝑦 (⋅)) = 2𝑦

𝑇
(𝑡)

⋅ 𝐷(𝐴𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠) + ‖𝐷‖

⋅ 𝐸 (𝜎 (𝑡) , 𝑡)
𝑦 (𝑡)


2
+ 𝜇 (𝑡)

⋅ (𝐴𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

𝑇

⋅ 𝐷(𝐴𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠) + ‖𝐷‖

⋅ ∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠

= 𝑦
𝑇
(𝑡) 𝐷𝐴𝑦 (𝑡) + 𝑦

𝑇
𝐴
𝑇
𝐷𝑦 (𝑡) + 2𝑦

𝑇
(𝑡)

⋅ 𝐷∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠 + ‖𝐷‖𝐸 (𝜎 (𝑡) , 𝑡)
𝑦 (𝑡)


2

+ 𝜇 (𝑡) 𝑦
𝑇
(𝑡) 𝐴
𝑇
𝐷𝐴𝑦 (𝑡) + 2𝜇 (𝑡)

⋅ ∫

𝑡

𝑡0

𝑦
𝑇
(𝑠) 𝐾
𝑇
(𝑡, 𝑠) Δ𝑠𝐷𝐴𝑦 (𝑡) + 𝜇 (𝑡)

⋅ ∫

𝑡

𝑡0

𝑦
𝑇
(𝑠) 𝐾
𝑇
(𝑡, 𝑠) Δ𝑠𝐷∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠 + ‖𝐷‖

⋅ ∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠.

(63)

Using (60), we may write

𝑉
Δ
(𝑡, 𝑦 (⋅)) ≤ −

𝑦 (𝑡)

2
+ ‖𝐷‖𝐸 (𝜎 (𝑡) , 𝑡)

𝑦 (𝑡)

2

+ 𝜇 (𝑡) ‖𝐷‖(∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖
𝑦 (𝑠)

 Δ𝑠)

2

+ (1

+ 𝜇 (𝑡) ‖𝐴‖) ‖𝐷‖

⋅ ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ (
𝑦 (𝑡)


2
+
𝑦 (𝑠)


2
) Δ𝑠 − ‖𝐷‖

⋅ ∫

𝑡

𝑡0

(1 + 𝜇 (𝑡) {‖𝐴‖ + 𝐶 (𝑡)}) ‖𝐾 (𝑡, 𝑠)‖
𝑦 (𝑠)


2
Δ𝑠

+ 𝜇 (𝑡) ‖𝐷‖ ‖𝐴‖
2 𝑦 (𝑡)


2
.

(64)

By Lemma 8, we obtain

𝑉
Δ
(𝑡, 𝑦 (⋅)) ≤ ‖𝐷‖𝐸 (𝜎 (𝑡) , 𝑡)

𝑦 (𝑡)

2
+ 𝜇 (𝑡) ‖𝐷‖

⋅ (𝐶 (𝑡) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖
𝑦 (𝑠)


2
Δ𝑠) + 𝜇 (𝑡) ‖𝐷‖ ‖𝐴‖

2

⋅
𝑦 (𝑡)


2
−
𝑦 (𝑡)


2
+ (1 + 𝜇 (𝑡) ‖𝐴‖) ‖𝐷‖

⋅ ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ (
𝑦 (𝑡)


2
+
𝑦 (𝑠)


2
) Δ𝑠 − ‖𝐷‖

⋅ ∫

𝑡

𝑡0

(1 + 𝜇 (𝑡) {‖𝐴‖ + 𝐶 (𝑡)}) ‖𝐾 (𝑡, 𝑠)‖
𝑦 (𝑠)


2
Δ𝑠

= [−1 + ‖𝐷‖ (1 + 𝜇 (𝑡) ‖𝐴‖) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠

+ 𝜇 (𝑡) ‖𝐴‖
2
+ 𝐸 (𝜎 (𝑡) , 𝑡)]

𝑦 (𝑡)

2
≤ [−1 +𝑀]

⋅
𝑦 (𝑡)


2
= −𝛼

𝑦 (𝑡)

2
,

(65)
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where 𝛼 = −1 + 𝑀 > 0. Now, if 𝐷 is positive definite, then
𝑦
𝑇
(𝑡)𝐷𝑦(𝑡) > 0 for all 𝑦 ̸= 0 and hence 𝑉(𝑡, 𝑦(⋅)) is positive

definite and 𝑉Δ(𝑡, 𝑦(⋅)) is negative definite and it follows that
the zero solution of (59) is stable.

Conversely, suppose that the zero solution of (59) is stable
but 𝐷 is not positive definite. Then there is 𝑦

0
̸= 0 such that

𝑦
𝑇

0
𝐷𝑦
0
≤ 0.

If 𝑦𝑇
0
𝐷𝑦
0
= 0, then, along the solution 𝑦(𝑡) of (59), we

have

𝑉 (𝑡
0
, 𝑦
0
) = 𝑦
𝑇

0
𝐷𝑦
0
= 0,

𝑉
Δ
(𝑡, 𝑦 (⋅)) ≤ −𝛼

𝑦 (𝑡)

2
.

(66)

It follows that, for some 𝑡
1
> 𝑡
0
, 𝑉(𝑡
1
, 𝑦(⋅)) < 0. Thus,

𝑦
𝑇
(𝑡
1
)𝐷𝑦(𝑡

1
) < 0.

Hence, 𝑦𝑇(𝑡)𝐷𝑦(𝑡) is not always positive for 𝑦(𝑡) ̸= 0, and
we may suppose that there is 𝑦

0
̸= 0 such that 𝑦𝑇

0
𝐷𝑦
0
< 0.

Let 𝜀 = 1. Since the zero solution of (59) is stable, then
there is 𝛿 > 0 and 𝑦

0
̸= 0 such that ‖𝑦

0
‖ < 𝛿 and ‖𝑦(𝑡)‖ < 𝜀

for all 𝑡 ∈ T
0
. We may choose 𝑦

0
such that ‖𝑦

0
‖ < 𝛿 and

𝑦
𝑇

0
𝐷𝑦
0
< 0.

Moreover, we have

𝑦
𝑇
(𝑡) 𝐷𝑦 (𝑡) ≤ 𝑉 (𝑡, 𝑦 (⋅))

≤ 𝑉 (𝑡
0
, 𝑦
0
) − 𝛼∫

𝑡

𝑡0

𝑦 (𝑠)

2
Δ𝑠

= 𝑦
𝑇

0
𝐷𝑦
0
− 𝛼∫

𝑡

𝑡0

𝑦 (𝑠)

2
Δ𝑠.

(67)

We have to show that 𝑦(𝑡) is bounded away from zero. Sup-
pose that it is not true; then, there is a sequence {𝑡

𝑛
} tending to

infinity monotonically such that 𝑦(𝑡
𝑛
) → 0, a contradiction

to 𝑦𝑇(𝑡)𝐷𝑦(𝑡) ≤ 𝑦𝑇
0
𝐷𝑦
0
< 0. Thus, there is 𝛽 > 0 with

‖𝑦(𝑡)‖
2
≥ 𝛽 so that 𝑦𝑇(𝑡)𝐷𝑦(𝑡) ≤ 𝑦𝑇

0
𝐷𝑦
0
− 𝛼𝛽𝑡, implying

that ‖𝑦(𝑡)‖ → ∞ as 𝑡 → ∞. This contradicts ‖𝑦(𝑡)‖ < 1
and completes the proof.

We now prove a complete instability result for the zero
solution of (59). Suppose that 𝐷 is a positive definite sym-
metric matrix satisfying

𝐴
𝑇
𝐷 + 𝐷𝐴 = 𝐼. (68)

Theorem 20. Suppose that (68) holds for some symmetric
matrix 𝐷 and that there is a constant𝑀 > 0 such that

‖𝐷‖((1 + 𝜇 (𝑡) ‖𝐴‖) ∫

𝑡

𝑡0

‖𝐾 (𝑡, 𝑠)‖ Δ𝑠 + 𝜇 (𝑡) ‖𝐴‖
2

+ 𝐸 (𝜎 (𝑡) , 𝑡)) ≤ 𝑀 < 1.

(69)

Then the zero solution of (59) is completely unstable.

Proof. Consider the functional

𝑊(𝑡, 𝑦 (⋅)) = 𝑦
𝑇
(𝑡) 𝐷𝑦 (𝑡)

− ‖𝐷‖∫

𝑡

𝑡0

𝐸 (𝑡, 𝑠)
𝑦 (𝑠)


2
Δ𝑠.

(70)

The derivative of 𝑉(𝑡, 𝑦(⋅)) along a solution 𝑦(𝑡) of (59) satis-
fies

𝑊
Δ
(𝑡, 𝑦 (⋅)) = 2𝑦

𝑇
(𝑡)

⋅ 𝐷(𝐴𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

− ‖𝐷‖𝐸 (𝜎 (𝑡) , 𝑡)
𝑦 (𝑡)


2
+ 𝜇 (𝑡)

⋅ (𝐴𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

𝑇

⋅ 𝐷(𝐴𝑦 (𝑡) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) Δ𝑠)

− ‖𝐷‖∫

𝑡

𝑡0

Δ
𝑡
𝐸 (𝑡, 𝑠)

𝑦 (𝑠)

2
Δ𝑠.

(71)

Similarly, as inTheorem 19, we obtain the following estimate:

𝑊
Δ
(𝑡, 𝑦 (⋅)) ≥ 𝜁𝑦

2
(𝑡) , (72)

where 𝜁 = [1 −𝑀] > 0. Choose 𝑦
0
so that𝑊(𝑡, 𝑦

0
) > 0. Then

‖𝐷‖
𝑦 (𝑡)


2
≥ 𝑦
𝑇
(𝑡) 𝐷𝑦 (𝑡) ≥ 𝑊 (𝑡, 𝑦 (⋅))

≥ 𝑊 (𝑡
0
, 𝑦
0
) + 𝜁∫

𝑡

𝑡0

𝑦 (𝑠)

2
Δ𝑠

(73)

for all 𝑡 ∈ T
0
. As ‖𝑦(𝑡)‖2 ≥ 𝑊(𝑡

0
, 𝑦(⋅))/‖𝐷‖, we have

‖𝐷‖
𝑦 (𝑡)


2
≥ 𝑊(𝑡

0
, 𝑦
0
) +
𝜁𝑊 (𝑡

0
, 𝑦
0
) (𝑡 − 𝑡

0
)

‖𝐷‖
. (74)

If 𝑡
0
= 0 and 𝑦

0
̸= 0, then

𝑦 (𝑡)

2
≥
[𝑦
𝑇

0
𝐷𝑦
0
]

‖𝐷‖
+ (

𝜁

‖𝐷‖
2
) [𝑦
𝑇

0
𝐷𝑦
0
] 𝑡. (75)

This is complete instability. The proof is now complete.
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